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TheUSP46deubiquitylase complex increases
Wingless/Wnt signaling strength by
stabilizing Arrow/LRP6

Zachary T. Spencer1,7, Victoria H. Ng 2,7, Hassina Benchabane1,7,
Ghalia Saad Siddiqui1, Deepesh Duwadi1, Ben Maines 1, Jamal M. Bryant2,
Anna Schwarzkopf2, Kai Yuan1, Sara N. Kassel 2, Anant Mishra 1,
Ashley Pimentel1, Andres M. Lebensohn 3, Rajat Rohatgi 4, Scott A. Gerber5,
David J. Robbins 6, Ethan Lee 2 & Yashi Ahmed 1

The control ofWnt receptor abundance is critical for animal development and
to prevent tumorigenesis, but the mechanisms that mediate receptor stabili-
zation remain uncertain. We demonstrate that stabilization of the essential
Wingless/Wnt receptor Arrow/LRP6 by the evolutionarily conserved Usp46-
Uaf1-Wdr20 deubiquitylase complex controls signaling strength inDrosophila.
By reducing Arrow ubiquitylation and turnover, the Usp46 complex increases
cell surface levels of Arrow and enhances the sensitivity of target cells to
stimulation by theWinglessmorphogen, thereby increasing the amplitude and
spatial range of signaling responses. Usp46 inactivation in Wingless-
responding cells destabilizes Arrow, reduces cytoplasmic accumulation of the
transcriptional coactivator Armadillo/β-catenin, and attenuates or abolishes
Wingless target gene activation, which prevents the concentration-dependent
regulation of signaling strength. Consequently, Wingless-dependent devel-
opmental patterning and tissue homeostasis are disrupted. These results
reveal an evolutionarily conserved mechanism that mediates Wnt/Wingless
receptor stabilization and underlies the precise activation of signaling
throughout the spatial range of the morphogen gradient.

Morphogens are secreted ligands that spread from localized sources
of synthesis to direct growth and patterning during animal develop-
ment, maintain tissue homeostasis during adulthood, and promote
regeneration following injury. The evolutionarily conserved Wnt/
Wingless family of ligands, which are associated with numerous
developmental disorders and cancers1, have provided a paradigm for
morphogen action. Pioneering studies in Drosophila revealed that

Wingless/Wnt forms an extracellular concentration gradient that
directly activates signaling at long range in the developing wing, leg,
and eye2,3. This long-range, concentration-dependent action of Wing-
less/Wnt was subsequently found essential for organogenesis and
tissue homeostasis in other physiological contexts2–11. Studies on the
formation ofWnt signaling gradients have focused largely on howWnt
is released from producing cells and delivered to target cells8,12–15. In
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contrast, the mechanisms in target cells that ensure precision in the
amplitude and spatial range of signaling responses within the gradient
are not well-understood.

Among the top hits in genome-wide insertional mutagenesis
screens for positive regulators of Wnt signaling in human cells16, we
identified an evolutionarily conservedWD40 repeat (WDR) containing
protein, WDR2017. WDR20 is an obligate stimulatory subunit for two
deubiquitylating enzymes, Ubiquitin-specific protease 12 (USP12) and
USP4617–20, paralogs that share 88% amino acid identity21. The activity
of USP12 and USP46 is facilitated by WDR20 and another stimulatory
WDR protein, USP1-associated factor (UAF1)/WDR4817,22,23. WDR20 and
UAF1 potentiate the activity of USP12 and USP46 by allosterically
increasing their catalytic efficiency without increasing their substrate-
binding affinity24–26. Some substrates are shared by both USP12 and
USP4627,28, whereas others are targeted exclusively by only one of the
paralogs18–21,27,29–32.

Here, we investigated the roles of the Drosophila USP46, UAF1,
and WDR20 orthologs in the reception of the Wingless/Wnt morpho-
gen. By reducing Arrow/LRP6 ubiquitylation, the Usp46 complex
increases Arrow/LRP6 stability and cell surface levels, thereby enhan-
cing the sensitivity of target cells to Wingless stimulation. Conse-
quently, the Usp46 complex regulates Wingless-dependent target
gene activation, cell fate specification, and tissue homeostasis in two
well-characterized physiological contexts: the developing wing and
the adult intestine. Inactivation of the Usp46 complex destabilizes
Arrow/LRP6 in cultured cells and in vivo, which diminishes the cyto-
plasmic accumulation of the transcriptional activator Armadillo/β-
catenin following Wingless exposure. As a result, the strength of sig-
naling responses is decreased cell-autonomously, with reductions in
both amplitude and spatial range. These findings indicate that Arrow/
LRP6 stabilization mediated by Usp46-dependent deubiquitylation is
required for concentration-dependent responses in target cells, pro-
viding precision in signaling throughout the spatial range of the
Wingless morphogen gradient.

Results
Usp46, Wdr20, and Uaf1 are positive regulators of Wingless
signaling in vivo
To determine whether the USP46-UAF1-WDR20 complex regulates
Wnt signaling in physiological contexts, we took a loss-of-function
approach in Drosophila. The closest relative of the human USP46 and
USP12 paralogs is encoded by a single Drosophila melanogaster gene,
Usp12-46 (CG7023, herein Usp46). Similarly, single genes encode the
WDR20 (CG6420, herein Wdr20) and UAF1 (CG9062, herein Uaf1)
orthologs in Drosophila. Alignment of the human and Drosophila
orthologs of USP46, WDR20, and UAF1 revealed a high degree of pri-
mary sequence conservation across all known domains (Fig. S1). Spe-
cifically, the Drosophila and human orthologs share 63% amino acid
similarity in the USP peptidase domain in USP46, between 50% and
86% similarity in the WD40 repeats in WDR20, and between 70% and
95% similarity in the WD40 repeats in UAF1.

To evaluate the role of the Usp46 complex in Wingless signaling,
we investigated a well-characterizedmodel: the third instar larval wing
imaginal disc, the precursor of the adult wing2,3,11. The Wingless con-
centration is highest at the dorsoventral (D-V) boundary of the wing
disc and there specifies the fate of cells that will form sensory bristles
at the adult wing margin2,3, in part through expression of the Wingless
target gene senseless (sens)33,34. RNAi-mediated knockdown ofUsp46 in
the posterior compartment of the wing disc using the hedgehog (hh)-
Gal4 driver decreased Sens levels solely in the posterior compartment
(marked by Engrailed) in >90% of discs (Fig. 1D–F, M). RNAi-mediated
depletion of Wdr20 and Uaf1 had comparable effects (Fig. 1G–M).
Multiple independent RNAi constructs that target different regions of
Usp46 or Wdr20 reduced Sens specifically in the posterior compart-
ment, indicating a robust effect (Fig. S2A–F, Fig. 1M). In contrast,

RNAi-mediated knockdown of a control gene, yellow (y), resulted in
nearly no Sens reduction (Fig. 1A–C, M), supporting the specificity of
the Usp46 complex RNAi results. Furthermore, depletion of Usp46,
Wdr20 or Uaf1 did not inhibit wingless expression, indicating that the
observed reduction in Sens was not due to decreased Wingless levels,
but instead resulted from impaired reception of theWingless ligand or
downstream defects in the Wingless signaling pathway (Fig. S3). As
wingless is a target gene ofNotch signaling at theD-Vboundary35, these
results also indicate that the Usp46 complex does not regulate Notch
in this context, in contrast with a previous analysis of thoracic bristle
sockets32. These findings indicate that Usp46, and its allosteric reg-
ulators Uaf1 and Wdr20, promote Wingless signaling in target cells in
the wing imaginal disc.

