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The genetic relationships between brain
structure and schizophrenia

Eva-Maria Stauffer 1 , Richard A. I. Bethlehem 1,2, Lena Dorfschmidt 1,
Hyejung Won 3, Varun Warrier 1,2,5 & Edward T. Bullmore1,4,5

Genetic risks for schizophrenia are theoretically mediated by genetic effects
onbrain structure but it has beenunclearwhich genes are associatedwith both
schizophrenia and cortical phenotypes.We accessed genome-wide association
studies (GWAS) of schizophrenia (N = 69,369 cases; 236,642 controls), and of
three magnetic resonance imaging (MRI) metrics (surface area, cortical
thickness, neurite density index) measured at 180 cortical areas (N = 36,843,
UK Biobank). Using Hi-C-coupled MAGMA, 61 genes were significantly asso-
ciated with both schizophrenia and one or more MRI metrics. Whole genome
analysis with partial least squares demonstrated significant genetic covariation
between schizophrenia and area or thickness of most cortical regions. Genetic
similarity between cortical areas was strongly coupled to their phenotypic
covariance, and genetic covariation between schizophrenia and brain pheno-
types was strongest in the hubs of structural covariance networks. Pleio-
tropically associated genes were enriched for neurodevelopmental processes
and positionally concentrated in chromosomes 3p21, 17q21 and 11p11. Men-
delian randomization analysis indicated that genetically determined variation
in a posterior cingulate cortical area could be causal for schizophrenia. Parallel
analyses of GWAS on bipolar disorder, Alzheimer’s disease and height showed
that pleiotropic association with MRI metrics was stronger for schizophrenia
compared to other disorders.

Recent genome-wide association studies (GWAS) have confirmed
that human brain structure is heritable1,2 and the number of genetic
loci associated with variation in brain phenotypes, typically mea-
sured by magnetic resonance imaging (MRI), has increased as the
scale of cohortswith both genetic andMRI data available has become
larger1,2. Growing insight into the genetic architecture of the human
brain raises the question of whether brain structural variation in the
population is associated with genes that are also significantly asso-
ciated with schizophrenia and other neuropsychiatric disorders3–6.
It is a central expectation of many biological theories of schizo-
phrenia that genetic effects on schizophrenia are mechanistically
or proximally mediated by the effects of the same genes on brain

structure and function7; but to date, there has been limited direct
evidence for this prediction3–6,8.

Here, we aimed to identify genes that are associated with both
brain MRI phenotypes and schizophrenia. We reasoned that identifi-
cation of such pleiotropic genes would be consistent with prior the-
ories that genetic variants encode risk for schizophrenia by causal
effects on intermediate phenotypes or endophenotypes of brain
structure9. We recognised that pleiotropic association per se does not
resolve the question of causality, and that the theoretically privileged
axis—from gene to brain to schizophrenia—is not the only plausible
causal pathway between these entities10. However, given recently
available statistically well-powered GWAS of schizophrenia and brain
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structure, we reasoned that if we could not find any evidence for
pleiotropic association, then the role of macro-scale brain structure in
mediating schizophrenia risk must be more modest than previously
anticipated11,12.

There is awide and increasingly diverse rangeof brain phenotypes
that can be measured by MRI or diffusion-weighted imaging (DWI).
Most prior large-scale genetic MRI studies have used T1-weighted data
to estimate macro-structural phenotypes such as surface area (SA),
cortical thickness (CT), and volume1, each estimated at multiple cor-
tical areas or globally. However, micro-structural MRI metrics are
increasingly recognised to provide important additional information
about cortical myelination, lamination and other tissue properties,
e.g., the density of axons and dendrites measured by neurite density
index (NDI)13. Both macro- and micro-structural MRI metrics are heri-
table and can be organised into latent dimensions of shared and dis-
tinctive genetic effects2. We therefore considered it important to
measure genetic associations separately for threeminimally correlated
MRI metrics (CT, SA, NDI) that emerge developmentally by distinct
cellular mechanisms2. Recent MRI GWAS data1,2,14 have shown that
single nucleotide polymorphisms (SNPs) often have anatomically
localised associations with brain phenotypes, so we considered it
important to measure genome-wide association with multiple (3) MRI
metrics at each of 180 cortical areas, defined by an anatomically
refined prior parcellation template15, to estimate a set of 540 regional
brain phenotypes per scan.

Recognising that the cortex is organised as a complex network16,
we also considered it important to investigate genetic associations
with brain network phenotypes. For example, hubs or highly con-
nected nodes have been demonstrated across a wide range of scales
and species of nervous systems, including the neuronal network of C.
elegans and axonal tract-tracing connectomes of mouse, rat and non-
human primate brains17–20. In a structural covariance network derived
from human MRI21, hubs typically represent regions that covary
strongly with multiple other cortical areas on some MRI metric, e.g.,
volume or thickness. This phenotypic covariance can be interpreted
biologically as a proxy for axonal connectivity and/or shared neuro-
developmental trajectories between strongly covarying regions21; and
twin studies have shown that humanMRI network hubs are heritable22.
Following Cheverud’s conjecture, that phenotypic correlations mirror
genetic correlations23, we expected that structural covariance and
genetic similarity would be strongly coupled for each possible pair of
cortical areas, and that hubs in the structural covariance network
should also be hubs in the genetic correlation matrix. Multiple case-
control MRI studies have demonstrated that the normative hubs of
structural MRI networks are most locally and topologically atypical in
schizophrenia24,25. We, therefore, also expected that genes pleio-
tropically associated with both schizophrenia and brain structure
would express their strongest effects on brain regions constituting the
hubs of the structural covariance network or connectome.

Previous studies have estimated the genetic correlation between
brain and clinical phenotypes, or regressed polygenic scores (PGS) for
schizophrenia on brain MRI phenotypes1,5,8,26. However, PGS and
genetic correlations are unable to pinpoint specific genes or biological
processes that are implicated in both brain structure and schizo-
phrenia, as they are composite measures of a large number of SNPs
across the genome7. To identify specific genes and shared biological
mechanisms, the genetic relationship between brain structure and
schizophrenia can be more directly investigated by mapping SNPs to
genes. We therefore accessed recently published GWAS statistics for
three MRI metrics (CT, SA and NDI), each measured at 180 regions in
N = 36,843 scans from the UK Biobank and the ABCD cohort2; and
summary statistics from the largest and most recent GWAS study of
schizophrenia (N = 69,369 individuals with a schizophrenia diagnosis
and N = 236,642 individuals without a schizophrenia diagnosis)27. We
mapped each set of SNP-level GWAS statistics to a total of 18,640

individual genes using H-MAGMA28,29, which takes into account that
non-coding SNPs can regulate distal genes via chromatin interaction
profiles (measured by high-throughput chromosome conformation
capture, Hi-C).

On this basis, we addressed 3 primary questions: (i) is there evi-
dence for pleiotropy between brain (MRI) regional phenotypes and
schizophrenia? (ii) is the genetic covariation between brain regional
phenotypes and schizophrenia related to brain network phenotypes?
and (iii) what are the characteristics of the most strongly pleiotropic
genes? These results prompted us to address two more (secondary)
questions: (iv) how does schizophrenia compare to other brain dis-
orders in terms of its shared genetic risk with brain structure? and (v)
given this pleiotropy, is there a causal pathway for brain-mediated
genetic risk of schizophrenia?

Results
Genetic associations with regional brain phenotypes
Identification of genes associated with MRI metrics. Across all 180
cortical areas, we identified 4222 significant gene-level associations for
SA, 773 for CT and 301 for NDI, with false discovery rate (FDR) set at 5%
to control type 1 error for multiple comparisons (Methods). For each
MRI metric, the number of significantly associated genes varied
between cortical regions (Fig. 1A). However, most of the genes were
significantly associated with multiple cortical regions, suggesting that
shared genetic factors influenced variation of each MRI metric across
the cortex, which is in line with high genetic correlations between
cortical regions previously reported1,2. Aggregating associated genes
across all regions, we identified 318 genes in total for SA (i.e., 4222 sig-
nificant gene-region associations represented 318 non-redundant
genes), 157 genes for CT and 86 genes for NDI (Table S1).

