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Data-driven grading of acute
graft-versus-host disease

Evren Bayraktar 1,2,3,13, Theresa Graf1,2,13, Francis A. Ayuk 4, Gernot Beutel 5,
Olaf Penack 6, Thomas Luft 7, Nicole Brueder 5, Gastone Castellani 8,
H. Christian Reinhardt2,9,10, Nicolaus Kröger 4, Dietrich W. Beelen 2,9 &
Amin T. Turki 1,2,9,10,11,12

Despite advances in allogeneic hematopoietic cell transplantation, acute graft-
versus-host disease (aGVHD) remains its leading complication, yet with het-
erogeneous outcomes. Here, we analyzed aGVHD phenotypes and clinical
classifications in depth in large, multicenter cohorts involving 3019 patients
and addressed prevailing gaps by developing data-driven models. We com-
pared, tested and verified these along with all conventional classifications in
independent cohorts and found that data-driven grading outperformed con-
ventional grading in Akaike information criterion and concordance index
metrics. Data-driven classifications refined aGVHD assessment with up to 12
severity grades, which were associated with distinct nonrelapse mortality
(NRM) and confirmed the key role of intestinal aGVHD. We developed an
online calculator for physicians to implement principal component-derived
grading (PC1). These results provide substantial insight into the evaluation of
aGVHD phenotypes and multiorgan involvement, which relegates the exclu-
sive reporting of overall aGVHD severity grades in transplant registries and
clinical trials. Data-driven aGVHD grading provides an expandable platform to
refine classification and transplant risk assessment.

Acute graft-versus-host disease (aGVHD) remains the major cause of
early morbidity and nonrelapse mortality (NRM) after allogeneic
hematopoietic stem cell transplantation (HCT)1. It’s clinical grading,
leveraging the physician’s assessment of 3 target organs (skin, liver,

intestine), was introduced by Glucksberg et al.2, later revised by the
KeystoneGVHDConsensus conference3, by the International Blood and
Marrow Transplant Registry (IBMTR)4,5, the University of Minnesota6,7

and by the Mount Sinai aGVHD International Consortium (MAGIC)8.
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Today, in particular, multiorgan involvement and therapy resistance
remain a challenge in aGVHD assessment. Inconsistent assessment
practices between HCT centers and unwitting use of different grading
systems further reduce the comparability of data9,10. During the last
decade, many efforts to improve aGVHD assessment and outcome
prediction have focused on the identification of universal11,12 and organ-
specific aGVHD biomarkers13–15. Indeed, biomarker combinations can
predict 6-month nonrelapse mortality (NRM), aGVHDmortality16,17, and
overall survival (OS) in aGVHD patients18 but are not universally avail-
able. Accumulating evidence of complex aGVHDbiology19 conflictswith
the quest for a simple assessment and classification for clinical practice.

More recently, promising efforts have been undertaken
employing machine learning methods to predict mortality20,21 and
aGVHD22–24 after HCT. Given these recent insights, prevailing dis-
crepancies in conventional aGVHD classification practice, and sub-
stantially varying survival outcomes of patients with the same aGVHD
severity grade, we hypothesized that a data-driven approach could
shed light on the strengths and limitations of aGVHD classifications
and respond to ongoing issues such as multiorgan involvement,
heterogeneous phenotypes and their relation to outcomes. We
leveraged several data science methods (including derivatives of
principal component analysis (PCA), hierarchical clustering (Hclust),
K-means clustering, uniform manifold approximation and projection
(UMAP) and density-based spatial clustering of applications with
noise (DBSCAN) on clinical aGVHD organ assessments to address
these issues in a large multicenter cohort of HCT patients with
aGVHD. These grading methods resulting from our work were inde-
pendently validated and tested (an overview is provided in Fig. 1).

Results
Starting from the hypothesis that an in-depth data-driven analysis of
clinical aGVHD phenotypes (i.e., organ severity combinations/invol-
vements) and grading practices may improve the understanding of
aGVHD and support optimal treatment strategies, we standardized
reporting between centers via full documentation of aGVHD organ
involvement while assembling a multicenter aGVHD dataset and ana-
lyzing it to an unprecedented extent. Using unsupervised learning
methods, we then developed several data-driven aGVHD grading sys-
tems and compared their severity indexing along with that of con-
ventional aGVHD grading systems via different performance indices.

This large, multicenter dataset included contemporary HCT
patients diagnosed with aGVHD from 5 major German HCT centers
(n = 3019). Aiming for a proportional split of 2/3 and 1/3 between the
training set and the independent test set, aGVHD patients from two
centers were used for training (Essen, Hamburg; n = 2319) and three
independent centers for testing (Berlin, Hannover, Heidelberg;
n = 700). The cohorts’ baseline characteristics were balanced for age,
sex, recipient cytomegalovirus-positive serostatus (CMV R+), donor
type, and TBI and are detailed in Supplementary Table 1. We noted
differences in the proportion of some diseases and myeloablative
conditioning. Exploratory data analysis confirmed a globally con-
served data structure and equal proportions of aGVHD phenotypes in
both the training and test sets (Fig. 2a, c), supporting an appropriate
split despite expected minor differences. Both the pair plots from
kernel density estimation and the Spearman correlation had compar-
able shapes to those of a random 2/3 and 1/3 dataset splitting (Sup-
plementary Fig. 1a, b and c, d), while preserving the independent
character of these sets via distinct HCT sites. In both cohorts, the
Spearman correlation matrix revealed a concordance of combined
aGVHD liver and GI involvement of ~20%, while skin and GI involve-
ment were negatively associated (Fig. 2b, d).