We further characterized Usp46mutant cells in the wing disc that
were generated by combining CRISPR-based mutagenesis with tissue-
specific expression of Cas9 and Usp46 guide RNAs. To identify Usp46
mutant cells, we added a C-terminal V5 epitope tag to endogenous
Usp46 using CRISPR-induced homology-directed repair36. Usp46-V5
immunostaining revealed that Usp46 is present at invariant levels
throughout the wing disc (Fig. S4A). Confirming the specificity of the
Usp46-V5 signal, RNAi-mediated knockdown of Usp46 in the dorsal
compartment of the wing disc using the apterous (ap)-Gal4 driver
resulted in a nearly complete loss of V5 staining in the dorsal com-
partment (Fig. S4D–F). We then used the UAS/Gal4 system37 to
express Usp46 single guide RNAs (sgRNAs) for CRISPR-based
mutagenesis38. Concomitant expression of Cas9 and Usp46 sgRNAs
in the posterior compartment using hh-Gal4 reduced Usp46 levels in
the posterior compartment, as revealed by loss of the Usp46-V5 signal
(Fig. S5D, F). The compartment-specific reduction of Usp46 resulted in
a compartment-specific decrease in Sens (Fig. S5E, F). Together, these
findings support the conclusion that Usp46 is a positive regulator of
Wingless signaling.

To rule out potential off-target effects, we expressed other sgRNAs
that target different parts of theUsp46 coding region using hh-Gal4. Co-
expression of Cas9with these independentUsp46 sgRNAs also reduced
Sens solely in the posterior compartment (Fig. S6E, F). In contrast, the
hh-Gal4-driven expression of Cas9 in the posterior compartment in the
absence of Usp46 sgRNAs resulted in no observed Sens loss (Fig. S6B,
C), ruling out the possibility that these findings were caused by Cas9-
induced cell death39. As an additional control for specificity, we exam-
ined hh-Gal4-driven expression of ebony (e) sgRNAs, which resulted in a
characteristic dark cuticle phenotype solely in the posterior compart-
ment of thewing (Fig. S6N), but no reduction in Sens levels (Fig. S5A–C).
Together, these findings provide additional evidence that Usp46 pro-
motes Wingless signaling in the larval wing disc.

Inactivation of Wdr20 and Uaf1 using the same approach also
decreased Wingless signaling in the wing disc. hh-Gal4-driven expres-
sion of Cas9 and Wdr20 or Uaf1 sgRNAs reduced levels of Wdr20
(Fig. S5G, I) or Uaf1 (Fig. S5J, L), respectively, and concomitantly
reduced Sens levels solely in the posterior compartment (Fig. S5H, K).
sgRNAs that target different parts of the Wdr20 or the Uaf1 coding
regions also reduced Sens (Fig. S6H, K). Furthermore, Usp46, Wdr20,
or Uaf1 sgRNAs did not reduce wingless expression (Fig. S7), con-
firming that the reduction in Sens resulted from attenuation of
Wingless pathway activity, rather than decreased Wingless levels. We
conclude that all three components of the Usp46 complex are neces-
sary for activating Wingless signaling in the developing wing.

TheUsp46 complex increases the amplitude and spatial rangeof
signaling induced by the Wingless morphogen
To determine the extent to which the Usp46 complex modulates sig-
naling in target cells responding to the Wingless morphogen, and
whether this occurs cell-autonomously, we isolatedUsp46,Wdr20, and
Uaf1null alleles.We usedCRISPR-basedmutagenesis38 to isolate alleles
with either largedeletions in the coding regionor frameshiftmutations
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Fig. 1 | The Usp46 complex promotes expression of the Wingless target gene
senseless (sens) in the larvalwing disc. A–LRNAi constructs targeting eachUsp46
complex component or the yellownegative control were expressed in the posterior
compartment (marked by Engrailed (En, green)) of the third instar larval wing discs
using the hedgehog (hh)-Gal4 driver. Senseless (Sens, magenta). DAPI (blue) marks
nuclei. Scale bar (A–L): 20 µM. Dorsal, top and posterior, right.A–C hh-Gal4-driven
expression of a control RNAi construct targeting the yellow (y)gene.No loss of Sens

was observed. D–L hh-Gal4-driven expression of RNAi constructs targeting Usp46
(D, F),Wdr20 (G, I) and Uaf1 (J, L) results in decreased Sens in the posterior
compartment. Only one RNAi line targeting Uaf1 was available.M Quantification is
shown as percentage of discs of each genotype with decreased Sens. N is the
number of discs analyzed. ****p <0.0001 (0 for all genotypes, one-tailed t-test).
Source data are provided in the Source Data file.
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resulting in premature stop codons that encode truncated proteins
lacking most of the evolutionarily conserved domains (Fig. S8). Usp46,
Wdr20, and Uaf1 null mutants were viable but displayed reduction in
lifespan (Fig. S9), severe defects in the adult intestinal epithelium (see
below), and sterility. We therefore were unable to evaluate Usp46
mutant embryos in which both maternal and zygotic contributions
were depleted.

To further test the role of theUsp46 complex inWingless-receiving
cells, we examined the adult intestine, an excellentmodel for evaluating
Wingless signaling gradients40. The expressionofWingless target genes,
such as frizzled 3 (fz3) and naked (nkd), is high near theWingless source
at intestinal compartment boundaries and decreases as a function of
distance from these boundaries, reflecting the decreasing Wingless
concentration (Fig. S10A–C)9,40–42. To confirm the specificity of the fz3-
GFP transcriptional reporter at the boundary between the midgut and
hindgut (midgut-hindgut boundary, MHB), we used MARCM (mosaic
analysis with a repressible cell marker)43 to generate and mark homo-
zygous null mutant clones of the Wingless receptor arrow with dsRed.
Complete loss of fz3-GFP expression was observed in all arrow mutant
clones examined (Fig. S10D–I). In contrast, clones of wild-type cells
displayed no reduction in fz3-GFP (Fig. S10J–O).

To test the role of Usp46 in the Wingless signaling gradient, we
examined the effects of Usp46 loss onWingless target gene activation.
In Usp46 null mutant clones located ~8– 20 cell lengths from the MHB
(Fig. 2A–C, magenta), fz3-GFP expression was completely lost
(Fig. 2D–F, white arrows and Fig. 2J) or severely reduced (Fig. 2D–F,
yellow arrows and Fig. 2J) in a cell autonomous manner, whereas in
Usp46mutant clones located one to seven cell lengths from the MHB,
fz3-GFP expressionwas partially reduced (Fig. 2G–I, yellow arrows, and
Fig. 2J), or exhibited no apparent change.We repeated this experiment
with a different Usp46 null allele and observed the same defects
(Fig. S11). These results reveal that a cell autonomous role of Usp46 in
Wingless-receiving cells is critical for increasing both the amplitude
and spatial range of responses to Wingless stimulation and thus for
precision in the signaling gradient.