Most of these genes were associated specifically with one of the
three MRI metrics investigated: 246 out of 318 genes (78%) associated
with SA were associated only with SA; 95 out of 157 genes (61%) were
associated only with CT; and 43 out of 86 genes (63%) were associated
only with NDI. This parallels the minimal genetic correlations across
these three MRI metrics2. However, 27 genes were significantly asso-
ciated with all MRI metrics, including 16 genes within the 17q21.31
region. The remaining (11) genes associatedwith all 3MRImetricswere
located on chromosome 8p23 (7 genes), chromosome 6q25 (3 genes),
and chromosome 1p33 (1 gene) (Fig. 1B, Table S2).

Pathway enrichment and developmental analysis of genes asso-
ciatedwithMRImetrics. The set of 318genes associatedwith SAacross
multiple cortical areas was enriched for 34 Gene Ontology (GO) terms,
and the set of 157 genes associated with CT was enriched for 12 GO
terms (Methods). SA-related genes were enriched in processes related
to central nervous system development (SA GO:0007417, P =0.01) and
neurogenesis (SA GO:0050767, P ≤0.05). CT-related genes were enri-
ched for neuron development (CT GO:0048666, P =0.01), neuron
projection (CT GO:0031175, P =0.01) and microtubule related pro-
cesses (CT, GO:0007017, P ≤0.002). Both SA- and CT-related gene sets
were enriched for fundamental biological processes such as cell
development (SA GO:0048869, P=0.01, CT GO:0048468, P=0.05)
(Table S3). The 86 genes associated with NDI were not significantly
enriched for any biological pathways.

Using spatio-temporal gene expression data from the Psy-
chEncode database30, we investigated the developmental expression
profiles of gene sets significantly associated with each MRI metric
(Methods). Genes associated with CT and SA showed similar trajec-
tories with peak expression during the mid-gestation period (devel-
opmental stage 4, 19–22 post-conception weeks (PCW)) followed by a
steep decline of expression post-natally. Expression of genes asso-
ciated with NDI peaked later, in the peri-natal period (developmental
stage 5, 35 PCW - 4 months), and gradually decreased post-natally
(Fig. 1C; Table S4).
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Genes associated with schizophrenia and their intersection with
MRI-associated genes. We compared the MRI-associated gene sets
with genes identified as significant based on H-MAGMA analysis of an
independent GWAS of schizophrenia27. We found 587 genes were sig-
nificantly associated with schizophrenia after correction for multiple
comparisons (Table S5) (Methods). In line with previous findings27,28,
this gene set was enriched for 66 GO terms related to neuronal func-
tion including nervous system development (GO:0007399, P ≤0.001),
neurogenesis (GO:0022008, P ≤0.001) and trans-synaptic transmis-
sion (GO:0099537, P ≤0.01) (Table S6). Genes associated with schi-
zophrenia had peak expression during mid-gestation followed by
decreasing expression post-natally (Fig. 1B; Table S4)28.

Out of these 587 schizophrenia-associated genes, 51 were also
associated with SA, 22 with CT and 14 with NDI, representing a sig-
nificant overlap for eachmetric (SA, Z = 16.5; CT, Z = 8.91; NDI Z = 8.14;
all P ≤0.0001 by permutation tests; see Table S7 for details). The
genomic region of chromosome 3p21.1 contained several genes
pleiotropically associated with both SA and schizophrenia, including
PBRM1,NEK4, GNL3, ITIH4 andNISCH. Likewise, the genomic regionof
chromosome 17q21.31 also contained multiple genes that were asso-
ciated both with schizophrenia and with all 3 MRI metrics, including
NSF, KANSL1, CRHR1, ARHGAP27, LRRC37A, CCDC43, FMNL1, SPPL2C,
MAPT, PLEKHM1, STH, and LINC002210-CRHR1. To ensure that
pleiotropic association with schizophrenia and MRI metrics was not
driven by linkage disequilibrium (LD) between genomic variants, we
performed gene set enrichment analysis using MAGMA, which
accounts for LD between genes (Methods)31.We found that the genetic
effects of schizophrenia were enriched for genes significantly asso-
ciated with each MRI metric (SA, P ≤0.0001; CT, P ≤0.001; NDI,
P ≤0.01); and, vice versa, that genes associated with MRI phenotypes

were enriched for schizophrenia-related genes (SA, P ≤0.0001; CT,
P ≤0.001; NDI, P ≤0.05). These results provide confidence that the
evidence for pleiotropic association is not simply driven by LD.

Whilst H-MAGMA aggregates genome-wide SNP level data into
gene-level data, an alternative method is to identify genes by fine-
mapping significant loci, and linking these to genes, as has been used
previously for both schizophrenia27 and global MRI phenotypes2. As a
sensitivity analysis, we also investigated if genes prioritised from fine-
mapping analyses of schizophrenia (number of genes, NG = 106)27 are
enriched for genes identified from fine-mapping of global MRImetrics
(SA, NG = 16; CT, NG = 12; NDI, NG = 2)2. The gene effects we identified
for SA and CT were enriched for the list of prioritised schizophrenia
risk genes (NG = 106)27, and we replicated the genetic intersection
between schizophrenia and both SA and CT metrics that was located
on chromosome 17q21.31 using the previously published fine-mapped
gene lists2,27 (see SI Results 2).

Genetic covariation between schizophrenia and regional MRI
metrics
Since the number of significantly associated genes varied between
cortical regions and MRI metrics, and because the genetic covariation
between schizophrenia and brain structure might be influenced by
genes that do not reach genome-wide significance, we further inves-
tigated the genetic relationship between brain structure and schizo-
phrenia without pre-selecting genes based on a P-value threshold.

Usingpartial least squares regression (PLS)32 tomap the anatomical
distribution of genetic covariation between regional brain phenotypes
and schizophrenia (Fig. 2A, Methods), we found that the first PLS
component (PLS1) identified amodest but significant proportion of the
genetically determined variation in each MRI metric that covaried with

Fig. 1 | Genetic associations with threeMRImetrics of regional brain structure:
surface area (SA), cortical thickness (CT) and neurite density index (NDI).
A Cortical surface maps representing the number of genes significantly associated
with variation in eachMRImetric at each of 180 cortical areas, from left to right: SA,
CT, NDI. Regions without any significant gene associations are shown in white.
B Venn diagram representing the number of genes that are specifically associated
with each MRI metric or generically associated with two or three metrics. The
percentages refer to the proportion of all genes associated with one or more MRI

metrics represented in each segment of the Venn diagram. C Developmental tra-
jectories of average gene expression from 8 post-conception weeks (PCW) to 40
years for the sets of genes significantly associated with each MRI metric or with
schizophrenia (SCZ). The shaded region indicates 95% confidence intervals. The
vertical line indicates the usual timing of birth. These results highlight mid-to-late
fetal stages as a critical window for genetically controlled development of cortical
regions2 and for expression of genes associated with risk of schizophrenia. Source
data are provided as a Source Data file.
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genetic risks for schizophrenia: 5.9% for SA, 5.5% for CT and 3% for NDI
(all P ≤0.0001 by permutation tests). PLS1 weights for each (ith) brain
region,w(X)i, were Z-transformed by bootstrapped standard errors and
tested for statistical significance with FDR= 5%.

For SA and CT, all (180) cortical areas had significantly non-zero
PLS1 weights, and likewise for NDI at 179 areas, indicating that all MRI
metrics were genetically covariant with schizophrenia across large
areas of the cortex (Fig. 2B). However, there was substantial regional
variation of PLS1 weights for each MRI metric (Fig. 2B). The cortical
maps of PLS1 weights were only weakly correlated between MRI
metrics (Spearman’s ρ(SA,CT) = 0.03, P = 0.65; ρ(SA,NDI) = 0.17,
P =0.03; and ρ(CT,NDI) = 0.19, P =0.01). In general, however, regions
with higher (positive) PLS1 weights had stronger positive correlations
between Z-scores for association with schizophrenia and Z-scores for
association with regional brain phenotypes, compared to regions with
lower (negative) PLS1 weights; see Fig. 2B.

We tested PLS1 weights for enrichment in relation to prior atlases
of laminar differentiation33 or functional MRI networks34 (Methods).
While the magnitude of PLS1 weights was somewhat related to
cytoarchitectonically defined classes of cortical areas, we did not find
any enrichment related to functional networks (Tables S8–S9, Fig. S7).
These results are compatible with the observation that genetic covar-
iation between brain structure and schizophrenia is expressed diffusely
across the cortex5, and with previously published case-control MRI
studies reporting widespread cortical abnormalities in schizophrenia35.

