
Article https://doi.org/10.1038/s41467-023-41553-7

A GPU-based computational framework that
bridges neuron simulation and artificial
intelligence

Yichen Zhang 1,8, Gan He 1,8, Lei Ma 1,2,8, Xiaofei Liu1,3, J. J. Johannes Hjorth4,
Alexander Kozlov4,5, Yutao He1, Shenjian Zhang1,
Jeanette Hellgren Kotaleski 4,5, Yonghong Tian 1,6, Sten Grillner 5,
Kai Du 7 & Tiejun Huang 1,2,7

Biophysically detailed multi-compartment models are powerful tools to
explore computational principles of the brain and also serve as a theoretical
framework to generate algorithms for artificial intelligence (AI) systems.
However, the expensive computational cost severely limits the applications in
both the neuroscience and AI fields. The major bottleneck during simulating
detailed compartment models is the ability of a simulator to solve large sys-
tems of linear equations. Here, we present a novel Dendritic Hierarchical
Scheduling (DHS) method to markedly accelerate such a process. We theo-
retically prove that the DHS implementation is computationally optimal and
accurate. This GPU-based method performs with 2-3 orders of magnitude
higher speed than that of the classic serial Hines method in the conventional
CPU platform. We build a DeepDendrite framework, which integrates the DHS
method and the GPU computing engine of the NEURON simulator and
demonstrate applications of DeepDendrite in neuroscience tasks. We investi-
gate how spatial patterns of spine inputs affect neuronal excitability in a
detailed human pyramidal neuronmodel with 25,000 spines. Furthermore, we
provide a brief discussion on the potential of DeepDendrite for AI, specifically
highlighting its ability to enable the efficient training of biophysically detailed
models in typical image classification tasks.

Deciphering the coding and computational principles of neurons is
essential to neuroscience. Mammalian brains are composed of more
than thousands of different types of neurons with unique morpholo-
gical and biophysical properties. Even though it is no longer con-
ceptually true, the “point-neuron” doctrine1, in which neurons were
regarded as simple summing units, is still widely applied in neural

computation, especially in neural network analysis. In recent years,
modern artificial intelligence (AI) has utilized this principle and
developed powerful tools, such as artificial neural networks (ANN)2.
However, in addition to comprehensive computations at the single
neuron level, subcellular compartments, such as neuronal dendrites,
can also carry out nonlinear operations as independent computational

Received: 30 June 2022

Accepted: 8 September 2023

Check for updates

1National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing 100871, China. 2Beijing Academy of
Artificial Intelligence (BAAI), Beijing 100084, China. 3School of Information Science and Engineering, Yunnan University, Kunming 650500, China. 4Science
for Life Laboratory, School of Electrical Engineering and Computer Science, Royal Institute of Technology KTH, Stockholm SE-10044, Sweden. 5Department
of Neuroscience, Karolinska Institute, Stockholm SE-17165, Sweden. 6School of Electrical and Computer Engineering, Shenzhen Graduate School, Peking
University, Shenzhen 518055, China. 7Institute for Artificial Intelligence, Peking University, Beijing 100871, China. 8These authors contributed equally: Yichen
Zhang, Gan He, and Lei Ma. e-mail: kai.du@pku.edu.cn

Nature Communications | (2023) 14:5798 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5118-4378
http://orcid.org/0000-0002-5118-4378
http://orcid.org/0000-0002-5118-4378
http://orcid.org/0000-0002-5118-4378
http://orcid.org/0000-0002-5118-4378
http://orcid.org/0000-0001-5746-8737
http://orcid.org/0000-0001-5746-8737
http://orcid.org/0000-0001-5746-8737
http://orcid.org/0000-0001-5746-8737
http://orcid.org/0000-0001-5746-8737
http://orcid.org/0000-0001-6024-3854
http://orcid.org/0000-0001-6024-3854
http://orcid.org/0000-0001-6024-3854
http://orcid.org/0000-0001-6024-3854
http://orcid.org/0000-0001-6024-3854
http://orcid.org/0000-0002-0550-0739
http://orcid.org/0000-0002-0550-0739
http://orcid.org/0000-0002-0550-0739
http://orcid.org/0000-0002-0550-0739
http://orcid.org/0000-0002-0550-0739
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-8951-3691
http://orcid.org/0000-0002-8951-3691
http://orcid.org/0000-0002-8951-3691
http://orcid.org/0000-0002-8951-3691
http://orcid.org/0000-0002-8951-3691
http://orcid.org/0000-0002-7505-1561
http://orcid.org/0000-0002-7505-1561
http://orcid.org/0000-0002-7505-1561
http://orcid.org/0000-0002-7505-1561
http://orcid.org/0000-0002-7505-1561
http://orcid.org/0000-0002-4234-6099
http://orcid.org/0000-0002-4234-6099
http://orcid.org/0000-0002-4234-6099
http://orcid.org/0000-0002-4234-6099
http://orcid.org/0000-0002-4234-6099
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41553-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41553-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41553-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41553-7&domain=pdf
mailto:kai.du@pku.edu.cn

units3–7. Furthermore, dendritic spines, small protrusions that densely
cover dendrites in spiny neurons, can compartmentalize synaptic
signals, allowing them to be separated from their parent dendrites ex
vivo and in vivo8–11.

Simulations using biologically detailed neurons provide a theo-
retical framework for linking biological details to computational
principles. The core of the biophysically detailed multi-compartment
model framework12,13 allows us to model neurons with realistic den-
dritic morphologies, intrinsic ionic conductance, and extrinsic synap-
tic inputs. The backbone of the detailed multi-compartment model,
i.e., dendrites, is built upon the classical Cable theory12, which models
the biophysical membrane properties of dendrites as passive cables,
providing a mathematical description of how electronic signals invade
and propagate throughout complex neuronal processes. By incor-
porating Cable theory with active biophysical mechanisms such as ion
channels, excitatory and inhibitory synaptic currents, etc., a detailed
multi-compartment model can achieve cellular and subcellular neu-
ronal computations beyond experimental limitations4,7.

In addition to its profound impact on neuroscience, biologically
detailed neuron models recently were utilized to bridge the gap
between neuronal structural and biophysical details and AI. The pre-
vailing technique in the modern AI field is ANNs consisting of point
neurons, an analog to biological neural networks. Although ANNs with
“backpropagation-of-error” (backprop) algorithm achieve remarkable
performance in specialized applications, even beating top human
professional players in the games of Go and chess14,15, the human brain
still outperforms ANNs in domains that involve more dynamic and
noisy environments16,17. Recent theoretical studies suggest that den-
dritic integration is crucial in generating efficient learning algorithms
that potentially exceed backprop in parallel information
processing18–20. Furthermore, a single detailed multi-compartment
model can learn network-level nonlinear computations for point neu-
rons by adjusting only the synaptic strength21,22, demonstrating the full
potential of the detailed models in building more powerful brain-like
AI systems. Therefore, it is of high priority to expand paradigms in
brain-like AI from single detailed neuron models to large-scale biolo-
gically detailed networks.

One long-standing challenge of the detailed simulation approach
lies in its exceedingly high computational cost, which has severely
limited its application to neuroscience and AI. Themajor bottleneck of
the simulation is to solve linear equations based on the foundational
theories of detailed modeling12,23,24. To improve efficiency, the classic
Hinesmethod reduces the time complexity for solving equations from
O(n3) to O(n), which has been widely applied as the core algorithm in
popular simulators such as NEURON25 and GENESIS26. However, this
method uses a serial approach to process each compartment
sequentially. When a simulation involves multiple biophysically
detailed dendrites with dendritic spines, the linear equation matrix
(“Hines Matrix”) scales accordingly with an increasing number of
dendrites or spines (Fig. 1e), makingHinesmethod no longer practical,
since it poses a very heavy burden on the entire simulation.

During past decades, tremendous progress has been achieved to
speed up the Hines method by using parallel methods at the cellular
level, which enables to parallelize the computation of different parts in
each cell27–32. However, current cellular-level parallel methods often
lack an efficient parallelization strategy or lack sufficient numerical
accuracy as compared to the original Hines method.

Here, we develop a fully automatic, numerically accurate, and
optimized simulation tool that can significantly accelerate computa-
tion efficiency and reduce computational cost. In addition, this simu-
lation tool can be seamlessly adopted for establishing and testing
neural networks with biological details for machine learning and AI
applications. Critically, we formulate the parallel computation of the
Hines method as a mathematical scheduling problem and generate a
Dendritic Hierarchical Scheduling (DHS) method based on

combinatorial optimization33 and parallel computing theory34. We
demonstrate that our algorithm provides optimal scheduling without
any loss of precision. Furthermore, we have optimized DHS for the
currently most advanced GPU chip by leveraging the GPU memory
hierarchy and memory accessing mechanisms. Together, DHS can
speed up computation 60-1,500 times (Supplementary Table 1) com-
pared to the classic simulator NEURON25 while maintaining identical
accuracy.

To enable detailed dendritic simulations for use in AI, we next
establish the DeepDendrite framework by integrating the DHS-
embedded CoreNEURON (an optimized compute engine for NEU-
RON) platform35 as the simulation engine and two auxiliarymodules (I/
O module and learning module) supporting dendritic learning algo-
rithms during simulations. DeepDendrite runs on the GPU hardware
platform, supporting both regular simulation tasks in neuroscience
and learning tasks in AI.

Last but not least, we also present several applications using
DeepDendrite, targeting a few critical challenges in neuroscience and
AI: (1) We demonstrate how spatial patterns of dendritic spine inputs
affect neuronal activities with neurons containing spines throughout
the dendritic trees (full-spine models). DeepDendrite enables us to
explore neuronal computation in a simulated human pyramidal neu-
ron model with ~25,000 dendritic spines. (2) In the discussion we also
consider the potential of DeepDendrite in the context of AI, specifi-
cally, in creating ANNs with morphologically detailed human pyr-
amidal neurons. Our findings suggest that DeepDendrite has the
potential to drastically reduce the training duration, thus making
detailed network models more feasible for data-driven tasks.

All source code for DeepDendrite, the full-spine models and the
detailed dendritic network model are publicly available online (see
Code Availability). Our open-source learning framework can be readily
integrated with other dendritic learning rules, such as learning rules
for nonlinear (full-active) dendrites21, burst-dependent synaptic
plasticity20, and learning with spike prediction36. Overall, our study
provides a complete set of tools that have the potential to change the
current computational neuroscience community ecosystem. By
leveraging the power of GPU computing, we envision that these tools
will facilitate system-level explorations of computational principles of
the brain’s fine structures, as well as promote the interaction between
neuroscience and modern AI.

Results
Dendritic Hierarchical Scheduling (DHS) method
Computing ionic currents and solving linear equations are two critical
phases when simulating biophysically detailed neurons, which are
time-consuming and pose severe computational burdens. Fortunately,
computing ionic currents of each compartment is a fully independent
process so that it can be naturally parallelized on devices withmassive
parallel-computing units like GPUs37. As a consequence, solving linear
equations becomes the remaining bottleneck for the parallelization
process (Fig. 1a–f).

To tackle this bottleneck, cellular-level parallel methods have
been developed, which accelerate single-cell computation by “split-
ting” a single cell into several compartments that can be computed in
parallel27,28,38. However, suchmethods rely heavily on prior knowledge
to generate practical strategies on how to split a single neuron into
compartments (Fig. 1g−i; Supplementary Fig. 1). Hence, it becomes less
efficient for neurons with asymmetrical morphologies, e.g., pyramidal
neurons and Purkinje neurons.