Wdr20 and Uaf1 inactivation similarly resulted in decreased
Wingless signaling in the posterior midgut. fz3-GFP expression was
entirely or nearly completely lost in a cell autonomous manner in
Wdr20mutant clones (Fig. S12D–F, white and yellow arrows) and Uaf1
mutant clones (Fig. S13D–F, white and yellow arrows) located ~8–20
cell lengths from the MHB, whereas in Wdr20 mutant clones or Uaf1
mutant clones located 1 to 7 cell lengths from the MHB there was a
partial reduction (Fig. S12G–I and S13G–I, yellow arrows) or no
apparent change. These results were confirmedwith additionalWdr20
andUaf1 null alleles (Fig. S14 and Fig. S15). These findings indicate that
all three componentsof theUsp46 complex are essential for increasing
the amplitude and spatial range of signaling responses within the
Wingless morphogen gradient.

To determine whether the Usp46 complex is required for the
activation of other Wingless target genes within the gradient, we
investigated the regulation of nkd, using the transcriptional reporter
nkd-lacZ44. Similar to that of fz3-GFP, the level of nkd-lacZ is highest at
theMHBanddecreaseswith distance from theMHB42,45. Inactivation of
any of the three Usp46 complex components in the posterior midgut
reduced the levels ofnkd-lacZ in a cell-autonomousmanner (Fig. 3A–I).
For all three Usp46 components, we observed results that were qua-
litatively similar to those observed with fz3-GFP: in mutant clones
located at a distance from the MHB, nkd-lacZ expression was com-
pletely lost, whereas in mutant clones closer to the MHB, nkd-lacZ
expression was either partially reduced in comparison with the
neighboring wild-type cells or displayed no apparent change. These
findings further support the conclusion that by increasing the ampli-
tude and spatial range of signaling responses, the Usp46 complex
facilitates the precise, concentration-dependent regulation of Wing-
less target genes within the morphogen gradient.

The Usp46 complex is required for the Wingless-dependent
regulation of intestinal stem cell proliferation
Wingless signaling was initially proposed to promote adult intestinal
stem cell (ISC) self-renewal and proliferation during homeostasis46,
though this conclusion was later challenged40,47,48. Subsequently,
Wingless pathway activation was found essential for the non-
autonomous control of ISC proliferation by enterocytes during
homeostasis42. Attenuation ofWingless signaling in the adult posterior
midgut results in increased numbers of ISCs and ISC-derived pro-
genitor cells termed enteroblasts (EB)9,42. We therefore investigated
whether Usp46 promotes this Wingless-dependent control of intest-
inal homeostasis. We found that in Usp46 null mutants, stem and
progenitor cell number is aberrantly increased by comparison to wild-
type, as revealed by the stem/progenitor cell marker escargot >GFP
(esg >GFP) (Fig. 4A–D, G). Similar to Usp46 inactivation, Wdr20 inac-
tivation also resulted in an increased number of intestinal stem and
progenitor cells (Fig. 4E–G). Independently-derived Usp46 andWdr20
null alleles confirmed these results (Fig. 4G). Uaf1 was not tested with
this assay due to technical constraints resulting from its genomic
location. These findings demonstrate that the Usp46 complex is
necessary to restrict stem and progenitor cell number in the adult
midgut, a known function of Wingless signaling.

Inactivation of Wingless signaling is known to increase ISC pro-
liferation without disrupting the asymmetric ISCs division that spe-
cifies enteroblasts (EBs)49. To determine whether inactivation of the
Usp46 complex has similar effects, we examined an EB-specificmarker,
Suppressor of Hairless (Su(H)-lacZ). Inactivation of Usp46, Wdr20, or
Uaf1 resulted in an aberrant increase in the number of EBs by com-
parison to wild-type (Fig. S16A). Thus, the loss of Usp46 complex
components did not block the asymmetric division of ISCs. We con-
clude that the Usp46 complex restricts ISC proliferation but is dis-
pensable for asymmetric stem cell division, properties shared with
known positive regulators in the Wingless signaling pathway.

In the adult posterior midgut, the ability of enterocytes to non-
autonomously restrict the proliferation of neighboring ISCs requires
Wingless signaling42,45. To determinewhether theUsp46 complex has a
similar role, we generated control wild-type clones, Usp46 null mutant
clones, Wdr20 null mutant clones, and Uaf1 null mutant clones in the
posterior midgut and analyzed the effects on neighboring stem and
progenitor cells, which were marked with esg-lacZ, or ISCs only, which
were marked with Delta-lacZ. We observed that the number of stem
and progenitor cells surrounding Usp46 mutant clones was increased
by comparison to wild-type clones (Fig. S17A–D, G). Similarly, a non-
autonomous increase in ISC/progenitor cell number was observed
upon loss of either Wdr20 or Uaf1 (Fig. S17E–G and Fig. S18G–M). To
determine whether the aberrantly increased ISCs resulted from over-
proliferation, we compared the mitotic index in posterior midguts
harboring either wild-type control clones or Usp46mutant clones. We
found a significant increase in phospho-histone H3, a marker for
mitosis, nearUsp46mutant clones (Fig. S19B, F),Wdr20mutant clones
(Fig. S19C, F), and Uaf1 mutant clones (Fig. S19D, F), as also occurred
near arrow mutant clones (Fig. S19E, F), and following inactivation of
other Wingless pathway components42,45. These findings reveal that in
a manner similar to known Wingless pathway components, the Usp46
complex non-autonomously restricts proliferation of neighboring
ISCs, providing additional evidence that Usp46 promotes Wingless
signaling during intestinal homeostasis.

Genetic interaction between Arrow/LRP6 and the Usp46
complex
To hierarchically order Usp46 complex activity in the Wingless path-
way, we used the β-catenin destruction complex scaffold Axin as a
referencepoint in genetic epistasis analysis. Axin inactivation results in
aberrantly increased levels of cytoplasmic/nuclear β-catenin and the
constitutive activation of Wingless signaling50. In the wild-type third
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instar larval wing imaginal disc, theWingless target gene reporter nkd-
lacZ is expressed in a broad region that surrounds the D-V boundary
(Fig. S20A–C). In contrast,nkd-lacZ is expressed ectopically inAxinnull
mutant clones, regardless of their location in the wing disc
(Fig. S20D–F). Ectopic nkd-lacZ expression was comparable in Axin
single mutant clones and Usp46 Axin double null mutant clones, sug-
gesting that Usp46 acts upstream of the destruction complex
(Fig. S20G–I). Similarly, ectopic nkd-lacZ expression was comparable

in Axin single mutant clones and Wdr20 Axin double null mutant
clones (Fig. S20J–L). These findings suggest that the Usp46 complex
acts upstream of the β-catenin destruction complex.