Genetic similarity and structural covariance networks
We further investigated the genetic architecture of normative brain
structure, going beyond the associations of genetic variationwith each
independently analysed regional phenotype, to consider genetic
associations with network phenotypes. Specifically, we analysed the

relationship between inter-regional phenotypic covariance (hence-
forth structural covariance SC) estimated across N = 31,780 scans from
the UK Biobank, and inter-regional genetic correlation (henceforth
genetic similarity GS) (Methods, Fig. 3A).

In line with Cheverud’s conjecture23, we found that there was a
strong relationship between structural covariance and genetic simi-
larity. The corresponding structural covariance (SC) and genetic
similarity (GS) matrices for each MRI metric were highly positively
correlatedwith each other, indicating that regions with high structural
covariance had highly similar genetic profiles of association with
regional variation: for SA, R(SC,GS) = 0.96; for CT R(SC,GS) = 0.93; and
forNDIR(SC,GS) = 0.94 (Fig. 3B). Unsurprisingly, SC andGSmatrices of
the same MRI metric had consistent relationships with reference
atlases of functional network organisation36 and cytoarchitecture33

(Figs. S3–S4), Tables S10–S11, Methods). Both structural covariance
and genetic similarity were greatest between regional nodes separated
by the shortest geodesic distances, and both declined monotonically
as a functionof increasingdistance (Fig. 3C, Fig. S1). However, coupling
between GS and SC remained strong even after controlling for the
potentially confounding effects of geodesicdistance by regression (for
SA, R(SC,GS) = 0.94; for CT, R(SC,GS) = 0.92; and for NDI, R(SC,GS) =
0.93; all P ≤0.0001) (Fig. 2).

Each of the GS and SCmatrices was represented as a dendrogram
by hierarchical cluster analysis and the complex branching structures
of the dendrograms were compared in terms of their cophenetic
correlation Rc(GS, SC) (Methods). For each MRI metric there was a
significantly positive cophenetic correlation between the corre-
sponding SC and GS dendrograms: for SA, Rc(GS, SC) = 0.78; for CT,
Rc(GS, SC) = 0.62; for NDI Rc(GS, SC) = 0.46; all P ≤0.0001, by permu-
tation tests. This high level of correspondence between the hier-
archical community structure of GS and SCmatrices representing the

Fig. 2 | Partial least squares (PLS) analysis of genetic covariation between
regional brain phenotypes and schizophrenia. A The {1 × 18,640 } vector of
unthresholded gene association statistics (Z-scores) derived by H-MAGMA analysis
of the schizophreniaGWASdatasetwasdesignatedas the response variable, i.e., the
dependent Y vector; and the {180× 18,640} matrix of unthresholded gene asso-
ciation Z-scores for each of the MRI GWAS datasets was designated the predictor
variable, i.e., the independent Xmatrix. The first PLS component (PLS1) defined the
weighted functions of X and Y that were most strongly correlated overall weighted
functions of the whole genome. The PLS1 weights for X (brain weights, w(X)i,
i = 1, 2, 3,…180) multiplied by X constituted a {1 × 18,640} vector of T scores (genes
weighted by association with brain phenotypes); whereas, the PLS1 weights for Y
(schizophrenia weightsw(Y)i) multiplied by Y constituted a {1 × 18,640} vector of U
scores (genes weighted by association with schizophrenia). Thus genes with the
highest absolute T and U scores can be regarded as the genes which contribute

most strongly to the genetic covariation between schizophrenia and each regional
brain phenotype32,108. B Cortical surface maps of PLS1 weights for neurite density
index (NDI), cortical thickness (CT) and surface area (SA). Cortical regions with
higher PLS1 weights (shades of yellow) have stronger genetic covariation with
schizophrenia: for SA, regions of insular and medial prefrontal cortex; for CT,
visual, premotor and inferior parietal cortex; and for NDI, inferior frontal, inferior
parietal, posterior cingulate and posterior opercular cortex. Scatterplots (Spear-
man’s correlations, ρ) illustrate the genetic relationships between schizophrenia (y-
axis, Z-scores from H-MAGMA analysis of schizophrenia GWAS dataset) and brain
surface area (x-axis,Z-scores fromH-MAGMAanalysis ofMRIGWASdatasets) in two
cortical regions, one with a low PLS1 weight (left, dark blue, ρ =0.04), and one with
a high PLS1 weight (right, yellow, ρ =0.17). In both plots each point represents one
of 18,640genes. Spearman’s correlationswere two-tailed. Source data are provided
as a Source Data file.
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same MRI metric was greater than the level of correspondence
between dendrograms from pairs of SC matrices, or pairs of GS
matrices, representing different MRI metrics (Fig. 3D).

Genetic relationships between schizophrenia and brain network
phenotypes
Since structural MRI covariance is normatively coupled to genetic
similarity, and cortical MRI variance is associated with gene variants
that are pleiotropically associated with schizophrenia, we predicted
that brain regions associated with schizophrenia genes might have
distinctive topological profiles in the whole brain connectome repre-
sented by the structural covariance matrix. Thus, we tested if the PLS1
weights representing strength of pleiotropic association with
schizophrenia-related genes at each cortical region,w(X)i, were related
to the weighted degree centrality, ki, or “hubness” of the corre-
sponding node in the SC network (Methods).

For each MRI metric, the degree of each node in the corre-
sponding GS and SC networks was very highly positively correlated
(Fig. 4C), indicating that the anatomical distribution of hubs in the
structural covariance network closely conforms to the distribution of
hubs in the genetic similarity network. This coupling between phe-
notypic and genetic networks was specific to each MRI metric with
muchweaker correlation of nodal degrees between SC andGSmatrices
derived from different MRI metrics (Fig. 4B).

Degree centrality of nodes in structural covariance networks
(“hubness”) was positively correlated with regional PLS1 scores, repre-
senting the strength of pleiotropic association at each cortical area: SA
ρ =0.73, CT ρ =0.55, NDI ρ =0.4; all P ≤0.0001 (Fig. 3D). We found that
PLS1 scoreswere alsopositively correlatedwith intra-modular and inter-
modular degreeof each cortical node: intra-modular degreeSA ρ =0.55,
CT ρ =0.48, NDI ρ =0.22; inter-modular degree SA ρ =0.39, CT ρ =0.38,
NDI ρ =0.73; all P ≤0.0001 (Fig. S6A, B).

Pleiotropic genesmediating covariation between schizophrenia
and regional MRI metrics
To identify individual genes which made the greatest contribution to
whole genome covariation between schizophrenia and regional brain
MRI metrics, we focused on the T and U scores derived from PLS ana-
lysis (Methods and Fig. 2), and the correlation between them, R(T,U).

The strength of pleiotropic association with schizophrenia,
across all 18,640 genes, was greater for SA (R(T,U) = 0.24), than for
CT (R(T,U) = 0.23), or NDI (R(T,U) = 0.17); see Fig. 5A. To assess the
influence of an individual gene on these whole genome relationships,
we used a leave-one-out (LOO) strategy and computedΔ(R(T,U)), i.e.,
the difference between the original and the LOO R(T,U), for each
gene. Genes that make the greatest individual contribution to
pleiotropic association will have the largest positive values of
Δ(R(T,U)) (Methods).

We functionally characterised the top 1% of genes with largest
positive Δ(R(T,U)) for each MRI metric (Methods). These sets of 185
genes were significantly enriched for constrained genes, which are
intolerant of damaging variants and have previously been associated
with brain structure2 and schizophrenia37 (Fig. S9A). The pleiotropic
gene sets were not strongly enriched for cell type-specific genes
(Fig. S9B, Table S15) but we identified 33 significant GO enrichments
(six for SA, 22 for CT and five for NDI) (Table S16) related to neuro-
developmental processes including neurogenesis (SA GO:0022008,
P =0.001), nervous system development (CT GO:0007399, P = 0.002),
glial cell development (CT GO:0048468, P =0.009) and neuron pro-
jection development (NDI GO:0010975, P =0.03). In a sensitivity ana-
lysis, we observed a similar pattern of enrichment for the top 3%
(NG = 556) of genes with largest positive Δ(R(T,U)) (Fig. S9A, B,
Tables S14–S15).