We aim to develop a more efficient and precise parallel method
for the simulation of biologically detailed neural networks. First, we
establish the criteria for the accuracy of a cellular-level parallel
method. Based on the theories in parallel computing34, we propose
three conditions to make sure a parallel method will yield identical
solutions as the serial computing Hines method according to the data

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 2

......

......

..........

......

......

..........

Initialize

Set up equations

Solve equations

Update states

End
G v i

1 2

7

109

0

5

6

8

13

14

11

12

3 4

:
Triangularize
Back-substitute

Simplified model Pyramidal model Pyramidal model with spines

matrix size:
(8, 8) matrix size:

(838, 838)

C
om

pu
ta

tio
n

co
st

 (#
 o

f s
te

ps
)

0

1.0

2.0

30

40

Neuron types

Computation cost of Hines method

Pyra
mida

l

with
 sp

ine
s

36,218

Pyra
mida

l

838

Purk
inj

e

3,221

CA3b

590

1,413

CA1

709

Mitra
l

268

SPN

x10³

...

Serial Hines
mehtod

Branch based
parallelize

Dendritic Hierarchical
Scheduling

Cost of different methods

36,218

23,262

1,135
0

10

20

30

40 x10³

C
om

pu
ta

tio
n

co
st

 (#
 o

f s
te

ps
)

Hines Branch based DHS

Run time of simulating 1 s

p-Hines Branch based DHS

5,236.0

2,138.6

164.2
0

1.5

3.0

4.5

6.0 x10³

R
un

 ti
m

e
(s

)

a b c d

e f

g h i

matrix size:
(36,218, 36,218)

Fig. 1 | Accelerate simulation of biophysically detailed neuron models. a A
reconstructed layer-5 pyramidal neuronmodel and themathematical formula used
with detailed neuron models. b Workflow when numerically simulating detailed
neuronmodels. The equation-solvingphase is the bottleneck in the simulation. cAn
example of linear equations in the simulation. d Data dependency of the Hines
method when solving linear equations in c. e The size of the Hines matrix scales
with model complexity. The number of linear equations system to be solved
undergoes a significant increase when models are growing more detailed.
fComputational cost (steps taken in the equation solving phase) of the serial Hines
method on different types of neuron models. g Illustration of different solving

methods. Different parts of a neuron are assigned to multiple processing units in
parallel methods (mid, right), shown with different colors. In the serial method
(left), all compartments are computedwith one unit.hComputational cost of three
methods in g when solving equations of a pyramidal model with spines. i Run time
of different methods on solving equations for 500 pyramidal models with spines.
The run time indicates the time consumption of 1 s simulation (solving the equation
40,000 times with a time step of 0.025ms). p-Hines parallel method in Cor-
eNEURON (on GPU), Branch based branch-based parallel method (on GPU), DHS
Dendritic hierarchical scheduling method (on GPU).

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 3

dependency in the Hines method (see Methods). Then to theoretically
evaluate the run time, i.e., efficiency, of the serial and parallel com-
puting methods, we introduce and formulate the concept of compu-
tational cost as the number of steps a method takes in solving
equations (see Methods).

Based on the simulation accuracy and computational cost, we
formulate the parallelization problem as a mathematical scheduling
problem (see Methods). In simple terms, we view a single neuron as a
tree with many nodes (compartments). For k parallel threads, we can
compute atmost k nodes at each step, but we need to ensure a node is
computedonly if all its childrennodes havebeenprocessed; our goal is

to find a strategy with the minimum number of steps for the entire
procedure.

To generate an optimal partition, we propose a method called
Dendritic Hierarchical Scheduling (DHS) (theoretical proof is pre-
sented in theMethods). The key idea of DHS is to prioritize deep nodes
(Fig. 2a), which results in a hierarchical schedule order. The DHS
method includes two steps: analyzing dendritic topology and finding
the best partition: (1) Given a detailed model, we first obtain its cor-
respondingdependency tree and calculate thedepth of eachnode (the
depth of a node is the number of its ancestor nodes) on the tree
(Fig. 2b, c). (2) After topology analysis, we search the candidates and

109

1412

1311

109 1412

71 1311

Threads number

R
el

at
iv

e
co

st

f
1.0
0.8
0.6
0.4
0.2

0
1 2 4 8 16 32

Pyramidal 1.0
0.8
0.6
0.4
0.2

0
1 2 4 8 16 32

Purkinje 1.0
0.8
0.6
0.4
0.2

0
1 2 4 8 16 32

CA3b

1.0
0.8
0.6
0.4
0.2

0
1 2 4 8 16 32

CA1 1.0
0.8
0.6
0.4
0.2

0
1 2 4 8 16 32

Mitral 1.0
0.8
0.6
0.4
0.2

0
1 2 4 8 16 32

SPN

Proximal

Distal

Start

End

Analyze the topology

Get all candidate nodes

Select k deepest
candidates

0
Depth

1

2

3

4

5

0

1 2 3

7

54

8

6

1 2

7

0

5

6

3 4

9 10 11 13

8

1412

d

Candidates Selected candidates Processed nodes

0

1 2 3

7

109

54

1412

1311

8

6

1 2 3

7

109

54

1412

1311

8

6

0 0

1 2 3

7

109

54

1412

1311

8

6

0

1 2 3

109

54

1412

6

87

1311

0

1 2 3

109

54

1412

8

6

7

1311

0

1 2 3

109

54

1412

8

6

7

1311

a cb

t1 t2 t3 t4

step 2

step 1

step 3

step 4

step 5

Former steps Latter steps

e

6

5

32 84

Fig. 2 | Dendritic Hierarchical Scheduling (DHS) method significantly reduces
the computational cost, i.e., computational steps in solving equations. a DHS
work flow. DHS processes k deepest candidate nodes each iteration. b Illustration
of calculating node depth of a compartmental model. The model is first converted
to a tree structure then the depth of each node is computed. Colors indicate
different depth values. c Topology analysis on different neuron models. Six neu-
rons with distinct morphologies are shown here. For each model, the soma is
selectedas the rootof the tree so thedepth of the node increases from the soma (0)
to the distal dendrites.d Illustration of performing DHSon themodel inbwith four

threads. Candidates: nodes that can be processed. Selected candidates: nodes that
are picked by DHS, i.e., the k deepest candidates. Processed nodes: nodes that have
been processed before. e Parallelization strategyobtainedbyDHSafter the process
in d. Each node is assigned to one of the four parallel threads. DHS reduces the
steps of serial node processing from 14 to 5 by distributing nodes to multiple
threads. fRelative cost, i.e., theproportionof the computational cost ofDHS to that
of the serial Hines method, when applying DHS with different numbers of threads
on different types of models.

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 4

pick atmost kdeepest candidate nodes (a node is a candidate only if all
its children nodes have been processed). This procedure repeats until
all nodes are processed (Fig. 2d).

Take a simplified model with 15 compartments as an example,
using the serial computing Hines method, it takes 14 steps to process
all nodes, while using DHS with four parallel units can partition its
nodes into five subsets (Fig. 2d): {{9,10,12,14}, {1,7,11,13}, {2,3,4,8}, {6},
{5}}. Because nodes in the same subset can be processed in parallel, it
takes only five steps to process all nodes using DHS (Fig. 2e).

Next, we apply the DHS method on six representative detailed
neuron models (selected from ModelDB39) with different numbers of
threads (Fig. 2f):, including cortical and hippocampal pyramidal
neurons40–42, cerebellar Purkinje neurons43, striatal projection neurons
(SPN44), and olfactory bulb mitral cells45, covering the major principal
neurons in sensory, cortical and subcortical areas. We then measured
the computational cost. The relative computational cost here is
defined by the proportion of the computational cost of DHS to that of
the serial Hines method. The computational cost, i.e., the number of
steps taken in solving equations, drops dramatically with increasing
thread numbers. For example, with 16 threads, the computational cost
of DHS is 7%-10% as compared to the serial Hinesmethod. Intriguingly,
theDHSmethod reaches the lower bounds of their computational cost
for presented neurons when given 16 or even 8 parallel threads
(Fig. 2f), suggesting adding more threads does not improve perfor-
mance further because of the dependencies between compartments.

Together, we generate a DHS method that enables automated
analysis of the dendritic topology and optimal partition for parallel
computing. It is worth noting that DHS finds the optimal partition
before the simulation starts, and no extra computation is needed to
solve equations.

Speeding up DHS by GPU memory boosting
DHS computes each neuron with multiple threads, which consumes a
vast amount of threads when running neural network simulations.
Graphics Processing Units (GPUs) consist of massive processing units
(i.e., streaming processors, SPs, Fig. 3a, b) for parallel computing46. In
theory, many SPs on the GPU should support efficient simulation for
large-scale neural networks (Fig. 3c). However, we consistently
observed that the efficiency of DHS significantly decreased when the
network size grew, which might result from scattered data storage or
extra memory access caused by loading and writing intermediate
results (Fig. 3d, left).

We solve this problem by GPU memory boosting, a method to
increase memory throughput by leveraging GPU’s memory hierarchy
and access mechanism. Based on the memory loading mechanism of
GPU, successive threads loading aligned and successively-stored data
lead to a high memory throughput compared to accessing scatter-
stored data, which reduces memory throughput46,47. To achieve high
throughput, we first align the computing orders of nodes and rear-
range threads according to the number of nodes on them. Then we
permute data storage in global memory, consistent with computing
orders, i.e., nodes that are processed at the same step are stored
successively in global memory. Moreover, we use GPU registers to
store intermediate results, further strengtheningmemory throughput.
The example shows that memory boosting takes only two memory
transactions to load eight request data (Fig. 3d, right). Furthermore,
experiments on multiple numbers of pyramidal neurons with spines
and the typical neuron models (Fig. 3e, f; Supplementary Fig. 2) show
that memory boosting achieves a 1.2-3.8 times speedup as compared
to the naïve DHS.

To comprehensively test the performance of DHS with GPU
memory boosting, we select six typical neuron models and evaluate
the run time of solving cable equations on massive numbers of each
model (Fig. 4). We examined DHS with four threads (DHS-4) and six-
teen threads (DHS-16) for each neuron, respectively. Compared to the

GPUmethod in CoreNEURON,DHS-4 andDHS-16 can speedup about 5
and 15 times, respectively (Fig. 4a). Moreover, compared to the con-
ventional serial Hinesmethod in NEURON runningwith a single-thread
of CPU, DHS speeds up the simulation by 2-3 orders of magnitude
(Supplementary Fig. 3), while retaining the identical numerical accu-
racy in the presence of dense spines (Supplementary Figs. 4 and 8),
active dendrites (Supplementary Fig. 7) and different segmentation
strategies (Supplementary Fig. 7).

DHS creates cell-type-specific optimal partitioning
To gain insights into the working mechanism of the DHS method, we
visualized the partitioning process bymapping compartments to each
thread (every color presents a single thread in Fig. 4b, c). The visuali-
zation shows that a single thread frequently switches among different
branches (Fig. 4b, c). Interestingly, DHS generates aligned partitions in
morphologically symmetric neurons such as the striatal projection
neuron (SPN) and the Mitral cell (Fig. 4b, c). By contrast, it generates
fragmented partitions ofmorphologically asymmetric neurons like the
pyramidal neurons and Purkinje cell (Fig. 4b, c), indicating that DHS
splits the neural tree at individual compartment scale (i.e., tree node)
rather than branch scale. This cell-type-specific fine-grained partition
enables DHS to fully exploit all available threads.

