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Condensation of preformed charge density
waves in kagome metals

Changwon Park 1 & Young-Woo Son 1

Charge density wave (CDW) is a spontaneous spatial modulation of charges in
solids whose general microscopic descriptions are yet to be completed.
Kagome metals of AV3Sb5 (A = K, Rb, Cs) provide a chance to realize CDW
intertwinedwith dimensional effects aswell as their special lattice. Here, based
on a state-of-the-art molecular dynamics simulation, we propose that their
phase transition to CDW is a condensation process of incoherently preformed
charge orders. Owing to unavoidable degeneracy in stacking charge orders,
phases of preformed orders on each layer are shown to fluctuate between a
limited number of states with quite slower frequencies than typical phonon
vibrations until reaching their freezing temperature. As the size of interfacial
alkali atom increases, the fluctuations are shown to counterbalance the con-
densation of orderings, resulting in a maximized transition temperature for
RbV3Sb5. Our results resolve controversial observations on their CDWs, high-
lighting a crucial role of their interlayer interactions.

The kagome lattice has been considered as a fertile ground to realize
exotic quantum phases because of its high degree of geometric frus-
tration andnontrivial band structures1–3. Particularly,when thenumber
of electrons per site is 2/3 ± 1/6, the Fermi energy (EF) is at the vanHove
singularity (vHS) such that the density of states diverges to induce
various broken-symmetry phases1–3. The recent discovery of kagome
metals ofKV3Sb5, RbV3Sb5 andCsV3Sb5 (abbreviated asAV3Sb5whereA
denotes alkali atoms of K, Rb and Cs)4 bring a chance to realize those
phases because their EF’s are close to vHS4,5. Indeed, several studies so
far have demonstrated noteworthy states suchas chargedensitywaves
(CDWs)4,6–9, superconductivity10, loop currents states11–13 and electro-
nic nematicity14, to name a few.

On the other hand, a recent progress inmanipulating stacked two-
dimensional (2D) crystals opens a new window to study phase
transitions15–17. Owing to their anisotropic lattice structures and inter-
actions, distinct electronic phases are realized in the samematerial by
pressure18, a number of layers17,19 and dopings20 etc. Unlike simple
lattice structures of hexagonal or rectangular shapes in typical layered
materials16, newly discovered kagome metals of AV3Sb5 add another
complexity of frustrating intralayer orders in studying phase transi-
tions, thus providing a unique chance to study their interplay with
extreme anisotropic interactions.

Owing to the vHS in kagomemetals, CDWs occur with decreasing
temperature (T) from normal metallic phase21,22. In spite of their well-
established presence, a few enigmatic observations raise questions on
their formation mechanism. One of anomalous behaviors is the
absence of phonon softening in inelastic X-ray8, neutron21 and Raman
scattering experiments23 while these results are incompatible with
unstable phononmodes atM- and L-point of the Brillouin zone (BZ) in
recent ab initio calculations5,24,25. Moreover, from the fact that the
formation energy of CDW (ECDW)5 monotonically decreases with the
size of the alkali atoms, one could naively expect that the transition
temperature for CDW (TCDW) increases accordingly. However, as the
size of alkali atom increases fromK to Rb and to Cs, the observed TCDW
first increases from 78K to 102 K and then decreases to 94K2,
respectively, contradicting the conventional behaviors26,27.

In this work, we theoretically showed that kagome metals first
develop lattice distortions within each layer at much higher tempera-
ture of T* than TCDW. Then, their phases are not fixed simultaneously
with their amplitudes but fluctuate, which is shown to be inevitable
owing tomultipleways of stacking CDWs between adjacent layers with
the same energetic cost. As T decreases further, the phases of pre-
formed orders eventually stop varying at TCDW. The characteristic
timescale for the fluctuation is at least 105 slower than that a typical
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vibrational frequency of vanadium lattice. For CsV3Sb5, it is shown that
a phonon softening signal exists only around L-point in a narrow
temperature range around T*. Between T* and TCDW, the thermo-
dynamic behaviors of preformed CDWs can be described by 4-states
Potts model which undergoes a first-order phase transition at TCDW28.
Our quantitative analysis demonstrates that the fluctuations increase
as the size of alkali metal increases, thus competing with ECDW for
preformed orders. So, resulting TCDW maximizes not with Cs but with
Rb atom and agrees well with the experimental trend2, highlighting
roles of weak interlayer interactions in determining phase transitions
of layered kagome metals.