We tested whether pleiotropic genes were over-represented in
discrete genomic regions using hypergeometric testing implemented

Fig. 3 | Genetic similarity and structural covariance of cortical networks.
AGenetic similarity (left) and structural covariance (right)matrices for surface area
(SA), cortical thickness (CT), and neurite density index (NDI). Brain regions are
ordered according to modular decomposition of each matrix; see Fig. 4. B Edge-
wise Spearman’s correlation between genetic similarity (y-axis) and structural
covariance (x-axis) matrices. C Spearman’s correlation between genetic similarity
(y-axis) and geodesic distance in millimetres (x-axis). For SA, the correlation
between structural covariance and geodesic distance is also shown in the top right
panel. For genetic similarity, the correlations with geodesic distance were: SA,
ρ = −0.26; CT, ρ = −0.29; NDI, ρ = −0.42; all P ≤0.0001. Whereas, for structural
covariance, the correlations with geodesic distancewere: SA ρ = −0.24; CT ρ = −0.3;

NDI ρ = −0.4; all P ≤0.0001. Spearman’s correlations were two-tailed.DCophenetic
correlation matrix showing the similarity in hierarchical clustering of structural
covariance and genetic similarity matrices. The upper triangle shows cophenetic
correlations based on genetic similarity, the lower triangle is based on structural
covariance, and the diagonal represents the similarity between dendrograms of
structural covariance and genetic similarity of the same MRI metric. These results
indicate that the hierarchical clustering of structural covariance and genetic simi-
larity networks is strongly coupled for each MRI metric, and quite specifically
organised for each of the MRI metrics. Source data are provided as a Source
Data file.
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in FUMA38 (Methods). We identified eight loci of significant positional
enrichment for one or more of the 3 MRI metrics, most of which were
specific to a single metric (Fig. 5B). However, genes pleiotropically
associated with all 3 MRI metrics were positionally enriched at the
same three genomic regions: chromosome 3p21 (chr3:43,700,001-
54,400,000), chromosome 17q21 (chr17:38,100,001-50,200,000) and
chromosome 11p11 (chr11:43,500,001-53,700,001). The strongest
positional enrichment for each MRI metric was on chromosome 3p21,
suggesting that genes concentrated at this location strongly influ-
enced the genetic relationship between schizophrenia and all three
brain MRI metrics (Fig. 5C).

Since the loci of positional enrichment identified using FUMA
were relatively long (≥5Mb, ≤25Mb), and to ensure that positional
enrichments are robust to methodological choices, we also estimated
local genetic correlations at these positions to identify shorter geno-
mic segments (~1Mb) mediating pleiotropic associations using LAVA
(Local Analysis of [co]Variant Association)39; see Methods. Within four
of the positionally enriched loci identified by FUMA, we were able to
resolve the pleiotropic association to smaller subregions (≥1Mb,
≤2Mb), i.e., chromosomal loci 14q32.2–14q32.31 and 14q32.13 for CT,
and 3p21.2–3p21.1, 2q33.1 and 17q21.31 for SA (Fig. 5B). We did not find
any significant local genetic correlations for NDI (Table S16).

Clinical diagnostic specificity of genetic covariation between
schizophrenia and brain structure
We repeated many of the principal analyses of pleiotropic association
with schizophrenia, using identical methods and models applied to
independent large-scale GWAS data for two additional neuropsychia-
tric disorders—bipolar disorder (BIP) (N = 41,917 cases and N = 371,549

controls)40 and Alzheimer’s disease (AD) (N = 398,058)41—and for
height, a neurodevelopmentally sensitive non-psychiatric phenotype
(N = 4,080,687)42.

We identified genes significantly associated with BIP, AD or height
and investigated their intersection with MRI-associated genes. Out of
136 BIP-associated genes, only the intersection with 15 genes also
associatedwith SAwas significant, and largely comprised genes located
at chromosome 3p21. Out of 77 AD-associated genes, there were sig-
nificant intersections with genes also associated with SA (15), CT (12),
and NDI (11); and several genes associated with both AD and surface
area were located at chromosome 17q21. Out of 8012 genes associated
with height, 175 were associated with SA, 55 with CT and 23 with NDI; 21
geneswere sharedbetweenheight and all 3MRImetrics, and thesewere
located on chromosome 17q21, 8p23 and chromosome 1p33.

We also used PLS regression, as previously for analysis of whole-
genome covariation with schizophrenia (Fig. 2), for comparable ana-
lysis of regional brain phenotypes that were pleiotropically associated
with risk of BIP, AD or height; see Fig. 6 and SI Results 6 for details. The
proportion of disorder-related variance explained was greater for
schizophrenia (SCZ: SA = 5.9%, CT = 5.5%, NDI = 3%), than for bipolar
disorder (BIP; SA = 2.7%, CT = 3.6%, NDI = 1.6%), or Alzheimer’s disease
(AD; SA = 1.5%, CT = 1.2%,NDI = 0.8%). The proportion of height-related
variance was comparable to the proportion of schizophrenia-related
variance across all MRI metrics (Height; SA = 7.1%, CT = 5.5%, NDI =
2.7%). The proportion of overlapping genes was less than 50% for
bipolar disorder and schizophrenia and further decreased for either
Alzheimer’s disease or height and schizophrenia. This implies that the
genes identified for MRI metrics and schizophrenia are largely distinct
from the genes identified for Alzheimer’s disease or height.

Fig. 4 | Hubs of genetic similarity and structural covariance networks are co-
located and associated with pleiotropic genes. A Modular decomposition of
genetic similarity matrices (left) and structural covariance matrices (right) for
surface area (SA), cortical thickness (CT) and neurite density index (NDI). We used
the Louvain algorithm to resolve the modular community structure of SC and GS
networks for each MRI metric and found three (for NDI) or four (for CT, SA) spa-
tially contiguous modules of the GS networks, and three (CT, NDI) or four (SA)
modules of the corresponding SC networks (Methods). B Cortical surface maps of
hub scores based on genetic similarity matrices (left) and structural covariance

matrices (right). C Scatterplots showing positive Spearman’s correlations between
hubness (weighted degree centrality) of nodes in genetic similarity (x-axis) and
structural covariancenetworks (y-axis) for eachMRImetric.D Scatterplots showing
positive Spearman’s correlations between strength of pleiotropic gene association
indexed by PLS1 weights (x-axis) and hub scores of nodes in genetic similarity
networks (left) or structural covariancenetworks (right) (y-axis). The shaded region
indicates 95% confidence intervals. Spearman’s correlations were two-tailed.
Source data are provided as a Source Data file.
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Causal relationships between brain and schizophrenia
phenotypes
We used two-sample Mendelian randomization (MR) analysis to test
two directions of causal relationship between brain and schizophrenia
phenotypes: (i) schizophrenia (exposure) causing brain changes (out-
come); and (ii) brain changes (exposure) causing schizophrenia (out-
come) (Methods).We restrictedMendelian randomization analysis to a
subset of regional MRI metrics that showed ≥5 genome-wide sig-
nificant loci, to ensure reasonable statistical power43. This condition
was not satisfied for all cortical areas by any MRI metric: out of 180
regions, 48 had ≥5 gene-level associations with SA, but therewere only
10 regional NDI phenotypes and 5 regional CT phenotypes which
passed the criterion. After correcting for multiple comparisons with
FDR 5%, we did not find any significant evidence for a causal effect of
schizophrenia on the cortical thickness, surface area or NDI of this
subset of brain regions. However, there was evidence for a significant
causal effect of genetically predicted brain structure on schizophrenia
(Fig. S11). Specifically, SA of V4 and ProS cortical areas was predictive
of risk for schizophrenia (inverse variance weighted method: V4,
β = 0.38, SE=0.1, P =0.02; ProS, β =0.26, SE =0.05, P =0.0002). For
ProS (prostriate cortex), a region of posterior cingulate cortex, sensi-
tivity analyses indicated that the effect of this exposure on the out-
come of schizophrenia was robust and not attributable to horizontal
pleiotropy. For V4, a region of ventral occipital cortex specialised for

colour vision, sensitivity analyses were less consistent and indicated
potential horizontal pleiotropy (See SI Results 7).