Development of a data-driven grading system
For the development of data-driven aGVHD grading systems using
unsupervised learning, we gathered data on individual patients’ organ

involvement in amultidimensional data space (one dimension for each
aGVHD target organ: skin, liver and gastrointestinal tract (GI), with
organ-specific aGVHD severity represented in the range from 0 to 4)
with the intention to represent themaximumof the clinical variance of
aGVHD (i.e., the data spread of the 125 (=53) possible combinations,
with zero corresponding to the absence of aGVHD in the given organ).
Due to a linear variation in the data (Fig. 3a), we started with a linear
principal component analysis (PCA) to derive a data-driven grading.
We aimed to map the multidimensional data to a one-dimensional
space to formulate an aGVHD severity index (Eq. (1)). Hence, we
applied PCA dimensionality reduction to the dataset, with the first of
the three principal components (PC1) explaining approximately half of
the overall variance (Fig. 3b). We plotted all individual patients in the
training set (n = 2319) according to PC1 and tested their separation on
the PC1 axis by coloring for MAGIC (Fig. 3c) or Consensus grades
(Supplementary Fig. 2a). Indeed, conventional severity grades sepa-
rated data on the PC1 axis despite some overlap. Next, the continuous
PC1 axis was transformed into 12 PC1-derived severity stages (Eq. 2).
When graphically plotted against OS, increasing PC1 stages were cor-
related with decreasing long-term OS (Fig. 3D), which we also
approximated by a power function (Supplementary Fig. 2b). When
condensed into four grades as in conventional aGVHD grading sys-
tems, PC1-derived grading separated four distinct strata for 12-month
OS (p < 0.0001, Fig. 3e). We performed several tests to validate each of
the data-driven aGVHD grading algorithms. First, we ran multiple
benchmarks on our training set, including 500-fold resampling, which
provided stable results with small confidence intervals (Supplemen-
tary Fig. 1c). When we plotted PC1 stages against aGVHD organ invol-
vement categories, weobservedhigher cumulative numbers of aGVHD
organ stage involvement (i.e., multiorgan involvement) in advanced
PC1 severity stages (Fig. 3f, Supplementary Fig. 1d). Isolated skin
aGVHD was exclusive to the lowest PC1 stages, followed by liver or GI
involvement. The most common types of organ involvement were
isolated skin, isolated GI and the combinations of skin and GI aGVHD.
As an alternative approach to PC1 grading, we leveraged unsupervised
clustering methods (hierarchical clustering (Hclust) and K-means).
Indeed, Hclust successfully dissected the training data into four clus-
ters with significantly distinct OS (Fig. 4a, b). k-means clustering also
successfully distinguished aGVHD phenotypes in the training cohort,
and its performance wasmeasured by the sum of squares of distances
(SSD) and silhouette coefficient (Fig. 4c, d). Again, for both clustering
methods, we set the cutoff at four clusters to have a format compar-
able to conventional grading. However, both the SSD elbow method
and the best metrics ratio (silhouette index of 0.62/8 clusters) deter-
mined an optimal number of k-means clusters of 8, indicating that
using >4 severity grades may provide additional value. In addition to
these linear methods, we explored common nonlinear approaches
(UMAP and t-SNE) on the data to address heterogeneity, and the
results are detailed in the Supplementary Notes and Supplementary
Figs. 3–5.

Verification and test on independent data
For verification of the data-driven grading on the independent test
data, we employed several quality indices, analyzed the proportional
patient distribution and the association of aGVHD severity grades with
clinical outcomes to describe the exactness and spread of differences
between classifiers. First, we built multivariate competing risk and Cox
regression models for NRM (Fig. 4e) and OS (Supplementary Fig. 6)
considering the aGVHDseverity assessedby the PC1-basedgrading as a
time-dependent covariate, which remained significant for indepen-
dent test data and after including potential confounders as covariates.
Significant covariates in the adjusted NRM model were the diagnoses
of acute lymphoblastic leukemia (ALL), myelodysplastic syndromes
(MDS), other diagnoses, the year of HCT and the EBMT risk score. In
the next step, we comparatively examined the other data-driven
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(Fig. 5a–c) and conventional (Fig. 5d–f) aGVHD grading systems, which
each stratified the independent test cohort (n = 700) into groups with
significantly distinct OS values (p < 0.0001). Starting from the day of
aGVHDdiagnosis, the NRMcurves also revealed significant differences
(p < 0.0001, Supplementary Fig. 7). Using an HCT cohort without
aGVHD as a common Cox reference illustrated the distribution of
hazard ratios in each examined data-driven and conventional classifi-
cation (Supplementary Fig. 8). The time-dependent AUROC curves for
12-month OS and NRM varied from 0.68 (95% confidence interval (CI)
0.64–0.72) with IBMTR to 0.72 (95% CI 0.68–0.76) with MAGIC and
from 0.72 (95% CI 0.67–0.77) to 0.77 (95% CI 0.72–0.81), respectively.

The AUROC of the PC1 grading was comparable to that of the Con-
sensus and numerically higher for NRM (Fig. 5g, h). Despite careful
consideration of the time-dependent character of aGVHD in these
models, the clinical outcome association alonemay not solve the issue
of classification. We next leveraged Cohen’s kappa analysis to reveal
the intergrading agreement between classification systems, which was
strongest between MAGIC and Minnesota and least present between
HClust and IBMTR grading (Fig. 5I). Except for IBMTR, the intergrading
agreement was very high among conventional grading systems. Data-
driven grading systems, however, were distinct from conventional
systems anddiffered fromeach other. Given the differences inCohen’s

