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Impact of vaccinations, boosters and
lockdowns on COVID-19 waves in
French Polynesia

Lloyd A. C. Chapman 1,2 , Maite Aubry3, Noémie Maset4,
Timothy W. Russell 1, Edward S. Knock 5, John A. Lees 5,6,
Henri-Pierre Mallet4, Van-Mai Cao-Lormeau 3 & Adam J. Kucharski1,3

Estimating the impact of vaccination and non-pharmaceutical interventions on
COVID-19 incidence is complicated by several factors, including successive
emergence of SARS-CoV-2 variants of concern and changing population
immunity fromvaccination and infection.Wedevelop an age-structuredmulti-
strain COVID-19 transmission model and inference framework to estimate
vaccination and non-pharmaceutical intervention impact accounting for these
factors. We apply this framework to COVID-19 waves in French Polynesia and
estimate that the vaccination programme averted 34.8% (95% credible interval:
34.5–35.2%) of 223,000 symptomatic cases, 49.6% (48.7–50.5%) of 5830 hos-
pitalisations and 64.2% (63.1–65.3%) of 1540 hospital deaths that would have
occurred in a scenario without vaccination up to May 2022. We estimate the
booster campaign contributed 4.5%, 1.9%, and 0.4% to overall reductions in
cases, hospitalisations, and deaths. Our results suggest that removing lock-
downs during the first two waves would have had non-linear effects on inci-
dence by altering accumulation of population immunity. Our estimates of
vaccination and booster impact differ from those for other countries due to
differences in age structure, previous exposure levels and timing of variant
introduction relative to vaccination, emphasising the importance of detailed
analysis that accounts for these factors.

Since late 2020, multiple new severe acute respiratory coronavirus 2
(SARS-CoV-2) variants have emerged and spread globally, of which the
major variant groups (Alpha, Beta, Gamma, Delta, and Omicron) have
shown substantially different levels of transmissibility, severity and/or
immune escape. At the same time, first- and second-dose vaccinations
and booster doses against COVID-19 have been rolled out in many
countries around the world, drastically changing population-level
immunity and reducing incidence of severe COVID-19 outcomes1–6.

Many countries have experienced multiple waves from the same or
different variants7–9. In this context, estimating the impact of vacci-
nation and non-pharmaceutical interventions (NPIs) on COVID-19
incidence is challenging, because it is necessary to account for: dif-
ferent variant properties, a complicated and ever-changing immune
landscape from vaccination and previous infection, and the timing of
variant emergence relative to vaccination roll-out and previous epi-
demic waves. Most existing modelling analyses of vaccination impact
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have not explicitly accounted for different variant properties and the
array of different levels and types of immunity that now exist1–4,10, and
thus may no longer offer the best available evidence. While frame-
works for modelling multiple variants have been developed11–15, most
are country specific and not straightforwardly generalisable to other
settings, or do not provide robust and flexible inference methodology
for fitting to multiple data streams. Here we develop a framework that
explicitly addresses these issues and apply it to COVID-19 epidemic
waves in French Polynesia.

As of mid 2023, French Polynesia had experienced five waves of
COVID-19 cases. The first, caused by the wild-type virus, started in
August 2020 and peaked in early November 2020 (Fig. 1). Transmis-
sion then declined with the introduction of strict control measures,
including a ban on gatherings in public places, mandatory mask
wearing and a curfew, until cases reached very low levels again in
February 2021. At this time a seroprevalence survey of 463 individuals
on the main islands of Tahiti and Moorea was conducted to estimate
the level of immunity in the population, and seroprevalence was esti-
mated as 19.0% (95% confidence interval 15.5–22.9%). The low level of
cases—driven by imports—was then maintained until mid-2021 when
the rollout of the 1st and 2nd vaccine doses occurred. Following the
introduction of the Delta variant in June 2021, the country experienced
a second larger and sharperwave of cases, hospitalisations and deaths,
with cases peaking in mid-August 2021. A lockdown was implemented
with the establishment of a curfew and confinement at home on the
main island groups (the Windward and Leeward Islands) in August
2021, and cases declined quickly back to low levels in November 2021.
A second seroprevalence survey of 673 individuals on Tahiti was per-
formed in November and December 2021, in which seroprevalence
from natural infectionwas estimated as 57.7% (95% confidence interval
53.8–61.4%)16. The arrival of the Omicron BA.1/BA.2 variants in late
December 2021 led to a relatively large third wave of cases, but fewer
hospitalisations and deaths than in the previous waves, which coin-
cided with the rollout of first booster doses. During the first trimester
of 2022, incoming travellers were screened for infection at the border
using PCR (polymerase chain reaction)/antigen tests. The third wave
had largely subsided by April 2022. French Polynesia experienced a
fourth wave of cases mainly caused by the Omicron BA.5 and BA.4
variants between June and September 202216 and a fifth wave mainly
caused by the BQ.1.1 Omicron sub-variant in November and December

2022. During the third, fourth and fifth waves, no strong NPIs (curfews
or case isolation) were implemented.

To understand how immunity and control measures shaped
observed dynamics in French Polynesia, we fit an age-structuredmulti-
strain COVID-19 transmission model to reported case, hospitalisation
and death data up to May 2022, as well as data from the two afore-
mentioned seroprevalence surveys. We then use the fitted model to
estimate the impact of NPIs and vaccination on numbers of COVID-19
cases, hospitalisations and deaths, and to estimate the immune status
of the French Polynesian population.

Results
Model fit
The fit of the model to the overall numbers of confirmed cases, hospi-
talisations, and hospital deaths between July 2020 and May 2022 is
shown in Fig. 2, and the fit of themodel to the age-stratified numbers of
cases, hospitalisations and deaths is shown in Figures S5 and S4, and to
the age-stratified data from the seroprevalence surveys in Figure S6. The
model reproduces the overall patterns in the data well, but under-
estimates hospital deaths among 60+ year-olds in the second wave. The
estimated number of symptomatic cases over time corresponds closely
to the numbers of confirmed cases during the three waves (Fig. 2), with
an estimated reporting rate of 0.47 (95% credible interval (CI)
0.46–0.49), i.e. 47% of symptomatic cases having been reported.

Impact of NPIs
We estimate the counterfactual impact that the lockdowns during the
first two COVID-19 waves had on the numbers of symptomatic cases,
hospitalisations and deaths in each wave and overall by simulating the
model without the estimated reductions in the transmission rate cor-
responding to the lockdown periods in the first and second waves
(Figure S10). We run 500 simulations with parameter values drawn
from the posterior distribution of the parameters from the model fit-
ting and compare the numbers of symptomatic cases, hospitalisations
and hospital deaths to those in simulations with the estimated
reductions in the transmission rate with lockdowns, to account for
uncertainty in the estimated parameter values. This gives the results
shown in Fig. 3 and Table S8.

The estimated overall numbers of symptomatic cases, hospitali-
sations andhospital deaths from fitting themodel to the observeddata
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Fig. 1 | COVID-19 epidemic in French Polynesia between August 2020 and
May 2022. Main panel: First three epidemic waves of COVID-19 confirmed cases,
hospitalisations, and hospital deaths, with major changes in non-pharmaceutical

interventions and vaccinations and boosters, and circulation periods of different
variants. Inset: Age distributions of French Polynesian population, COVID-19 con-
firmed cases, hospitalisations and hospital deaths.
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up to May 2022 are 145,000 (95% CI 143,000–147,000), 2940 (95% CI
2810–3080) and 549 (95% CI 499–600) respectively. We estimated
that removing the lockdowns in both the first and secondwaves would
have had a non-linear effect on dynamics, and—assuming everything
else had remained the same—would have led to fewer hospitalisations
and hospital deaths over the study period from July 2020 toMay 2022
(45 (95%CI -42–134) and 193 (95%CI 158–231) fewer, respectively) but a
slightly higher number of symptomatic cases (1800 (95% CI
1300–2200) more). This scenario assumes that patients hospitalised
during the first wave would have been managed the same (in terms of
treatment and intensive care unit (ICU) admission) had the number of
hospitalisations in the first wave been nearly 75% higher. The non-
linear effect on overall incidence is due to the first wave of infections
being much larger (with 27,600 (95% CI 25,700–29,900) more symp-
tomatic cases, 860 (95% CI 760–990) more hospitalisations, and 105
(95% CI 85–129) more deaths), resulting in greater build up of immu-
nity in the population prior to the introduction of the more severe
Delta variant, and therefore a much smaller second wave of cases,
hospitalisations and deaths (with 30,300 (95% CI 27,800–33,900)
fewer cases, 940 (860–1040) fewer hospitalisations, and 299 (95% CI
263–338) fewer deaths). The impact on the third wave would have
been relatively limited due to the effects on the first two waves

approximately cancelling each other out in terms of cumulative
infections, and the immune escape properties of the Omicron BA.1/
BA.2 variants reducing the influence of immunity from previous
infection. Overall hospitalisations and deaths would have decreased,
despite the increase in overall cases, as the reduction in cases in the
second wave would have been slightly greater than the increase in
cases in the first wave and there are more hospitalisations and deaths
per case in the secondwave than the first due to the greater severity of
the Delta variant.