Discussion
To address our first question (i), about the evidence for pleiotropic
association with schizophrenia and brain regional phenotypes, we
began by identifying genes associated with one or more of three MRI
metrics at one or more of 180 cortical regions in an adult general
population cohort. Most genes associated with any brain phenotype
were only associatedwith onephenotype, indicating some specificity of
genetic effects for distinct MRI metrics. This must be caveated by the
limited number of MRI metrics considered, and the relatively small
sample sizes currently available for GWASof any brainMRI phenotypes.
However, genetic associations specific to different MRI metrics are
compatible with previous studies demonstrating that CT, SA and NDI
are genetically distinct1,2. Genes associated with each MRI metric
broadly shared transcriptional trajectories that peaked during mid-late
periods of fetal life, which is well-recognised as a key neurodevelop-
mental period for the formation of upper layer neurons and neuronal
differentiation (including axonogenesis and dendritic arborization)44. A
minority of genesweregenerically associatedwith all threeMRImetrics,
including 16 genes located within the 17q21.31 region. Genes associated
with SA and CT were enriched for neurodevelopmental processes
including microtubule function, which is known to be important for

Fig. 5 | Genes pleiotropically associated with schizophrenia and regional MRI
metrics.A Scatterplot ofT scores (x-axis) versusU scores (y-axis) for each of 18,640
protein-coding genes, derived from their PLS1 weights (Fig. 2). The T score is the
weight of each geneon theMRImetric; theU score is theweightof eachgeneon the
association with schizophrenia; and the correlation between T and U scores,
R(T,U), quantifies the strength of genetic relationship between brain and schizo-
phrenia phenotypes. Each gene is colour-coded according to its value of Δ(R(T,U))
which indicates the positive (red) or negative (blue) magnitude of its influence on
the whole genome relationship between schizophrenia and each MRI metric. The
top ten genes with the largest positive leave-one-out scores for Δ(R(T,U)) are
annotated, including PLEKHM1, FMNL1, LRRC37A, MAPT, KANSL and CRHR1, all
located within the 17q21.31 region.We note that these genes were also identified by
the intersection analysis of genes significantly associated with both MRI metrics

and schizophrenia (Fig. 1).B Significant positional enrichment of 185 genes (top 1%)
with the highestΔ(R(T,U)) scores basedonhypergeometric testing implemented in
FUMA. For example, the genes most strongly contributing to genetic covariation
between SA and schizophrenia were positionally enriched at chromosome 2q33,
whereas genes contributing to covariation between CT and schizophrenia were
enriched at chromosome 14q32. The red bars show the proportion of co-located
genes according to the size of each gene-set; the blue bars indicate -log10 P-values
adjusted for the number of tested gene-sets. Chromosomal locations showing
significant local genetic correlations based on LAVA are highlighted in green boxes.
C Scatterplot of T scores versus U scores, exactly as shown in (A) except that genes
are colour-coded according to their location in the three genomic regions thatwere
positionally enriched for all MRI metrics. Source data are provided as a Source
Data file.
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neurogenesis, neuronal migration and axon generation45. Collectively,
these results indicated that genetic associations with brain structural
phenotypes likely represent the effects of genetically controlled pro-
grammes of gestational and early post-natal development of the cortex.

We then found that therewas significantly greater than expected
intersection or overlap between the gene sets associated with
regional brain phenotypes and the gene set associated with schizo-
phrenia. For example, about 9% of the 586 genes significantly asso-
ciated with schizophrenia were also significantly associated with
normative variation in surface area of one or more cortical regions.
We subsequently used partial least squares to investigate genetic
covariation over the whole genome and to comprehensively map
cortical locations of significant genetic covariation with schizo-
phrenia. We found evidence for significant pleiotropic association
with both schizophrenia and all three MRI metrics at all (SA, CT) or
almost all (NDI) cortical areas, indicating that genetic risks for schi-
zophrenia are also associated with widespread variations in regional
cortical anatomy. This observation is consistent with global or
extensive, diffuse regional differences in cortical structure reported
by prior case-control MRI studies of schizophrenia35; but there was
also considerable inter-areal variation in the strength of pleiotropic
association for each metric. For example, genetic covariation with
surface area was greatest in paralimbic areas of cortex that have
previously been associated with polygenic risk for schizophrenia5.
Overall, we consider that there is strong evidence for pleiotropic
association with regional brain phenotypes and schizophrenia.

To address the second question (ii) about the genetic covariation
between MRI phenotypes and schizophrenia in relation to brain net-
work phenotypes, we first investigated the concordance between
genetic and phenotypic brain networks. For each MRI metric, struc-
tural covariance andgenetic similarity networkswere highly correlated
in terms of edge weights, weighted nodal degree, and hierarchically
clustered community structure. For example, the hubs of the cortical
thickness covariance network were generally also hubs in the genetic
similarity network derived from GWAS data on cortical thickness at
each node. Genetic similarity network hubs are cortical areas that
share a whole genome profile of genetic association in common with
many other areas of cortex and are, therefore, putatively under the
same genetic controls throughout development. One interpretation of
the strong coupling between genetic and structural covariance net-
work hubs is that cortical areas are more likely to be anatomically
connected if their differentiation and development is controlled by
similar genetic mechanisms. There is convergent evidence in support
of this “grow together, wire together” model from studies in animals
and humans demonstrating that the probability of inter-areal axonal
projections is increased between cortical areas with similar
cytoarchitectonics46 or whole genome transcription profiles47. The
neurobiological substrate of structural covariance networks has long
been debated21 but our results, in line with Cheverud’s conjecture,
strongly suggest that structural covariance between two regions of the
adult brain represents close equivalence in the genetically determined
trajectories of their development since mid-fetal life.

Fig. 6 | Specificity of pleiotropic associations between clinical disorders or
height and regionalbrain phenotypes. A Proportion of variance in the genetically
predicted risk for each disorder and height (y-axis) explained by the genetic effects
on regional MRI metrics (x-axis; SA surface area, CT cortical thickness, NDI neurite
density index) based on the first PLS component, PLS1. B Cortical surface maps of
PLS1 regional brain weights for schizophrenia (SCZ), BIP, AD and height. Higher
positive weights (shades of yellow) indicate stronger genetic covariation with each
disorder; regions with zeroweight are shown in white.Mean absolute weights were
lower for BIP (SA �w = 12.3, CT �w = 9.45, NDI �w = 8), and for AD (SA�w = 9, CT �w = 5.2,
NDI �w = 5.4), than for schizophrenia (SA �w = 18.29, CT �w = 11.89, NDI �w = 11.37).
Apart from SA, mean PLS weights for height were generally lower than for schi-
zophrenia (SA�w = 20.4, CT �w = 12.1, NDI �w = 10.5). Fewer brain regions had

significant PLS1 scores for BIP (NDI = 175) andAD (SA = 79, CT = 166, NDI = 170) than
for schizophrenia (SA, CT = 180, NDI = 179). For height, all brain regions showed
significant PLS1 scores. C Spearman’s correlations (ρ; y-axis) between T and U
scores for schizophrenia, bipolar disorder, Alzheimer’s disease and height. The
strength of pleiotropic association indexed by ρ was greater for schizophrenia (SA
ρ =0.24, CT ρ =0.23, NDI ρ =0.17), than for BIP (SA ρ =0.17, CT ρ =0.19, NDI
ρ =0.13), AD (SA ρ =0.12, CT ρ =0.11, NDI ρ =0.09). For SA, the pleiotropic asso-
ciation with height was stronger compared to schizophrenia (SA ρ =0.27, CT
ρ =0.23, NDI ρ =0.16). D Venn diagrams showing the intersection of the top 1%
most pleiotropic genes, with the highest Δ(R(T,U)) scores, for each MRI metric.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43567-7

Nature Communications |         (2023) 14:7820 8



In this normative context, it was notable that the regional brain
structural phenotypes with the highest genetic covariation with schi-
zophrenia were the hubs of the corresponding structural covariance
networks. It seems plausible that the neurodevelopmentally-enriched
genes associated with schizophrenia also have an important role in
development of anatomical inter-connectivity between cortical areas,
and are therefore most strongly associated with the most highly con-
nected areas of the cortical network. The flip side of this interpretation
is that genetic variants associated with schizophrenia may cause aty-
pical development of brain network hubs, in particular, with emergent
consequences for “higher order” cognitive processes that are often
impaired in schizophrenia48 and dependent on the integrative aspects
of brain network topology mediated by hubs49. Consistent with this
concentration of pleiotropic effects on hubs of the connectome, pre-
vious studies have shown that whole-genome transcriptional profiles
co-located with adolescent myelination of structural covariance net-
work hubs were enriched for genes associated with schizophrenia50;
and that schizophrenia cases, compared to healthy controls, had
reduced degree of cortical hubs in morphometric similarity networks
that were co-located with cortically patterned expression of
schizophrenia-related genes25. Overall, we consider that there is strong
evidence for pleiotropic association with brain network phenotypes
and schizophrenia.