We therefore tested the hypothesis that the Usp46 complex acts
at the level of theWingless receptor complex using genetic interaction
experiments. In the developing wing, the ectopic activation of Wing-
less signaling induces formation of ectopic sensory bristles in the wing
blade35,50,51. This phenotype is recapitulated by overexpression of
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Fig. 2 | Usp46 promotes expression of the Wingless target gene fz3 in the
posteriormidgut.A–CUsp461 nullmutant clones (magenta) and frizzled3-GFP (fz3-
GFP) expression (green) in the adult intestinal epithelium of the posterior midgut.
The midgut-hindgut boundary (MHB) is delineated (M | H). DAPI (blue) marks
nuclei. Posterior, right.D–FHighermagnification view of box D in panel A showing
a region distant from the MHB. Usp461 null mutant cells in this region showed
complete loss of fz3-GFP (white arrows), whereas those slightly closer to the MHB
showed a nearly complete reduction in fz3-GFP (yellow arrows). G–I Higher

magnification view of box G in panel A showing a region near the MHB.Usp461 null
mutant cells in this region display either a partial decrease (yellow arrows) or no
decrease in fz3-GFP. Scale bars (A–C) and (D–I): 50 µM. JQuantification is shown as
percentage of clones of each genotype with decreased fz3-GFP (yellow) or the
absence of fz3-GFP (gray) expression. Clones (n=number) close and far from the
MHB were analyzed. ****p <0.0001 (0 for all genotypes, one-tailed t-test). Source
data are provided in the Source Data file.
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Arrow (the Drosophila ortholog of the Wnt receptor LRP6)52 using the
hh-Gal4 wing driver (Fig. 5A, B, G). RNAi-mediated knock down of
Usp46 in the wing rescued this Arrow overexpression phenotype
(Fig. 5C, G). An independent Usp46 RNAi construct yielded the same

results (Fig. 5D, G), as did depletion of Wdr20 using two independent
RNAi constructs (Fig. 5E–G), in contrast with the negative control RNAi
construct targeting ebony (Fig. 5B, G). Similarly, when driven by the
C96-Gal4 driver, the Arrow overexpression phenotype was rescued by
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Fig. 3 | The Usp46 complex is required for expression of the Wingless target
gene naked in the posterior midgut. A–I Null mutant MARCM clones (green) of
Usp46 (A, C), Wdr20 (D, F), and Uaf1 (G, I) in the posterior midgut resulted in
decreased expression of nkd-lacZ (magenta) in a cell-autonomous manner (orange
arrows). For inactivation of all three Usp46 components, the largest reduction in
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nuclei. J–Lnkd-lacZdoes not decrease inwild-type (FRT82B) clones. Scale bar (A,L):
20 µM. M Quantification is shown as percentage of clones of each genotype with
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(0 for all genotypes, one-tailed t-test). Source data are provided in the Source
Data file.
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depletion of either Usp46 or Wdr20 (Fig. S21). These findings reveal a
strong genetic interaction between Arrow and the Usp46 complex,
supporting the hypothesis that Arrow is a Usp46 substrate. Further
supporting this hypothesis, the decreased expression of the Wingless
target gene senseless resulting from knock down of either Usp46
(Fig. 6A, C, I) or Wdr20 (Fig. 6E, G, I) was rescued by Arrow over-
expression (Fig. 6B, D, F, H, I).

The Usp46 complex increases cell surface Arrow/LRP6 by
decreasing its ubiquitylation
Based on these genetic interactions, we tested whether the Usp46
complex interactswith and regulates Arrow in cultured cells.We found
that V5-tagged Usp46 complex components co-immunoprecipitated

with Flag-tagged Arrow when expressed in HEK293 cells (Fig. 7A).
Furthermore, to determine whether the endogenous Usp46
complex regulates endogenous Arrow, we performed RNAi-mediated
knock down of the Usp46 complex in Drosophila embryonic S2R+
cells and evaluated Arrow levels. We first verified the specificity of
an Arrow polyclonal antibody (Fig. 7B) and confirmed the efficiency
of Usp46 complex knockdown (Fig. 7C). Of note, this analysis also
revealed that Wdr20, and to a lesser extent Uaf1, stabilized Usp46,
as knockdown of either Uaf1 or Wdr20 reduced Usp46 levels (Fig. 7C).
Conversely, overexpression of either Wdr20 or Uaf1 increased
the levels of Usp46 (Fig. S22). The stabilization of endogenous Usp46
by Uaf1 and Wdr20 was confirmed in vivo by knockdown of endo-
genous Uaf1 or Wdr20 in larval wing discs (Fig. S23). Supporting these
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results, a similar stabilizing effect of UAF1 on human USP12 was found
previously17.

RNAi-mediated reduction of any one of the three Usp46 complex
components decreasedArrow levels, in contrastwithRNAi knockdown
of the negative control gene white (Fig. 7D, E). To rule out off-target
effects, we tested a second set of dsRNAs targeting components of the
Usp46 complex, which also resulted in decreased Arrow levels
(Fig. S22B, C). Conversely, expression of the Drosophila Usp46 com-
plex stabilized Arrow in HEK293 cells (Fig. 8A). These findings support
the conclusion that the Usp46 complex interacts with and increases
Arrow stability.

To determine whether the Usp46 complex stabilizes Arrow by
reducing its ubiquitylation, we expressed HA-tagged ubiquitin in
HEK293 cells followed by co-immunoprecipitation assays. To facilitate
detection of ubiquitylated Arrow, cells were treated with the lysosome
inhibitor bafilomycin A to block Arrowdegradation. We found that the
Usp46 complex markedly decreased levels of ubiquitylated Arrow
(Fig. 8A). Similarly, the Usp46 complex decreased endogenous levels
of ubiquitylated Arrow in S2R+ cells (Fig. 8B). Finally, to test if the
Usp46 complex promotes the deubiquitylation and resultant

stabilization of the plasma membrane pool of endogenous Arrow, we
performed cell surface biotinylation of S2R+ cells. These findings
revealed that the Usp46 complex increased Arrow levels at the cell
surface (Fig. 8C). These results provide evidence that Arrow deubi-
quitylation by the Usp46 complex increases Arrow levels at the cell
surface and thereby promotes Wingless signaling (Fig. 8D).

Building on these findings, we tested the Usp46-dependent reg-
ulation of Arrow/LRP6 abundance in vivo. In the wild-type adult
intestine, endogenous Arrow was observed at the plasma membrane
and in the cytoplasm, representing both fully processed and newly
synthesized Arrow during its biogenesis (Fig. 9A–D). Confirming the
specificity of the Arrow antibody, Arrow signal decreased in a cell-
autonomousmanner in clones ofArrownullmutant cells (Fig. 9A, B,D).
The cytoplasmic accumulation of Armadillo (Arm)/β-catenin also
decreased upon Arrow loss (Fig. 9A, C, D), indicating an expected
block in transduction of Wingless signaling. Similarly, in clones of
Usp46 null mutant cells, Arrow signal decreased in a cell-autonomous
manner by comparison with the adjacent wild-type cells (Fig. 9E, G, N).
Cytoplasmic Arm/β-catenin levels also decreased inUsp46 null mutant
clones, whereas the levels of membrane-associated Arm did not
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(Fig. 9F, G, O). The subcellular distribution and levels of the basolateral
cell membrane marker Discs Large (Dlg) and the DNA marker DAPI
were normal in Usp46mutant cells, indicating retention of normal cell
polarity and the absence of aberrant apoptosis (Fig. 9G and Fig. S24A,
C). An independently derived Usp46 null allele displayed the same
results (Fig. S25A–C, N, O). This reduction in the cytoplasmic/signaling
pool of Arm/β-catenin provides an explanation for the decreased
Wingless target gene activation observed in clones of Usp46 null
mutant intestinal cells (Fig. 2E, F, H, I and Fig. 3A–C).