Our computations for two markedly disparate orders are made
possible by developing a new large-scale molecular dynamics (MD)
simulationsmethod. A newmethod is specifically designed to describe
lattice distortions using the relative displacements between atoms as
basic variables (See Methods). Polynomial interatomic potentials are
constructed using the linear regression for fitting about 2,500 basis
functions to our first-principles calculation results. So, our method is
accurate enough to reproduce our ab initio results very well, thus
enabling us to perform large scale accurate lattice dynamics in a very
long timescale.

Results
2D charge orders and their interlayer interactions
Figure 1a shows the crystal structure of AV3Sb5. Vanadium atoms form
2D kagome lattice at vertices of dashed lines in Fig. 1b, c. One thirds of
Sb atoms occupy the centers of dashed hexagons and the rest two
thirds are at the upper and lower plane of the kagome lattice,
respectively. Alkali atoms play as spacer atoms between the layers and
determine the interlayer interactions. As shown in Fig. 1c, the CDW
phase has been known to form the inverse star-of-David (iSOD)
structurewhere V atoms in 2 × 2 units aremodulated into one hexagon
and two triangles instead of the star-of-David structure constructed by
inverting the atomic displacements of the iSOD5,25. Our ab initio cal-
culations also prefer the former over the latter, agreeing with previous
studies24,29. We note that, without interlayer interactions, the 2 × 2
CDW in each layer can take any of the four translationally equivalent
structures or phases indicated by four rhombi in Fig. 1c. The interlayer
interaction, however, lifts the degeneracy between those random
stacking phases. In Fig. 1d, we display possible stacking orders where
the different phases are denoted by different colors corresponding to
those in Fig. 1c.

We find that the same phases for neighboring layers are hardly
realizable owing to the large energetic cost while the different phases
are allowed and their energies for couplings are equivalent (See Sup-
plementary Information Section 1). This implies that second-nearest-
neighboring interlayer interactions should play an important role for
stacking order. Without it, long-range stacking orders are absent and
random stacking of CDWs would be dominant as long as the neigh-
boring layers avoid to be the same phase (See detailed discussion in
Supplementary Section 2), which contradicts experiments8,10,30. Our
first-principles calculation estimates that its magnitude is order of
1meV for 2 × 2 units in Fig. 1c. Such a small interaction may be related
with possible CDW stacking faults or variations in interlayer ordering
periods8,10,23,30,31. Notwithstanding its small magnitude, as we will
demonstrate hereafter, it is an important interaction in freezing fluc-
tuating charge orders of kagome metals.

From our MD simulations, we find that a interlayer correlation at
temperature far above TCDW is not negligible in spite of the small
negative long-rage interaction. Specifically, for CsV3Sb5 at T = 130K,
the probability that the pairs of second-nearest-neighboring layers
have the same phases in the thermal ensemble turns out to be 0.66,
revealing its crucial role (without it, the probability should be 0.25).
From these considerations, the interlayer interactions are shown to
have ambivalent characteristics depending on the interaction ranges
such that nearest-neighboring layer should avoid the samephasewhile
second-nearest-neighboring layer favors the same one.

Aforementioned formation of intralayer CDWs are captured
explicitly by collecting theMD trajectories of V atomdensity of ρV (r;T)
for a given T. In Fig. 2a, it is shown that ρVofCsV3Sb5 atT = 200Kwith a
simulation timeof 0.4 nanosecondsperfectlymatchwith ideal kagome
lattice points. In enlarged views around the lattice point in Fig. 2b, it
starts to deviate from the lattice points at T≃ 160K. As the tempera-
ture decreases further, it continuously deviates from the lattice points
and the deviation reaches ~ 0.1 Å at T = 20K.