To address our third question (iii), about characterisation of the
most pleiotropic genes, we deployed a wide range of enrichment
analyses. Across all MRI metrics, we found that the most pleiotropic
gene sets were enriched for constrained genes, that are intolerant of
damaging variants, echoing prior reports of constrained gene enrich-
ment in the genetic architecture of schizophrenia27,51. Pleiotropic genes
were also enriched for neurodevelopmental and glial ontology terms,
and had peak expression during the second half of normal gestation,
consistent with the role of glial cells in typical and atypical develop-
ment of brain networks52,53. These findings are in line with the neuro-
developmentalmodel of schizophrenia, positing that genetic and early
environmental factors perturb normal processes of brain develop-
ment, including atypical formation of synaptic connections and axonal
projections, with anatomically distributed effects on adult brain con-
nectivity, that predispose individuals to develop psychotic symptoms
later in life7,9,54.

However, one of the most striking, robust and contextually
plausible characteristics of highly pleiotropic genes was their posi-
tional enrichment or genomic clustering on three chromosomal
regions: chromosome 3p21, chromosome 11p11 and chromosome
17q21. While some of these genomic regions have previously been
related to psychiatric disorders or MRI phenotypes, this study clearly
implicates these regions by analysing the genetic underpinnings of
schizophrenia and MRI metrics simultaneously.

Genes within 17q21 were consistently identified across the differ-
ent methodological approaches. Encouragingly, genetic variation in
the 17q21 region has been replicably associated with various measures
of brain structure55–58, aswell aswith schizophrenia27,59, in prior studies.
However, chromosome 17q21 has also been associated with other
disorders, such as autism spectrum disorder60, Alzheimer’s disease61,
suggesting that this region might have effects on brain phenotypes
that contribute to the pathogenesis of several neuropsychiatric dis-
eases. Using local genetic correlation analysis (LAVA), we were able to
resolve the pleiotropic locus for surface area to a subregion of
17q21.31 spanning ~ 1.4 Mb. This locus harbours an inversion poly-
morphism with a complex LD structure62 and includes PLEKHM1,
MAPT, KANSL1 and CRHR1. CRHR1 encodes the main receptor of
corticotrophin-releasing hormone and has recently been highlighted
in a study of shared genetic effects on schizophrenia and subcortical
volumes63. MAPT encodes microtubule-associated protein tau, which
is known for its role in axonal transport and neurite outgrowth and has
previously been associated with schizophrenia and structural MRI

metrics6. PLEKHM1 is involved in autophagy64, a process that has been
suggested tohave akey role in thepathophysiologyof schizophrenia65.

Chromosome 11p11 alsoharbours genes that have been previously
associated with schizophrenia and/or brain structural phenotypes,
including CHRM4, MDK, AMBRA1 and HARBI127,66,67. For example,
CHRM4, encoding themuscarinic acetylcholine receptorM4, has been
linked to the genetic risk for schizophrenia,with reducedhippocampal
expression in post mortem cases68, and positive clinical trials of M4
agonists for the treatment of schizophrenia69,70. Chromosome 3p21 has
also previously been associated with schizophrenia and other psy-
chiatric disorders27,37,71, cognitive72 and brain MRI phenotypes58. Using
LAVA, we resolved the pleiotropic locus to the subregion 3p21.2 -
3p21.1, spanning ~ 2.1 Mb. This region harbours genes including ITIH4,
NEK4, GNL3 and PBRM1 that have previously been linked mechan-
istically to schizophrenia and related brain changes at cellular and
whole brain scales4,71,73.

Overall, these results converge to provide strong evidence for
pleiotropic associations of common genetic variants with both brain
structure and risk of schizophrenia. However, they raised two sec-
ondary questions about specificity and causality. The question of
clinical diagnostic specificity (iv) is whether there are similar genetic
associations with both brain phenotypes and risk for other neu-
ropsychiatric disorders. We repeated the analysis for pleiotropic
associations with regional brain phenotypes, exactly as we had done
for schizophrenia, using large GWAS datasets on bipolar disorder,
Alzheimer’s disease and height.We found that genetic covariationwith
brain structure was stronger for schizophrenia than for bipolar dis-
order, Alzheimer’s disease or height, and pleiotropic genes were lar-
gely specific to each disorder, although there were also some genes
and loci that were pleiotropically associated with more than one brain
disorder. For example, the chromosome 17q21 locus was associated
with cortical surface area and both schizophrenia and Alzheimer’s
disease (it has previouslybeen linked toADalone61) andheight; and the
chromosome 3p21 locus was pleiotropically associated with surface
area and both schizophrenia and bipolar disorder (it has previously
been linked to BIP alone74). For SA we found that the genetic covaria-
tion was somewhat greater with height compared to its genetic cov-
ariation with schizophrenia. This finding is in line with studies
reporting phenotypic and genetic correlations between height and
surface area1,75–77, as well as between height and schizophrenia78,79. It is
also consistent with our finding that height was strongly positively
correlated with SA (but not CT or NDI) in these data. This implies that
genetic variants located at 17q21 may have normative effects on the
correlated phenotypes of height and brain surface area as well as
conferring increased risk of schizophrenia. These are plausible but
preliminary results and several limitations need to be considered. First,
this study was limited to common variants. However, it is known that
schizophrenia is additionally associated with rare variants9. Second,
the PLS analyses were based on a specific SNP-to-gene mapping
method (i.e., H-MAGMA). Further studies, also integrating rare var-
iants, and multiple SNP-to-gene mapping methods, will be needed to
survey the commonalities and differences between brain disorders in
terms of their genetic relationships with brain structure.

The question of causality (v) arises because pleiotropy is a neces-
sary (but not a sufficient) condition for the standard causal model of
biological pathogenesis: that genetic variation causes brain changes,
which in turn cause schizophrenia9. This model was not refuted by lack
of evidence for pleiotropic association in this study. However, no
amount of evidence for pleiotropic association can resolve the causal
relationship between the two genetically coupled phenotypes: do brain
phenotypes cause schizophrenia or vice versa? Mendelian randomiza-
tion provides a potentially powerful approach to address this question
more directly and we used it to test both the standard causal pathway—
gene→brain→ schizophrenia—and the alternative causal pathway—
gene→ schizophrenia→brain (as previously reported for frontal
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cortex10). We found no evidence for the alternative pathway but some
evidence for the standardpathway.Genetically predicted surfaceareaof
two cortical regions (ProS and V4) was predictive of schizophrenia, and
the effect of ProS on schizophrenia was robust to sensitivity analyses
(see SI 7). The posterior cingulate cortex has previously been associated
withpolygenic risk scores for schizophrenia5,80,81 and schizophrenia- and
schizotypy-related abnormalities of macro- and micro-structural MRI
metrics have previously been reported in this region82–85. It seems
plausible that genetically determined changes in surface area of the
posterior cingulate cortexmight cause increased risks of schizophrenia,
as suggested by these results. However, the MR analyses that we were
able to do were limited. Only a minority of regional brain phenotypes
had sufficient, robustly significant genetic instruments for MR analyses.
This reflects the relatively small size of currently available MRI GWAS
datasets1,2, e.g., compared to GWAS for schizophrenia27, which likely
constrained our statistical power to detect multiple small-effect gene
variants associatedwithmany brain phenotypes10,86. Formore definitive
future investigations of the fundamentally important question of causal
relationships between brain structure and brain disorders it will be
essential to build larger GWAS datasets of anatomically comprehensive
and technically diverse MRI phenotypes.