In summary, DHS and memory boosting generate a theoretically
proven optimal solution for solving linear equations in parallel with
unprecedented efficiency. Using this principle, we built the open-
access DeepDendrite platform, which can be utilized by neuroscien-
tists to implement models without any specific GPU programming
knowledge. Below, we demonstrate how we can utilize DeepDendrite
in neuroscience tasks. We also discuss the potential of the DeepDen-
drite framework for AI-related tasks in the Discussion section.

DHS enables spine-level modelling
As dendritic spines receivemost of the excitatory input to cortical and
hippocampal pyramidal neurons, striatal projection neurons, etc.,
their morphologies and plasticity are crucial for regulating neuronal
excitability10,48–51. However, spines are too small (~ 1 μm length) to be
directly measured experimentally with regard to voltage-dependent
processes. Thus, theoretical work is critical for the full understanding
of the spine computations.

We can model a single spine with two compartments: the spine
headwhere synapses are located and the spineneck that links the spine
head to dendrites52. The theory predicts that the very thin spine neck
(0.1-0.5 um in diameter) electronically isolates the spine head from its
parent dendrite, thus compartmentalizing the signals generated at the
spine head53. However, the detailedmodel with fully distributed spines
on dendrites (“full-spine model”) is computationally very expensive. A
common compromising solution is to modify the capacitance and
resistance of the membrane by a Fspine factor54, instead of modeling all
spines explicitly. Here, the Fspine factor aims at approximating the spine
effect on the biophysical properties of the cell membrane54.

Inspired by the previous work of Eyal et al. 51, we investigated how
different spatial patterns of excitatory inputs formed on dendritic
spines shape neuronal activities in a human pyramidal neuron model
with explicitly modeled spines (Fig. 5a). Noticeably, Eyal et al.
employed the Fspine factor to incorporate spines into dendrites while
only a few activated spines were explicitly attached to dendrites (“few-
spine model” in Fig. 5a). The value of Fspine in their model was com-
puted from thedendritic area and spine area in the reconstructeddata.
Accordingly, we calculated the spine density from their reconstructed
data to make our full-spine model more consistent with Eyal’s few-
spine model. With the spine density set to 1.3 μm-1, the pyramidal
neuron model contained about 25,000 spines without altering the
model’s original morphological and biophysical properties. Further,
we repeated the previous experiment protocols with both full-spine
and few-spinemodels.Weuse the same synaptic input as in Eyal’swork

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 5

but attach extra background noise to each sample. By comparing the
somatic traces (Fig. 5b, c) and spike probability (Fig. 5d) in full-spine
and few-spine models, we found that the full-spine model is much
leakier than the few-spine model. In addition, the spike probability
triggered by the activation of clustered spines appeared to be more

nonlinear in the full-spine model (the solid blue line in Fig. 5d) than in
the few-spine model (the dashed blue line in Fig. 5d). These results
indicate that the conventional F-factormethodmay underestimate the
impact of dense spine on the computations of dendritic excitability
and nonlinearity.

Registers

Streaming Processor Group

Streaming Processor

L1 / shared memory

SPG SPG

SPG SPG

REG REG

REGREG

SM

Cell number

Sp
ee

d
up

 (1
x)

Speed up of memory boosting

3,0002,5001,500 2,000500
1.6

1.7

1.8

1.9

2.0

2.1

1,000

Cell number

R
un

 ti
m

e
(m

s)

Naive DHS Mem. boost DHS

Run time

500 1,000 1,500 2,000 2,500 3,000
0

5

10

15

20

0

1 2 3

7

109

54

1412

1311

8

6

10

3

7

8

14

13

12

11

4

9

1

2

5

6

Neuron 1

t1 t2 t3 t4

15

16 17

21

23

1918

2524

22

20

18

23

22

25

21

24

19

17

16

20

Neuron 2

t5 t6 t7 t8

cb

f

e

10

3

7

8

14

13

12

11

4

9

1

2

5

6

18

23

22

25

21

24

19

17

16

20

Original data storage

...0,1,2,3,4,5,6,7,8...

9

1

2

5

6

10

3

7

12

11

4 8

14

13

19

17

16

20

18

23

21

24

22

25

Boosting data storage

...5,6,19,2,20,3,4,8,1...

Data request Data flow

REG

L1 cache

L2 cache

SPG

9,16,19,12 14,23,24,25

Intermediate results

Global memory

9,
16

,1
9,

12
,1

4,
23

,2
4,

25

L1 cache

L2 cache

SPG

Global memory

......

............

...
...

......

1,
7,

11
,1

3,
16

,2
3,

24
,2

5

0,1,2,3

24,25,26,27

...
...

inter.

inter.

1 7

d

a

GPCGPC

L2 cache

GPU

Global memory

Fast Slow

GPC

GPCGPC GPC

Fig. 3 | GPU memory boosting further accelerates DHS. a GPU architecture and
its memory hierarchy. Each GPU contains massive processing units (stream pro-
cessors). Different types of memory have different throughput. b Architecture of
Streaming Multiprocessors (SMs). Each SM contains multiple streaming pro-
cessors, registers, and L1 cache. c Applying DHS on two neurons, each with four
threads. During simulation, each thread executes on one stream processor.
d Memory optimization strategy on GPU. Top panel, thread assignment and data
storage of DHS, before (left) and after (right) memory boosting. Bottom, an
example of a single step in triangularization when simulating two neurons in d.

Processors send a data request to load data for each thread from global memory.
Withoutmemory boosting (left), it takes seven transactions to load all request data
and some extra transactions for intermediate results. With memory boosting
(right), it takes only two transactions to load all request data, registers are used for
intermediate results, which further improve memory throughput. e Run time of
DHS (32 threads each cell) with and without memory boosting on multiple layer 5
pyramidal models with spines. f Speed up of memory boosting on multiple layer 5
pyramidal models with spines. Memory boosting brings 1.6-2 times speedup.

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 6

t�

t�

t�

t��

t�

t�

t�

t	

t

t�

t��

t��

t��

t��

t��

t��

DHS-16DHS-4
a b c

0

10

20

30 SPN

R
un

 ti
m

e
(s

)

Cell number
500 1,000 1,500 2,000 2,500 3,000

0

200

300

400

500

100

R
un

 ti
m

e
(s

)

Cell number

Purkinje

500 1,000 1,500 2,000 2,500 3,000

R
un

 ti
m

e
(s

)

Cell number
0

50

100

150

200 CA1

500 1,000 1,500 2,000 2,500 3,000

0

20

40

60

80

R
un

 ti
m

e
(s

)

Cell number

CA3b

500 1,000 1,500 2,000 2,500 3,000

0

25

50

75

100

Cell number

R
un

 ti
m

e
(s

)

Mitral

500 1,000 1,500 2,000 2,500 3,000

0

30

60

90

120

R
un

 ti
m

e
(s

)

Cell number

Pyramidal

500 1,000 1,500 2,000 2,500 3,000

CoreNEURON DHS-4 DHS-16

Fig. 4 | DHS enables cell-type-specific finest partition. a Run time of solving
equations for a 1 s simulation on GPU (dt = 0.025ms, 40,000 iterations in total).
CoreNEURON: the parallel method used in CoreNEURON; DHS-4: DHS with four

threads for each neuron; DHS-16: DHS with 16 threads for each neuron.
b, cVisualization of the partition byDHS-4 andDHS-16, each color indicates a single
thread. During computation, each thread switches among different branches.

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 7

c

t = 549.9 ms t = 549.9 ms

-80

-60

-40

-20

t = 536.1 ms t = 536.1 ms

Vo
lta

ge
 (m

V)

a

d e

b

34.51

NEURON
Core

-

NEURON

NEURON
Core

-

NEURON

1

0

3

5

R
un

 ti
m

e
(s

)

40

0

80

120
111,068

9,443.9

4,535.43

231.47
1,153.53

x10³ x10³Full spine Few spine

Full spine distributed

Few spine clustered
Few spine distributed
Full spine clustered

0
0.0

0.2

0.4

0.6

0.8

1.0

40 80 120
Number of synapses

S
pi

ke
 p

ro
ba

bi
lit

y

160 200 240

Few spine Full spine

Dee
p-

Den
dri

te
Dee

p-

Den
dri

te

Fig. 5 | DHS enables spine-level modeling. a Experiment setup. We examine two
major types of models: few-spine models and full-spine models. Few-spine models
(twoon the left) are themodels that incorporated spine area globally into dendrites
and only attach individual spines together with activated synapses. In full-spine
models (two on the right), all spines are explicitly attached over whole dendrites.
We explore the effects of clustered and randomlydistributed synaptic inputs on the
few-spine models and the full-spine models, respectively. b Somatic voltages
recorded for cases in a. Colors of the voltage curves correspond to a, scale bar:

20ms, 20mV. c Color-coded voltages during the simulation in b at specific times.
Colors indicate themagnitude of voltage. d Somatic spike probability as a function
of the number of simultaneously activated synapses (as in Eyal et al.’swork) for four
cases in a. Background noise is attached. e Run time of experiments in d with
different simulation methods. NEURON: conventional NEURON simulator running
on a single CPU core. CoreNEURON: CoreNEURON simulator on a single GPU.
DeepDendrite: DeepDendrite on a single GPU.

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 8

In the DeepDendrite platform, both full-spine and few-spine
models achieved 8 times speedup compared to CoreNEURON on the
GPU platform and 100 times speedup compared to serial NEURON on
the CPU platform (Fig. 5e; Supplementary Table 1) while keeping the
identical simulation results (Supplementary Figs. 4 and 8). Therefore,
the DHS method enables explorations of dendritic excitability under
more realistic anatomic conditions.

Discussion
In this work, we propose the DHS method to parallelize the compu-
tation of Hines method55 and we mathematically demonstrate that the
DHS provides an optimal solution without any loss of precision. Next,
we implement DHS on the GPU hardware platform and use GPU
memory boosting techniques to refine the DHS (Fig. 3). When simu-
lating a large number of neurons with complex morphologies, DHS
with memory boosting achieves a 15-fold speedup (Supplementary
Table 1) as compared to the GPUmethod used in CoreNEURON and up
to 1,500-fold speedup compared to serial Hines method in the CPU
platform (Fig. 4; Supplementary Fig. 3 and Supplementary Table 1).
Furthermore, we develop the GPU-based DeepDendrite framework by
integrating DHS into CoreNEURON. Finally, as a demonstration of the
capacity of DeepDendrite, we present a representative application:
examine spine computations in a detailed pyramidal neuron model
with 25,000 spines. Further in this section, we elaborate on how we
have expanded the DeepDendrite framework to enable efficient
training of biophysically detailed neural networks. To explore the
hypothesis that dendrites improve robustness against adversarial
attacks56, we train our network on typical image classification tasks.We
show that DeepDendrite can support both neuroscience simulations
and AI-related detailed neural network tasks with unprecedented
speed, therefore significantly promoting detailed neuroscience simu-
lations and potentially for future AI explorations.