Phonon instability
The structural instability is also reflected in the temperature-
dependent phonon dispersions. At finite T, the phonon spectrum
can be extracted from the density-density correlation function of
Sρρ(k,ω; T) where k = (kx, ky, kz) is a crystal momentum and ω is a fre-
quency of phonon (See Methods for details). In Fig. 2c, we plotted
Sρρ(k,ω; T) of CsV3Sb5 along the high symmetric lines on (kx, ky) plane
with kz = bz/2 where bz is the out-of-plane reciprocal lattice vector. At
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Fig. 1 | 2 × 2 CDW of kagome metals and its low-energy stacking sequences.
a Crystal structure of AV3Sb5 where A denotes alkali atoms of K, Rb and Cs. b Three
eigenmodes of the CDW atM-points of Brillouin zone (M1, M2, and M3) for kagome
shaped lattice of vanadium atoms. Blues dots are vanadium atoms and arrows
denotes their displacements corresponding to each Mi(i = 1, 2, 3). c Schematic 2 × 2
CDW structures constructed from linear combinations of Mi’s where

[m1,m2,m3] ≡m1M1 +m2M2 +m3M3. Kagome lattices (dashed lines) are modulated
into hexagons (blue lines) and triangles (red) forming inverse star of David struc-
ture. There are four equivalent phases of 2 × 2 CDW (rhombi with four different
colors). d Low-energy stacking sequences constructed by four phases in c. The
phases of CDW are distinguished by colors matching those of rhombi in c.
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T = 250K, a soft mode denoted by an arrow is clearly shown at L-point.
As T decreases, the frequency of the soft mode approaches zero.
Eventually, at T*≃ 160 K, the structural instability develops, that may
indicate a phase transitions with lattice distortions32, compatible with
our simulation of ρV(r; T) in Fig. 2b. However, the structural instability
here does not guarantee phase transition. Even though the local 2 × 2
CDWorderswithin each layer and theirπ-phase shift between adjacent
layers can fully develops, the local CDW orders change their phases
dynamically and do not spontaneously break any symmetry of the
crystal. As we will see later, a global broken symmetry state occurs at
much lower temperature of TCDW so that we could interpret T* as the
preformation temperature of CDW.

We note that right below T*, all the softening signatures near L-
point disappear as shown in Fig. 2c. At TCDW<T <T*, the preformed
CDW domains have orders-of-magnitude longer lifetimes than vibra-
tional periods as will be shown later. So, the effective phonon fre-
quencies is essentially from the curvature of the potential aroundoneof
the four degenerate CDW phases. The phonon mode at L-point corre-
sponding to this newmetastable atomic configurations becomes harder
asTdecreases such that nearTCDW, no softening signature canbe found.

We also find that no soft modes exist along ΓM (Supplementary
Fig. 2a), which is consistent with recent experiments reporting unex-
pected stability of phononmodes along ΓM at the transition8,21,23. Even
at T > T*, the lowest M-phonon remains hard unlike L-phonon, exclud-
ing a possible preformation of CDW. At this high temperature,
anharmonicity-induced phonon hardening occurs for both phonons
but the effect is much stronger for M-phonon due to the enhanced
interlayer force constants. If not considering the anharmonic effect,
bothM- and L-phonon are expected to be unstable for the structure as
were demonstrated by recent first principles calculations5,24,25. We can
expect that the hardening effect for phonon at U-point of BZ (2 × 2 × 4
CDW) is in-between M- and L-phonon. Indeed, the softening of dis-
persions at U-point around T* is less conspicuous than one at L-point
(Supplementary Fig. 2b), not fully developing into instability.

Fluctuation of preformed orders
From the results so far, it seems that CsV3Sb5 undergoes a typical
phase transition at T*. However, owing to large degeneracy for pairing
charge orders between layers, a slow fluctuation between them pro-
liferates across the whole layers. We note that our simulation time of
0.4 nanoseconds for the apparent ordering is long enough for simu-
lating usual structural transitions33,34. For kagome metals, it turns out
to be not. With orders-of-magnitude longer simulations time of 12
nanoseconds,we indeed founda clear signature for thefluctuation.We
also confirm that thefluctuation is not anartifact from the size effectof
simulation supercell (See detailed discussions in Supplementary
Section 4).