a) Data preparation

b) Data-driven aGVHD classification

c) Evaluation, validation, test and verification of data-driven aGVHD grading 
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kappa, we compared the proportion of distinct aGVHD phenotypes
(=organ stage involvement) in each system’s grading, beyond their
comparable capacity to significantly separateOSorNRMstrata (Fig. 6).
To further analyze the repartition (size and proportions) of these
aGVHD phenotypes within each severity grade, we comparatively
plotted MAGIC and data-driven grading systems along with their NRM
curves to explore the spread of differences between classifiers. The
MAGIC NRM curves distinguished significantly between grades III and
IV but not between grades I and II (Fig. 6a). As indicated by Cohen’s
kappa, the phenotype distribution differed between classifications.
MAGIC grading (Fig. 6a–c) included two phenotypes for grade I with
265 patients (Fig. 6b), which were distributed 50%-50% (Fig. 6c),
whereas it involved 26 phenotypes for 109 patients for grade IV. PC1
grading (Fig. 6d–f) classified 17 phenotypes with 443 patients into
grade I (Fig. 6e), including four large phenotypes each representing
>10% of the grade I patients (Fig. 6f). PC1 significantly separated the
NRM strata between grades I and II but also between grades III and IV
(Fig. 6d); its phenotypeswere almost equally distributed across aGVHD
grades. Hierarchical clustering (Fig. 6g–i) had fewer organ combina-
tions in its lower severity grades I and II than K-means (Fig. 6j–l), but
neither distinguished NRM between grades I and II (Fig. 6g, j). With a
total of 32 phenotypes, MAGIC grade III assembled the largest number
of aGVHD phenotypes in a single grade, followed by Hclust (23 phe-
notypes) and PC1 (22 phenotypes). The complete data, including
phenotypes and their proportions within each aGVHD grade, are
provided in Supplementary Data 1–7. The leading phenotypes among
MAGICgrade III patients were isolated GI stages 2 or 3 (Supplementary
Data 1). Within the grade IV phenotypes, the organ combinations of GI
stages 3–4 without other organ involvement (Hclust, Supplementary
Data 3) and combinations of GI and skin aGVHD (e.g., skin stage 3 +GI
stage 4, K-means, Supplementary Data 4) assembled most patients.
Altogether, this repertoire analysis provided detailed insights into
each classification’s preferences for phenotype sets but also revealed
inconsistencies, e.g., of the clustering-based aGVHD grading systems
(Hclust andK-means),which graded, e.g., combinationsofGI andother
organs at a lower severity than single GI stage 1 involvement (Supple-
mentary Data 4). This limitation, however, was not observed for the
PC1 grading system.

Given that MAGIC grade III assembled the highest number of
aGVHDphenotypes (Fig. 6a, b),we suspected heterogeneitywithin this
grade and wondered if the data-driven grading could identify distinct
patient subgroups within MAGIC grade III in the test cohort. For this
purpose, we segregated MAGIC grade III patients for whom PC1 cal-
culated less severe aGVHD grades from the remaining grade III MAGIC
patients (Fig. 7a) and found that the redistributed patients actually had
a significantly higher OS (p =0.0049) than the remaining grade III
MAGIC patients. Similar heterogeneity was observed for Consensus
grade III patients (Fig. 7b). Differences in OS for redistributed patients

remained significant when further stratified into PC1 grade I and PC1
grade II (Fig. 7c, d). Analysis of 12-month NRM confirmed significant
differences for redistributed grade III Consensus patients, not for
MAGIC, which only differed significantly for 6-month NRM. Impor-
tantly, these redistributed grade III MAGIC patients had specific phe-
notypes with respect to GI ormultiorgan involvement. Patients lacking
stage 3 GI involvement or stage 3 liver involvement in combination
with GI stage 2 or the combination of stage 3 skinwith stage 2 liver and
stage 2 GI were categorized as PC1 grade II (Supplementary Data 6).
Taken together, these results showed that data-driven algorithms
discriminate aGVHD phenotypes differently, which may be beneficial
for further dissecting the heterogeneity of phenotypes within con-
ventional grades. To provide some insights into underlying biological
differences for the classification process, we stratified the test cohort
by one organ system severity (either skin, liver or GI, also in patients
with multiorgan involvement). For example, patients with stage 1 skin,
stage 2 liver and stage 2 GI involvement would be represented as skin 1
(Fig. 8a, b), liver 2 (Fig. 8c, d) andGI 2 (Fig. 8e, f).Here, the severity ofGI
involvement was the best single organ indicator to significantly dis-
criminate OS or NRM in the test cohort (Fig. 8e, f). The low OS of
patients with stage 0 skin involvement was unexpected (Fig. 8a) but
explained by them having multiorgan aGVHD involving the GI tract or
liver. Despite its overall significance for OS (p <0.0001), skin aGVHD
alone was the least effective in distinguishing patient cohorts with
respect to outcome. Accordingly, the PC1 loadings plots of the training
cohort (Fig. 3a) credited only 8% of its weight to skin and 96% to GI
involvement, explaining the solid performance of the PC1 grading
method, which attributes higher importance to GI severity while pre-
serving the importance of multiorgan involvement in its classification.

aGVHD classifications beyond four grades
Following the hypothesis that higher levels of detail in data-driven
gradingmight improve the performance of classifications, we evaluated
several approaches employing more than 4 severity grades. First, we
employed all 12 PC1 stages to categorize aGVHD patients, which were
associated with a highly diverse separation of NRM and fewer pheno-
types per category (Fig. 9a–c). Given that 12 groups became difficult to
conceive for human operators, we next tried to simplify this approach
by skipping a multiplication operation in Eq. 2, which resulted in a PC1
grading system of six grades (Fig. 9d–f). Both separated the test cohort
into proportionally distributed categories with significant differences in
NRM. As the intersection of the SSD elbow and silhouette index sup-
ported the use of eight K-means clusters in the development cohort
(Fig. 4c), we also tested this system on the independent test cohort and
found that the 8 clusters also separated distinct strata (Fig. 9g–i). The
repartition of aGVHD phenotypes in these refinedmodels is detailed in
SupplementaryData 9. These results reveal that the great heterogeneity
of aGVHD phenotypes, which are associated with distinct clinical

Fig. 1 | Overview of data-driven aGVHD grading development, validation,
external test and verification in comparison to conventional grading. a Data
preparation: Data was assembled from a multicenter cohort (Berlin, Essen, Ham-
burg, Heidelberg, Hannover) with HCT between 2008 and 2018 and split into
independent training (n = 2319) and test cohorts (n = 700). b Data-driven aGVHD
classification. Input data from the aGVHD target organ involvement (skin, GI and
liver) was organized in a 3D space and the following data-driven methods were
applied: Principal component analysis (PCA) for linearmapping of PC1 and severity
indexing, as well as hierarchical- and k-means clustering. For comparability with
conventional grading, the number of clusters was set to 4. The nonlinear methods
Uniform Manifold Approximation and Projection (UMAP) and t-distributed sto-
chastic neighbor embedding (tSNE)wereused to visualize grading in 2-dimensional
space. Non-linear methods and their results are detailed in the supplement.
c Evaluation, validation, external test, and verification of data-driven aGVHD
grading. PCA was internally validated via 500-fold bootstrapping of 1546 randomly
selecteddata points (2/3of training cohort).During k-means clustering, the optimal