Decades of efforts have been invested in speeding up the Hines
method with parallel methods. Early workmainly focuses on network-
level parallelization. In network simulations, each cell independently
solves its corresponding linear equations with the Hines method.
Network-level parallel methods distribute a network on multiple
threads and parallelize the computation of each cell group with each
thread57,58. With network-level methods, we can simulate detailed
networks on clusters or supercomputers59. In recent years, GPU has
been used for detailed network simulation. Because the GPU contains
massive computing units, one thread is usually assigned one cell rather
than a cell group35,60,61. With further optimization, GPU-basedmethods
achieve much higher efficiency in network simulation. However, the
computation inside the cells is still serial in network-level methods, so
they still cannot dealwith the problemwhen the “Hinesmatrix”of each
cell scales large.

Cellular-level parallel methods further parallelize the computa-
tion inside each cell. Themain idea of cellular-level parallel methods is
to split each cell into several sub-blocks and parallelize the computa-
tion of those sub-blocks27,28. However, typical cellular-level methods
(e.g., the “multi-split” method28) pay less attention to the paralleliza-
tion strategy. The lack of a fine parallelization strategy results in
unsatisfactory performance. To achieve higher efficiency, some stu-
dies try to obtain finer-grained parallelization by introducing extra
computation operations29,38,62 or making approximations on some
crucial compartments, while solving linear equations63,64. These finer-
grained parallelization strategies can get higher efficiency but lack
sufficient numerical accuracy as in the original Hines method.

Unlike previous methods, DHS adopts the finest-grained paralle-
lization strategy, i.e., compartment-level parallelization. By modeling
the problem of “how to parallelize” as a combinatorial optimization
problem, DHS provides an optimal compartment-level parallelization
strategy. Moreover, DHS does not introduce any extra operation or
value approximation, so it achieves the lowest computational cost and

retains sufficient numerical accuracy as in the originalHinesmethod at
the same time.

Dendritic spines are the most abundant microstructures in the
brain for projection neurons in the cortex, hippocampus, cerebellum,
and basal ganglia. As spines receivemost of the excitatory inputs in the
central nervous system, electrical signals generated by spines are the
main driving force for large-scale neuronal activities in the forebrain
and cerebellum10,11. The structure of the spine, with an enlarged spine
head and a very thin spine neck—leads to surprisingly high input
impedance at the spinehead,which couldbeup to 500MΩ, combining
experimental data and the detailed compartment modeling
approach48,65. Due to such high input impedance, a single synaptic
input can evoke a “gigantic” EPSP (~ 20mV) at the spine-head level48,66,
thereby boosting NMDA currents and ion channel currents in the
spine11. However, in the classic single detailed compartmentmodels, all
spines are replaced by the F coefficient modifying the dendritic cable
geometries54. This approachmay compensate for the leak currents and
capacitance currents for spines. Still, it cannot reproduce the high
input impedance at the spine head, which may weaken excitatory
synaptic inputs, particularly NMDA currents, thereby reducing the
nonlinearity in the neuron’s input-output curve. Our modeling results
are in line with this interpretation.

On the other hand, the spine’s electrical compartmentalization is
always accompanied by the biochemical compartmentalization8,52,67,
resulting in a drastic increase of internal [Ca2+], within the spine and a
cascade of molecular processes involving synaptic plasticity of
importance for learning and memory. Intriguingly, the biochemical
process triggered by learning, in turn, remodels the spine’s morphol-
ogy, enlarging (or shrinking) the spine head, or elongating (or short-
ening) the spine neck, which significantly alters the spine’s electrical
capacity67–70. Such experience-dependent changes in spine morphol-
ogy also referred to as “structural plasticity”, have been widely
observed in the visual cortex71,72, somatosensory cortex73,74, motor
cortex75, hippocampus9, and the basal ganglia76 in vivo. They play a
critical role inmotor and spatial learning as well asmemory formation.
However, due to the computational costs, nearly all detailed network
models exploit the “F-factor” approach to replace actual spines, and
are thus unable to explore the spine functions at the system level. By
taking advantage of our framework and theGPUplatform,we can run a
few thousand detailed neuronsmodels, eachwith tens of thousands of
spines on a single GPU, while maintaining ~100 times faster than the
traditional serialmethodon a singleCPU (Fig. 5e). Therefore, it enables
us to exploreof structural plasticity in large-scale circuitmodels across
diverse brain regions.

Another critical issue is how to link dendrites to brain functions at
the systems/network level. It has been well established that dendrites
can perform comprehensive computations on synaptic inputs due to
enriched ion channels and local biophysical membrane properties5–7.
For example, cortical pyramidal neurons can carry out sublinear
synaptic integration at the proximal dendrite but progressively shift to
supralinear integration at the distal dendrite77. Moreover, distal den-
drites can produce regenerative events such as dendritic sodium
spikes, calcium spikes, and NMDA spikes/plateau potentials6,78. Such
dendritic events are widely observed in mice6 or even human cortical
neurons79 in vitro, which may offer various logical operations6,79 or
gating functions80,81. Recently, in vivo recordings in awake or behaving
mice provide strong evidence that dendritic spikes/plateau potentials
are crucial for orientation selectivity in the visual cortex82, sensory-
motor integration in the whisker system83,84, and spatial navigation in
the hippocampal CA1 region85.

To establish the causal link between dendrites and animal
(including human) patterns of behavior, large-scale biophysically
detailed neural circuit models are a powerful computational tool to
realize this mission. However, running a large-scale detailed circuit
model of 10,000-100,000 neurons generally requires the computing

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 9

power of supercomputers. It is even more challenging to optimize
such models for in vivo data, as it needs iterative simulations of the
models. The DeepDendrite framework can directly support many
state-of-the-art large-scale circuit models86–88, which were initially
developed based on NEURON. Moreover, using our framework, a sin-
gle GPU card such as Tesla A100 could easily support the operation of
detailed circuit models of up to 10,000 neurons, thereby providing
carbon-efficient and affordable plans for ordinary labs to develop and
optimize their own large-scale detailed models.

Recent works on unraveling the dendritic roles in task-specific
learning have achieved remarkable results in two directions, i.e., sol-
ving challenging tasks such as image classification dataset ImageNet
with simplified dendritic networks20, and exploring full learning
potentials on more realistic neuron21,22. However, there lies a trade-off
between model size and biological detail, as the increase in network
scale is often sacrificed for neuron-level complexity19,20,89. Moreover,
more detailed neuron models are less mathematically tractable and
computationally expensive21.

There has also been progress in the role of active dendrites in
ANNs for computer vision tasks. Iyer et al. 90. proposed a novel ANN
architecture with active dendrites, demonstrating competitive results
in multi-task and continual learning. Jones and Kording91 used a binary
tree to approximate dendrite branching and provided valuable
insights into the influence of tree structure on single neurons’ com-
putational capacity. Bird et al. 92. proposed a dendritic normalization
rule based on biophysical behavior, offering an interesting perspective
on the contribution of dendritic arbor structure to computation.While
these studies offer valuable insights, they primarily rely on abstrac-
tions derived from spatially extended neurons, and do not fully exploit
the detailed biological properties and spatial information of dendrites.
Further investigation is needed to unveil the potential of leveraging
more realistic neuron models for understanding the shared mechan-
isms underlying brain computation and deep learning.

In response to these challenges, we developed DeepDendrite, a
tool that uses the Dendritic Hierarchical Scheduling (DHS) method to
significantly reduce computational costs and incorporates an I/O
module and a learning module to handle large datasets. With Deep-
Dendrite, we successfully implemented a three-layer hybrid neural
network, the Human Pyramidal Cell Network (HPC-Net) (Fig. 6a, b).
This network demonstrated efficient training capabilities in image
classification tasks, achieving approximately 25 times speedup com-
pared to training on a traditional CPU-based platform (Fig. 6f; Sup-
plementary Table 1).

Additionally, it is widely recognized that the performance of
Artificial Neural Networks (ANNs) can be undermined by adversarial
attacks93—intentionally engineered perturbations devised to mislead
ANNs. Intriguingly, an existing hypothesis suggests that dendrites and
synapsesmay innately defend against such attacks56. Our experimental
results utilizing HPC-Net lend support to this hypothesis, as we
observed that networks endowed with detailed dendritic structures
demonstrated some increased resilience to transfer adversarial
attacks94 compared to standard ANNs, as evident in MNIST95 and
Fashion-MNIST96 datasets (Fig. 6d, e). This evidence implies that the
inherent biophysical properties of dendrites could be pivotal in aug-
menting the robustness of ANNs against adversarial interference.
Nonetheless, it is essential to conduct further studies to validate these
findings using more challenging datasets such as ImageNet97.

In conclusion, DeepDendrite has shown remarkable potential in
image classification tasks, opening up a world of exciting future
directions and possibilities. To further advanceDeepDendrite and the
application of biologically detailed dendritic models in AI tasks, we
may focus on developing multi-GPU systems and exploring applica-
tions in other domains, such as Natural Language Processing (NLP),
where dendritic filtering properties align well with the inherently
noisy and ambiguous nature of human language. Challenges include

testing scalability in larger-scale problems, understanding perfor-
mance across various tasks and domains, and addressing the com-
putational complexity introduced by novel biological principles, such
as active dendrites. By overcoming these limitations, we can further
advance the understanding and capabilities of biophysically detailed
dendritic neural networks, potentially uncovering new advantages,
enhancing their robustness against adversarial attacks and noisy
inputs, and ultimately bridging the gap between neuroscience and
modern AI.

Methods
Simulation with DHS
CoreNEURON35 simulator (https://github.com/BlueBrain/CoreNeuron)
uses the NEURON25 architecture and is optimized for both memory
usage and computational speed. We implement our Dendritic Hier-
archical Scheduling (DHS) method in the CoreNEURON environment
bymodifying its source code. Allmodels that can be simulated onGPU
with CoreNEURON can also be simulated with DHS by executing the
following command:

coreneuron_exec -d /path/to/models -e time --cell-permute 3
--cell-nthread 16 --gpu

The usage options are as in Table 1.

Accuracy of the simulation using cellular-level parallel
computation
To ensure the accuracy of the simulation, we first need to define the
correctness of a cellular-level parallel algorithm to judgewhether itwill
generate identical solutions compared with the proven correct serial
methods, like the Hines method used in the NEURON simulation
platform. Based on the theories in parallel computing34, a parallel
algorithm will yield an identical result as its corresponding serial
algorithm, if and only if the data process order in the parallel algorithm
is consistent with data dependency in the serial method. The Hines
method has two symmetrical phases: triangularization and back-
substitution. By analyzing the serial computing Hines method55, we
find that its data dependency can be formulated as a tree structure,
where the nodes on the tree represent the compartments of the
detailed neuron model. In the triangularization process, the value of
each node depends on its children nodes. In contrast, during the back-
substitution process, the value of each node is dependent on its parent
node (Fig. 1d). Thus, we can compute nodes on different branches in
parallel as their values are not dependent.

Based on the data dependency of the serial computing Hines
method, we propose three conditions to make sure a parallel method
will yield identical solutions as the serial computing Hines method: (1)
The tree morphology and initial values of all nodes are identical to
those in the serial computingHinesmethod; (2) In the triangularization
phase, a node can be processed if and only if all its children nodes are
already processed; (3) In the back-substitution phase, a node can be
processed only if its parent node is already processed. Once a parallel
computing method satisfies these three conditions, it will produce
identical solutions as the serial computing method.