The phase fluctuations are unambiguously identified by eigen-
mode decomposition analysis. As shown in Fig. 1b, the in-plane CDW
decomposes into three symmetrically equivalent eigenmodes of
Mi(i = 1, 2, 3). It can be easily checked that their linear combinations of
m1(t)M1 +m2(t)M2 +m3(t)M3 can reproduce the four phases of 2 × 2
iSOD structures as shown in Fig. 1c. Here mi(t)(i = 1, 2, 3) is a time-
dependent coefficient for eigenmodes of Mi where t denotes time. By
inspecting temperature-dependent time evolution of mi(t) for a spe-
cific 2 × 2 supercell, we can identify slow CDW fluctuations in kagome
metals (see further details in Supplementary Section 5).

Figure 3a shows a temporal evolution of m1(t) for T = 140K. In
addition to picoseconds phonon vibrations, there are clear sign
changes ofm1(t) in timescale of a few nanoseconds without altering its
averaged absolute magnitude. This indeed indicates phase flips of
CDWs. The rate of phase flips can be quantified by computing a
Pearson correlation coefficient (PCC)35 for time interval ofΔt, r11ðΔtÞ �
E½m1ðt +ΔtÞm1ðtÞ��E½m1ðt +ΔtÞ�E½m1ðtÞ�

σ½m1ðt +ΔtÞ�σ½m1ðtÞ� , where E[m1] and σ[m1] are time average
and standard deviation ofm1, respectively. As shown in Fig. 3b, the fast
phonon vibrations and the slow phase flip are manifested as picose-
conds oscillation and the subsequent slow decay, respectively (For
comprehensive analysis of PCCs, see Supplementary Section 5). The
decay rates of r11 in Fig. 3b imply that the phase-coherence time does

Fig. 2 | Preformation of CDW in CsV3Sb5. a Thermal distribution of vanadium
atom density ρV(r; T) at T = 200K. High (low) density regions are colored in yellow
(black).b ρV(r;T) within the dotted circle in a are enlarged at the temperature range
from 20 to 160K. Green open dots denote kagome lattice points and the space of
the grid (dotted lines) is 0.05 Å. c Temperature-dependent phonon spectra

obtained from Sρρ(k,ω;T). In top left panel, Brillouin zone and high symmetric
points ofCsV3Sb5 are drawn.The spectrumatT = 20K ismultipliedby 10 for a visual
clarity. The arrow in spectrum at T = 250K indicates a soft mode. Acoustic phonon
branches are invisible due to their weak intensities.
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not exceed a few nanoseconds at 140K and becomes longer as T
decreases further. With inclusion of the phase flips, for TCDW < T < T*,
the averaged local density profile of vanadium atoms of ρV should
change from a Gaussian thermal ellipsoid shown in Fig. 2b into a four-
peaked or non-gaussian distribution as shown in Fig. 3c. As T approa-
ches TCDW, each peak becomes to be more distanced and eventually,
thefluctuations are quenched tooneof the four peaks atT = TCDW. This
implies that in experiments incapable of resolving nanosecond
dynamics, only the averaged properties will be observed without any
symmetry-breaking feature between TCDW and T*. However, those
phase fluctuations are reflected as zero frequency peak at Sρρ(k,ω; T)
(see Supplementary Fig. 3), thatmay be accessible by inelastic neutron
scattering.

Critical temperatures of charge orders
Our simulations hitherto reveal that in kagome metals, TCDW is
nothing but a critical temperature for a globally ordered phase by
condensing the CDWs that are preformed at T*( > TCDW). Although
the physical process of the phase transition is now understood, a
reliable quantitative MD calculation of TCDW is undoable because
the time for quenching preformed orders well exceeds our
attainable simulation time. This motivates us to map our systems
into an anisotropic 4-states Potts model28 to compute TCDW

quantitatively using a well-established statistical method36. Due to
the two well-separated time scales of dynamics (thermal vibration
and phase fluctuation in Fig. 3a), if we average the atomic tra-
jectories of preformed CDW’s over 100ps, the averaged snapshot
will look like one of four 2 × 2 CDW phase in Fig. 1c, but with
temperature-dependent amplitudes. The four phases become
4-states ‘spin’ variables on lattice points of layered triangular
lattices as shown in Fig. 4a. So, an effective Hamiltonian for the
interacting spins therein can be written as