cluster number was determined using the elbow method on the sum of squared
distances (SSD) and silhouette index. All grading systems were externally tested on
independent multicenter data. Akaike information criterion (AIC) as well as the
concordance index (Ci) were calculated to verify and compare data-driven and
conventional grading. Time-dependent AUROC curves (Area under the receiver
operating characteristic curves) were generated to visualize specificity and sensi-
tivity for 12-month OS and NRM. Distribution plots and Cohen’s kappa analysis
compared the distribution of the different phenotypes (organ-stage combinations)
and intergrading agreement. Kaplan–Meier OS and cumulative incidence NRM
curves were computed with 95% confidence intervals (CI) to compare associations
of different grading systems with outcome. P-values were calculated using a two-
sided log-rank test (Kaplan–Meier OS) or two-sided Gray test (NRM curves). Cre-
ated with BioRender.com. The organs image in panel b is adapted from https://
pixabay.com/illustrations/offal-marking-medical-colon-liver-1463369/ via Elionas2
under the Content License.
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Fig. 2 | Exploratory data analysis of aGVHD training (n = 2319) and test cohorts
(n = 700) shows adequate cohort coverage. a Pair plot from kernel density esti-
mation of the training cohort (n = 2319) plotting the clinical target organ stages of
skin, liver and GI involvement (stages 0-4, left to box and below). The target organ
stage correlations are presented as density plots. Patient numbers (n) of each
subgroup are indicated right in each box. A higher n in each subgroup is shown by

greater surface coverage. Density of aGVHD target organ combinations is indicated
from light green to dark blue. b Target organ stage correlation matrix (Spearman)
of the training cohort shows the distribution of single variables skin, liver and GI
and their respective interactions. Range from −1.0 to +1.0, dark blue indicates full
overlap. c Pair plot and d Target organ stage correlation matrix (Spearman) of the
test cohort (n = 700). Analysis, labels and colors as in (a and b).
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a) b)

c) d)

e) f)

PCA biplot PCA scree plot

Survival plotted against PC1 Survival plotted against PC1 stages

Organ involvement plotted against PC1 stages Kaplan-Meier OS

PC1 12 stages

PC1 12 stagesPC1

I
II
III
IV

Fig. 3 | Principal component analysis of the training cohort (n = 2319) and
transformationof principal component 1 into PC-grading of aGVHD. aBiplot of
principal components 1 (PC1) and 2 (PC2) on each axis displays the scores and
loading vectors of principal component analysis (PCA). Arrows indicate the
importance of each target organ involvement for PC1 and PC2, respectively.b Scree
plot of PC1, PC2 and PC3. The proportion of variance explained by PC1 is the
greatest with 0.47. c Explorative plotting of PC1 against overall survival (OS, days
from HCT, censoring has not been considered in this representation) indicates
lower long-term OS with increasing PC1. Each dot represents one patient with
aGVHD. Colors representing MAGIC aGVHD grade I–IV (I = yellow, II = green, III =

blue, IV = violet) indicate the overlap of different MAGIC grades. d Transformation
of PC1 results into an aGVHD classification (ranging from PC1-stage 1–12), results
plotted against OS, as in (c). Lighter colors (yellow) indicate shorter observation,
darker colors (blue) higher long-term OS. e Kaplan-Meier estimate OS curve with
95% CI of 4 PC-aGVHD grades (I–IV) consolidated from PC-aGVHD-stages 1–12. The
colors indicate lower (yellow) to higher (blue) OS. Strata are compared with the
two-sided log-rank test. f Plotting of PC1 stages against aGVHD organ involvement
(combinations: Skin: only skin; liver: only liver; GI: only GI; skin and liver; skin and
GI; liver andGI; skin, liver andGI). The circle size corresponds to the n of patients in
each category.
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outcomes,maybe capturedbymore granular grading systems covering
more than the usual 4 grades.

As the last verification step in the external testing process of data-
driven grading, we compared and ranked all grading systems by their
performance metrics using the Akaike information criterion (AIC) and
concordance index (Ci). The lowest—and therefore best—AIC was

found among the data-driven grading systems (Fig. 10a). Among the
conventional grading systems, MAGIC had the best AIC. There was
high agreement between the AIC and Ci in prioritizing data-driven
classifications, particularly PC1 grading (Fig. 10b, c). Taken together,
these results indicate that several criteria, including the phenotype
composition, performance metrics and outcome association, should

Hierarchical clustering dendrogram

SSD and Silhouette coefficient d)

a) Kaplan-Meier OS b)

c) Kaplan-Meier OS

e)
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be taken into consideration to assess grading quality and to better
understand the strengths and weaknesses of each approach. They also
confirm that MAGIC is a good grading system. Most importantly, the
data-driven grading approaches—in particular, PC1 refined to 6 or 12
grades—provide additional value beyond current practice in differ-
entiating aGVHD phenotypes and globally lead the classification
quality indices.

Discussion
This study is the first to systematically evaluate conventional aGVHD
grading along with data-drivenmethods and presents results from the
development, validation, and independent test of the first data-driven
aGVHD grading systems. Via extensive comparisons of the different
strategies, this study answers the question of which domains data-
driven classifications reveal advantages in over conventional classifi-
cations and vice versa. Our results shed light on the complexity of
clinical aGVHD phenotypes, dissect the impact of multiorgan invol-
vement and may improve the stratification strategies of future clinical
trials to assign novel drugs to best-fitting recipients.