We also considered the counterfactual impact that changing the
timings of the lockdowns during the first twowaveswould have hadon
incidence in each wave and overall (Supplementary Information §2.3).
We estimated that starting the first and second lockdowns 2 weeks
earlier or later would have had relatively little impact on overall
numbers of cases, hospitalisations and deaths due to a similar non-
linear cancellation effect between infections in the first and second
waves as for removing the lockdowns (Figure S7).

Impact of vaccination
The counterfactual impact of vaccination on numbers of hospitalisa-
tions and deaths during each wave and overall was estimated by
simulating the fitted model without any vaccination, and comparing
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Fig. 2 | Fit of the model to the observed total numbers of confirmed cases,
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the numbers of hospitalisations and deaths to those in simulations
with the actual vaccination rollout (Fig. 3 and Table S8). The vaccina-
tion programme is estimated to have averted 77,500 (95% CI 77,200-
77,800) symptomatic cases, 2890 (95%CI 2730–3070) hospitalisations
and 989 (95% CI 885–1088) hospital deaths overall, with nearly all of
these being averted during the second and third waves, since vacci-
nation did not start until mid-January 2021 when the first wave had
largely subsided.We also conducted a sensitivity analysis to determine
the sensitivity of these estimates to uncertainty in the rates of waning
of natural immunity and booster protection, cross-immunity to
infection with Delta andOmicron fromprevious infection, and vaccine
effectiveness (see Supplementary Information §§1.2 and 2.4 for
details). The number of cases averted remains relatively constant
across the range of parameter values considered, but the numbers of
hospitalisations and deaths averted varymore significantly (from 2520
(95% CI 2380–2690) and 794 (95% CI 724–875) respectively under
pessimistic assumptions about the parameters to 3630 (95% CI
3420–3860) and 1197 (95% CI 1080–1330) under optimistic
assumptions).

Under our base case (‘central’) assumptions about the rate at
which booster protection wanes, rate of waning of natural immunity,
cross-immunity, and vaccine effectiveness, the booster campaign is
estimated to have had a relatively small impact on the overall numbers
of cases, hospitalisations and deaths, reducing them by 6800 (95% CI
6800–6900), 57 (95% CI 54–60) and 2 (95% CI 1–4) respectively (Fig. 3
and Table S8). However, these estimates are sensitive to uncertainty in
these parameters. For pessimistic assumptions about the parameter
values, the estimated reductions in cases, hospitalisations and deaths
are 3300 (95% CI 3200–3300), 3 (95% CI 3–3), and 0 (95% CI 0–0)
respectively, while for optimistic assumptions (including a less con-
servative assumption about the rate at which individuals lose all pro-
tection from boosters) they are 14,300 (95% CI 14,200–14,300), 163
(95% CI 153–173), and 9 (95% CI 6–15) respectively (see Supplementary
Information §2.4 for further details).

Immune status of the population
The breakdown of the inferred immune status of the population over
time and by age is shown in Fig. 4. The three waves of cases are visible
where the proportion recovered from infection increases sharply in

October 2020, August 2021, and February 2022. Based on the model,
most infections in the Delta wave were among unvaccinated indivi-
duals without prior infection, while in theOmicron BA.1/BA.2 wave just
under a half were among individuals with 2nd dose protection or
waned 2nd dose protection, either with or without immunity from
previous infection. The model also suggests that in May 2022 a very
high proportion (78.9% (95% CI 78.5–79.5%)) of the population pos-
sessed either natural or hybrid (natural + vaccine-induced) immunity,
and only 5.6% the population were fully susceptible. Table 1 shows the
full breakdown of the estimated immune status of the population in
May 2022. As expected, given prioritisation of older individuals in the
vaccine and booster rollouts, the proportion of the population that
had only natural immunity in May 2022 decreased with increasing age,
from over 90% among 0-9-year-olds to approximately 16% among 70+
year-olds, while the proportion with hybrid immunity from infection
and a booster dose increasedwith age from0% among0-9 year-olds to
over 20% among 40+ year-olds.

Discussion
Many existing modelling frameworks for estimating COVID-19 vacci-
nation and NPI impact1–4,10 do not explicitly account for the compli-
cated COVID-19 immune landscape that now exists, with different
levels of protection against different outcomes from different variants
due to varying vaccination and infection histories and variant prop-
erties (transmissibility, immune escape, and severity). Those that
do11,13–15,17 tend to be country specific; reliant on detailed infection
prevalence, hospitalisation and/or mobility data; and not readily
transferable to estimate vaccination andNPI impact in settingswithout
such data. We have developed an age-structured multi-strain SARS-
CoV-2 transmission model that addresses this gap, and used it to
estimate the impact of vaccination and non-pharmaceutical interven-
tions on incidence of cases and severe outcomes in the first three
waves of COVID-19 in French Polynesia. While our approach is similar
to the ‘stacked’ SIR-type multistrain transmission model of different
levels of immunity from vaccination and infection developed by LaJoie
et al.12, we also stratify by age and thus are able to model age-
dependent mixing and infer variation in immunity over time by age
group, and we use a more robust and flexible framework for per-
forming parameter inference across multiple data sources rather than
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just reported cases. We have estimated impact through comparison
with counterfactual scenarios, including no lockdowns, earlier/later
introduction of lockdowns, no vaccination and no boosters. Our
results suggest that the first two vaccine doses had a large impact on
incidence in the Delta and Omicron BA.1/BA.2 waves, averting over
75,000 symptomatic cases, nearly 2900 hospitalisations and nearly
1000 deaths up toMay 2022 compared to a counterfactual scenario of
no vaccination.

Unlike many other Pacific Island Countries (PICs), which suc-
ceeded in preventing or delaying community transmission of SARS-
CoV-2 till 2021 or till vaccine rollouts had started, French Polynesia
experienced large-scale community transmission from relatively early
in the pandemic in 202018. Despite successful control of the wild-type
virus through various NPIs, and the vaccine rollout occurring in mid-
2021, the country suffered a very large wave of Delta infections and
deaths in July–October 2021, with the highest COVID-19 death rate of
any of the PICs. After the Delta wave, however, the level of immunity in
the population had risen sufficiently to limit the burden of subsequent
outbreaks in terms of hospitalisations and deaths, and French Poly-
nesia experienced lower death rates than other PICs19. Nevertheless,
the overall COVID-19 death rate in French Polynesia was still much
higher than that of other PICs (231 deaths per 100,000 people vs the
next highest of 110 for New Caledonia20). By providing a framework to
quantify the impact of different interventions and evolution of popu-
lation immunity in an island setting where local transmission becomes
established, studies such as ours can offer valuable insight into inter-
vention effectiveness and support planning of responses to future
respiratory disease epidemics in such settings.

Although there have been global modelling analyses of vaccina-
tion impact at a country level1,10, only one study has estimated vacci-
nation impact in French Polynesia and our study is the first to estimate
the impact in terms of different outcomes (cases, hospitalisations and
deaths). A key difference between our study and these studies is that
we fit our model to multiple direct data streams (hospital deaths,
hospitalisations, reported cases and seroprevalence) rather than just
estimates of excess deaths21,22, which may make our estimates more
robust. It does, however, lead to a much lower estimate of deaths
averted through vaccination—Watson et al.1 estimated that 2120 (95%
CI 1740–2570) deaths had been averted up to 8th December 2021—
since the number of hospital deaths with recorded date of death (552
between July 2020 and May 2022) is much lower than the estimated
number of excess deaths (920 (95% CI 790–1200) between December
2020 and December 202122). We chose to fit to hospital deaths rather
than all deaths (hospital deaths + community deaths) since they are
less sensitive to context bias as a data stream. We model variation in
quality of patient care during the different waves by fitting a time-

dependent risk of death given hospitalisation. However, we do not
account for changes in the risk of death in the community over the
different waves, which may have been appreciable as there was con-
siderable fear and distrust of hospitalisation during the Delta wave
when hospitals reached capacity, and less distrust in healthcare in the
first wave and less fear of severe outcomes during the Omicron BA.1/
BA.2 wave. Given extensive follow-up of hospitalised cases it is likely
that under-reporting of hospital deaths in French Polynesia was not as
high as elsewhere23.

We estimated that the booster campaign had less of an impact on
the BA.1/BA.2 wave than the first two doses had on the Delta wave, in
both absolute and proportional terms, despite similar numbers of
infections in the BA.1/BA.2 wave as in the Delta wave. Although this
may seem surprising, e.g. when compared with the estimated impact
of the booster rollout in the UK14, the estimated small effect size is
influenced by a combination of factors. These include the already high
level of natural/hybrid immunity in the population from previous
infection and/or vaccination (Fig. 4), the relatively low booster cover-
age during the wave ( < 35% of the overall population and only > 50% in
individuals ≥50 years) (Fig. 5), and the lower severity of the BA.1/BA.2
variants.