Inactivation of Wdr20 or Uaf1 in vivo also reduced Arrow abun-
dance. Arrow levels decreased cell-autonomously inWdr20 (Fig. 9H, J,
N) andUaf1 (Fig. 9K,M,N) nullmutant clones by comparisonwith their
wild-type neighbors. Additional Wdr20 and Uaf1 null alleles similarly

resulted in a cell-autonomous decrease in Arrow levels (Fig. S25D, F, G,
I, N). Moreover, as observed in Usp46 mutant cells, the cytoplasmic
accumulation of Arm/β-catenin was reduced in Wdr20 mutant cells
(Fig. 9I, J, O and Fig. S25E, F, O). Thesefindings provide in vivo evidence
that the Usp46 complex increases signaling strength by stabilizing
Arrow/LRP6 and consequently promoting the cytoplasmic accumula-
tion of Arm/β-catenin in Wingless-responding cells.

Discussion
We have identified an evolutionarily conserved tripartite deubiquity-
lase complex, composed of the catalytic subunit Usp46 and its allos-
teric regulators Wdr20 and Uaf1, that increases the abundance of the
Wingless/Wnt receptor Arrow/LRP6 in Drosophila (Fig. 8D). By
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Fig. 6 | Arrow expression rescues loss of Sens resulting from RNAi-mediated
depletion of Usp46 complex components. A–H hh-Gal4-driven expression in
third instar larval wing discs of RNAi constructs targeting Usp46 (A, C) and Wdr20
(E, G) results in decreased Sens (magenta) in the posterior compartment (marked
by Engrailed (En, green)). Sens expression is rescued by co-expression of Arrow

(B,D, F,H).GFP-lacZ is expressed in control discs (A,C, E andG). DAPI (blue)marks
nuclei. Scale bar: 50 µM. Dorsal, top and posterior, right. I Quantification is shown
as percentage of discs of each genotype with decreased Sens. N is the number of
discs analyzed. *p <0.05 (0.022), **p <0.01 (p values in order: 0.006, 0.0041, and
0.002, one-tailed t-test). Source data are provided in the Source Data file.
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reducing Arrow/LRP6 ubiquitylation and turnover and thus increasing
cell surface Arrow levels, Usp46 enhances the sensitivity of target cells
to Wingless stimulation. The Usp46 complex thereby increases the
amplitude and spatial range of signaling responses that mediate the
concentration-dependent transcriptional regulation ofWingless target
genes. Consequently, depletion of the Usp46 complex disrupts
Wingless-directed development and tissue homeostasis. Supporting
these findings, a genome-wide screen identified Usp46 and Uaf1
among many potential co-regulators that act at or above the level of
Wnt receptors53. Our results provide evidence that the function of
Usp46 in Arrow/LRP6 deubiquitylation is essential for the precise
activation of signaling throughout the Wingless/Wnt morphogen
gradient.

Whereas the mechanisms by which Wnt ligands spread from
their source of synthesis to form morphogen gradients have been

well-investigated8,12–15, how target cells fine-tune signaling to achieve
precision in the gradient has remained unclear. Uncovering these
mechanisms will inform our understanding of Wnt signaling in phy-
siological contexts andour ability to intervene inpathological contexts
arising from Wnt pathway deregulation. The findings herein, coupled
with those from vertebrate models54–56, reveal that regulation of Wnt
receptor abundance, mediated by a tightly controlled balance in the
opposing processes of ubiquitylation anddeubiquitylation, is essential
for concentration-dependent signaling responses following Wnt sti-
mulation. Loss of Wnt receptor ubiquitylases and deubiquitylases
in vivo shifts the signaling strength within the morphogen
gradient, rather than constitutively activating or abrogating signaling.
For example, inactivation of Zinc and Ring Finger Protein 3 (ZNRF3),
a membrane-bound ubiquitin ligase that targets Wnt receptors
for clearance from the plasma membrane and subsequent
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by knockdown with indicated dsRNAs. A representative immunoblot (n = 3 inde-
pendent experiments) is shown. D RNAi-mediated knockdown of the Usp46 com-
plex decreases steady-state levels of Arrow.Drosophila S2R+ cells were treatedwith
Ctrl or Usp46 complex dsRNAs, followed by immunoblotting with Arrow antibody.
RNAi-mediated knockdown of the Usp46 complex resulted in decreased Arrow
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degradation57,58, disrupts a Wnt signaling gradient in the developing
adrenal gland by increasing signaling strength to a moderate level in a
region of the cortex where signaling is normally low54–56. As a con-
sequence, ZNRF3 loss results in adrenal hyperplasia and aberrant cell
fate specification54. Conversely, loss of the Usp46 deubiquitylase
attenuates, but does not abolish signaling in much of the Wingless
gradient in the Drosophila posterior midgut, and thereby disrupts
Wingless-regulated tissue homeostasis. Whereas ZNRF3 and its para-
log Ring Finger Protein 43 (RNF43) are known to promote Wnt
receptor proteolysis in vertebrates, neither of these ubiquitylases is
conserved in Drosophila. As such, the E3 ubiquityase that destabilizes
Arrow by counteracting Usp46 awaits discovery and is predicted to
have a key function in the negative regulation of Wingless signaling.
Vertebrate homolog(s) of this E3 ubiquitylase may similarly oppose
vertebrate USP46, since the role of the USP46 complex in Arrow/

LRP6 stabilization is evolutionarily conserved, as we report in an
accompanying paper59.

Our findings identify a component required for Wnt receptor
regulation and build on other mechanisms that control Arrow/LRP6
abundance. First, in the wing disc, the genes encoding the Wingless
receptors Arrow and Frizzled 2 are transcriptionally repressed in cells
responding to Wingless stimulation52,60,61. The degree of transcrip-
tional repression correlates directly with the Wingless concentration,
such that receptor levels are lowest in cells near the Wingless source
and increase as a function of distance from this source. As high
receptor levels stabilize Wingless, this setup is thought to enhance the
spread of Wingless from its source (where receptor levels are low) to
distant cells (where receptor levels are high). Second, following proper
post-translational folding of LRP6, the endoplasmic reticulum (ER)-
specific Ubiquitin-specific protease 19 (USP19) promotes ER exit of
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LRP6 via deubiquitylation of a single lysine residue62. Third, an ER
chaperone protein dedicated to the low-density lipoprotein family of
receptors, Mesoderm development (Mesd or Boca in Drosophila), is
essential for trafficking LRP6/Arrow through the secretory pathway
and thereby facilitates Wnt-dependent patterning during
development63,64. The Usp46 complex adds an essential layer of con-
trol — one that not only increases Arrow/LRP6 abundance at the cell
surface in Wingless target cells but also is critical for precise,
concentration-dependent signaling responses throughout the Wing-
less morphogen gradient.