Computational cost of cellular-level parallel computingmethod
To theoretically evaluate the run time, i.e., efficiency, of the serial and
parallel computing methods, we introduce and formulate the concept
of computational cost as follows: given a tree T and k threads (basic
computational units) to perform triangularization, parallel triangular-
ization equals to divide the node set V of T into n subsets, i.e., V = {V1,
V2,… Vn} where the size of each subset |Vi | ≤ k, i.e., at most k nodes can
be processed each step since there are only k threads. The process of
the triangularization phase follows the order: V1→V2→… →Vn, and
nodes in the same subsetVi can be processed in parallel. So, wedefine |
V | (the size of set V, i.e., n here) as the computational cost of the
parallel computingmethod. In short, we define the computational cost

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 10

https://github.com/BlueBrain/CoreNeuron

of a parallel method as the number of steps it takes in the triangular-
ization phase. Because the back-substitution is symmetrical with tri-
angularization, the total cost of the entire solving equation phase is
twice that of the triangularization phase.

Mathematical scheduling problem
Based on the simulation accuracy and computational cost, we for-
mulate the parallelization problem as a mathematical scheduling
problem:

Given a tree T = {V, E} and a positive integer k, where V is the node-
set and E is the edge set. DefinepartitionP(V) = {V1,V2,…Vn}, |Vi | ≤ k, 1≤
i ≤ n, where |Vi| indicates the cardinal number of subset Vi, i.e., the
number of nodes in Vi, and for each node v∈Vi, all its children nodes
{c | c∈children(v)} must in a previous subset Vj, where 1 ≤ j < i. Our goal
is to find an optimal partition P*(V) whose computational cost |P*(V)| is
minimal.

Here subset Vi consists of all nodes that will be computed at i-th
step (Fig. 2e), so |Vi | ≤ k indicates that we can compute k nodes each

Before training

After training

f

R
un

tim
e

(s
)

Parallel NEURON + Python
DeepDendrite

0

10

20

30 x10³
Train

0.0

1.5

3.0

4.5 x10³
Test

ANN HPC-Net

Ac
cu

ra
cy

Attack strength
0.5 0.00 0.04 0.08 0.12 0.16 0.20

0.6

0.7

0.8

0.9

1.0
MNIST

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.04 0.08 0.12 0.16 0.20

Fashion-MNIST

e

N
um

be
r

Weights
0

250
0

250
0

250
0

250

0

250
0

250
0

250
0

250

250
0

250
0

250
0

250

Weights after training

-2.0 2.0
Weights-2.0 2.0 Weights-2.0 2.0

0

N
um

be
r

Weights

Weights before training

-0.1 0.1

0

30

30

0

0

30

0

30

0

30

0

30

0

30
0

30

0

30

0

30

30

0

0

30

Weights
-0.1 0.1

Weights
-0.1 0.1

a b

c

Training with mini-batch

......

......

......

d

Clean
image

co
nv

co
nv

av
g.

 p
oo

l

fc
10......

co
nv

co
nv

Adversarial sample
(noisy image)

Adversarial attack Models trained with clean images

Predicted
label

HPC-NetANN

#10#64#784

In
pu

t (
#7

84
)

H
id

de
n

(#
64

)
O

ut
pu

t (
#1

0)

Teacher signals

Error feedback
Feedforward

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 11

step at most because the number of available threads is k. The
restriction “for eachnode v∈Vi, all its children nodes {c | c∈children(v)}
must in a previous subsetVj, where 1 ≤ j < i” indicates that node v can be
processed only if all its child nodes are processed.

DHS implementation
Weaim tofindanoptimalway toparallelize the computationof solving
linear equations for each neuron model by solving the mathematical
scheduling problem above. To get the optimal partition, DHS first
analyzes the topology and calculates the depth d(v) for all nodes v∈V.
Then, the following two steps will be executed iteratively until every
node v∈V is assigned to a subset: (1) find all candidate nodes and put
these nodes into candidate set Q. A node is a candidate only if all its
child nodes have been processed or it does not have any child nodes.
(2) if |Q | ≤ k, i.e., the number of candidate nodes is smaller or equiva-
lent to the number of available threads, remove all nodes inQ and put
them intoV*

i, otherwise, remove kdeepest nodes fromQ and add them
to subset Vi. Label these nodes as processed nodes (Fig. 2d). After
filling in subset Vi, go to step (1) to fill in the next subset Vi+1.

Correctness proof for DHS
After applying DHS to a neural tree T = {V, E}, we get a partition
P(V) = {V1, V2,… Vn}, |Vi | ≤ k, 1 ≤ i ≤ n. Nodes in the same subsetViwill be
computed in parallel, taking n steps to perform triangularization and
back-substitution, respectively. We then demonstrate that the reor-
dering of the computation in DHS will result in a result identical to the
serial Hines method.

The partition P(V) obtained from DHS decides the computation
order of all nodes in a neural tree. Below we demonstrate that the
computation order determined by P(V) satisfies the correctness con-
ditions. P(V) is obtained from the given neural tree T. Operations in
DHS do not modify the tree topology and values of tree nodes (cor-
responding values in the linear equations), so the treemorphology and
initial values of all nodes are not changed, which satisfies condition 1:
the tree morphology and initial values of all nodes are identical to
those in serial Hinesmethod. In triangularization, nodes are processed
from subsetV1 toVn. As shown in the implementation of DHS, all nodes
in subset Vi are selected from the candidate set Q, and a node can be
put intoQonly if all its childnodeshavebeenprocessed. Thus the child
nodes of all nodes inVi are in {V1,V2,…Vi-1},meaning that a node isonly
computed after all its children have been processed, which satisfies
condition 2: in triangularization, a node can be processed if and only if

all its child nodes are already processed. In back-substitution, the
computation order is the opposite of that in triangularization, i.e.,
from Vn to V1. As shown before, the child nodes of all nodes in Vi are in
{V1, V2, … Vi-1}, so parent nodes of nodes in Vi are in {Vi+1, Vi+2, … Vn},
which satisfies condition 3: in back-substitution, a node can be pro-
cessed only if its parent node is already processed.

Optimality proof for DHS
The idea of the proof is that if there is another optimal solution, it can
be transformed into our DHS solution without increasing the number
of steps the algorithm requires, thus indicating that theDHS solution is
optimal.

For each subset Vi in P(V), DHS moves k (thread number) deepest
nodes from the corresponding candidate set Qi to Vi. If the number of
nodes inQi is smaller than k, move all nodes from Qi to Vi. To simplify,
we introduceDi, indicating the depth sum of k deepest nodes inQi. All
subsets in P(V) satisfy the max-depth criteria (Supplementary Fig. 6a):P

vi2Vi
dðviÞ=Di. We then prove that selecting the deepest nodes in

each iteration makes P(V) an optimal partition. If there exists an opti-
mal partition P*(V) = {V*

1, V*
2, … V*

s} containing subsets that do not
satisfy the max-depth criteria, we can modify the subsets in P*(V) so
that all subsets consist of the deepest nodes fromQ and the number of
subsets (| P*(V)|) remain the same after modification.

Without any loss of generalization, we start from the first subset
V*

i not satisfying the criteria, i.e.,
P

v*i2V
*
i
d v*i
� �

<Di. There are two pos-
sible cases that will make V*

i not satisfy the max-depth criteria:
(1) | V*

i | < k and there exist some valid nodes inQi that are not put toV*
i;

(2) |V*
i | = k but nodes in V*

i are not the k deepest nodes in Qi.
For case (1), because some candidate nodes are not put to V*

i,
these nodes must be in the subsequent subsets. As |V*

i | < k, we can
move the corresponding nodes from the subsequent subsets to V*

i,
which will not increase the number of subsets and make V*

i satisfy the
criteria (Supplementary Fig. 6b, top). For case (2), |V*

i | = k, these dee-
per nodes that arenotmoved from the candidate setQi intoV*

imustbe
added to subsequent subsets (Supplementary Fig. 6b, bottom). These
deeper nodes can be moved from subsequent subsets to V*

i through
the following method. Assume that after filling V*

i, v is picked and one
of the k-th deepest nodes v’ is still in Qi, thus v’ will be put into a
subsequent subset V*

j (j > i). We first move v from V*
i to V*

i + 1, then
modify subset V*

i + 1 as follows: if |V*
i + 1 | ≤ k and none of the nodes in

V*
i + 1 is the parent of node v, stop modifying the latter subsets.

Otherwise, modify V*
i + 1 as follows (Supplementary Fig. 6c): if the

parent node of v is in V*
i + 1, move this parent node to V*

i + 2; elsemove
the node with minimum depth from V*

i + 1 to V*
i + 2. After adjusting V*

i,
modify subsequent subsets V*

i + 1, V*
i + 2,… V*

j-1with the same strategy.
Finally, move v’ from V*

j to V*
i.

With themodification strategy described above, we can replace
all shallower nodes in V*

i with the k-th deepest node in Qi and keep
the number of subsets, i.e., |P*(V)| the same after modification. We
can modify the nodes with the same strategy for all subsets in P*(V)
that do not contain the deepest nodes. Finally, all subsets V*

i∈P*(V)
can satisfy the max-depth criteria, and |P*(V)| does not change after
modifying.

Fig. 6 | DeepDendrite enables learning with detailed neural networks. a The
illustration of the Human Pyramidal Cell Network (HPC-Net) for image classifica-
tion. Images are transformed to spike trains and fed into the network model.
Learning is triggered by error signals propagated from soma to dendrites.
b Training with mini-batch. Multiple networks are simulated simultaneously with
different images as inputs. The total weight updates ΔW are computed as the
average of ΔWi from each network. c Comparison of the HPC-Net before and after
training. Left, the visualization of hidden neuron responses to a specific input
before (top) and after (bottom) training. Right, hidden layer weights (from input to
hidden layer) distribution before (top) and after (bottom) training. d Workflow of

the transfer adversarial attack experiment. We first generate adversarial samples of
the test set on a 20-layer ResNet. Thenuse these adversarial samples (noisy images)
to test the classification accuracy of models trainedwith clean images. e Prediction
accuracy of each model on adversarial samples after training 30 epochs on MNIST
(left) and Fashion-MNIST (right) datasets. f Run time of training and testing for the
HPC-Net. The batch size is set to 16. Left, run time of training one epoch. Right, run
timeof testing. Parallel NEURON+ Python: training and testing on a singleCPUwith
multiple cores, using 40-process-parallel NEURON to simulate the HPC-Net and
extra Python code to support mini-batch training. DeepDendrite: training and
testing the HPC-Net on a single GPU with DeepDendrite.

Table 1 | Usage options for DHS-embedded CoreNEURON

-d Path containing the model data

-e Simulation time (ms)

--cell-permute Strategy for optimizing simulation: 1 and 2 for original strate-
gies in CoreNEURON, 3 for DHS method

--cell-nthread Number of threads used for each cell

--gpu Simulate on GPU

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 12

In conclusion, DHS generates a partition P(V), and all subsets
Vi∈P(V) satisfy themax-depth condition:

P
vi2Vi

dðviÞ=Di. For anyother
optimal partition P*(V) we can modify its subsets to make its structure
the same as P(V), i.e., each subset consists of the deepest nodes in the
candidate set, and keep |P*(V)| the same after modification. So, the
partition P(V) obtained from DHS is one of the optimal partitions.

GPU implementation and memory boosting
To achieve high memory throughput, GPU utilizes the memory hier-
archy of (1) global memory, (2) cache, (3) register, where global
memory has large capacity but low throughput, while registers have
low capacity but high throughput. We aim to boost memory
throughput by leveraging the memory hierarchy of GPU.