Methods
Inclusion and ethics
Ethical procedures for the UK Biobank are controlled by the Ethics and
Guidance Council (http://www.ukbiobank.ac.uk/ethics), and the study
was conducted in accordance with the UK Biobank Ethics and Gov-
ernance Framework document (https://www.ukbiobank.ac.uk/media/
0xsbmfmw/egf.pdf), with institutional review board approval by the
North West Multi-centre Research Ethics Committee.

Genome-wide association studies (GWAS)
We accessed recently published GWAS summary statistics on three
regional brain phenotypes including surface area, cortical thickness
and neurite density index, measured at 180 brain regions (3 x 180
GWAS). The GWAS’s were based on 36,843 subjects from the UK
Biobank87 and the Adolescent Brain and Cognitive Development
(ABCD) study88. Details can be found in ref. 2. To investigate genetic
covariation with schizophrenia, we accessed GWAS summary statistics
based on 69,369 schizophrenia cases and 236,642 controls27.

Mapping GWAS data to genes using H-MAGMA
We performed SNP-to-gene mapping for each GWAS using
H-MAGMA28. We used H-MAGMA for two reasons: (i) compared to
gene-mapping methods that only use positional information,
H-MAGMA can incorporate tissue-specific and long-range regulatory
effects28; and (ii) although alternative transcription-based gene-map-
ping methods can also integrate gene regulatory information, cur-
rently available datasets on expression quantitative trait loci (eQTL) in
fetal brain do not have large-enough sample sizes, and do not capture
trans-eQTL effects well89,90. Additionally, H-MAGMA allows develop-
mental stage-specific gene mapping by integrating chromatin inter-
action profiles from fetal brain (gestation weeks 17–18) or adult brain
(age 36–64 years) Hi-C datasets28,29.

Single-nucleotide polymorphisms (SNPs) were mapped to genes
using the default settings in H-MAGMA with fetal and adult brain Hi-C
annotationdatafiles providedby thedevelopers ofH-MAGMA (https://
github.com/thewonlab/H-MAGMA) and the reference data file for a
European ancestry population downloaded from https://ctg.cncr.nl/
software/magma. Since the genes associated with both schizophrenia
and brain structure were enriched for regulatory regions active in the
fetal brain2,91, we report findings based on fetal Hi-C datasets. We
restricted our analyses to protein-coding genes and excluded genes
within the major histocompatibility region due to its complex LD
structure28.

Genetic associations with brain MRI metrics and schizophrenia:
identification and characterisation
Identification of genes associated with MRI metrics. To investigate
the gene-level associations with regional brain structure, we identi-
fied a set of significantly associated genes for each MRI metric. To
account for multiple comparison correction, we performed matrix
decomposition within each MRI metric to identify the number of
independent phenotypes (Npheno)

92. Significance thresholds were
then calculated for each MRI metric by Bonferroni correction based
on the total number of tests (P = 0.05/18,640 genes x Npheno)

2.
We identified 78 independent phenotypes for SA, 113 for CT and
74 for NDI. The probability thresholds for significant association
varied accordingly between MRI metrics (SA P ≤ 3.44 × 10−8; CT
P ≤ 2.37 × 10−8; NDI P ≤ 3.62 × 10−8).

Identification of genes associated with schizophrenia. To identify
genes that were significantly associated with schizophrenia, we
mapped GWAS summary statistics based on 69,369 schizophrenia
cases and 236,642 controls27 to genes using H-MAGMA.We restricted
genes to protein coding genes and excluded genes located in the
major histocompatibility complex (MHC) region. We performed
Bonferroni correction for all 18,610 genes leading to a significance
threshold of P ≤ 2.69 × 10−6. We used hypergeometric testing imple-
mented in the R packageGeneOverlap93 to test for significant overlap
between schizophrenia-associated genes and MRI metric-associated
genes and performed permutation testing (10,000 permutations) to
test whether this overlap is non-random. Additionally, we performed
gene-set enrichment analysis using MAGMA, which accounts for
linkage disequilibrium between genetic variants31. First, we tested
whether the genetic effects of schizophrenia were enriched for gene-
sets significantly associated with each MRI metric. Gene-sets for MRI
metrics included all the genes that we identified as significant for
each MRI metric (SA NG = 318; CT NG = 157; NDI NG = 86). Second, we
tested whether the genetic effects of each MRI metric were enriched
in a gene-set significantly associated with risk for schizophrenia
(NG = 587).

Pathwayenrichment andneurodevelopmental expressionprofiling
of schizophrenia- and brain-related genes. We used the R package
gProfiler2 to conduct GO enrichment analysis, which resembles gene
set enrichment analysis, and focused enrichment tests on biological
processes94. We investigated developmental expression profiles of
genes that were significantly associated with regional brain structure
or schizophrenia. To ensure that developmental expression trajec-
tories were not biased by the developmental stage from which Hi-C
data were obtained, we created lists of significantly associated genes
that were identified using either fetal or adult Hi-C data28. A spatio-
temporal transcriptomic atlas from PsychEncode30 was used to esti-
mate cortical expression profiles across nine developmental stages
(window 1: post-conceptional week (PCW) 5-9, window 2: PCW 12-13,
window 3: PCW 16-18, windows 4: PCW 19-22, window 5: PCW 35- PY
0.3, window 6: post-natal year (PY) 0.5-2.6, window 7: PY 2.8-10.7,
window 8: PY 13-19, window 9: PY 21-64). This data set contained
expression values from multiple brain regions. Analyses were
restricted to the cortex. Expression values were log-transformed
and centred to the mean expression level for each sample using the
scale(center = T, scale= F)+1 function in R95. To do this, genes
significantly associated with regional brain phenotypes were selected
for each cortical transcript and averaged over all sampled areas of
cortex and their mean-centred expression values were calculated and
plotted over time. Additionally, we investigated the effect of devel-
opmental window (prenatal expression included windows 1-4, post-
natal expression included window 6–9) on gene expression using
linear mixed effect models, with a fixed effect of developmental win-
dow and gene length, and a random effect of brain region.
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Structural covariance and genetic similarity networks
To generate structural covariance matrices, we accessed imaging data
from the UK Biobank and focused on a subset of N = 40,680 partici-
pants for each of which complete genotype and multimodal MRI data
were available for download (February 2020)87. Details on processing
pipeline and exclusion criteria and are described in SI Methods 1. After
quality control,N = 31,780MRI scanswere available for all MRImetrics.
This sample comprised ~53% female, ~47% male participants aged
40–70years,withmean age 55years (SD = 7.4 years) and itwasa subset
of the sample used for MRI GWAS2. For eachMRI metric, we estimated
the pair-wise correlation of regional phenotypes for all pairs of 180
regions over allN = 31,780MRI scans to constitute a symmetric, signed
{180 × 180} structural covariance matrix. Each unique, off-diagonal
element of this matrix, SCi,j can be regarded from the perspective of
graph theory as the weight of an undirected edge between regional
nodes i and j in a whole brain structural connectome. We also esti-
mated the similarity of genetic association between each possible pair
of regional nodes i and j in terms of Spearman’s correlation, ρi,j,
between their gene-level association statistics (Z-scores derived from
H-MAGMA) to constitute a symmetric, signed {180 × 180} genetic
similarity (GS) matrix.

Geodesic distance, functional networks and cytoarchitectonic
classes. We investigated the association between genetic similarity (or
structural covariance) and geodesic distance, known functional net-
works and cytoarchitectonic classes. Geodesic distance was defined as
the length between each pair of regions along the cortex measured in
millimetres and correlated (Spearman’s correlation) with SC and GS,
respectively. We tested whether genetic similarity and structural cov-
ariance were higher within resting-state functional networks34 or
cytoarchitectonic classes by comparing the average genetic similarity
(resp. structural covariance) of regionswithin networks (resp. classes) to
regions between networks (resp. classes). We used spin-tests (1000
permutations) to test the significance of the co-location of two cortical
mapswhile accounting for spatial-correlation betweenbrain regions96,97.
To control for multiple testing, we performed FDR-correction across all
networks (resp. classes).

Cophenetic correlations. Cophenetic correlation coefficients were
used to quantify the similarity of GS and SC network community
structures within and between MRI metrics. To do this, Euclidean
distance matrices were calculated using the dist() function, and
hclust(method = “ward) was used to generate dendrograms for
each phenotype. Cophenetic correlation coefficients were estimated
using the cor_cophenetic() function from the dendextend R
package98. To test for statistical significance, we generated a null dis-
tribution of cophenetic correlation coefficients by permuting the
labels of one dendrogram 1000 times while keeping the dendrogram
topologies constant.