H =
X
hi,ji,α

Jkδðsi,α ,sj,αÞ+
X
i,α

J?δðsi,α ,si,α + 1Þ+
X
i,α

J?2δðsi,α ,si,α + 2Þ, ð1Þ

where si,α is an effective four-states spin at i-th site of α-th layer, J∥ their
effective intralayer nearest-neighboring (n.n.) interaction, J⊥ interlayer
n.n. and J⊥2 every other interlayer n.n. interactions, respectively as
described in Fig. 4a. Here, δ(si,α, sj,β) is zero if states of two effective
spins of si,α and sj,β are different, otherwise, it is one. We note from
considerations above that signs and magnitudes of the interactions
should be J∥≪ J⊥2 < 0 < J⊥.

Unlike typical Potts models28, interaction parameters in Eq. (1) are
explicit functions of temperature because amplitudes of CDW vary as
the temperature changes. For T =0, J∥(0) and J⊥(0) can be readily cal-
culated from the energy cost forming domain wall and energy

differences between different stacking, respectively (See detailed
procedures in Supplementary Section 6). For T >0, they are similarly
obtained from thermally averaged potential energy of domain struc-
ture. Here, the thermal average is approximately calculated using
harmonic and rigid approximations for density correlation functions
(See Methods). Then, we have temperature-dependent exchange
parameters of J∥(T), J⊥(T), J⊥2(T) in our 4-states Potts model. So, to
compute TCDW, we need to solve the model self-consistently because
temperature and the exchange parameters depend on each other. For
kagome metals with alkali atoms of K and Rb, we can bypass time-
consuming reference calculations by rescaling polynomial interatomic
potential obtained for CsV3Sb5 without degrading accuracy (See Sup-
plementary Section 7). We also note that the accuracy of J⊥2 from our
ab initio calculation of CsV3Sb5 seems to be marginal. While the
absolute magnitude of J⊥2 determines the ground state stacking
structure, it turns out to play a minor role in determining TCDW. So, we
set it as a parameter of J⊥2 = −0.5J⊥ and checked that TCDW is lowered
by at most 7 K when we decrease J⊥2 to be 0.

In Fig. 4b, c, the self-consistently obtained J∥(T) and J⊥(T) are
shown for three kagome metals. The critical temperature for pre-
formed orders of T* can be determined from a condition that the
amplitude of intralayer CDW vanishes or that J∥(T) and J⊥(T) become
zero simultaneously. As expected, the intralayer coupling of J∥(T) is
largest (smallest) for CsV3Sb5 (KV3Sb5), being consistent with the
lowest (largest) ECDW5. Accordingly, T* monotonically increases as the
size of alkali atom increases as shown in Fig. 4d.

The J⊥displays different temperature dependence comparedwith
J∥(T). Sinceall the compoundshere share the samekagome lattice layer
formed by V and Sb atoms and differ by their alkali atoms, J⊥ will be
dominantly set by size of the alkali atoms. Indeed, the interlayer dis-
tance for Cs compound is longest among them (Supplementary Sec-
tion 1) so that it has the smallest J⊥(0) as shown in Fig. 4c. This implies
that the weakest J⊥2 of Cs compound will invoke the most severe
fluctuation of CDW phase among three kagome metals. We also note
that as temperature approaches T*, the magnitude of J∥ is comparable
to those of J⊥ as well as J⊥2. Therefore, we identify two competing
features todetermine thermodynamic states, i.e., the phasefluctuation
of CDW counterbalances the ECDW. So, even though CsV3Sb5 has the
highest T*, its TCDW can be lower than the other. Estimated T* and TCDW
from Eq. (1) indeed confirm such a competitive interplay between
inter- and intralayer orders, agreeing well with experimental trend as
shown in Fig. 4d.