GPU employs SIMT (Single-Instruction, Multiple-Thread) archi-
tecture.Warps are the basic scheduling units onGPU (awarp is a group
of 32 parallel threads). A warp executes the same instruction with
different data for different threads46. Correctly ordering the nodes is
essential for this batching of computation in warps, to make sure DHS
obtains identical results as the serial Hines method. When imple-
mentingDHS onGPU, we first group all cells intomultiplewarps based
on their morphologies. Cells with similar morphologies are grouped in
the same warp. We then apply DHS on all neurons, assigning the
compartments of each neuron to multiple threads. Because neurons
are grouped into warps, the threads for the same neuron are in the
samewarp. Therefore, the intrinsic synchronization inwarps keeps the
computation order consistent with the data dependency of the serial
Hinesmethod. Finally, threads in eachwarpare aligned and rearranged
according to the number of compartments.

When a warp loads pre-aligned and successively-stored data from
global memory, it can make full use of the cache, which leads to high
memory throughput, while accessing scatter-stored data would
reduce memory throughput. After compartments assignment and
threads rearrangement, we permute data in global memory to make it
consistent with computing orders so that warps can load successively-
stored data when executing the program. Moreover, we put those
necessary temporary variables into registers rather than global mem-
ory. Registers have the highest memory throughput, so the use of
registers further accelerates DHS.

Full-spine and few-spine biophysical models
We used the published human pyramidal neuron51. The membrane
capacitance cm=0.44μF cm-2, membrane resistance rm=48,300 Ω
cm2, and axial resistivity ra = 261.97 Ω cm. In this model, all dendrites
were modeled as passive cables while somas were active. The leak
reversal potential El = -83.1mV. Ion channels such as Na+ and K+ were
inserted on soma and initial axon, and their reversal potentials were
ENa = 67.6mV, EK = -102mV respectively. All these specific parameters
were set the same as in the model of Eyal, et al. 51, for more details
please refer to the published model (ModelDB, access No. 238347).

In the few-spinemodel, themembrane capacitance andmaximum
leak conductance of the dendritic cables 60 μm away from soma were
multiplied by a Fspine factor to approximate dendritic spines. In this
model, Fspine was set to 1.9. Only the spines that receive synaptic inputs
were explicitly attached to dendrites.

In the full-spine model, all spines were explicitly attached to
dendrites. We calculated the spine density with the reconstructed
neuron in Eyal, et al. 51. The spine density was set to 1.3 μm-1, and each
cell contained 24994 spines on dendrites 60 μm away from the soma.

The morphologies and biophysical mechanisms of spines were
the same in few-spine and full-spine models. The length of the spine
neck Lneck = 1.35μm and the diameter Dneck = 0.25μm, whereas the
length and diameter of the spine head were 0.944μm, i.e., the spine
head area was set to 2.8μm2. Both spine neck and spine head were
modeled as passive cables, with the reversal potential El = -86 mV. The

specific membrane capacitance, membrane resistance, and axial
resistivity were the same as those for dendrites.

Synaptic inputs
We investigated neuronal excitability for both distributed and clus-
tered synaptic inputs. All activated synapses were attached to the
terminal of the spine head. For distributed inputs, all activated
synapses were randomly distributed on all dendrites. For clustered
inputs, each cluster consisted of 20 activated synapses that were uni-
formly distributed on a single randomly-selected compartment. All
synapses were activated simultaneously during the simulation.

AMPA-based and NMDA-based synaptic currents were simulated
as in Eyal et al.’s work. AMPA conductance was modeled as a double-
exponential function and NMDA conduction as a voltage-dependent
double-exponential function. For the AMPA model, the specific τrise
and τdecay were set to 0.3 and 1.8ms. For the NMDA model, τrise and
τdecay were set to 8.019 and 34.9884ms, respectively. The maximum
conductance of AMPA and NMDA were 0.73 nS and 1.31 nS.

Background noise
We attached background noise to each cell to simulate amore realistic
environment. Noisepatternswere implemented as Poisson spike trains
with a constant rate of 1.0Hz. Each pattern started at tstart = 10ms and
lasted until the end of the simulation. We generated 400 noise spike
trains for each cell and attached them to randomly-selected synapses.
Themodel and specific parameters of synaptic currents were the same
as described in Synaptic Inputs, except that the maximum con-
ductance of NMDA was uniformly distributed from 1.57 to 3.275,
resulting in a higher AMPA to NMDA ratio.

Exploring neuronal excitability
We investigated the spike probability when multiple synapses were
activated simultaneously. For distributed inputs, we tested 14 cases,
from 0 to 240 activated synapses. For clustered inputs, we tested 9
cases in total, activating from0 to 12 clusters respectively. Each cluster
consisted of 20 synapses. For each case in both distributed and clus-
tered inputs, we calculated the spike probability with 50 random
samples. Spike probability was defined as the ratio of the number of
neurons fired to the total number of samples. All 1150 samples were
simulated simultaneously on ourDeepDendrite platform, reducing the
simulation time from days to minutes.

Performing AI tasks with the DeepDendrite platform
Conventional detailed neuron simulators lack two functionalities
important to modern AI tasks: (1) alternately performing simulations
and weight updates without heavy reinitialization and (2) simulta-
neously processing multiple stimuli samples in a batch-like manner.
Here we present the DeepDendrite platform, which supports both
biophysical simulating and performing deep learning tasks with
detailed dendritic models.

DeepDendrite consists of three modules (Supplementary Fig. 5):
(1) an I/O module; (2) a DHS-based simulating module; (3) a learning
module. When training a biophysically detailed model to perform
learning tasks, users first define the learning rule, then feed all training
samples to the detailed model for learning. In each step during train-
ing, the I/O module picks a specific stimulus and its corresponding
teacher signal (if necessary) from all training samples and attaches the
stimulus to the network model. Then, the DHS-based simulating
module initializes the model and starts the simulation. After simula-
tion, the learningmodule updates all synapticweights according to the
difference between model responses and teacher signals. After train-
ing, the learned model can achieve performance comparable to ANN.
The testing phase is similar to training, except that all synaptic weights
are fixed.

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 13

HPC-Net model
Image classification is a typical task in the field of AI. In this task, a
model should learn to recognize the content in a given image and
output the corresponding label. Here we present the HPC-Net, a net-
work consisting of detailed human pyramidal neuron models that can
learn to perform image classification tasks by utilizing the DeepDen-
drite platform.

HPC-Net has three layers, i.e., an input layer, a hidden layer, and an
output layer. The neurons in the input layer receive spike trains con-
verted from images as their input. Hidden layer neurons receive the
output of input layer neurons and deliver responses to neurons in the
output layer. The responses of the output layer neurons are taken as
the final output of HPC-Net. Neurons between adjacent layers are fully
connected.

For each image stimulus,we first convert eachnormalized pixel to
a homogeneous spike train. For pixel with coordinates (x, y) in the
image, the corresponding spike train has a constant interspike interval
τISI(x, y) (in ms) which is determined by the pixel value p(x, y) as shown
in Eq. (1).

τISI x,yð Þ= 5
p x,yð Þ+0:01 ð1Þ

In our experiment, the simulation for each stimulus lasted 50ms.
All spike trains started at 9 + τISI ms and lasted until the end of the
simulation. Thenwe attached all spike trains to the input layer neurons
in a one-to-one manner. The synaptic current triggered by the spike
arriving at time t0 is given by

Isyn = gsyn v� Esyn

� �
ð2Þ

gsyn = gmaxe
�ðt�t0Þ=τ ð3Þ

where v is the post-synaptic voltage, the reversal potential Esyn = 1mV,
the maximum synaptic conductance gmax = 0.05 μS, and the time
constant τ =0.5ms.

Neurons in the input layer were modeled with a passive single-
compartment model. The specific parameters were set as follows:
membrane capacitance cm= 1.0μF cm-2, membrane resistance rm= 104

Ω cm2, axial resistivity ra = 100Ω cm, reversal potential of passive
compartment El = 0mV.

The hidden layer contains a group of human pyramidal neuron
models, receiving the somatic voltages of input layer neurons. The
morphologywas from Eyal, et al. 51, and all neurons weremodeledwith
passive cables. The specific membrane capacitance cm= 1.5μF cm-2,
membrane resistance rm= 48,300Ω cm2, axial resistivity ra = 261.97 Ω
cm, and the reversal potential of all passive cables El = 0mV. Input
neurons could make multiple connections to randomly-selected
locations on the dendrites of hidden neurons. The synaptic current
activated by the k-th synapse of the i-th input neuron on neuron j’s
dendrite is defined as in Eq. (4), where gijk is the synaptic conductance,
Wijk is the synaptic weight, f is the ReLU-like somatic activation func-
tion, and vti is the somatic voltage of the i-th input neuron at time t.

Itijk = gijkWijkf ðvti Þ ð4Þ

f ðvti Þ=
vti , vti >0

0, vti ≤ 0

(
ð5Þ

Neurons in the output layer were also modeled with a passive
single-compartment model, and each hidden neuron only made one
synaptic connection to each output neuron. All specific parameters

were set the same as those of the input neurons. Synaptic currents
activated by hidden neurons are also in the form of Eq. (4).

Image classification with HPC-Net
For each input image stimulus, we first normalized all pixel values to
0.0-1.0. Then we converted normalized pixels to spike trains and
attached them to input neurons. Somatic voltages of the output neu-
rons are used to compute the predicted probability of each class, as
shown in equation 6, where pi is the probability of i-th class predicted
by the HPC-Net, �vi is the average somatic voltage from 20ms to 50ms
of the i-th output neuron, andC indicates the number of classes, which
equals the number of output neurons. The class with the maximum
predicted probability is the final classification result. In this paper, we
built the HPC-Net with 784 input neurons, 64 hidden neurons, and 10
output neurons.

pi =
expð�viÞPC�1

c =0 expð�vcÞ
ð6Þ

Synaptic plasticity rules for HPC-Net
Inspired by previous work36, we use a gradient-based learning rule to
train our HPC-Net to perform the image classification task. The loss
function we use here is cross-entropy, given in Eq. (7), where pi is the
predicted probability for class i, yi indicates the actual class the sti-
mulus image belongs to, yi = 1 if input image belongs to class i, and
yi = 0 if not.

E = �
XC�1

i=0

yi logpi ð7Þ

When training HPC-Net, we compute the update for weight Wijk

(the synaptic weight of the k-th synapse connecting neuron i to neuron
j) at each time step. After the simulation of each image stimulus,Wijk is
updated as shown in Eq. (8):

Wijk =Wijk � η
dt

te � ts

Xte
t = ts

ΔWt
ijk ð8Þ

ΔWt
ijk =

∂E
∂�vj

rijkgijk f ðvti Þ ð9Þ

Here η is the learning rate, ΔWt
ijk is the update value at time t, vj, vi are

somatic voltages of neuron i and j respectively, Iijk is the k-th synaptic
current activatedbyneuron ionneuron j, gijk its synaptic conductance,
rijk is the transfer resistance between the k-th connected compartment
of neuron i on neuron j’s dendrite to neuron j’s soma, ts = 30ms,
te = 50ms are start time and end time for learning respectively. For
output neurons, the error term ∂E

∂�voutj
can be computed as shown in Eq.