Despite new drugs and preventive strategies25, multiorgan invol-
vement and treatment resistance remain key challenges to the current
aGVHD treatment setting, and heterogeneity in reporting is one of the
issues. Past efforts to standardize aGVHD grading practices26 and
achieve comparability between HCT centers have positively impacted
quality assurance in the HCT community. Our data demonstrate that
data-driven grading of aGVHD is feasible, can be implemented via a
digital application and reveals several advantages over conventional
grading. Data-driven grading also facilitates physicians in managing
the complexity of aGVHD phenotypes by weighting and combining
multiorgan involvement and finally reducing it to a single score.
Overall, data-driven grading outperformed conventional classifica-
tions in performance indices. However, it is insufficient to evaluate
grading systems based on a single quality measure. Hence, our judg-
ment was made considering all the evidence generated in this study,
including several performance metrics, proportional distribution and
repartition of aGVHDphenotypes in grading categories. This extensive
comparison identified several clinically relevant strengths and weak-
nesses of each grading system, as detailed in the results. Importantly,
Consensus grading clearly underestimated the importance of GI
involvement, particularly in stage 4 GI aGVHD, and hence is used with
decreasing frequency in the HCT community. However, it is still
referred to as today’s standard in the reporting of HCT data to trans-
plant registries, which likely impairs benchmarking. Our data showed
that MAGIC grading performed best among the examined conven-
tional grading systems. Nevertheless, this study also revealed some
shortcomings that remained unnoticed. For instance, MAGIC grade III
assembles a diverse set of aGVHD phenotypes, which would likely
profit from reclassification, as some of these are associated with

significantly better outcomes, and MAGIC is very similar to other sys-
tems, particularly the Minnesota grading system. Despite the
unquestionably important role of GI involvement in aGVHD, our data
indicate that MAGIC grading may overestimate its impact. Patients
with GI stage 1 are categorized into MAGIC grade II, and patients with
GI stage 2 and no other organ involvement are considered grade III.
The impact of multiorgan involvement is structurally underestimated
with this logic. PC1 grading addressed both issues by attributing a high
yet not exclusive weight to GI involvement while integrating patients’
multiorgan aGVHDphenotypes. Additionally, for refined grading steps
(e.g., with PC16or 12 grades), PC1 grading always considersmultiorgan
involvement at each grade. The challenge of implementing refined
data-driven grading steps in clinical practice can be eased via digital
tools, such as our provided online calculator (www.gvhd.online), and
can yield more precise diagnoses allowing future trials to potentially
adapt treatments to the severity of aGVHD. Despite the apparent
complexity of the data, they exhibited a linear variation in the multi-
dimensional space. In a higher dimensional dataset, i.e., with more
features including biomarkers, nonlinear methods may add further
value to data-driven aGVHD grading.

This study has strengths and limitations. It included an unprece-
dented cohort size and level of detail in the assessment of aGVHDwith
effective data-driven methods for aGVHD assessment, which are pre-
pared for further adaptations to the needs of precision medicine.
However, its geographical setting in Europe may have limited ethnic
diversity. Due to the enrollment period, the cohorts included only 1-2%
of patients receiving posttransplant cyclophosphamide (PTCy);
nevertheless, data-driven methods evaluating aGVHD phenotypes are
equally applicable in the PTCy setting, while the clinical outcome
association remains to be confirmed. GVHD treatment data were not
reported in detail. In its present form, the PC1 algorithm may slightly
underestimate the gravity of isolated single organ stage 4 aGVHD
involvement for the skin or liver; however, this limitation is unlikely to
restrain clinicians from treating aGVHD and may be overcome with
even larger datasets. Data-driven grading currently uses clinical
aGVHD assessments but may also be extended by integrating bio-
markers or other data sources from precision medicine.

This study provided a detailed analysis of all aGVHD grading sys-
tems and pioneered and demonstrated the utility of data-driven grad-
ing, particularly PC1 grading. These results support HCT registries in
policy change to informmore comprehensively on aGVHD.HCTcenters
should not only report the overall aGVHD grade to registries but also
provide each organ’s involvement for optimal benchmarking. Clinical
trials should report more details on the involvement of specific organs,
heterogeneity, and distribution of aGVHD phenotypes in their cohorts,
data which may be analyzed by these tools to improve HCT care. Data-
driven grading provides an expandable platform for classification and
risk assessment supporting precision medicine in transplantation.

Fig. 4 | Hierarchical and partitional clustering of the training cohort (n = 2319)
as alternative data-driven approaches to aGVHD grading and multivariate
competing-risk-regression of the validation cohort (n = 700) with the PC1
grading. a Agglomerative hierarchical clustering (HClust) dendrogram of the
training cohort on the basis of their target organ involvements. An HClust distance
threshold of 30 split the cohort into 4 clusters, which were numerically ordered.
Grade I: n = 763; II: n = 1149, III: n = 191, IV: n = 216. Red dashed line indicates cutoff
level for four grades. b Kaplan–Meier OS curve with 95% CI of 4 HClust-aGVHD
grades (I–IV). Strata are compared with the two-sided log-rank test. c K-means
partitional clustering performance indicators SSD (sumof squareddistances, green
dashed) and silhouette coefficient (green), labels on each figure side. Red dashed
line indicates cutoff level with four grades; gray dashed line shows cutoff level with
8 grades, the optimal number determined by both methods (n = 8, Sil = 0.62). We
evaluated a further cutoff point with 14 clusters in the supplementary notes.
d Kaplan–Meier OS curve with 95% CI of K-means-4 grades (I–IV). Strata are com-
pared with the two-sided log-rank test. e Multivariate competing risk regression

analysis for 12 months NRM on the test cohort (n = 541 evaluable for all covariates)
using the PC1 aGVHD grades as a time-dependent variable. The multivariate model
was adjusted for potentially confounding variables, covariates as listed in e. Hor-
izontal bars represent 95% CI. P-values are computed based on the Wald-test. The
hazard ratio (HR) is a measure of the ratio of the hazard between two groups. A
value of 1 is the reference, HR< 1 corresponds to lower risk andHR> 1 to higher risk
ofNRM than the reference. TheHRof PC1 grade II was2.12 (95%confidence interval,
CI, 1.17-3.83, grade III HR 7.2 (95%CI 4.72-10.99) and grade IV HR 16.30 (95%CI 8.12-
32.75). Significant covariates in this NRM model were diagnoses (acute lympho-
blastic leukemia (ALL) HR 2.3 (95%CI 1.17–4.66),myelodysplastic syndromes (MDS)
HR 1.74 (95%CI 1.06–2.84), other diagnoses HR 3.8 (95% CI 1.27–11.88), year of HCT
HR 0.91, 95% CI 0.85–0.97, and EBMT risk score HR 1.40, 95%CI 1.21–1.63. The
covariates, donor age, donor sex, donor type, Karnofsky performance index ≥80
were not significant in univariate regression analysis and hence not included in the
multivariate model. Source data are provided as a source data file.
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Kaplan-Meier 12 months OS, test cohort (n=700)