Inactivating RNF43 or ZNRF3 mutations result in increased Wnt
receptor levels in mammalian cells and promote the growth of
numerous human cancers, including colorectal, endometrial, ovarian,
pancreatic, gastric, and adrenocortical carcinomas1,65. An oncogenic
role therefore exists for aberrantly elevated Wnt receptor levels and
the resultant hypersensitivity they confer to Wnt stimulation. These
clinical observations suggest that reduction in receptor abundance
may provide a therapeutic strategy for a subset of Wnt-driven
cancers58,66. Whether a Wnt receptor deubiquitylase of the USP class
would be amenable to specific targeting with selective inhibitors had

been uncertain due to structural similarity among members of this
enzyme family. However, more recent studies have documented the
vulnerability of USP family deubiquitylases to specific inhibition by
small molecules, raising their promise as therapeutic targets and the
feasibility of this approach67,68. Accordingly, the identification of
USP46 small molecule inhibitors may provide a novel therapeutic
option to combat cancers dependent on Wnt ligand stimulation. Our
identification of a conserved Wnt receptor stabilization mechanism
may therefore have relevance not only for animal development and
tissue homeostasis, but also Wnt-driven cancers.

Methods
Fly stocks and genetics
Fly crosses were performed at 25 °C unless otherwise indicated.

Reporters: nkd-lacZ (nls)44, esg-lacZ69, esg-Gal4, UAS-GFP
(esg >GFP)69, GBE-Su(H)-lacZ69, Delta-lacZ (Bloomington Drosophila
Stock Center (BDSC #11651)), mScar:T2A:sens70, and fz3-GFP71.

MARCM and hs-flp lines: MARCM 82B: yw hs-flp UAS-CD8::GFP;
tub-Gal4 FRT82B tub-Gal80/TM6B72 and yw hs-flp tub-Gal4 UAS-dsRed;
FRT82B tub-Gal80/TM3, Ser73.
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Fig. 9 | Usp46 complex inactivation reduces Arrow levels in a cell autonomous
manner. A–D arr2 null mutant clones (green) in the adult posterior midgut. Upon
Arrow loss, the Arrow signal intensity is decreased at the cell membrane and in the
cytoplasm, confirming the specificity of the Arrow antisera. Additionally, cyto-
plasmic Arm (yellow) is reduced in Wingless-responding cells upon Arrow loss.
E–G Usp461 null mutant clones (magenta) in the adult posterior midgut. When
Usp46 is inactivated, the levelsof cellmembrane-associated and cytoplasmic Arrow
(green) are decreased cell-autonomously, as is cytoplasmic Arm (yellow).
H–J Wdr2033 null mutant clones (magenta) in the adult posterior midgut. Both
Arrow (green) and cytoplasmic Arm (yellow) are decreased cell autonomously

whenWdr20 is inactivated. Some cells also display a non-autonomous decrease in
cell membrane-associated Arm. K–M Uaf14 null mutant clones (magenta) in the
adult posterior midgut. When Uaf1 is inactivated, the levels of cell membrane-
associated and cytoplasmic Arrow (green) are decreased cell-autonomously. Some
cells also display a reduction in membrane-associated Arm (yellow). DAPI (blue)
marks nuclei. Scale bars (A-D) and (E-M): 20 µM (N, O) Quantification is shown as
percentage of clones of each genotype with decreased Arrow (N) or Arm (O). N is
the number of clones analyzed, *p <0.05 (0.043 forUaf14 inO), ****p <0.0001 (0 for
all genotypes inN, 0 forWdr2033 and 1E-5 for Usp461 inO, one-tailed t-test). Source
data are provided in the Source Data file.
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MARCM42D: yw hs-flp UAS-(nls)GFP tub-Gal4; FRT42D tub-Gal8074

and yw hs-flp tub-Gal4 UAS-dsRed; FRT42D tub-Gal80/CyO; tub-Gal4/
TM3 Sb.

hs-flp; 82B ubi-GFP (BDSC#52012).
RNAi and Gal4 driver lines: The RNAi lines Usp46i1 (Vienna Dro-

sophila Resource Center (VDRC) #27799), Usp46i2 (VDRC #100586),
Wdr20i1 (VDRC #110609), Wdr20i2 (VDRC #42060), Uaf1i1 (VDRC
#3810) and yi (VDRC #106068) were expressed in third instar larval
wing discs using hh-Gal475 with UAS-dcr276, or C96-Gal477,78 with
UAS-dcr2 (BDSC #25757), or ap-Gal479.

Other stocks: arr2 52, Axins044230 50, Usp46MiMIC (yw; MiMIC Usp12-
46MI02353 CG7029MI02353,BDSC #35110)80, Wdr20Df (Df(3R) BSC524/TM6C,
BDSC #25025), Usp46Df (Df(3R) BSC618/TM6C, BDSC #25693), UAS-
GFP::lacZ.nls (BDSC #6452) and UAS-Arrow-HA81. Wild-type controls
were FRT42D, FRT82B, and Canton S.

Usp46,Wdr20 and Uaf1mutants: Usp46,Wdr20 and Uaf1mutants
(Supplementary Table 1) were generated using CRISPR/Cas9. CRISPR
target sites were identified using https://flycrispr.org/target-finder/82.
Four guide RNAs for each gene (Supplementary Table 2) were cloned
into the pCFD6: UAST::gRNA plasmid38, following the protocol descri-
bed at http://www.crisprflydesign.org/. Plasmids were injected by
BestGene and integrated at theattP40 site. gRNA-containing lineswere
crossed to yw; UAS-Cas9 nos-Gal4::VP16 (BDSC #54593).

Knock in of V5 epitope tags into the endogenous Usp46, Wdr20
and Uaf1 genes: Epitope tagging of Usp46, Wdr20 and Uaf1 was per-
formed using a co-CRISPRmethod36. Two guide RNAs (Supplementary
Table 3) close to the stop codon were identified using https://flycrispr.
org/target-finder/ and were cloned into pCFD3: U6:3-gRNA83, following
the protocol described at http://www.crisprflydesign.org/. A template
for homology-directed repair was generated by synthesizing a gene
block (Integrated DNA Technologies, Inc.) that was cloned into
the pMiniT 2.0 plasmid using the New England Biolabs PCR cloning kit.
The gene blocks were 2 kb long, contained a linker sequence
(AAGGGCCGAGCCGATCCCGCCTTCCTGTACAAGGTGGTCAGCTCCG
CCACC) and a 3X V5 tag (GGTAAACCTATTCCTAATCCTCTCCTAG
GTTTAGATTCTACTGCTGCCGGCAAGCCCATCCCCAACCCCTTGCTT
GGCTTGGACTCCACCGCCGCAGGAAAACCAATACCAAATCCACTTCT
CGGACTTGATTCAACA) upstream of the stop codon, and ~900 bp
homology arms on either side of the linker and tag. DNA mixes con-
taining 100ng/ml of each pCFD3-gRNA plasmid, including a gRNA for
the ebony gene, and 500ng/ml of the repair template were injected
into nos-Cas9 embryos by BestGene.