(10). For hidden neurons, the error term ∂E
∂�vhj

is calculated from the error

terms in the output layer, given in Eq. (11).

∂E
∂�voutj

= yj � pj ð10Þ

∂E

∂�vhj
=
XC�1

c =0

∂E
∂�voutc

rjcgjcW jc
f 0 �vhj
� �

ð11Þ

Since all output neurons are single-compartment, rjc equals to the
input resistance of the corresponding compartment, rc. Transfer and
input resistances are computed by NEURON.

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 14

Mini-batch training is a typical method in deep learning for
achieving higher prediction accuracy and accelerating convergence.
DeepDendrite also supports mini-batch training. When training HPC-
Net with mini-batch size Nbatch, we make Nbatch copies of HPC-Net.
During training, each copy is fed with a different training sample from
the batch. DeepDendrite first computes the weight update for each
copy separately. After all copies in the current training batch are done,
the average weight update is calculated and weights in all copies are
updated by this same amount.

Robustness against adversarial attack with HPC-Net
To demonstrate the robustness of HPC-Net, we tested its prediction
accuracy on adversarial samples and compared it with an analogous
ANN (one with the same 784-64-10 structure and ReLU activation, for
fair comparison in our HPC-Net each input neuron only made one
synaptic connection to each hidden neuron). We first trained HPC-Net
and ANNwith the original training set (original clean images). Then we
added adversarial noise to the test set and measured their prediction
accuracy on the noisy test set. We used the Foolbox98,99 to generate
adversarial noise with the FGSM method93. ANN was trained with
PyTorch100, and HPC-Net was trained with our DeepDendrite. For
fairness, we generated adversarial noise on a significantly different
network model, a 20-layer ResNet101. The noise level ranged from 0.02
to0.2.We experimented on two typical datasets,MNIST95 and Fashion-
MNIST96. Results show that the prediction accuracy of HPC-Net is 19%
and 16.72% higher than that of the analogous ANN, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available within the
paper, Supplementary Information andSourceDatafiles providedwith
this paper. The source code and data that used to reproduce the
results in Figs. 3–6 are available at https://github.com/pkuzyc/
DeepDendrite. The MNIST dataset is publicly available at http://yann.
lecun.com/exdb/mnist. The Fashion-MNIST dataset is publicly avail-
able at https://github.com/zalandoresearch/fashion-mnist. Source
data are provided with this paper.

Code availability
The source code of DeepDendrite as well as themodels and code used
to reproduce Figs. 3–6 in this study are available at https://github.com/
pkuzyc/DeepDendrite.

References
1. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas

immanent in nervous activity. Bull. Math. Biophys. 5,
115–133 (1943).

2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

3. Poirazi, P., Brannon, T. & Mel, B. W. Arithmetic of subthreshold
synaptic summation in a model CA1 pyramidal cell. Neuron 37,
977–987 (2003).

4. London, M. & Häusser, M. Dendritic computation. Annu. Rev.
Neurosci. 28, 503–532 (2005).

5. Branco, T. & Häusser, M. The single dendritic branch as a funda-
mental functional unit in the nervous system. Curr. Opin. Neuro-
biol. 20, 494–502 (2010).

6. Stuart, G. J. & Spruston, N. Dendritic integration: 60 years of
progress. Nat. Neurosci. 18, 1713–1721 (2015).

7. Poirazi, P. & Papoutsi, A. Illuminating dendritic function with
computational models. Nat. Rev. Neurosci. 21, 303–321 (2020).

8. Yuste, R. & Denk, W. Dendritic spines as basic functional units of
neuronal integration. Nature 375, 682–684 (1995).

9. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated
with hippocampal long-term synaptic plasticity. Nature 399,
66–70 (1999).

10. Yuste, R. Dendritic spines and distributed circuits. Neuron 71,
772–781 (2011).

11. Yuste, R. Electrical compartmentalization in dendritic spines.
Annu. Rev. Neurosci. 36, 429–449 (2013).

12. Rall, W. Branching dendritic trees and motoneuron membrane
resistivity. Exp. Neurol. 1, 491–527 (1959).

13. Segev, I. & Rall, W. Computational study of an excitable dendritic
spine. J. Neurophysiol. 60, 499–523 (1988).

14. Silver, D. et al. Mastering the game of go with deep neural net-
works and tree search. Nature 529, 484–489 (2016).

15. Silver, D. et al. A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play. Science 362,
1140–1144 (2018).

16. McCloskey, M. & Cohen, N. J. Catastrophic interference in con-
nectionist networks: the sequential learning problem. Psychol.
Learn. Motiv. 24, 109–165 (1989).

17. French, R. M. Catastrophic forgetting in connectionist networks.
Trends Cogn. Sci. 3, 128–135 (1999).

18. Naud, R. & Sprekeler, H. Sparse bursts optimize information
transmission in a multiplexed neural code. Proc. Natl Acad. Sci.
USA 115, E6329–E6338 (2018).

19. Sacramento, J., Costa, R. P., Bengio, Y. & Senn, W. Dendritic cor-
ticalmicrocircuits approximate the backpropagation algorithm. in
Advances in Neural Information Processing Systems 31 (NeurIPS
2018) (NeurIPS, 2018).

20. Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A. & Naud, R.
Burst-dependent synaptic plasticity can coordinate learning in
hierarchical circuits. Nat. Neurosci. 24, 1010–1019 (2021).

21. Bicknell, B. A. & Häusser, M. A synaptic learning rule for exploiting
nonlinear dendritic computation. Neuron 109, 4001–4017 (2021).

22. Moldwin, T., Kalmenson, M. & Segev, I. The gradient clusteron: a
model neuron that learns to solve classification tasks via dendritic
nonlinearities, structural plasticity, and gradient descent. PLoS
Comput. Biol. 17, e1009015 (2021).

23. Hodgkin, A. L. & Huxley, A. F. A quantitative description of mem-
brane current and Its application to conduction and excitation in
nerve. J. Physiol. 117, 500–544 (1952).

24. Rall, W. Theory of physiological properties of dendrites. Ann. N. Y.
Acad. Sci. 96, 1071–1092 (1962).

25. Hines, M. L. & Carnevale, N. T. The NEURON simulation environ-
ment. Neural Comput. 9, 1179–1209 (1997).

26. Bower, J. M. & Beeman, D. in The Book of GENESIS: Exploring
Realistic Neural Models with theGEneral NEural SImulation System
(eds Bower, J.M. & Beeman, D.) 17–27 (Springer New York, 1998).

27. Hines, M. L., Eichner, H. & Schürmann, F. Neuron splitting in
compute-bound parallel network simulations enables runtime
scaling with twice as many processors. J. Comput. Neurosci. 25,
203–210 (2008).

28. Hines, M. L., Markram, H. & Schürmann, F. Fully implicit parallel
simulation of single neurons. J. Comput. Neurosci. 25,
439–448 (2008).

29. Ben-Shalom, R., Liberman, G. & Korngreen, A. Accelerating com-
partmental modeling on a graphical processing unit. Front. Neu-
roinform. 7, 4 (2013).

30. Tsuyuki, T., Yamamoto, Y. & Yamazaki, T. Efficient numerical
simulation of neuron models with spatial structure on graphics
processing units. In Proc. 2016 International Conference on Neural
Information Processing (eds Hirose894Akiraet al.) 279–285
(Springer International Publishing, 2016).

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 15

https://github.com/pkuzyc/DeepDendrite
https://github.com/pkuzyc/DeepDendrite
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/pkuzyc/DeepDendrite
https://github.com/pkuzyc/DeepDendrite

31. Vooturi, D. T., Kothapalli, K. & Bhalla, U. S. Parallelizing Hines
Matrix Solver in Neuron Simulations on GPU. In Proc. IEEE 24th
International Conference on High Performance Computing (HiPC)
388–397 (IEEE, 2017).

32. Huber, F. Efficient tree solver for hines matrices on the GPU. Pre-
print at https://arxiv.org/abs/1810.12742 (2018).

33. Korte, B. & Vygen, J. Combinatorial Optimization Theory and
Algorithms 6 edn (Springer, 2018).

34. Gebali, F. Algorithms and Parallel Computing (Wiley, 2011).
35. Kumbhar, P. et al. CoreNEURON: An optimized compute engine

for the NEURON simulator. Front. Neuroinform. 13, 63 (2019).
36. Urbanczik, R. & Senn, W. Learning by the dendritic prediction of

somatic spiking. Neuron 81, 521–528 (2014).
37. Ben-Shalom, R., Aviv, A., Razon, B. & Korngreen, A. Optimizing ion

channel models using a parallel genetic algorithm on graphical
processors. J. Neurosci. Methods 206, 183–194 (2012).

38. Mascagni, M. A parallelizing algorithm for computing solutions to
arbitrarily branched cable neuron models. J. Neurosci. Methods
36, 105–114 (1991).

39. McDougal, R. A. et al. Twenty years of modelDB and beyond:
building essentialmodeling tools for the future of neuroscience. J.
Comput. Neurosci. 42, 1–10 (2017).

40. Migliore, M., Messineo, L. & Ferrante, M. Dendritic Ih selectively
blocks temporal summation of unsynchronized distal inputs in
CA1 pyramidal neurons. J. Comput. Neurosci. 16, 5–13 (2004).

41. Hemond, P. et al. Distinct classes of pyramidal cells exhibit
mutually exclusive firing patterns in hippocampal area CA3b.
Hippocampus 18, 411–424 (2008).

42. Hay, E., Hill, S., Schürmann, F., Markram, H. & Segev, I. Models of
neocortical layer 5b pyramidal cells capturing a wide range of
dendritic and perisomatic active Properties. PLoS Comput. Biol. 7,
e1002107 (2011).

43. Masoli, S., Solinas, S. & D’Angelo, E. Action potential processing in
a detailed purkinje cell model reveals a critical role for axonal
compartmentalization. Front. Cell. Neurosci. 9, 47 (2015).

44. Lindroos, R. et al. Basal ganglia neuromodulation over multiple
temporal and structural scales—simulations of direct pathway
MSNs investigate the fast onset of dopaminergic effects and
predict the role of Kv4.2. Front. Neural Circuits 12, 3 (2018).

45. Migliore, M. et al. Synaptic clusters function as odor operators in
the olfactory bulb. Proc. Natl Acad. Sci. USa 112,
8499–8504 (2015).

46. NVIDIA. CUDA C++ Programming Guide. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html (2021).

47. NVIDIA. CUDA C++ Best Practices Guide. https://docs.nvidia.com/
cuda/cuda-c-best-practices-guide/index.html (2021).

48. Harnett, M. T.,Makara, J. K., Spruston, N., Kath,W. L. &Magee, J. C.
Synaptic amplification by dendritic spines enhances input coop-
erativity. Nature 491, 599–602 (2012).

49. Chiu, C.Q. et al. Compartmentalization of GABAergic inhibition by
dendritic spines. Science 340, 759–762 (2013).

50. Tønnesen, J., Katona, G., Rózsa, B. & Nägerl, U. V. Spine neck
plasticity regulates compartmentalization of synapses. Nat. Neu-
rosci. 17, 678–685 (2014).

51. Eyal, G. et al. Human cortical pyramidal neurons: from spines to
spikes via models. Front. Cell. Neurosci. 12, 181 (2018).

52. Koch, C. & Zador, A. The function of dendritic spines: devices
subserving biochemical rather than electrical compartmentaliza-
tion. J. Neurosci. 13, 413–422 (1993).