AUROC 12 months NRM

Cohen’s Kappa intergrade agreement

c)

AUROC 12 months OS

Fig. 5 | Comparative visualization of data-driven and conventional grading
methods on the independent test cohorts (n = 700). Comparison of OS between
aGVHD classifications using four grades (both conventional and data-driven grad-
ing), Cohen’s analysis of intergrading agreement and assessment of the respective
predictive values using AUROC. a–f: Kaplan–Meier OS curves with 95% CI of
patients in the independent test cohorts (n = 700). OS is stratified by aGVHD
grading severity according to the relevant grading system from I to IV and strata are
compared with the two-sided log-rank test. a PC1-aGVHD grading, b Hierarchical

clustering grading (Hclust) c K-means clustering grading with 4 grades d MAGIC
grading, e Consensus grading, f IBMTR grading. g Comparison of AUROC for
12 months OS between grading systems. AUROC values range from 0.5 to 1.0.
h Comparison of AUROC curves for 12 months NRM. I: Cohen’s Kappa comparing
the intergrading agreement of different grading systems (PC1, Hclust, K-means,
MAGIC, Consensus, IBMTR, and Minnesota). Ranges from 0 (no agreement, light
green) to 1 (full agreement, dark blue).
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Hclust grades  distribution of phenotypes

PC1 4 grades distribution of phenotypes
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NRM
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Fig. 6 | Comparative distribution analysis of aGVHD grading methods on the
independent test cohort (n = 700). Data-driven aGVHD grading methods are
compared to MAGIC conventional grading to reveal differences in patient pro-
portions, organ combinations involved in each grade and ability to dissect into
cohorts with significantly distinct NRM. a Cumulative incidence NRM curves
according to MAGIC grades. Separation of curves is tested by the two-sided Gray
test. Error bands represent 95% CI b Pie chart of aGVHD grades in MAGIC grading.
The angle of each slice is proportional to the number of organ stage combinations
in the respective grade. The radius of each slice represents the number of patients
within this grade. MAGIC grade I: 2 combinations and 265 patients, II: 11 combi-
nations and 183 patients, III: 32 combinations and 143patients, IV: 26 combinations
and 109 patients. c Patient phenotype distribution within each grade. Stacked bar
chart of MAGIC aGVHD grades showing the proportion of patients in each organ

stage combination. For each bar the color represents one combination, no cross-
over between grades. All phenotypes are detailed in Supplementary Data 1.
d Cumulative incidence NRM curves according to PC1 grading with 4 grades.
Separation of curves is tested by two-sided Gray test. Error bands represent 95%CI
e Pie chart of PC1 grades. f Stacked bar chart of PC1 grades. The phenotypes are
detailed in Supplementary Data 2. g NRMof Hclust grading with four grades. h Pie
chart of Hclust grades. i Stacked bar chart of Hclust grades. The phenotypes are
detailed in SupplementaryData 3. jCumulative incidenceNRMcurves according to
K-means grading using 4 grades. Separation of curves is tested by a two-sidedGray
test. Error bands represent 95% CI k Pie chart of K-means grades. l Stacked bar
chart of K-means grades. The phenotypes are detailed in Supplementary Data 4.
Source data for b, c, e, f, h, i, k and l are provided as a source data file.
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a) Kaplan-Meier OS  Consensus grade III 

Clinical outcome analysis of redistributed patients
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e) f)

Kaplan-Meier OS MAGIC grade III 

NRM of MAGIC grade III NRM of Consensus grade III 
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Fig. 7 | Clinical outcome analysis of re-distributed patients between data-
driven and conventional grading systems. Redistributed patients from one
severity category to another between different grading systems are compared to
the remaining patients in the original category. aKaplan–Meier OS curves with 95%
CI of redistributed patients from MAGIC grade III to PC1-grade ≤II (light green)
compared to intersection grade III patients in both grades (dark green). Strata are
compared with the two-sided log-rank test. The phenotypes are detailed in Sup-
plementary Data 8. b Comparison of Kaplan-Meier OS curves with 95% CI of
redistributed patients from Consensus grade III to PC1-grade ≤ II (light green) to
intersection of grade III patients in both consensus and PC1 (dark-green). Strata are

compared with the two-sided log-rank test. c Kaplan–Meier OS curves with 95% CI
of redistributed patients fromMAGIC grade III to PC1-grade I (light green) and PC1-
grade II (green) are compared to grade III patients in both MAGIC and PC1 (blue-
green). d Kaplan–Meier OS curves with 95% CI of redistributed patients from
Consensus grade III to PC1-grade I (light green), to PC1-grade II (green) are com-
pared to the intersection of grade III patients (blue-green). e Cumulative incidence
curves of NRM are compared for the same strata as in c. Error bands show 95% CI.
f Cumulative incidence curves of NRM are compared for redistributed Consensus
grade III patients to PC1 including PC1-grade IV (dark blue). Error bands show 95%
CI. Strata for NRM are compared with the two-sided Gray test.
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Methods
Patients
This analysis included 3754 adult patients with allogeneic HCT
between January 2008 andDecember 2018, of which 3019 had aGVHD.
The training cohort of data-driven aGVHD grading included 2319

consecutive patients diagnosedwith aGVHDafter HCT from twomajor
German academic HCT centers, the Department of Hematology and
Stem Cell Transplantation of the West German Cancer Center at Uni-
versity Hospital Essen (n = 1345) and the Department for Stem Cell
Transplantation of the University Medical Center Hamburg-Eppendorf

Skin OSa) b)