Hubness,modular decomposition, intra- and inter-modular degree.
Hubness for each brain region was defined by the weighted degree
centrality, i.e., the sum of edge weights connecting each node to the
rest of the network20. To ensure that regional degreewas not driven by
measurement reliability, we used follow-up scans from a subset of the
UK Biobank cohort (N = 1280) to investigate the relationship between
test-retest reliability of SA and CT and weighted degree of regional
nodes in the corresponding structural covariance networks. We found
no significant correlation between measurement reliability and hub-
ness indexed by regional degree for either of these metrics (see SI
Results 3.4 for details). To further characterise the network topology
of structural covariance and genetic similarity matrices, we created
weighted, undirected network graphs using igraph in R99. Modules
were identified using the cluster_louvain() function, which
implements a multi-level modularity optimisation algorithm for

finding community structure100. For each node, intra-modular degree
was computed as themeanweighted degree over all nodes in the same
module. Inter-modular degree was estimated as the mean weighted
degree over all nodes outside the module16.

Pleiotropic genesmediating covariation between schizophrenia
and regional MRI metrics
Partial least squares regression: PLS1 weights. For eachMRI metric,
we extracted the first PLS (PLS1) component using the plsdepot
package in R101. The significance of PLS1 was estimated by comparing
the empirical variance explained by each component to a null dis-
tribution, i.e., the distribution of variance explainedwhen permuting Y
1000 times. Additionally, we testedwhether PLSweights were spatially
enriched in known cortical atlases of network organisation (Yeo
networks34) or cytoarchtectonic classes (Mesulam classes), and in
identified modules by spin permutations. Spatial permutation testing
(spin-tests) were used to control for spatial autocorrelation in PLS
maps96,97. Results were FDR-corrected for each MRI metric and
cortical atlas.

Partial least squares regression: T and U scores. To identify which
genes most strongly impact the relationship between regional brain
structure and schizophrenia, we investigated T scores and U scores,
quantifying the contribution of each gene to the covariance between
brain structure and schizophrenia. More formally, T is defined as the
product of XwX and U the product of YwY. PLS maximises the covar-
iance of X and Y with:

maxwXwY
covðXwX ,YwY Þ= corrðXwX ,YwY Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðXwX Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðYwY Þ
p

ð1Þ

Thus, covariance is a product of three terms: correlation (between
T and U scores) and two standard deviations (of T and U scores). The
correlation term informs about the true association between T and U
(the standard deviations reflect variances within X and Y), and given
that correlation does not have a directionality (i.e., T and U are equally
important), both T and U scores should be considered to select
genes32.

We used a leave-one-out (LOO) strategy, systematically re-
estimating R(T,U) after the exclusion of each gene in turn from the
X and Y variables used for PLS estimation of T and U scores.
This procedure resulted in 18,640 LOO estimates of the genetic
relationship between brain MRI and schizophrenia phenotypes, each
of them estimated after leaving out a single gene, RLOO(T,U). The
influence of each gene on the whole genome relationship was then
defined by

ΔðRðT ,UÞÞ=RðT ,UÞ � RLOOðT ,UÞ ð2Þ

i.e., genes that make the greatest individual contribution to the
genetic relationship will have the largest positive values ofΔ(R(T,U))32.

Constrained genes, cell-type enrichment, gene ontology. All
enrichment analyses were conducted on the top 1% of genes, and
repeated on the top 3% of genes, with the highest Δ(R(T,U)) values;
see SI 5.1 for details. We investigated enrichment in mutation-
intolerant genes (pLOEUEF ≤0.37) identified by ref. 51 using logistic
regression after accounting for log transformed gene length as a
covariate. Since MRI-associated genes were highly expressed during
mid-gestation, we used single cell RNA sequencing data from the
mid-gestation period102. Specifically, expression values per cell were
log-transformed and normalised. Mean cell type specific expression
was divided by the average expression of genes in all cell types to
calculate relative cell type expression. The average centred expres-
sion values of genes associated with each MRI modality were calcu-
lated for each cell type, and we performed linear regression analyses
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controlled for log transformed gene length to assess significance2,28.
Results were FDR corrected across cell types. We used the R package
gProfiler2 for conducting GO enrichment analysis and focused on
biological processes94.

Positional enrichment and local genetic correlation analysis of
most pleiotropic genes. Positional enrichments were performed
using FUMA (functional mapping and annotation of genome-wide
association studies). FUMAapplies hypergeometric tests to investigate
whether genes of interest are overrepresented in predefined chro-
mosomal positions (MSigDB C1) while accounting for multiple com-
parison correction38. We used LAVA (Local Analysis of [co]Variant
Annotation) to estimate the local SNP heritability and the genetic
correlation between the schizophrenia GWAS and MRI GWAS for the
brain regions with the highest PLS1 weights, i.e., the regions showing
the highest genetic covariation with schizophrenia. To account for
potential sample overlap, we estimated the intercepts from bivariate
LD Score Regression as suggested by LAVA. Since the GWAS summary
statistics were from European samples, we used the European panel of
phase 3 of 1000 Genome as an LD reference. LAVA splits the genome
into 2495 non-overlapping and broadly LD independent loci39. Since
our primary goal was to identify sub-regions within the positionally
enriched regions of the genome identified by FUMA, we restricted our
analysis to loci that were within the positionally-enriched genomic
regions leading to 71, 66 and 54 loci of interest for SA, CT, and NDI,
respectively. For each pair of MRI plus schizophrenia phenotypes,
genetic correlation analysis was only performed for loci in which both
phenotypes had significant SNP heritability at P ≤0.05/71 for SA,
P ≤0.05/66 for CT, P ≤0.05/54 for NDI, resulting in 20, 14 and six tests
for SA, CT and NDI, respectively. To identify significant genetic cor-
relations, we used Bonferroni-corrected probabilities of type 1 error
P ≤0.05/20 for SA, P ≤0.05/14 for CT, and P ≤0.05/6 for NDI.

Mendelian randomization
Genetic instruments were chosen at a P threshold of 5 × 10−8 and
clumped with a distance of 10,000 kilobases (kb) and LD r-squared
threshold (LD r2) of 0.001. These SNPs were then identified in the
outcome GWAS data, and SNP-level effects of exposure and outcome
datawere harmonised tomatch the effect alleles. To fit theMRmodels,
we used inverse variance-weighted Mendelian randomization (IVW),
implemented in the “twosampleMR” package v0.5.6103, as the main
method to estimate causal effects103,104. We also conducted a wide
range of sensitivity analyses including weighted median (WM), MR
Egger104, Cochran’s Q value105, MR Presso106, Steiger filtering107 and we
generated four types of plots for visual inspection (see SI Methods 7
for details).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used in this project are available as outlined below. Summary
statistics of cortical MRI phenotypes are available for download from
https://portal.ide-cam.org.uk/overview/483. Summary statistics for
schizophrenia, bipolar disorder and Alzheimer’s disease can be
accessed from the Psychiatric Genomics Consortiumhttps://pgc.unc.
edu/for-researchers/download-results/. Height GWAS results are
available at https://www.nature.com/articles/s41586-022-05275-y.
MRI Data from the UKB can be applied for and accessed by approved
researchers https://www.ukbiobank.ac.uk/. Spatiotemporal gene
expression data can be accessed from PsychENCODE
under http://development.psychencode.org/files/processed_data/
RNA-seq/mRNA-seq_hg38.gencode21.wholeGene.geneComposite.
STAR.nochrM.gene.count.txt. Cell type specific expression data can

be downloaded from http://solo.bmap.ucla.edu/shiny/webapp/.
Information on constrained genes can be accessed from gnomAD
https://gnomad.broadinstitute.org/downloads#v2-constraint. Gene
sets for positional enrichments (MSigDB C1, version MSigDB
2023.2.Hs) can be found at https://www.gsea-msigdb.org/gsea/
msigdb/human/collection_details.jsp#C1. Source data are provided
with this paper.

Code availability
Codes used are available at https://github.com/evastauffer/
schizophrenia-and-brain-structure.
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