Tissue-specific CRISPR-generated Usp46, Uaf1, and Wdr20
mutations
CRISPR target sites were identified using https://flycrispr.org/target-
finder/82. gRNA sequences are listed in Supplementary Table 4. Two
guide RNAs for each gene were cloned into the pCFD6: UAST::gRNA
plasmid. Plasmids were injected by BestGene and integrated at the
attP40 site or the attP2 site for the Uaf1 gRNA1. Wing-specific muta-
tionswere generated by crossing the gRNA lines tohs-flp;UAS-uMCas9;
hh-Gal4/TM6B39 (VDRC #340019).

Clonal analysis
Mitotic clones in the gut were generated using the MARCM system84.
Clones were induced by one or two 2-hour heat shocks of 1st and 2nd
instar larvae at 37 °C for the nkd-lacZ staining or a 2-hour heat shock of
early 3rd instar larvae at 37 °C for fz3-GFP and Arrow immunostaining.
Clones were examined 1–2 days after eclosion for nkd-lacZ staining,
5–10 days after eclosion for fz3-GFP staining, and 9–11 days after eclo-
sion for Arrow staining.

To generate clones in the adult gut, flies were heat shocked for
30min in a 37 °Cwater bath 4 days after eclosion. After heat shock, the
flies were maintained at 25 °C for 5 days before analysis.

Clones inwingdiscsweregeneratedbyoneor two 2-h heat shocks
of 1st and 2nd instar larvae at 37 °C.

Immunohistochemistry
Adult guts were dissected in PBS and fixed in 4% paraformaldehyde for
45mins at room temperature; wing discs from 3rd instar larvae were
fixed in 4% paraformaldehyde for 20mins at room temperature. Tis-
sues were washed with PBS + 0.1% Triton X-100 and blocked with
PBS +0.1% Tween-20 + 10% BSA for 1 h at room temperature. The
samples were incubated with primary antibody (diluted in PBS + 0.5%
Triton X-100) at 4 °C for 1–3 days. Secondary antibody incubation was
carried out at room temperature for 2 h. The samples were subse-
quently stained with DAPI (2μg/ml) and mounted in Prolong Gold
Antifade Reagent (Invitrogen). Confocal images were captured on a
Nikon A1RSi laser scanning confocal microscope, Nikon CSU-W1
spinning disk confocal microscope, or Nikon Yokogawa CSU-W1
SoRa spinning disk confocal microscope and processed with Adobe
Photoshop / Illustrator software from Adobe Suite 2023. Adult wings
were mounted in Mowiol and their images acquired using a Leica
MZFLIII stereomicroscopewith a ZeissAxiocam208 camera andNikon
Zen 3.0 software.

Plasmids
pUAST-Usp46-Flag-HA (UFO05132, Stock 1643053), pUAST-Uaf1-Flag-
HA (UFO07270, Stock 1642047), and pUAST-Wdr20-Flag-HA
(UFO09009, Stock 1643053) were obtained from the Drosophila
Genomics Resource Center (DGRC). pCS2-Usp46-V5, pCS2-Uaf1-V5,
pCS2-Wdr20-V5, pCS2-3XFLAG-Arrow were synthesized by Gene Uni-
versal. The V5 tag GKPIPNPLLGLDST was inserted at the carboxy-
terminus of the Usp46 complex components and preceded by the
linker sequence GGGGS. A 3X FLAG tag in Arrow was inserted after the
signal sequence at amino acid 67. The Arrow sequence surrounding
the insertion site, with the 3XFLAG tag in brackets is: NVH
[DYKDHDGDYKDHDIDYKDDDD]KGGS. HA-ubiquitin was cloned into
pCS270.

Cell culture and DNA transfection
HEK293T cells were purchased from the American Type Culture Col-
lection (ATCC) and maintained in DMEM supplemented with 8% fetal
bovine serum. S2R+ cells were purchased from the Drosophila Geno-
mics Research Center (DGRC) and maintained at 25˚C in Schneider’s
complete medium: Schneider’s Drosophila medium with L-glutamine
(Gibco) supplemented with 10% FBS (Gibco) and 0.1mg/mL penicillin/
streptomycin (Invitrogen). Cells were seeded in plates 24 h before
transfection and 20ug of total plasmid was transiently transfected
using calciumphosphate. 48 h post-transfection, cellswere lysed using
NP-40 lysis buffer (50mM Tris-HCl pH 8.0, 100mM NaCl, 1% NP-40,
10% glycerol, 1.5mM EDTA pH 8.0, supplemented with 1X Roche pro-
tease inhibitor cocktail).

dsRNA generation and RNAi-mediated knockdown
Double-stranded RNA (dsRNA) templates of 200-900 nucleotides
targeting Usp46, Uaf1, Wdr20, arrow, or white (negative control)
were synthesized by PCR from genomic DNA extracted from S2R+
cells. The PCR templates contained T7 promoter sequences on both
ends and were amplified using primers pairs listed in Supplementary
Table 5. dsRNAs were transcribed from PCR-generated templates
using the T7 Megascript kit (Ambion) according to manufacturer’s
instructions. For RNAi-mediated knockdown, S2R+ cells were plated in
6 well plates with 1mL of serum-free, antibiotic-free Schneider’s
medium + L-glutamine. 30μg of each dsRNA were added to the
medium and cells were incubated with gentle rotation at 25˚C for 1 h.
Following incubation, 1mL of complete medium was added and cells
were incubated at 25˚C. After 24 h, the medium was removed. This
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procedure was repeated once every 24 h for a total of 96 h. For
Arrow knockdown, an equivalent amount of Arrow-4 and Arrow-5
dsRNA (15μg of each) were mixed and added to the medium;
30μg of the white dsRNA control was used. On the 5th day of dsRNA
treatment (at 96 h), cells were lysed via the RIPA lysis method
described below.

Immunoblotting and immunoprecipitation
Immunoblotting. At 48 h post-transfection, S2R+ cells were resus-
pended in media and spun at 400Xg for 2mins. The media was aspi-
rated, the cells were washed with 1ml of cold 1X PBS and then spun
at 400Xg for 2mins. The PBS was then aspirated and the pellet
was resuspended in 100μl RIPA buffer (50mM Tris pH 7.5, 500mM
NaCl, 0.1% Triton, 1% NP-40, 0.1% SDS, supplemented with 1X
protease inhibitor cocktail) or NP-40 lysis buffer (50mM Tris-HCl pH
8.0, 100mM NaCl, 1% NP-40, 10% glycerol, 1.5mM EDTA pH 8.0).
Lysates were incubated on ice for 15min and then spun at maximum
speed at 4˚C for 15min. Lysates were stored at −20˚C. Quantification
of immunoblots was performed with ImageJ.