Our results suggest that—all other things being equal—changing
lockdown dates during the first two waves by two weeks would have
had limited impact on overall numbers of cases, hospitalisations and
deaths. This is because starting the first lockdown either earlier or later
would have led to more infections prior to the second wave and thus
been compensated for by a smaller second wave due to greater
population immunity, andmoving the second lockdownearlier or later
would have had only a small impact on incidence due to its relatively
limited estimated effect on the transmission rate (Figure S10). In
addition, incidence in the Omicron BA.1/BA.2 wave would have been
largely unaffected due to the limited net effect of changes in the
lockdowns on incidence in the first two waves.

We also estimated the composition of immunity from infection
and vaccination in the population inMay 2022. We estimated that 94%
of the population had some form of immunity, predominantly either
natural or hybrid immunity (as opposed to only vaccine-induced
immunity). From this we would expect that infection incidence (and
therefore hospitalisation and death incidence) after May 2022 would
have remained low without the advent of new variants with high levels
of immune escape against Omicron BA.1/BA.2, which has been the
case, with the Omicron BA.5/BA.4 and BQ.1.1 waves being relatively
small in terms of detected cases, hospitalisations and deaths24,25. Given
that the rollout of 2nd booster doses took place between April and
August 2022 we would expect incidence of infections and severe
outcomes to remain low for some time if no new immune escape
variants are introduced.

There are some limitations to the analysis we have presented (see
Supplementary Information for further discussion). Since there is no
social contact data available for French Polynesia, we have to rely on
contact data from the literature for the age-dependent contact rates
used in the model and we choose to use data from France26 (adjusted
to account for French Polynesia’s different population age structure).
This is based on French Polynesia, as a French territory, having a
societal structure more similar to that of France than most other
countries and control measures implemented in French Polynesia
during the pandemic being based on those in France.

We make the simplifying assumptions that mixing depends only
on age and is otherwisehomogeneous for thewhole FrenchPolynesian
population, despite the fact that the population is spread over many
islands in five archipelagos covering 2000km of ocean16, and that the
seroprevalence estimates from the main islands of Tahiti and Moorea
are representative of seroprevalence on all the islands. However, the
majority ( ~ 75%) of the population resides on Tahiti and Moorea
(and ~ 69% on Tahiti), and most inhabited islands had frequent air

Table 1 | Estimated immune status of theoverall populationon
6th May 2022

State Number, median (95% CI) Percentage, median
(95% CI)

Fully susceptible 15800 (15400–16200) 5.61 (5.47–5.76)

Susceptible 1 dose 384 (374–395) 0.137 (0.133–0.141)

Susceptible 2 dose 5820 (5670–5980) 2.07 (2.02–2.13)

Susceptible waned 12700 (12400–13000) 4.51 (4.4–4.63)

Susceptible boosted 23500 (23100–24100) 8.38 (8.22–8.57)

Infected 841 (790–891) 0.299 (0.281–0.317)

Recovered
unvaccinated

102000 (102000–103000) 36.4 (36.3–36.6)

Recovered 1 dose 2750 (2740–2760) 0.979 (0.975–0.982)

Recovered 2 dose 23800 (23600–23900) 8.46 (8.4–8.51)

Recovered waned 49800 (49500–50100) 17.7 (17.6–17.8)

Recovered boosted 43300 (42700–43700) 15.4 (15.2–15.6)
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connections with Tahiti during the pandemic, except during lock-
downs, so these assumptions are not unreasonable. The suspension of
inter-island flights during lockdowns clearly would have had an impact
onmixing of the population, but this is to some extent captured in the
fitted values of the transmission rate parameters during the first and
second epidemic waves. Ideally we would model transmission on the
different archipelagoswith ametapopulationmodelwith the impactof
lockdowns on inter-island movement informed by mobility data, or
focus the analysis on the Windward Islands, which include Tahiti and
Moorea, as these weremost affected by the epidemic, but no mobility
data is available for French Polynesia and we do not have sufficient
geolocation detail for cases.

We assume that if lockdowns had been removed and hospitali-
sations had increased by nearly 75% during the first wave, hospital
capacity would not have been exceeded and hospitalised patients
would have received the same quality of care. Based on our estimates,
the peak incidence of hospitalisations in the first wave would have
been slightly lower than that that occurred during the second wave
(Figure S9), when the number of general hospitalised and ICU COVID-
19 cases at Centre Hospitalier de la Polynésie française (CHPF), the
main hospital in French Polynesia wheremost COVID-19 patients were
treated, peaked at 246 and 48 respectively. Since it was possible to
make 248 general beds available for hospitalised cases at CHPF and
ICU bed capacity there had already been upgraded to 36 in August
2020 (with the army placed on standby to set up 10 more ICU beds if
required), it is therefore not unreasonable to assume hospitals would
have remained within capacity. Nevertheless, the increased pressure
on hospital resources might have led to lower quality of care for hos-
pitalised patients and hence poorer outcomes. The estimated reduc-
tion in overall hospitalisations and hospital deaths from removing
lockdowns should thus be interpreted with caution. Further, given the
heterogeneity in type, compliance andduration of lockdowns between
countries, and the relative uniqueness of French Polynesia in terms of
remoteness and population size, this result is unlikely to be gen-
eralisable across countries.

Wemay underestimate the impact of the vaccination programme
as we estimate cases, hospitalisations and deaths averted from
reported hospital deaths, which are considerably lower than estimates
of all-cause mortality and excess mortality22,27, and do not account for
increased death rates in the community when hospitals reached
capacity during the Delta wave. The third wave was caused by a mix-
ture of the Omicron BA.1 and BA.2 sublineages and there is evidence
that the BA.2 variant ismore transmissible than theBA.1 variant28–31 and
can reinfect individuals previously infected with the BA.1 variant32, but
we do not distinguish between these subvariants when modelling the
third wave, which may lead to some underestimation of the impact of
the booster programme.

We assume initial vaccine effectiveness and rates of waning of
immunity are the same for all ages. However, there is evidence that
vaccine effectiveness against symptomatic infection is lower and
wanes more quickly in older age groups (≥65 years) than in younger

age groups, at least for the Delta variant33, and of potential age dif-
ferences in booster effectiveness against Omicron variants34, which
may introduce somebias into our estimates of vaccination andbooster
impact. We also assume waning rates are the same for different var-
iants and infection outcomes, but data suggests waning is faster
against the Omicron BA.1 variant than the Delta variant35 and that
protection against severe outcomes wanes more slowly than that
against infection33. Further work is needed to determine the extent to
which these differences affect vaccine impact estimates.

Nevertheless, the framework we have developed provides a
means of estimating the impact of vaccination and NPIs on COVID-19
incidence while accounting for the complex immune landscape that
has developed over the course of the pandemic frommyriad different
infection and vaccination histories at an individual level. In particular,
several different data streams can be incorporated in the inference to
provide more robust estimates of key unobserved processes. The
framework is sufficiently flexible that it could be used tomodel COVID-
19 dynamics and estimate vaccination and NPI impact for other
countries, including those with less data available. As a minimum,
COVID-19/excess death or hospitalisation data, case or seroprevalence
data, vaccination and booster coverage data, dates ofmajor changes in
restrictions, and broad date ranges for the introduction of different
variants would be required to fit the model, but in such a scenario all
parameters except for the time-varying transmission rate, variant
introduction dates, and symptomatic case reporting rate would need
to be fixed to avoid parameter identifiability issues. In settings without
seroprevalence data, case or regular testing data would be required to
infer infection levels, or a fixed infection-hospitalisation/infection-
fatality rate would have to be assumed. For countries with no variant
sequencing data, date ranges for the introduction of different variants
would have to be based on variant introduction dates for countries in
that region or estimates of global emergence dates of new variants.
Caution would be required to only apply the model to countries for
which COVID-19 hospitalisation/death or excess death data was
deemed to be reasonably complete to avoid biased estimates of
impact. Nonetheless, the framework could still provide valuable
insight in settings with different vaccine and booster availability and
NPI levels.

Methods
Data
Multiple data streams are used in the fitting of themodel. Anonymised
line lists of confirmed cases and hospitalisations compiled by the
Ministry of Health of French Polynesia with testing date and admission
date, and date of death for those that died, and 10-year age groupwere
aggregated into age-stratified time series of daily cases, hospitalisa-
tions and hospital deaths. Only 493 out of 74986 confirmed cases
(0.66%) were missing their age group, so these cases were treated as
unreported cases, since under-reporting of cases is accounted for in
the model fitting (see Confirmed cases). As testing dates were missing
for a large number of cases early in the first wave and cases were
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Fig. 5 | Vaccination coverage by vaccine dose. Dose 3 = booster dose.
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numbered approximately sequentially by testing date in the surveil-
lance system, we imputed the missing dates as being between the
testing dates of the nearest numbered cases with recorded testing
dates. Data from two sero-surveys, the first conducted by Cellule Epi-
surveillance COVID and the Health Department of French Polynesia in
February 2021, the second by Institut Louis Malardé in November-
December 2021, was also used. This data is described in detail in16 and
summarised in Table 2. Briefly, in February 2021, 463 unvaccinated
adults aged 18–88 years on the islands of Tahiti and Moorea were
randomly selected and tested for anti-SARS-CoV-2 immunoglobulin
type G (IgG) antibodies with the Siemens SARS-CoV-2 IgG (sCOVG)
test. Overall, 88 (19.0%, 95% confidence interval 15.5–22.9%) individuals
had detectable IgG antibodies. In November-December 2021, 673
randomly selected individuals aged ≥18 years on Tahiti were tested for
antibodies against the SARS-CoV-2 N antigen (i.e. for evidence of past
infection) with the Roche Elecsys anti-SARS-CoV-2 assay, and 388
(57.7%, 95% confidence interval 53.8–61.4%) were positive. For the
purposes of the modelling, we assume that the seroprevalence in the
20–29 years age group in the model is the same as that in the 18–29
years age group in the data. We use data on the population of French
Polynesia by year of age in 2020 from the UN World Population
Prospects36 (for which the total population was estimated to be
280,904) aggregated into 10-year age groups for the age group
populations in the model.