Clinical outcome analysis according to organ stages
Skin NRM

Liver OSc) d) Liver NRM

GI OSe) f) GI NRM

Fig. 8 | Outcome analysis according to aGVHD target organ severity in the test
cohort (n = 700). Patients in the test cohort (n = 700) were stratified according to
targetorganseverity staging.a andbKaplan–MeierOSand cumulative incidenceof
NRM of patients stratified by aGVHD skin stage 0–4. Error bands represent 95% CI.
Separation of curves is tested by the two-sided log-rank test (OS) or two-sided Gray
test (NRM). c-d Kaplan–Meier OS and cumulative incidence of NRM of patients

stratified by aGVHD liver stage 0–4. Error bands represent 95% CI. Separation of
curves is tested by the two-sided log-rank test (OS) or two-sided Gray test (NRM).
e and f Kaplan–Meier OS and cumulative incidence of NRM of patients stratified by
aGVHDGI stage 0–4. Error bands show95%CI. Separation of curves is tested by the
two-sided log-rank test (OS) or two-sided Gray test (NRM).
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(n = 974). The independent test cohort included 700 patients from 3
large academic HCT centers, the Department of Hematology,
Hemostasis, Oncology and Stem Cell Transplantation of Hannover
Medical School (n = 434), the Department of Medicine and Hematol-
ogy, Charité Universitätsmedizin Berlin (n = 156) and the Department
of Internal Medicine V, University Hospital Heidelberg (n = 110). For

comparative Cox analysis of different aGVHD grading systems, an
additional cohort (n = 735) of HCT patients without aGVHD (aGVHD
grade 0) served as the reference group. Patient baseline data, donors,
HCT characteristics, aGVHD organ stages and HCT outcomes were
extracted from patients’ electronic health records and retrospectively
analyzed. To ensure data quality, correct classification and

a) b) c)
PC1 12 grades distribution of phenotypesNRM

d) e) f)
PC1 6 grades distribution of phenotypesNRM

g) h) i)
Kmeans 8 grades distribution of phenotypesNRM
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standardized aGVHD reporting between different HCT centers, full
documentation of clinical aGVHD organ involvement (skin, liver, GI)
was required and served to calculate the grades of both conventional
and data-driven classifications. Appropriate coverage of aGVHD phe-
notypes in cohorts was verified during the exploratory data analysis.
Assignment toHCT treatment, GVHDprophylaxis, supportive care and
follow-up care were based on standardized clinical treatment proto-
cols and HCT center policies, considering hematologic diagnosis, age,
comorbidities and donor constellation. Details are provided in the
supplementary data. After HCT, inpatients were screened daily for
clinical signs of aGVHD. Outpatients were assessed at each visit (i.e.,
weekly/biweekly during the first 2 months). Further outpatient follow-
up intervals were sequentially extended, depending on clinical status
and HCT-related complications. Once diagnosed, aGVHD severity was
evaluated daily for inpatients and at each visit for outpatients and
documented in patients’ health records. The maximum extent of
aGVHD organ involvement and severity was used as an input variable
for analysis.

Data-driven analyses of aGVHD phenotypes, development of
grading and internal validation
Exploratory data analysis was performed on the training (n = 2319) and
test cohorts (n = 700) to ensure adequate data distribution in the
independent test cohort. A correlation matrix was generated with
Spearman’s rank correlation coefficients for the target organ stages
(skin, liver, and GI). Pair plot analysis was used to illustrate and com-
pare the distribution of single variables of the skin, liver, and GI and
their mutual relationship.

Principal component analysis (PCA) was applied to transform the
multidimensional dataset into a set of successive orthogonal compo-
nents so that the variance in the data could be explained at best in a
lower dimensional space. Biplot and scree plots were used to display
the results of this dimensionality reduction. The loading scores of the
first principal component (PC1, principal component with the largest
eigenvalue) were used to formulate an aGVHD severity index s0i

s0i : = ~pi �~p0

� � �~c1 + s0 ð1Þ

where ~pi 2 V represents each patient’s aGVHD stage, ~p0 is the cen-
tering term,~c1 refers to the loadings of PC1, and s0 is an offset due to
centering in the PCA algorithm. PC1 aGVHD stage si is defined as fol-
lows:

si = f s0i
� �

: = roundðs0i*2Þ+ s00 ð2Þ

where s0i is the severity index, and s00 is an offset to shift si to start from
the minimum stage 1 to a maximum stage of 12. To compare data-
driven with conventional grading, the number of possible aGVHD
grades was set to 4. Thus, the PC1 aGVHD stages si were linearly
grouped into 4 PC1 grades with PC1 stages 1-3 as PC grade I, 4–6 as
grade II, 7–9 as grade III and 10–12 as grade IV. During PCA, the results
were internally validated via 500-fold bootstrapping, with each sample

consisting of 1546 randomly selected data points (=2/3 of the training
cohort). The mean, minimum and maximum of each eigenvalue from
bootstrapping were used as validation metrics (Supplemen-
tary Fig. 2c).

As alternative data-driven methods, agglomerative hierarchical
clustering (HClust) and partitional K-means clustering were applied to
the training cohort data. For HClust, a bottom-up approach was
adopted, and the distance threshold was set to 30 to split the cohort
into 4 clusters. Distances between data points for the clusters were
determined byward linkage using theminimum increase of the sumof
squares (MISSQ) aspreviously described27. The results are presented in
a dendrogram. Partitional K-means clustering was the second alter-
native data-driven method that we applied. The determination of the
optimal cluster combinationwasevaluated via both the sumof squares
of distances (SSD, elbow method) and the silhouette coefficient per-
formance index. Again, the default cluster numberwas set to 4. Cluster
numbers >4 were used for supplemental analysis (e.g., K-means 8
grades). Given that clustering-defined grades were not automatically
categorized into higher or lower severity, we ranked clustering grades
usingOS.Despite its large size, the training cohort didnot represent all
possible aGVHD phenotypes (i.e., organ involvement constellation).
aGVHD phenotypes of the test cohort that were not defined by the
training cohort (n = 6) were omitted for validation.

External test and verification of data-driven aGVHD grading
systems
All studied aGVHDgrading systems in this studywere externally tested
on an independent multicenter test cohort from three large German
HCT centers. To compare the grading performance of different data-
driven and conventional aGVHD grading systems, we employed sev-
eral established comparative metrics.

We applied the Akaike information criterion (AIC) as previously
described28 using the following formula:

AIC= � 2 × log Lð Þ+ 2×p0 ð3Þ

Where log(L) is the conditional log-likelihood for Cox proportional
hazards models and p’ is the number of categories in a given grading
system. Due to the potential presence of tied events, the Efron
method29 was additionally used. The range of the AIC varies with the
size of the studied population but is comparable in the same dataset.
Smaller AIC values are preferable.