Immunoprecipitation. HEK293T cells were transfected with 3.5 μg
each of V5-tagged Usp46, Uaf1 andWdr20 plasmids, and 5μg of either
Arrow-FLAGor empty vector using calciumphosphate. After 48 h, cells
were lysedusingnon-denaturing lysis buffer (NDLB; 50mMTris pH7.5,
300mMNaCl, 1% TritonX-100, 5mMEDTA, 0.2 g/L sodiumazide). Cell
lysates were immunoprecipitated using FLAGM2 affinity agarose resin
(Sigma), which were washed five times in NDLB, and bound protein
eluted into sample buffer. Lysates and immunoprecipitated protein
were probed with FLAG, V5, and GAPDH antibodies.

Ubiquitylation assays
HEK293T cells were co-transfected with HA-ubiquitin and FLAG-Arrow
plasmids, along with either empty vector or V5-tagged Drosophila
Usp46, Uaf1 and Wdr20 plasmids. 2μg of each plasmid, or the
equivalent amount of empty vector were used for each transfection.
Transfected cellswere treatedwith 100 nMbafilomycinA for 16 hprior
to lysis. Cell lysates were immunoprecipitated with HA antibody
(12CA5) conjugated to Protein A/G agarose beads, and elutions were
probed with FLAG antibody and V5 antibody. S2R+ cells were trans-
fected with either empty vector or HA-tagged Drosophila Usp46, Uaf1
andWdr20 plasmids. At 48 h post-transfection, cells were treated with
MG132 (100um) and bafilomycin (100 nm) for 4 h prior to lysis. Cells
were harvested and lysed in NP-40 lysis buffer (50mMTris-HCl pH 8.0,
100mM NaCl, 1% NP-40, 10% glycerol, 1.5mM EDTA pH 8.0 and sup-
plemented with 1X Roche protease inhibitor cocktail). Lysates were
incubated with Arrow antibody or IgG control overnight at 4˚C, fol-
lowed by incubation with protein A/G-Sepharose beads (Santa Cruz)
for 1 h at 4˚C. Beadswerewashed three timeswithwash buffer (50mM
Tris-HCl pH8.0, 150mMNaCl, 1%NP-40, 10%glycerol, 1.5mMEDTApH
8.0) supplemented with Roche protease inhibitor cocktail (1:100) and
boiled in 4X sample buffer supplemented with 1M DTT. Samples were
resolved by SDS-PAGE and immunoblotted with the indicated
antibodies.

Antibodies for immunoblotting and immunoprecipitation
The primary antibodies used were mouse ubiquitin (1:500, P4D1, cat-
alog #sc-8017) and mouse IgG (1 ug per ml, catalog #sc-2025) from
Santa Cruz Biotechnology, rabbit FLAG (1:1000, catalog #20543-1-AP)
from Proteintech, rabbit V5 (1:1000, D3H8Q, catalog # 13202) from
Cell Signaling Technology, mouse GAPDH (1:500, 2G7) from the
Developmental Studies Hybridoma Bank, rat HA (1:2000 for IB, 3F10,
catalog #11867423001) from Roche, mouse HA (4ul per mg protein
for IP, 12CA5, catalog #MA1-12429) from Thermo Fisher Scientific,
mouse alpha-tubulin (1:10000, DM1A, catalog #T6199) from Sigma,
and guinea pig Arrow (1:1000 for IB and 1:500 for IP)85. The secondary

antibodies used were HRP-conjugated goat anti-mouse (1:10000, cat-
alog #STAR207P) and goat anti-rat (1:10000, catalog #5204-2504)
from BioRad, and goat anti-guinea pig (1:10000, catalog #6090-05)
from SouthernBiotech.

Antibodies for immunostaining
The primary antibodies used were mouse Discs Large (1:50, 4F3),
mouse Armadillo (1:50, N27A1), mouse Prospero (1:100, MR1A), mouse
Wingless (1:500, 4D4), and mouse Engrailed (1:50, 4D9) from the
Developmental Studies Hybridoma Bank, chicken GFP (1:10000 cata-
log # ab13970) from Abcam, rabbit GFP (1:500, catalog # A-11122) and
mouse V5 (1:500, SV5-Pk1, catalog # R960-25) from Thermo Fisher
Scientific, rabbit dsRed (1:500 for Scar-Sens, catalog # 632496) from
Clontech/TaKaRa, mouse beta-galactosidase (1:500, catalog # Z378B)
from Promega, rabbit phospho-histone H3 (1:1000, Ser10, catalog #
06-570) from Millipore, rabbit Arrow (1:5000)86 and guinea pig Sen-
seless (1:2000)33. The secondary antibodies used were goat or donkey
Alexa Fluor 488, 555, or 647 conjugates (1:500) from Invitrogen, and
goat or donkey Cy5 conjugates (1:500) fromLife Technologies/Jackson
Immunochemicals.

Cell-surface biotinylation
S2R+ cells were prepared by resuspension in media and spun at 700 g
for 5min at 4˚C. Cells were then washed 3X with 5ml pre-chilled
modified PBS (1X PBS supplemented with 0.9mM CaCl2 and 0.5mM
MgCl2) on ice. Cell surface proteins were biotinylated with 0.5mg/ml
EZ link Sulfo-NHS-SS-Biotin (Thermo Fisher Scientific) dissolved in
modified PBS for 2 h with gentle rocking at 4˚C. The reaction
wasquenched bywashing the cells 3Xwith 5ml of ice-cold 50mMTris-
HCl (pH 7.4) for 10min with gentle rocking at 4˚C. Cells were then
lysed in RIPA lysis buffer (50mM Tris-HCl pH 7.4, 150mM NaCl, 1%
Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1mM EDTA, sup-
plemented with 1X Roche protease cocktail). Lysates were sonicated
for 30 seconds and then centrifuged at 14,000 g for 10min at 4˚C.
After centrifugation, biotinylated proteins were pulled down with
NeutrAvidin agarose beads (Pierce), and analyzed by SDS-PAGE, fol-
lowed by immunoblotting.

Lifespan assay
For the lifespan assay, wild-type or Usp46,Wdr20, or Uaf1mutant flies
between 1 and 4 days after eclosion were placed in empty vials con-
taining a 5 × 2.5 cm piece of filter paper soaked with 400 µl of a 5%
sucrose solution. Up to fifteen flies were placed in each vial and reared
at 29 °C. Flies were transferred to new vials with fresh sucrose solution
each day and the number of survivors counted. Lifespan curves and
statistical analysis were performed using OASIS 2 (Online Application
for Survival Analysis 2)87.

Quantification, Statistics and Reproducibility
For quantification of progenitor cells in the adult midgut, esg >GFP or
esg-lacZ positive cells in a field of 0.051mm2 in the R5 region were
counted. For quantification of enteroblasts, GBE-Su(H)-lacZ-positive
cells in a field of 0.051mm2 in the R5 region or R4/R5 boundary were
counted.

A minimum of three independent replicates were performed for
each experiment. Statistical tests were performed using Prism 9
(GraphPad Software, USA) or the GIGA P-value Calculator (https://
www.gigacalculator.com/calculators/p-value-significance-
calculator.php).

Quantification of fz3-GFP intensity was performed with image
analysis tools in NIS-Elements software, AR5.30.01.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All data supporting the findings of this study are available within the
published article and the Supplementary Information files. Raw data
and original gel images are included in the Source Data file, which is
provided with this paper.
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