We use data on daily numbers of first, second and booster doses
administered by age group (12–17, 18–29, 30–39, 40–49, 50–59,
60–69, 70+ years) collected by the Ministry of Health of French Poly-
nesia to determine the numbers of individuals moving between the
different vaccination strata in the model. Since the model is stratified
into 10-year age groups, we split the doses in the 18-29 years age group
in the data into the 10–19 and 20–29 age groups in the model
according to population proportion (the proportions of 18–29 year-
olds that are 18–19 and 20–29 years old). Upon division by the popu-
lation ineachagegroup, this gives the vaccination coverage by age and
dose shown in Fig. 5.

Model
We developed a deterministic age-structured multi-strain SEIR-type
model of COVID-19 transmission with stratification by vaccination
status (Fig. 6). The model is stratified into 8 age groups (0–9, 10–19,
20–29, 30–39, 40–49, 50–59, 60–69, 70+ years), and by 5 vaccination
levels representing no vaccination, protection from 1 dose, protection
from 2 doses, waned protection from the 2nd dose and protection
from a booster dose.

In themodel, susceptible individuals (S) enter an exposed state (E)
upon infection with a particular variant, fromwhere an age-dependent
proportion develop symptoms (IC) after a presymptomatic infection
period (IP), while the rest progress to asymptomatic infection (IA).
Presymptomatic, symptomatic and asymptomatic individuals are all

assumed to be infectious, though asymptomatic individuals less so.
Most symptomatic individuals and all asymptomatic individuals
recover naturally (R), but some symptomatic individuals develop
severe disease (G orH) that can lead to hospitalisation. A proportion of
these individuals die from the disease (D) while in hospital or at home,
while the remainder recover following treatment. Infected individuals
are assumed to cease being infectious upon recovery. Once recovered
from infection individuals have immunity against reinfection with the
same variant that wanes over time, but only partial immunity against
infection with a different variant.

Individuals in the susceptible, exposed, presymptomatic, asymp-
tomatic and recovered states can be vaccinated, providing them with
increased levels of protection against infection, hospitalisation and
death. The different vaccination strata and their associated levels of
protection are shown in Tables 3 and S1.

Themodel is further stratified to account for different histories of
infectionwith twodifferent variants: the latest variant to have emerged
and the previously dominant variant. Individuals can have been
infected by only the previous variant, only the current variant, or the
previous variant and the current variant (in either order), giving 4
possible infection histories. Once a new variant emerges the informa-
tion stored in the strata for the two variants is combined into the
stratum for the first variant, and the information for the new variant
added to the second stratum. This simplification of the multistrain
dynamics is to prevent the dimensionality of the model exploding as
thenumber of variants andpossible infection and vaccination histories
increases, which would make the model prohibitively slow to fit.

Here we ignore transmission of the Alpha variant, as although
Alphawas detected among travellers and a small number of local cases
in early 2021 through variant screening (Table S5), transmission of
Alpha remained localised and never became fully established. We
therefore only explicitly model the introduction and spread of the
Delta and Omicron variants. We also do not distinguish between the
Omicron BA.1 and BA.2 sublineages, and model the introduction of
Omicron and its sublineages as a single new variant.

Naturally-acquired immunity is assumed to wane slowly—indivi-
duals who have been infected are assumed to return to being sus-
ceptible to infection with the same variant after an exponentially
distributed period with a mean of 6 years14. Immunity between SARS-
CoV-2 variants is assumed to be asymmetric, with infection with later
variants conferring stronger protection against infection with earlier
variants than vice versa (see Force of infection and Table S2 for details).
Changes in population-level serological status with seroconversion
and seroreversion following infection are modelled with a
‘parallel flow’.

Demographic processes such as birth, natural death and migra-
tion are ignored in themodel (i.e. the population is assumed to remain
constant in the absence of deaths from COVID-19). These processes
occur at a much slower rate than transmission processes and are

Table 2 | Seroprevalence in February 2021 and November-December 2021

Age
group (years)

Feb 2021 survey Nov-Dec 2021 survey

Participants (n) Seropositive (n) Seroprevalence (%) (95% con-
fidence interval*)

Participants (n) Seropositive (n) Seroprevalence (%) (95% con-
fidence interval*)

18–29 60 12 20 (10.8–32.3) 169 103 60.9 (53.2–68.3)

30–39 90 15 16.7 (9.6–26) 163 105 64.4 (56.6–71.7)

40–49 78 17 21.8 (13.2–32.6) 92 54 58.7 (47.9–68.9)

50–59 95 17 17.9 (10.8–27.1) 79 48 60.8 (49.1–71.6)

60–69 93 18 19.4 (11.9–28.9) 113 56 49.6 (40–59.1)

70+ 47 9 19.1 (9.1–33.3) 57 22 38.6 (26–52.4)

Total 463 88 19.0 (15.5–22.9) 673 388 57.7 (53.8–61.4)
*95% confidence intervals are exact Clopper-Pearson binomial confidence intervals.
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therefore assumed to have a negligible impact on the transmission
dynamics over the timescales modelled.

Vaccination
Details of the five vaccination strata in themodel are shown in Table 3.
Unvaccinated individualsmove out of the first vaccination stratum (V1)
into the first vaccinated stratum (V2) at a rate determined by the roll-
out of the 1st vaccine dose, with an assumed delay of 28 days for
immunity from the 1st dose to develop. Likewise, movement into the
2nd dose vaccination stratum (V3) is determined by the roll-out of the
2nd dose, with a delay of 14 days for the dose to take full effect. Only

non-symptomatic and non-hospitalised individuals, i.e. individuals in
the S, E, IA, IP and R states in the model, can be vaccinated. Protection
from the 2nd vaccine dose is assumed to wane over an exponentially
distributed period, with a mean duration of 6 months. Individuals
whose protection wanes pass into a ‘waned’ vaccine stratum (V4), with
lower levels of protection. They either remain in this stratumor receive
a booster vaccination and move into a ‘boosted’ vaccination stratum
(V5), with higher levels of protection. Individuals can only move
between consecutive vaccine strata except when they are in the 2nd
dose stratum (V3), where they can receive their booster dose andmove
to the boosted stratum (V5) before their protection has waned,
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Fig. 6 | Model flow diagram. a SEIR-type transmission model structure with
infectious states shown in red and different vaccination strata shown in blue. Sik,
Eijk, IAijk , IP ijk , IC ijk ,Hijk,Gijk,Dijk, and Rijk denote the numbers of individuals who are
susceptible, exposed (latently infected), asymptomatically infected, pre-
symptomatically infected, symptomatically (clinically) infected, hospitalised,
severelydiseasedwhowill die outsidehospital, dead fromCOVID-19, and recovered
from infection respectively. Tpreijk

, TPijk , and TN ijk denote the numbers of indivi-
duals pre-seropositive, seropositive, and seronegative against the SARS-CoV-2 N
antigen. Subscripts denote the age group (i∈ {0–9, 10–19, 20–29, 30–39, 40–49,
50–59, 60–69, 70+} years), variant (j∈ {1, 2, 3, 4}, where j = 3 represents infection by

variant 1 followed by infection by variant 2, and j = 4 vice versa), and vaccination
stratum (k∈ {1, 2, 3, 4, 5}). Individuals in states inside dashed box and recovered
from infection can move between vaccination strata upon vaccination.
b Vaccination strata flow diagram (strata defined in Table 3). c Multi-strain model
structure showing possible infection with first variant or second variant, or first
then second, or second then first. d Seropositivity model structure with `parallel
flow' to transmission model flow. Transition rates between states are shown on
arrows (seeModel equations section and Table S2 for definitions). Further details of
the model structure are provided in the Methods section.

Table 3 | Vaccination strata in the model

Vaccination stratum Dose number Vaccine effectiveness Mean duration References

V1 0 None Determined by vaccine roll-out

V2 1 Full 1st dose effectiveness (28 days after 1st dose) Determined by vaccine roll-out

V3 2 Full 2nd dose effectiveness (14 days after 2nd dose) 6 months 37

V4 2 Waned 2nd dose effectiveness Determined by vaccine roll-out

V5 3 Booster effectiveness �80=ð365 logð0:818ÞÞ= 1:1 years 35
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skipping the waned 2nd dose stratum (V4). Individuals in the 2nd dose
and waned 2nd dose strata (V3 and V4) are taken to be equally likely to
receive a booster dose. Protection from thebooster dose is assumed to
wane slowly such that individuals eventually return to being fully
susceptible.