Discussion
The preformed charge order discussed so far is not measurable as
discontinuities in thermodynamics variables such as a specific heat or
susceptibility. Also, we expect that Raman scattering23,24,37,38 or nuclear
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ellipsoid (right panel, T > T*) to four-peaked distribution (two middles,
TCDW < T <T*), and finally be collapsed into one of the four peaks (left) at T < TCDW.
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magnetic resonance measurements39,40 may not be so easy to capture
its explicit signals owing to its fluctuating phases and dynamical nat-
ure. But there might be at least three experimental signatures already
indicating its existence. First, a recent X-ray diffraction experiment22

reports that the integrated peak intensity of 2 × 2 × 2 CDW order in
CsV3Sb5 survives up to 160K, well above TCDW = 94K. In addition to
that, the thermal expansion of the in-plane lattice constant shows a
slope change twice at TCDW and at T = 160K, respectively22, implying
the qualitative structural changes at higher T than TCDW. Second, the
coexistence of the ordered and disordered phases near TCDW is mea-
sured through nuclear magnetic resonance measurements39,40. This is
consistent with a first order phase transition from our anisotropic
4-states Potts model in Eq. (1). Third one is the absence of phonon
softening around TCDW8,21,23. As we already discussed, this absence is
not anomaly but a consequence of preformation of CDW at much
higher T*.

In addition to these indirect evidences, we may have a way to
detect fluctuating charge orders directly. Because the preformedCDW
not only changes the vibrational properties but also introduces slow
cluster dynamics, we expect that it can be also detected as a central
peak in the dynamic form factor of density fluctuation, or apparent
symmetry-forbidden signals in Raman scattering reminiscing the pre-
cursor formation in ferroelectric materials41,42.

We note that our current MD methods from first-principles
approaches do not show any state related with broken time-reversal-
symmetry states. Within our methods, the vanadium d-orbitals have
considerable out-of-plane band dispersion across the Fermi energy43

so that spin-spilt states related with them hardly develop. From these,
our MD could not touch upon the various experimental
signatures1–3,11–13 on time-reversal-symmetry broken phases. However,
if exotic electronic and magnetic orders can couple to bond orders
below TCDW, we expect that our method could reflect the corre-
sponding structural evolutions at lower temperature.

Lastly, we point out that the tiny magnitude of J⊥2 is essential in
controlling the phase fluctuation with fixed CDW amplitudes across
the kagome layers. This strongly suggests that a facile engineering of
thermodynamic states of kagome metals could be possible through
external controls of interlayer interactions44,45 and that our current
understanding of asynchronism in thermodynamics transitions of
kagome metals can be applied to understand various subtle phase
transitions in layered 2D crystals15–20,46.

Methods
Construction of interatomic potential
Our interatomic potential is based on the linear regressionwith a set of
polynomial basis functions which is adequate for small displacement
phonon calculations47. We note that a similar method has been used
for dynamical properties of kagome metal recently48. For the intera-
tomic potential to meet a few physical conditions such as (1) con-
tinuous translational symmetry, (2) point and space group symmetry
of the crystal, (3) permutation of variables, and (4) asymptotic stability
for a large displacement, basis functions are constructed as follows.

First, to meet the condition (1), we replaced the variable from the
atomic displacement uαi

to the relative displacement uαi
� uα0

i
where αi

is a condensed index for Cartesian components, basis atom in a uni-
tcell and the Bravais lattice point. The index of α0

i shares the same
Cartesian component with αi but has different basis atom index and
Bravais lattice point, respectively. Then, the interatomic potential of V
can be written as

V =
X1
n=0

Vn =
X1
n=0

1
n!

X
fαi ,α

0
ig
cα1α

0
1 ���αnα

0
n

Yn
i = 1

ðuαi
� uα0

i
Þ, ð2Þ

where the brace indicates that the summation runs for all indices of αi
and α0

i in the summands. The condition (2) can be straightforwardly
incorporated by applying all symmetry operations R of a given crystal
to Vn in Eq. (2), that can be written as