Harrel’s concordance index (Ci)30,31 was employed to compare the
prognostic ability of the survival models. The risk groups in the sur-
vival models were created with respect to the aGVHD grades, which
were obtained by using data-driven and conventional grading meth-
ods. The range of the Ci is from 0 to 1, with a higher value considered
superior.

Time-dependent receiver operating characteristic (ROC) curves
were generated to visualize the specificity and sensitivity of aGVHD
classifications for 12-month OS and NRM. The areas under the ROC
curves (AUROCs) were compared between different gradingmethods.

Fig. 9 | Comparative distribution analysis of aGVHD grading systems refined
beyond four grades on the independent test cohort (n = 700). Additional data-
drivenaGVHDgradingswithmore than4grades are compared to reveal differences
in patient proportions, organ combinations involved in each grade and their ability
to dissect into cohortswith significantlydistinctNRM. aCumulative incidenceNRM
curves of aGVHD grades in PC1 grading using all 12 PC1 stages as distinct severity
grades. Colors representing PC1 aGVHD grade I–XII. Separation of curves is tested
by the two-sided Gray test.b Pie chart according to PC1with 12 grades. The angle of
each slice represents the number of organ stage combinations in the respective
grade. The radius of each slice represents the number of patients within this grade.
c Stackedbar chart of PC1with 12 grades showing theproportion of patients in each
organ stage combination. For each bar, one color represents one combination, no

crossover between grades. The phenotypes are detailed in Supplementary Data 9.
dCumulative incidenceNRMcurves according to PC1 gradingwith 6 grades. Colors
representing PC1 aGVHD grade I–VI. Separation of curves is tested by the two-sided
Gray test. e Pie chart of PC1 with six grades. f Stacked bar chart of PC1 with six
grades. The phenotypes are detailed in Supplementary Data 10. g Cumulative
incidence NRM curves according to K-means grading with eight grades, using the
optimal number of clusters as determined by elbow method on the development
cohort. Colors representing K-means aGVHD grade I–VIII Separation of curves is
tested by the two-sided Gray test. h Pie chart of K-means-8 grades i Stacked bar
chart of K-means-8 grades. The phenotypes are detailed in Supplementary Data 11.
Source data for b, c, e, f, h and i are provided as a source data file.
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Cohen’s kappa was calculated as previously described32 to com-
pare the intergrading agreement of the different grading systems,
which categorize patients into 4 severity grades (PC1, HClust,K-Means,
MAGIC, Consensus, Minnesota and IBMTR). Cohen’s kappa ranges
from 0 (no agreement) to 1 (full agreement). Values between 0.41 and
0.6 indicate moderate agreement, and values between 0.61 and 0.8
indicate substantial agreement. Values between 0.81 and 1 indicate
very high agreement.

The external test cohort (n = 700) of aGVHD patients was ana-
lyzed for nonrelapse mortality (NRM) and overall survival (OS) at
12 months. Patient outcomes were comparatively visualized for each
grading system with stratification according to the respective aGVHD
severity grade. OS was analyzed via Kaplan‒Meier analysis33; aGVHD
grade subgroups were compared using the log-rank test; and survival
hazards were calculated by a Cox proportional hazards model34. NRM
and relapse were considered competing events and were analyzed by
competing risk analysis and compared by Gray’s test. P values < 0.05
were considered statistically significant.

Implementation
The development of data science grading methods (Spearman, pair
plot, PC1 grading, clustering methods, Cohen’s kappa) was performed
with the open-source software Python (version 3.10.2) using the fol-
lowing libraries: scikit-learn, numpy, scipy, pandas, matplotlib, sea-
born, os, pyaml and datetime. Nonlinear dimensional reduction
methods tSNE and UMAP, clinical outcome analysis and AIC calcula-
tions were performed with R35 (version 4.1.3, R Core team, Vienna,
Austria, 2020, https://www.r-project.org) using the following libraries:
Rtsne, umap, tidyverse, readxl, writexl, ggplot2, survival, survminer,
cmprsk, ggstatsplot, cmprsk, dplyr, dynpred, tidyr, aod, tableone and
timeROC. Details and references to all libraries are provided in the
supplementary data.

Ethics
Study protocol approval was obtained by the institutional review
boardof theUniversityDuisburg-Essen (ProtocolsNos. 17-7675-BOand
21-9965-BO). All patients have given written informed consent to the
collection, electronic storage, and scientific analysis of anonymized
HCT-specific patient data in accordance with German legislation and
the revised Helsinki Declaration. We confirm that no patient can be
identified through the use of anonymized patient data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
An online calculator for comparative calculation of data-driven grad-
ing systems is provided free of charge under www.gvhd.online. To
enable independent replication of our methods, we included detailed
descriptions of data-driven grading systems development in the
“Methods” section. Processed source data for individual figures are
provided in this paper. Anonymized datasets generated during the
current study are available upon request. Requests canbe addressed to
the corresponding author (amin.turki@uk-essen.de; expected
response time 2 weeks). The individual clinical raw data contains
sensitive personal health information, are protected and are not
available due to data privacy laws. Collective anonymized clinical data
are available under restricted access due to sensitive personal health
information, access will be provided via the University Hospital Essen
and are subject to approval by the data protection officer and ethics
committee and formalized via data access agreements. Source data are
provided with this paper.
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Fig. 10 | Comparison of classification performances using Akaike information
criterion and concordance index. a Bar plot visualization of the Akaike informa-
tion criterion (AIC) of all aGVHD grading combinations in decreasing order. If not
otherwise mentioned, patients are categorized into four grades. Lower AIC results
are preferable. b Bar plot visualization of the concordance index (c-index/CI) of all
aGVHD grading combinations in increasing order. Higher c-index values are pre-
ferable. c AIC plotted versus CI for all analyzed aGVHD classification methods.
Correlation (r) calculated via linear regression. 95% CI: −0.98 to 0.81 ****p <0.0001
(two-tailed). As the clustering-based grading systems did not cover the phenotype
constellation of n = 6 patients in the test cohort, the comparison between systems
was performed among the remaining 694 patients. Source data are provided as a
source data file.
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Code availability
Source code for PC1-derived grading has been deposited in (https://
github.com/AGchi/data-driven-grading-of-aGVHD) accompanied by
instructions.
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