53. Koch, C. Dendritic spines. In Biophysics of Computation (Oxford
University Press, 1999).

54. Rapp, M., Yarom, Y. & Segev, I. The impact of parallel fiber back-
ground activity on the cable properties of cerebellar purkinje
cells. Neural Comput. 4, 518–533 (1992).

55. Hines, M. Efficient computation of branched nerve equations. Int.
J. Bio-Med. Comput. 15, 69–76 (1984).

56. Nayebi, A. & Ganguli, S. Biologically inspired protection of deep
networks from adversarial attacks. Preprint at https://arxiv.org/
abs/1703.09202 (2017).

57. Goddard, N. H. & Hood, G. Large-Scale Simulation Using Par-
allel GENESIS. In The Book of GENESIS: Exploring Realistic
Neural Models with the GEneral NEural SImulation System (eds
Bower James M. & Beeman David) 349-379 (Springer New
York, 1998).

58. Migliore, M., Cannia, C., Lytton, W. W., Markram, H. & Hines, M. L.
Parallel network simulations with NEURON. J. Comput. Neurosci.
21, 119 (2006).

59. Lytton, W. W. et al. Simulation neurotechnologies for advancing
brain research: parallelizing large networks in NEURON. Neural
Comput. 28, 2063–2090 (2016).

60. Valero-Lara, P. et al. cuHinesBatch: Solving multiple Hines sys-
tems on GPUs human brain project. In Proc. 2017 International
Conference on Computational Science 566–575 (IEEE, 2017).

61. Akar, N. A. et al. Arbor—A morphologically-detailed neural net-
work simulation library for contemporary high-performance
computing architectures. In Proc. 27th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP) 274–282 (IEEE, 2019).

62. Ben-Shalom, R. et al. NeuroGPU: Accelerating multi-compart-
ment, biophysically detailed neuron simulations on GPUs. J.
Neurosci. Methods 366, 109400 (2022).

63. Rempe, M. J. & Chopp, D. L. A predictor-corrector algorithm for
reaction-diffusion equations associated with neural activity on
branched structures. SIAM J. Sci. Comput. 28, 2139–2161
(2006).

64. Kozloski, J. & Wagner, J. An ultrascalable solution to large-scale
neural tissue simulation. Front. Neuroinform. 5, 15 (2011).

65. Jayant, K. et al. Targeted intracellular voltage recordings from
dendritic spines using quantum-dot-coated nanopipettes. Nat.
Nanotechnol. 12, 335–342 (2017).

66. Palmer, L. M. & Stuart, G. J. Membrane potential changes in den-
dritic spines during action potentials and synaptic input. J. Neu-
rosci. 29, 6897–6903 (2009).

67. Nishiyama, J. & Yasuda, R. Biochemical computation for spine
structural plasticity. Neuron 87, 63–75 (2015).

68. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic
spines associated with long-term synaptic plasticity. Annu. Rev.
Neurosci. 24, 1071–1089 (2001).

69. Holtmaat, A. & Svoboda, K. Experience-dependent structural
synaptic plasticity in themammalian brain. Nat. Rev. Neurosci. 10,
647–658 (2009).

70. Caroni, P., Donato, F. & Muller, D. Structural plasticity upon
learning: regulation and functions. Nat. Rev. Neurosci. 13,
478–490 (2012).

71. Keck, T. et al. Massive restructuring of neuronal circuits during
functional reorganization of adult visual cortex. Nat. Neurosci. 11,
1162 (2008).

72. Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T. & Hübener, M.
Experience leaves a lasting structural trace in cortical circuits.
Nature 457, 313–317 (2009).

73. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-
dependent synaptic plasticity in adult cortex. Nature 420,
788–794 (2002).

74. Marik, S. A., Yamahachi, H., McManus, J. N., Szabo, G. & Gilbert, C.
D. Axonal dynamics of excitatory and inhibitory neurons in
somatosensory cortex. PLoS Biol. 8, e1000395 (2010).

75. Xu, T. et al. Rapid formation and selective stabilization of synapses
for enduring motor memories. Nature 462, 915–919 (2009).

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 16

https://arxiv.org/abs/1810.12742
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://arxiv.org/abs/1703.09202
https://arxiv.org/abs/1703.09202

76. Albarran, E., Raissi, A., Jáidar, O., Shatz, C. J. & Ding, J. B. Enhancing
motor learningby increasing the stability of newly formeddendritic
spines in the motor cortex. Neuron 109, 3298–3311 (2021).

77. Branco, T. & Häusser, M. Synaptic integration gradients in single
cortical pyramidal cell dendrites. Neuron 69, 885–892 (2011).

78. Major, G., Larkum, M. E. & Schiller, J. Active properties of neo-
cortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36,
1–24 (2013).

79. Gidon, A. et al. Dendritic action potentials and computation in
human layer 2/3 cortical neurons. Science 367, 83–87 (2020).

80. Doron, M., Chindemi, G., Muller, E., Markram, H. & Segev, I. Timed
synaptic inhibition shapes NMDA spikes, influencing local den-
dritic processing and global I/O properties of cortical neurons.
Cell Rep. 21, 1550–1561 (2017).

81. Du, K. et al. Cell-type-specific inhibition of the dendritic plateau
potential in striatal spiny projection neurons. Proc. Natl Acad. Sci.
USA 114, E7612–E7621 (2017).

82. Smith, S. L., Smith, I. T., Branco, T. & Häusser, M. Dendritic spikes
enhance stimulus selectivity in cortical neurons in vivo. Nature
503, 115–120 (2013).

83. Xu, N.-l et al. Nonlinear dendritic integration of sensory andmotor
input during an active sensing task. Nature 492, 247–251 (2012).

84. Takahashi, N., Oertner, T. G., Hegemann, P. & Larkum, M. E. Active
cortical dendrites modulate perception. Science 354,
1587–1590 (2016).

85. Sheffield, M. E. & Dombeck, D. A. Calcium transient prevalence
across the dendritic arbour predicts place field properties. Nature
517, 200–204 (2015).

86. Markram, H. et al. Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492 (2015).

87. Billeh, Y. N. et al. Systematic integration of structural and func-
tional data intomulti-scalemodels ofmouseprimary visual cortex.
Neuron 106, 388–403 (2020).

88. Hjorth, J. et al. The microcircuits of striatum in silico. Proc. Natl
Acad. Sci. USA 117, 202000671 (2020).

89. Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep
learning with segregated dendrites. elife 6, e22901 (2017).

90. Iyer, A. et al. Avoiding catastrophe: active dendrites enable multi-
task learning in dynamic environments. Front. Neurorobot. 16,
846219 (2022).

91. Jones, I. S. & Kording, K. P. Might a single neuron solve interesting
machine learning problems through successive computations on
its dendritic tree? Neural Comput. 33, 1554–1571 (2021).

92. Bird, A. D., Jedlicka, P. & Cuntz, H. Dendritic normalisation
improves learning in sparsely connected artificial neural net-
works. PLoS Comput. Biol. 17, e1009202 (2021).

93. Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and harnes-
sing adversarial examples. In 3rd International Conference on
Learning Representations (ICLR) (ICLR, 2015).

94. Papernot, N., McDaniel, P. & Goodfellow, I. Transferability in
machine learning: from phenomena to black-box attacks using
adversarial samples. Preprint at https://arxiv.org/abs/1605.
07277 (2016).

95. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based
learning applied to document recognition. Proc. IEEE 86,
2278–2324 (1998).

96. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. Preprint
at http://arxiv.org/abs/1708.07747 (2017).

97. Bartunov, S. et al. Assessing the scalability of biologically-
motivated deep learning algorithms and architectures. In Advan-
ces in Neural Information Processing Systems 31 (NeurIPS 2018)
(NeurIPS, 2018).

98. Rauber, J., Brendel, W. & Bethge, M. Foolbox: A Python toolbox to
benchmark the robustness of machine learning models. In Reli-
able Machine Learning in the Wild Workshop, 34th International
Conference on Machine Learning (2017).

99. Rauber, J., Zimmermann, R., Bethge, M. & Brendel, W. Foolbox
native: fast adversarial attacks to benchmark the robustness of
machine learning models in PyTorch, TensorFlow, and JAX. J.
Open Source Softw. 5, 2607 (2020).

100. Paszke, A. et al. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Proces-
sing Systems 32 (NeurIPS 2019) (NeurIPS, 2019).

101. He, K., Zhang, X., Ren, S. &Sun, J. Deep residual learning for image
recognition. In Proc. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) 770–778 (IEEE, 2016).

Acknowledgements
The authors sincerely thankDr. Rita Zhang, DaochenShi andmembers at
NVIDIA for the valuable technical support of GPU computing. This work
was supported by the National Key R&D Program of China (No.
2020AAA0130400) to K.D. and T.H., National Natural Science Founda-
tion of China (No. 61088102) to T.H., National Key R&D Program of China
(No. 2022ZD01163005) to L.M., Key Area R&D Program of Guangdong
Province (No. 2018B030338001) to T.H., National Natural Science
Foundation of China (No. 61825101) to Y.T., Swedish Research Council
(VR-M-2020-01652), Swedish e-Science Research Centre (SeRC), EU/
Horizon 2020No. 945539 (HBP SGA3), and KTHDigital Futures to J.H.K.,
J.H., and A.K., Swedish Research Council (VR-M-2021-01995) and EU/
Horizon 2020 no. 945539 (HBP SGA3) to S.G. and A.K. Part of the
simulations were enabled by resources provided by the Swedish
National Infrastructure for Computing (SNIC) at PDC KTH partially fun-
ded by the Swedish Research Council through grant agreement no.
2018-05973.

Author contributions
K.D. conceptualized the project. K.D. and T.H. jointly supervised the
project. Y.Z. and G.H. implemented DeepDendrite framework, con-
ducted all experiments and performed data analysis. L.M. provided the
support for high performance computing. Y.Z. and X.L. provided theo-
retical proof for DHS method. Y.Z., G.H. and K.D. wrote the draft of the
manuscript. J.J.J.H., A.K., Y.H., S.Z., J.H.K., Y.T. and S.G. participated in
discussions regarding the results. All authors contributed to the revision
of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41553-7.

Correspondence and requests formaterials should be addressed to Kai
Du.

Peer review information Nature Communications thanks Panayiota
Poirazi and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 17

https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1708.07747
https://doi.org/10.1038/s41467-023-41553-7
http://www.nature.com/reprints

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41553-7

Nature Communications | (2023) 14:5798 18

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A GPU-based computational framework that bridges neuron simulation and artificial intelligence
	Results
	Dendritic Hierarchical Scheduling (DHS) method
	Speeding up DHS by GPU memory boosting
	DHS creates cell-type-specific optimal partitioning
	DHS enables spine-level modelling

	Discussion
	Methods
	Simulation with DHS
	Accuracy of the simulation using cellular-level parallel computation
	Computational cost of cellular-level parallel computing method
	Mathematical scheduling problem
	DHS implementation
	Correctness proof for DHS
	Optimality proof for DHS
	GPU implementation and memory boosting
	Full-spine and few-spine biophysical models
	Synaptic inputs
	Background noise
	Exploring neuronal excitability
	Performing AI tasks with the DeepDendrite platform
	HPC-Net model
	Image classification with HPC-Net
	Synaptic plasticity rules for HPC-Net
	Robustness against adversarial attack with HPC-Net
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