~Vn =
1
NR

X
R

RVn,

whereNR is a number of symmetry operations.The condition (3)will be
automatically met from linear dependence check of basis function.
The condition (4) is usually ignored in phonon calculations but
becomes to be critical for potentials with a huge number of variables.
Since our interatomic potential has thousands of variables, without
explicit consideration of the condition (4), optimization processes do
not end but diverge. In general, it is hard to prove that some multi-
variable polynomial is bounded below but we avoid the negative
divergence by forcing the highest-order basis function to be multiples
of squares and by constraining their coefficients to be nonnegative
during the linear regression process. Rigorously, though this approach
does not guarantee the condition (4), we find that the V in Eq. (2)
constructed in this way did not cause any practical problem. The
resulting basis functions are sorted in ascending order by the largest
distance between the two atoms in the basis function and linearly-
dependent basis functions are removed by Gram-Schmidt
orthogonalization.

For CsV3Sb5, we truncated the polynomial out at the 4th order and
cutoff the relative distance at 10Å for the 2nd-order basis functions
and 6Å for 3rd- and 4th-order ones. Importantly, only V displacements
are used for the variables in the 3rd- and 4th-order basis function
because we found that the anharmonic effect is prominent only
between the V atoms due to their large displacements in CDW phases.
Thenumber of basis functionsmade in thisway is 434, 521, and 1453 for
2nd-, 3rd- and 4th-order, respectively.

The reference configurations are collected frommultiple sources
to ensure reliable sampling of potential energy surfaces. We
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performed first-principles MD simulations of 4 × 4 × 2 supercell at 100
and 200K for 1600 stepswith a time step of 10 fs.We then collected 53
configurations from each temperature that were equally spaced in
time of 300 fs. Additional 30 configurations are collected from ran-
domly displacing ( < 0.04 Å) atomic positions from the optimized
2 × 2 × 2 CDWstructure. Lastly, the linearly interpolated configurations
between high-symmetric structures without CDW and the optimized
2 × 2 × 2CDWstructures are also used to collect 9more configurations.
These diverse sets of 145 configurations are found to be enough to
reproduce energy landscape of low-energy stacking structures
fruitfully.

The coefficients of basis functions are fitted to the calculated
atomic forces. We first perform the linear regression procedure to
minimize the following loss function,

X
i

jAiC� Fij2 ð3Þ

where C is the m-dimensional coefficient vector of basis functions of
cα1α

0
1 ���αnα

0
n
in Eq. (2), Fi is the 3N-dimensional vector of reference atomic

forces in the ith configuration including N atoms, and Ai is the 3N ×m
matrix whose jth column is atomic forces in the configuration i calcu-
lated from the interatomic potential by fixing the coefficient of jth basis
function as cj = 1 and by forcing all the other coefficients to be zeros.
Here, m =m2 +m3 +m4 wheremk(k = 2, 3, 4) is the number of kth-order
basis functions.

For the coefficients of 4th-order basis function to be nonnegative,
the coefficient vector of C obtained from Eq. (3) is again optimized
using a nonlinear conjugate gradient method for the modified loss
function,

P
ijAiDC� Fij2 where D is a m ×m diagonal matrix with

conditions of Dii = − 1 only when i >m2 +m3 and ci < 0 and otherwise,
Dii = 1. This enforces nonnegative condition for the coefficients of 4th-
order basis function.

Molecular dynamics simulation
Using the obtained interatomic potential, our molecular dynamics
(MD) simulations are performed with the velocity Verlet algorithm49

for the integration of Newton’s equation of motions and simple velo-
city rescalings are applied for every time steps of 5 fs to incorporate
the temperature effect. We have used 60 × 60× 12 supercell for cal-
culations in the Fig. 2 and 12 × 12 × 12 supercell for Fig. 3. All thermo-
dynamic ensembles are collected after 100ps of thermalization steps.
The density-density correlation function is given by
Sρρ(k,ω; T) = ∣ρ(k,ω; T)∣2 and ρ(k,ω; T) is defined as

ρðk,ω;TÞ=
Z 1

�1
ρðk,t;TÞe�iωtdt,

where ρðk,t;TÞ= 1ffiffiffi
N

p
P

l,κe
�ik�Rl,κ ðt;TÞ and Rl,κ(t; T) is the position vector

of basis atom κ in a unitcell Rl at the time t and temperature T.