In common with other transmission modelling studies14,37, we
model vaccine protection against five different outcomes:
1. infection, with effectiveness einf

2. symptomatic infection given infection, esympt∣inf

3. severe disease given symptomatic infection, eSD∣sympt

4. death given severe disease, edeath∣SD

5. onward transmission if infected, eins

Vaccine effectiveness against symptomatic infection, severe disease
and death are conditional on previous outcomes and depend on
overall vaccine effectiveness against infection, symptomatic infection,
severe disease and death (einf, esympt, eSD and edeath) as follows:

esymptjinf =
esympt � einf

1� einf
ð1Þ

eSDjsympt =
eSD � esympt

ð1� einf Þð1� esymptjinf Þ

=
eSD � esympt

1� esympt

ð2Þ

edeathjSD =
edeath � eSD

ð1� einf Þð1� esymptjinf Þð1� eSDjsymptÞ

=
edeath � eSD

1� eSD

ð3Þ

Estimates for einf, esympt, eSD and edeath for different vaccination strata and
variants taken from14 are provided in Table S1 (see14 for information on
sources of these estimates), but we also vary these parameters in the
sensitivity analysis (Table S7). As over 90%of the doses given in French
Polynesia were of the Pfizer-BioNTech vaccine, we use effectiveness
values for that vaccine for all doses given.We alsomake the simplifying
assumption that vaccine effectiveness is the same across all age
groups.

Waning immunity
The model accounts for waning of natural and vaccine-induced
immunity as described in the previous sections. We assume that the
waning rates of natural and vaccine-induced immunity are the same
for all age groups and virus variants. When immunity from previous
infection or booster vaccination wanes, individuals return to being
fully susceptible, so immunity against different outcomes (infection,
symptomatic infection, hospitalisation and death) is assumed to
wane at the same rate. We note that this is a strong simplifying
assumption as there is evidence to suggest that immunity against
infection wanes more quickly than immunity against severe
outcomes33, and that immunity against infection and severe out-
comes wanes faster for Omicron BA.1 than Delta35. As there is no data
that provides a direct measure of the rate of loss of all protection
from vaccination, we use the rate of waning of protection against
hospitalisation as a proxy for the rate at which individuals return to
being fully susceptible following booster vaccination. Whilst a rea-
sonable assumption, this may still be overly conservative, so we also
conduct a sensitivity analysis with different values of the waning rate
from the literature. Although we do not model variant-specific vac-
cine waning rates, we use estimates of the change in protection
against hospitalisation over time following booster administration
for Omicron BA.135 for the booster waning rate in the analysis in the
main text, since the booster campaign in French Polynesia coincided
with the Omicron BA.1/BA.2 wave, and compare this to a lower

waning rate assumed by Barnard et al.14 in their model with a similar
structure (Table S6). See Supplementary Information §2.4 for results
of the sensitivity analysis.

Parallel flow for serological status
So that we can fit to the data from the sero-surveys we include a
‘parallel flow’ of compartments for serological status in addition to
those for infection status and clinical progression (Fig. 6).We fit to the
data on prevalenceof seropositivity against theN antigen on the SARS-
CoV-2 virus according to the Roche Elecsys anti-SARS-CoV-2 assay, as
this tests only for positivity resulting from infection. After a pre-
conversion period (Tpre), individuals either seroconvert (TP) with
probability pP or not (TN). Those that do seroconvert eventually ser-
orevert (to TN) after an exponentially distributed time with mean 6.6
years38.

Behaviour
The impact of lockdowns on transmission is described in the model
through a time-varying transmission rate, with changepoints corre-
sponding to major changes in restrictions in French Polynesia
(Fig. 1). Wemake the simplifying assumption that adherence to these
restrictions is the same across all age groups and vaccination strata,
and regardless of infection history. Variation in care-seeking beha-
viour with age is modelled through an age-dependent probability of
hospitalisation given symptomatic infection, where the relative risks
of hospitalisation between age groups are based on data from
France39 and we estimate the maximum probability of hospitalisa-
tion across all age groups to account for differences in care-seeking
and access to care between France and French Polynesia. The
probability of hospitalisation varies across vaccination strata in the
model due to the different levels of protection against severe dis-
ease with different levels of vaccination described above (see Vac-
cination), but we do not model any variation in care-seeking
behaviour with vaccination status beyond this. Vaccine and booster
uptake by age and vaccination status in themodel are determined by
the data on the numbers of each dose received by age over time
(Fig. 5), assuming that all individuals within each age-and-
vaccination stratum have an equal chance of being vaccinated (i.e.
previous infection does not affect vaccine/booster-seeking) and can
only receive successive vaccine doses (e.g. must have had the 2nd
dose to receive a booster).

Model equations
Forceof infection. The relative susceptibility to infectionwith variant j
of a susceptible individual in age group i in vaccination stratum k is
given by:

χ ijk = 1� einfijk , ð4Þ

where einfijk is the vaccine effectiveness against infectionwith variant j in
vaccination stratum k∈ {1, 2, 3, 4, 5} (see Table S1), and χij1 = 1,∀ i, j (i.e.
there is noprotection in unvaccinated individuals). The index jdenotes
individuals’ infection histories, covering primary infection with one
variant (j∈ {1, 2}) and superinfection (infection with one variant fol-
lowed by infection with another) (j∈ {3, 4}) as follows:

j =

1 if individuals have only been infected by 1st variant ,

2 if individuals have only been infected by 2nd variant ,

3 if individuals infected by 1st variant followed by 2nd variant ð1 ! 2Þ,
4 if individuals infected by 2nd variant followed by 1st variant ð2 ! 1Þ:

8>>><
>>>:

ð5Þ

We describe two periods of the epidemic with this setup, the first
running up to 21st November 2021 and encompassing the wild-type
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and Delta waves, in which:

j =

1 =Wildtype,

2 =Delta,

3 =Wildtype ! Delta,

4 =Delta ! Wildtype:

8>>><
>>>:

ð6Þ

and the second, starting on 21st November 2021 shortly before the
emergence of Omicron BA.1 and ending on 6thMay 2022 and covering
the Omicron BA.1/BA.2 wave, in which:

j =

1 =Delta,

2 =Omicron,

3 =Delta ! Omicron,

4 =Omicron ! Delta:

8>>><
>>>:

ð7Þ

The relative infectiousness of an individual in age group i and
vaccination stratum k infected with variant j compared with an
unvaccinated individual infected with the wild-type virus is given by:

ξ ijk = σj 1� einsijk

� �
ð8Þ

where ξi,Wildtype,1 = 1,∀ i, and σj is the relative transmissibility of variant j
compared to the wild-type variant (and we assume σ1 = σ4 and σ2 = σ3).

The infectiousness-weighted number of infectious individuals for
variant j in age group i and vaccination stratum k on day t is given by

ΘijkðtÞ= ξ ijk θAIA,ijk + IP,ijk + IC,ijk
� �

: ð9Þ

where θA is the relative infectiousness of an asymptomatic infected
individual compared to a symptomatic individual in the same vacci-
nation stratum infected with the same variant.

With these definitions, the force of infection on a susceptible
individual in age group i and vaccination stratum k from variant j on
day t is:

λijkðtÞ=
χ i1k
P

i0mii0 ðtÞ
P

kðΘi0 ,1,kðtÞ+Θi0 ,2!1,kðtÞÞ if j = 1,

χ i2k
P

i0mii0 ðtÞ
P

kðΘi0 ,2,kðtÞ+Θi0 ,1!2,kðtÞÞ if j =2:

(
ð10Þ

where mii0 ðtÞ= βðtÞcii0 is the time-varying person-to-person transmis-
sion rate from age group i0 to age group i, composed of the time-
varying transmission rate β(t) and the person-to-person contactmatrix
cii0 between age groups. The contact matrix cii0 was parameterised
using estimates of contact rates d*

ll0 between 5-year age groups for
France from26, where d*

ll0 is the mean number of contacts in age group
l0 an individual in age group l makes per day. Following26 and40, these
were corrected by the relative population densities of each age group
of French Polynesia and France to account for differences in
demography between the two countries:

dll0 =d
*
ll0

nl0=n
n*
l0
=n* ð11Þ

where n*
l and n* are the population of age group l and the total

population for Franceandnl andn are those for FrenchPolynesia. They
were then averaged over 10-year age groups in the model and divided
by the population in each age group to yield the person-to-person
contact matrix cii0 :

cii0 =
1
ni0

P
l2i
P

l02i0dll0nlP
l2inl

: ð12Þ

Social contact data for France was used due to the absence of esti-
mates for French Polynesia and the fact that French Polynesia is a
French territory.

The total force of infection on a susceptible individual in age
group i and vaccination stratum k is then the sum of the variant-
specific forces of infection:

ΛikðtÞ=
X2
j = 1

λijkðtÞ: ð13Þ

Cross-immunity between variants is modelled via partial immunity to
infection with the other variant following infection with one variant,
such that the force of infection on an individual recovered from
infection with variant j in age group i and vaccination stratum k from
the other variant is:

ð1� η3�jÞλi,3�j,kðtÞ if j 2 f1,2g,
0 if j 2 f3,4g,

�
ð14Þ

where ηj is the cross-immunity from infection with other variants
against infection with variant j.

The time-varying transmission rate, β(t), represents temporal
changes in theoverall contact rates in the populationdue to changes in
restrictions and behaviour.We assume thatβ(t) is piecewise linearwith
5 changepoints corresponding to changes in alert levels and the
imposition of island-wide restrictions such as curfews (Table 4 and
Figure S10):

βðtÞ=
β1 if t ≤ t1
ti�t

ti�ti�1
βi�1 +

t�ti�1
ti�ti�1

βi if ti�1 < t ≤ ti, i 2 f2, . . . ,5g
β5 if t > t5:

8><
>: ð15Þ

Seeding of variants. We seed each variant j at a daily rate of ωj, over a
period of νj days from time tj. All seeding infections are from the S to E
compartment in the 30-39-year-old age group and unvaccinated class.

For all variants, we seed at a rate of 10 infections per time step
over one time step, i.e. ωj = 40 day−1 and νj =0.25 days for j∈ {Wild-
type,Delta,Omicron}. We fit the seeding dates t0 (which corresponds
to the start date of the wild-type outbreak in 2020), tDelta, and tOmicron

(see Table 4).
The daily seeding rate of variant j in age group i in vaccine stratum

k, δijk(t), is therefore:

δijkðtÞ=
ωj if i= 30, 39½ Þ, j 2 fWildtype,Delta,Omicrong, k =0, tj ≤ t < tj + νj ,
0 otherwise :

�

ð16Þ
Natural history parameters. Movement between model compart-
ments is determined by parameters pX, defining the probability of
progressing to compartment X, and rate parameters γX, defining the
time individuals stay in compartment X, which can varywith age group
(i), variant (j) and vaccination status (k). Values of these parameters are
given inTables S2 and S3 and informationonhow they are calculated is
given below.

There is now strong evidence that successive SARS-CoV-2 variants
have had progressively shorter serial intervals41–44. We thereforemodel
this by reducing the mean durations of latent infection, asymptomatic
infection, presymptomatic infection, and symptomatic infection (E, IP,
IC, and IA) of successive variants in line with percentage reductions in
their serial intervals relative to the wild-type virus reported in the
literature42 (Table S4).

The probability of developing symptoms given infection is

pCijk = 1� esymptjinf
ijk

� �
pCi ð17Þ

where pCi is the age-dependent probability of developing symptoms
given infection for unvaccinated individuals.
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The probability that an individual develops severe disease
requiring hospitalisation given that they are symptomatically infected
is

pHijk = 1� eSDjsympt
ijk

� �
πHjð1� ηHjÞpHi ð18Þ

where pHi is the age-dependent probability of developing severe
disease given symptomatic infection for unvaccinated individuals, πHj
is the variant-dependent relative risk of severe disease, and ηHj is the
cross-immunity from infection with other variants against hospitalisa-
tion with variant j. pHi is defined as:

pHi =ψHipHmax ð19Þ

where pHmax is the maximum probability of hospitalisation across all
age groups andψHi is the age-dependent relative risk of severe disease,
such that ψHi = 1 for the group corresponding to the maximum. πHj is
parameterised as:

πHj =
πDelta=Wildtype if j =Delta,

πDelta=WildtypeπOmicron=Delta if j =Omicron,

(
ð20Þ

where πDelta/Wildtype and πOmicron/Delta are the relative risks of severe
disease given infection for Delta compared to wild-type and Omicron
compared to Delta, and we fit πDelta/Wildtype.

The probability that a hospitalised individual will die is

pDijkðtÞ= 1� edeathjSDijk

� �
ψDið1� ηDjÞhðtÞ ð21Þ

where h(t) is the maximum probability of death given hospitalisation
for unvaccinated individuals, ψDi is the age-dependent relative risk of
death for unvaccinated individuals (such that ψDi = 1 for the age group

forwhich theprobability of death ish(t)), and ηDj is the cross-immunity
from infection with other variants against death from variant j. To
allow for variation in the risk of deathwith changing quality of care and
demand for hospital beds, we fit a piecewise linear form for h(t) with
the following changepoints:

hðtÞ=
pDmax,1 on (and before) 2021-06-11 ,

pDmax,2 on 2021-08-15 ,

pDmax,3 on (and after) 2021-11-01 ,

8><
>: ð22Þ

such that the probability of death given hospitalisation is constant
during the first wave, changes with changing pressure on hospital beds
in the Delta wave, and is constant after the Delta wave.

The probability that an individual dies in the community given
that they have severe disease is

pGijk = 1� edeathjSDijk

� �
pG ð23Þ

where pG is the probability of death in the community given severe
disease for unvaccinated individuals.

Compartmental model equations. The compartmental model is a
deterministic approximation to a stochastic age-structured multi-
strain SEIR-type transmission model in which draws from random
variables are replaced by their expected values (using the determi-
nisticmodeof thedustRpackage). Thismayhave lower accuracy than
anODE formulation and solver, but we expect that the error isminimal
basedon themodelfits. Themodel compartments aredefined inFig. 6.
For completeness we provide the equations for the stochastic model
here, and note that the stochastic version of the model can be fitted
and run by setting the option deterministic <- F in the code.

Table 4 | Fitted model parameters prior and posterior distributions

Parameter Description Prior distribution Posterior median (95% CI)

β(t) Transmission rate (per person) on day t = YYYY-MM-DD

β1 2020-08-27: Moved to level 3 (out of 4) alert, masking became obligatory Gamma (4, 0.005) 0.0207 (0.0204, 0.0211)

β2 2020-10-24: Curfew established on the islands of Tahiti and Moorea Gamma (4, 0.005) 0.0157 (0.0154, 0.0159)

β3 2021-06-01: Returned to level 1 alert, borders reopened, international flights
increased

Gamma (4, 0.005) 0.0204 (0.0197, 0.0210)

β4 2021-08-02: Moved to stage 4 alert, before state of health emergency and curfew
instigated

Gamma (4, 0.005) 0.0181 (0.0175 0.0185)

β5 2021-11-15: Returned to level 1 alert, curfew and state of health emergency lifted Gamma (4, 0.005) 0.0215 (0.0213, 0.0218)

t0 Start date of original outbreak U[2020-07-01,2020-07-31] 2020-07-03 (2020-07-01, 2020-
07-06)

tDelta Delta seeding date U[2020-05-20,2020-06-29] 2021-06-11 (2021-06-09, 2021-
06-12)

tOmicron Omicron seeding date U[2021-11-21,2021-12-13] 2021-11-22 (2021-11-21, 2021-11-23)

pHmax Maximum probability of severe disease requiring hospitalisation across all age
groups

Beta (1, 1) 0.233 (0.214, 0.255)

pDmax,1 Maximum probability of death given hospitalisation across all age groups on (and
before) 2021-06-11

Beta (1, 1) 0.224 (0.184, 0.268)

pDmax,2 Maximumprobability of death given hospitalisation across all agegroups on 2021-
08-15

Beta (1, 1) 0.748 (0.652, 0.846)

pDmax,3 Maximum probability of death given hospitalisation across all age groups on (and
after) 2021-11-01

Beta(1, 1) 0.0877 (0.0494, 0.142)

πHDelta=Wildtype Relative risk of severe disease for Delta vs wild-type/Alpha U (0,3) 1.36 (1.21, 1.52)

ϕcases Symptomatic case reporting rate Beta (1, 1) 0.474 (0.458, 0.492)

αcases Overdispersion parameter for negative binomial observation process for cases Beta (1, 1) 0.712 (0.672, 0.754)

αhosp Overdispersion parameter for negative binomial observation process for
hospitalisations

Beta (1, 1) 0.220 (0.168, 0.284)

αdeath Overdispersion parameter for negative binomial observation process for hospital
deaths

Beta (1, 1) 0.0475 (0.00211, 0.172)
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The compartments in the model are updated according to the
following equations:

Sikðt +dtÞ = SikðtÞ �
X2
j = 1

nSE ijk �
X4
j = 1

nseed,ijk +nSV i,k�1 � nSV ik +
X4
j = 1

nRSijk ð24Þ

Eijkðt +dtÞ= EijkðtÞ +nSE ijk +1j > 2 nRE i,j�2,k

� nEIA ijk
� nEIP ijk

+nEV ij,k�1 � nEV ijk +nseed,ijk
ð25Þ

IAijkðt +dtÞ= IAijkðtÞ +nEIA ijk
� nIARijk

+nIAV ij,k�1
� nIAV ijk ð26Þ

IP ijkðt +dtÞ = IP ijk ðtÞ+nEIP ijk
� nIP IC ijk

+nIPV ij,k�1
� nIPV ijk ð27Þ

IC ijkðt +dtÞ= IC ijkðtÞ+nIP IC ijk
� nICRijk

� nICH ijk
� nICGijk ð28Þ

Hijkðt +dtÞ=HijkðtÞ+nICH ijk
� nHRijk � nHDijk ð29Þ

Gijkðt +dtÞ =GijkðtÞ+nICGijk
� nGDijk ð30Þ

Dijkðt +dtÞ=Dijk ðtÞ+nHDijk +nGDijk ð31Þ

Rijkðt +dtÞ=Rijk ðtÞ+nIARijk
+nICRijk

+nHRijk � nRSijk � 1j ≤ 2 nRE ijk

+nRV ij,k�1 � nRV ijk

ð32Þ

Tpreijk
ðt +dtÞ=Tpreijk

ðtÞ +nEIA ijk
+nEIP ijk

� nTpreTP ijk
� nTpreTN ijk ð33Þ

TPijk ðt +dtÞ=TPijkðtÞ +nTpreTP ijk
� nTPTN ijk ð34Þ

TNijkðt +dtÞ=TNijkðtÞ +nTpreTN ijk
+nTPTN ijk ð35Þ

wherenXY ijk is the number of individuals in age group i andvaccination
stratum k infected with variant j (if they are in an infection state)
moving from state X to state Y at time t (andnXY ij0 =nXY ij5, andwe have
dropped the dependenceon t from the notation for convenience); dt is
the model time step, chosen to be 0.25 days; and 1x is the indicator
function for condition x.

The flows between states are determined as follows:

pSE ijk = 1� e�Λik ðtÞdt
� � λijkðtÞ

ΛikðtÞ
, j 2 f1, 2g ð36Þ

pSV ik = 1� e�ζ ik ðtÞdt ð37Þ

ðnSE i1k ,nSE i2k ,nSSikÞ∼ Mult SikðtÞ,pSE i1k ,pSE i2k ,1�
X2
j = 1

pSE ijk

 !
ð38Þ

nseed,ijk = min Poiss ðδ̂ijkðtÞdtÞ,SikðtÞ �
X2
j = 1

nSE ijk

 !
ð39Þ

nSV ik = Bin SikðtÞ �
X2
j = 1

nSE ijk �
X4
j = 1

nseed,ijk ,pSV ik

 !
ð40Þ

pEIA ijk
= ð1� pCijkÞ 1� e�γEdt

� �
ð41Þ

pEIP ijk
=pCijk 1� e�γEdt

� �
ð42Þ

pEV ijk = e
�γEdt 1� e�ζ ik ðtÞdt

� �
ð43Þ

ðnEIA ijk
,nEIP ijk

,nEV ijk ,nEE ijkÞ∼ Mult EijkðtÞ,pEIA ijk
,pEIP ijk

,pEV ijk , 1�
X

X2fIA ,IP ,V g
pEX ijk

0
@

1
A

ð44Þ

ðpIARijk
,pIAV ijk

Þ= 1� e�γAdt , e�γAdtð1� e�ζ ik ðtÞdtÞ
� �

ð45Þ

ðnIARijk
,nIAV ijk

,nIAIA ijk
Þ∼ Mult ðIAijkðtÞ,pIARijk

,pIAV ijk
,1� pIARijk

� pIAV ijk
Þ ð46Þ

ðpIP IC ijk
,pIPV ijk

Þ∼ 1� e�γPdt , e�γPdtð1� e�ζ ik ðtÞdtÞ
� �

ð47Þ

ðnIP IC ijk
,nIPV ijk

,nIP IP ijk
Þ∼ Mult ðIP ijk ðtÞ,pIP IC ijk

,pIPV ijk
, 1� pIP IC ijk

� pIPV ijk
Þ
ð48Þ

pICH ijk
=pHijkð1� pGijkÞ 1� e�γHdt

� �
ð49Þ

pICGijk
=pHijkpGijk 1� e�γHdt

� �
ð50Þ

pICRijk
= ð1� pHijkÞ 1� e�γHdt

� �
ð51Þ

ðnICHijk
,nICGijk

,nICRijk
,nIC IC ijk

Þ∼ Mult IC ijk ðtÞ,pICHijk
,pICGijk

,pICRijk
, 1�

X
X2fH,G,Rg

pICX ijk

 !

ð52Þ

pHDijk =pDijk 1� e�γHdt
� �

ð53Þ

pHRijk = ð1� pDijkÞ 1� e�γHdt
� �

ð54Þ

ðnHDijk ,nHRijk ,nHHijkÞ∼ Mult ðHijkðtÞ,pHDijk ,pHRijk ,1� pHDijk � pHRijkÞ ð55Þ

nGDijk ∼ Bin ðGijk ,1� e�γGdtÞ ð56Þ

γRE ijk =1j ≤2ð1� η3�jÞλi,3�j,k ð57Þ

pRSijk = 1� e�ðγR + γRE ijk Þdt
� � γR

γR + γRE ijk
ð58Þ
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pRE ijk = 1� e�ðγR + γRE ijk Þdt
� � γRE ijk

γR + γRE ijk
ð59Þ

pRV ijk = e
�ðγR + γRE ijk Þdt 1� e�ζ ik ðtÞdt

� �
ð60Þ

ðnRSijk ,nRE ijk ,nRV ijk ,nRRijk Þ= Mult RijkðtÞ,pRSijk ,pRE ijk ,pRV ijk ,1�
X

X2fS,E,V g
pRX ijk

 !

ð61Þ

pTpreTP ijk
=pP 1� e�γpredt

� �
ð62Þ

pTpreTN ijk
= ð1� pPÞ 1� e�γpredt

� �
ð63Þ

ðnTpreTP ijk
,nTpreTN ijk

,nTpreTpre ijk
Þ

∼ Mult ðTpreijk
ðtÞ,pTpreTP ijk

,pTpreTN ijk
,1� pTpreTP ijk

� pTpreTN ijk
Þ ð64Þ

nTPTN ijk
∼ Bin ðTPijk ðtÞ,1� e�γPdtÞ ð65Þ

where nXX ijk is the number of individuals in age group i and vaccination
stratum k infectedwith variant j (if they are in an infection state) whodo
not move from state X at time t. The fitted seeding dates t0, tDelta, and
tOmicron have continuous support, and the seeding process is handled
within the discretisation to four update steps per day such that:

δ̂ijkðtÞ=
ωj f jðtÞ if i= 30,39½ Þ, j 2 fDelta,Omicrong, k =0,

0 otherwise :

�
ð66Þ

where

f jðtÞ=

tj
dt

l m
� tj

dt if t =dt tj
dt

j k
,

1 if dt
tj
dt

j k
< t <dt

tj
dt

j k
+ νj,

tj
dt �

tj
dt

j k
if t =dt

tj
dt

j k
+ νj ,

0 otherwise :

8>>>>>>><
>>>>>>>:

ð67Þ

Model likelihood
The model likelihood is composed of the likelihoods for the different
data streams that the model is fitted to, namely the age-stratified time
series of hospitalisations, hospital deaths and confirmed cases, and the
age-stratified seroprevalence data, as detailed below.

In the following, Y ~ Bin(n, p) denotes that Y follows a binomial
distribution with n trials and success probability p, such that

PðY = yÞ =PBinðyjn,pÞ=
n

y

� �
pyð1� pÞn�y: ð68Þ

and the mean and variance of Y are np and np(1− p) respectively. Y ~
NegBin(m, κ) denotes that Y follows a negative binomial distribution
with mean m and shape parameter κ, such that

PðY = yÞ=PNegBinðyjm,κÞ = Γðκ + yÞ
y!ΓðκÞ

κ
κ +m

� �κ m
κ +m

� �y
ð69Þ

where Γ(k) is the gamma function, and the variance of Y is m +m2/κ.

Hospitalisations. We assume that the observed number of hospitali-
sations in each age group l at time t, Yhosp,l(t), is distributed according

to a negative binomial distribution

Yhosp,lðtÞ∼ NegBin ðXhosp,lðtÞ,κhospÞ ð70Þ

with mean

Xhosp,lðtÞ =
X
j

X
k

nICH ljk ð71Þ

where the shape parameter κhosp determines the overdispersion in the
observation process and thus accounts for noise in the underlying
data, and we aggregate the four youngest age groups together due to
low numbers of hospitalisations in these age groups such that
l∈ {0–39, 40–49, 50–59, 60–69, 70+} years. We fit the overdispersion
parameter αhosp = 1/κhosp. The contribution of the age-stratified
hospitalisation data to the likelihood is therefore:

Lhosp =
Y
t

Y
l

PNegBinðYhosp,lðtÞjXhosp,lðtÞ,κhospÞ ð72Þ

Hospital deaths. The observed number of hospital deaths in each age
group l∈ {0–39, 40–49, 50–59, 60–69, 70+} years at time t is assumed
to be distributed according to a negative binomial distribution:

Ydeath,lðtÞ∼ NegBin ðXdeath,lðtÞ,κdeathÞ ð73Þ

with mean

Xdeath,lðtÞ=
X
j

X
k

nHDljk ð74Þ

and shape parameter κdeath. We fit the overdispersion parameter
αdeath = 1/κdeath. The contribution of the age-stratified hospital death
data to the likelihood is thus:

Ldeath =
Y
t

Y
l

PNegBinðYdeath,lðtÞjXdeath,lðtÞ,κdeathÞ: ð75Þ

Confirmed cases. The daily number of confirmed cases in each age
group i∈ {0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70+} years
is assumed to arise as the noisy under-reported observation of a hid-
den underlying Markov process

Xcases,iðtÞ =
X
j

X
k

nEIP ijk ð76Þ

such that it follows a negative binomial distribution

Ycases,iðtÞ∼ NegBin ðϕcasesXcases,iðtÞ,κcasesÞ ð77Þ

with constant reporting factor ϕcases and shape parameter κcases = 1/
αcases, where αcases is an overdispersion parameter that we fit. The
corresponding likelihood contribution is

Lcases =
Y
t

Y
i

PðYcases,iðtÞjXcases,iðtÞ,κcases,ϕcasesÞ: ð78Þ

Seroprevalence. To fit the model to the age-stratified data from the
two sero-surveys, we first calculate the number of seropositive and
seronegative individuals in each age group over 20 years-of-age in the
model (i.e assume the true serological status of all individuals is
known):

XPiðtÞ=
X
j

X
k

TP ijkðtÞ, ð79Þ

XNiðtÞ=Ni �
X
j

X
k

TP ijkðtÞ, i 2 f 20� 29½ Þ, . . . ,70+ g: ð80Þ
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We then compare the observed number of seropositive individuals in
each age group in the sero-survey, YPiðtÞ, with the number expected
from the model based on the sample size Ytest,i(t) and the sensitivity
psens and specificity pspec of the serological assay:

YP iðtÞ∼ Bin ðY test,iðtÞ,ωP ðtÞÞ ð81Þ

where

ωP iðtÞ=
psensXP iðtÞ+ ð1� pspecÞXNiðtÞ

XPiðtÞ+XNiðtÞ
ð82Þ

is the apparent prevalence. The likelihood contribution of the sero-
survey data is:

Lsero =
Y
t

Y
i

PBinðYPiðtÞjY test,iðtÞ,ωP iðtÞÞ ð83Þ

Full likelihood. The full likelihood is the product of the likelihoods for
the hospitalisation, death, case and sero-survey data:

L= LhospLdeathLcasesLsero: ð84Þ

Prior distributions for fitted parameters
The prior distributions chosen for the fitted parameters are shown in
Table 4. We use relatively informative gamma distributions for the
transmission rate parameters βi ~ Gamma(k, θ) (i = 1, 2, 3, 4, 5):

f ðβiÞ=
1

ΓðkÞθk
βk�1
i e�βi=θ, x >0, ð85Þ

where Γ( ⋅ ) is the Gamma function, with shape parameter k = 4 and
scale parameter θ = 0.005 to ensure that the basic reproduction
number for the wild-type variant is in a sensible range. Targeted
sequencing of samples from local cases and travellers to screen for
new variants was performed from late December 2020 in French
Polynesia (Table S5).Whilst this data is biased and so cannot be used to
fit the variant proportions in themodel, it can be used to constrain the
introduction dates of the different variants. We use continuous
uniform prior distributions for the introduction dates of the different
variants, with the upper bounds of the distributions for Delta and
Omicron BA.1 chosen to match the earliest date each variant was
detected amongst local cases (since the variant cannot have been
introduced into local circulation later than it was first detected), and
the lower bounds chosen as 40 days and 12 days earlier respectively
basedon theearliestdate eachvariantwasdetected amongst travellers
and themuchhigher growth rate of theOmicron BA.1 variant (Tables 4
and S5). For the wild-type variant, we assume a lower bound of 39 days
prior to thefirst reported hospitalisation and anupper boundof 9 days
prior. We treat the introduction dates as continuous variables, and
distribute the initial number of infections of that variant in proportion
to how far between time steps the introduction date is. This helps to
avoid mixing issues in the MCMC caused by treating the introduction
date as a discrete variable. For the maximum probability of severe
disease across all age groups and the symptomatic case reporting rate,
we use completely uninformative priors, pHmax ,ϕcases ∼ Beta ð1,1Þ,
where the density for X ~ Beta(a, b) is:

f ðxÞ= Γða+bÞ
ΓðaÞΓðbÞ x

a�1ð1� xÞb�1, x 2 ð0:1Þ: ð86Þ

MCMC algorithm
We use the accelerated shaping and scaling adaptive Markov Chain
Monte Carlo (MCMC) algorithm of Spencer45 to infer the values of the
fitted parameters θ= ðβ, t0, tDelta, tOmicron,pHmax ,pDmax, 1,pDmax,2,

pDmax,3, πHDelta=Wildtype,ϕcases,αcases,αhosp,αdeathÞ, where β = (β1, β2,
β3, β4, β5). The algorithm adaptively shapes and scales the proposal
matrix to achievemore efficientmixing.We refer the reader to45 for full
details. The algorithm proceeds by repeating the following steps:
1. At the ith iteration, draw new values of the fitted parameters from

a multivariate normal proposal distribution

θi ∼Nðθi�1, 2:38
2c2i�1Σ i�1=nθÞ ð87Þ

where Σi−1 is the running estimate of the covariance matrix of the
posterior distribution,nθ is the dimensionof the posterior density, and
ci−1 is a scaling parameter that is tuned to achieve a desired acceptance
rate (see Step 4).
2. Accept θi with probability:

αðθi,θi�1Þ= min 1,
LðθiÞPðθiÞ

Lðθi�1ÞPðθi�1Þ

� �
ð88Þ

where P(θ) is the prior density of θ.
3. Calculate the running mean and covariance as: if i = 1:

θ1 =
1
2

X1
j =0

θj ð89Þ

Σ1 =
1

i0 +nθ +3
ði0 +nθ + 1ÞΣ0 +

X1
j =0

θjθ
T
j � 2θ1θ

T
1

 !
ð90Þ

if f(i) = f(i − 1) + 1, where f ðiÞ= b i2c:

θi =θi�1 +
1

i� f ðiÞ+ 1 ðθi � θf ðiÞ�1Þ ð91Þ

Σ i =Σ i�1 +
1

i� f ðiÞ+ i0 +nθ +2
θiθ

T
i � θf ðiÞ�1θ

T
f ðiÞ�1

�
� ði� f ðiÞ+ 1Þðθi�1θ

T
i�1 � θiθ

T
i Þ
� ð92Þ

such that the new observation replaces the oldest, and if f(i) = f(i − 1):

θi =
1

i� f ðiÞ+ 1 ðði� f ðiÞÞθi�1 +θiÞ ð93Þ

Σi =
1

i� f ðiÞ+ i0 +nθ + 2
ði� f ðiÞ+ i0 +nθ + 1ÞΣ i�1 +θiθ

T
i

�
�ði� f ðiÞÞθi�1θ

T
i�1 � ði� f ðiÞ+ 1Þθiθ

T
i Þ
� ð94Þ

such that a new observation is included, where i0 is a constant that
determines the rate at which the influence of Σ0 on Σi decreases.
4. Update the covariance scaling parameter ci:

ci = max cmin, ci�1 exp
δ

istart + i
ðαðθi,θi�1Þ � aÞ

� �� �
ð95Þ

where

δ = 1� 1
nθ

� � ffiffiffiffiffiffi
2π

p
expðA2=2Þ
2A

+
1

nθað1� aÞ ð96Þ

A= �Φ�1ða=2Þ ð97Þ

istart =
5

að1� aÞ ð98Þ
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withΦ( ⋅ ) the cumulative distribution function of the standard normal
distribution, cmin is a minimum value for the scaling parameter (to
prevent the proposalmatrix being shrunk toomuch, which can lead to
very slow mixing), and a is the target acceptance rate.
5. If j logðciÞ � logðcstartÞj> logð3Þ, restart the tuning of the scaling

parameter from its current value:

cstart 7!ci ð99Þ

istart 7!
5

að1� aÞ � i: ð100Þ

Werun4chains of the abovealgorithm fromdifferent initial parameter
values with i0 = 100, c0 = cstart = 1, cmin= 1, and a target acceptance rate
of a =0.234 for 50,000 iterations. We thin the chains by a factor of 10,
then discard the first 4000 iterations of each thinned chain as burn-in,
and combine the remaining iterations to form a sample of size 4000.
We assess convergence of the MCMC chains by visual assessment of
the trace plots, and calculating the maximum Gelman-Rubin statistic
and minimum effective sample size across all the parameters for the
thinned combined sample (4000 iterations).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the analysis are available online on Zenodo at https://
doi.org/10.5281/zenodo.8320333 and on GitHub at https://github.
com/LloydChapman/covid_multi_strain.

Code availability
The code used in this analysis was developed in R version 4.1.0 and
uses the odin, odin.dust, dust and mcstate R packages for simu-
lating discrete-time stochastic processes46–49. The model structure is
similar to that of the COVID-19 transmission model in the sircovid R
package50, and some of the code from this package is reused. All code
used in the analysis is available online at https://github.com/
LloydChapman/covid_multi_strain.
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