First-principles calculations
Ab initio calculations based on density functional theory (DFT) are
performed using the Vienna ab initio simulation package (VASP)50

using a plane wave basis set with a kinetic energy cutoff of 300 eV. The
generalized gradient approximation with Perdew-Burke-Ernzerhof
scheme51 and dispersion correction using DFT-D352 are adopted to
approximate exchange-correlation functional and the projector aug-
mented wave method53 is used for the ionic potentials. For structural
optimizations and first-principlesMD, 12 × 12 × 12 and 3 × 3 × 2 k-points
are sampled in the Brillouin zone of CsV3Sb5, respectively and the
internal atomic coordinates of CDW states were optimized until the
Hellmann-Feynman forces exerting on each atom becomes less than
0.01 eV/Å.

Thermal average of potential energy
For anharmonic systems without light elements, ab initio MD simula-
tion is a quite accurate method to investigate its thermal properties.
Nevertheless, it is very time-consuming so that less demanding com-
putational methods have been developed. The lists of those methods
can be found in the recent literatures47,54. The main idea of those
methods is that the original system can be approximated by the har-
monic systems that minimizes the free energy of the system, and
equilibrium structures and effective phonon frequencies (or effective
potential) can be obtained from them. Our interest is, however, the
dynamics between metastable configurations (i.e. CDW phase
domains) so that the effective potential should be obtained by ther-
mally averaging fast motions of atoms not only in the ground state
configurations but also in the metastable ones.

To obtain such an average, we first assume that N-body density
correlation function of eρ does not vary when a ground state thermal
ensemble experience a static spatial displacement, i.e., a rigid density
approximation. Within this approximation, the static displacement
corresponds to the metastable configuration and the thermal average
can be performed using the exact eρ. Our second approximation is to
replace the eρ with eρH of an approximate harmonic system, which can
be written as a closed form of normal modes54.

Procedures to obtain the effective potential from the zero-
temperature interatomic potential V can be formulated as follows. For
periodic systems, V can be expanded with Taylor series of atomic
displacements as

V =
X1
n=0

V ðnÞ �
X1
n=0

1
n!

X
fαg

ϕα1 ���αn

Yn
i = 1

uαi
ð4Þ

whereαi is a condensed index for Cartesian components, basis atom in
a unitcell and the Bravais lattice point. Here, ϕα1 ���αn

is a nth-order force
constant and uαi

is a Cartesian component of a displacement vector
from a reference position chosen to be a local minimum or saddle
point of V. The brace indicates that the summation runs for all indices
of αi in the summands.

At finite T, the nth-order thermally averaged potential of V ðnÞ
T can

be written as

V
ðnÞ
T � hV ðnÞiT =

1
n!

X
fαg

ϕα1 ���αn
h
Yn
i = 1

uαi
i
T

ð5Þ

where the bracket denotes the ensemble average with eρ. Without
varying eρ, the average potential energy for adding a static displace-
mentofU = ðUαi

, � � � ,Uαn
Þ to the thermal ensembleofuαi

canbewritten
as

V
ðnÞ
T ðUÞ � 1

n!

X
fαg

ϕα1 ���αn
h
Yn
i= 1

ðUαi
+uαi

Þi
T

, ð6Þ

where kth-order effective force constant is defined as

ϕα1 ���αk
= ∂kVT ðUÞ

∂Uα1
���∂Uαk

: When we evaluate hQn
i= 1ðUαi

+ uαi
Þi
T
in Eq. (6), we

replace eρ with eρH for which the approximate harmonic system is
chosen to have the similar density correlations with the original
anharmonic system. Then, using a thermally averaged potential in Eq.
(6), we compute a set of harmonic frequencies from which we recon-
struct a new ~ρH . So, if a self-consistency for eρH is fulfilled, we canobtain
the desired thermal averaged potential of a rigidly shifted thermal
ensemble. We use this method to compute the temperature-
dependent interaction parameters of J∥(T) and J⊥(T) as discussed in
Sec. 6 of SI.

Data availability
All data are available in themain text and the SupplementaryMaterials.
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Code availability
The code used for molecular dynamics simulation is available upon
request.
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