
Article https://doi.org/10.1038/s41467-023-40770-4

Hardware-aware training for large-scale and
diverse deep learning inference workloads
using in-memory computing-based
accelerators

Malte J. Rasch 1 , Charles Mackin 2, Manuel Le Gallo 3, An Chen 2,
Andrea Fasoli 2, Frédéric Odermatt 3, Ning Li 1, S. R. Nandakumar3,
Pritish Narayanan2, Hsinyu Tsai 2, Geoffrey W. Burr 2, Abu Sebastian 3 &
Vijay Narayanan 1

Analog in-memory computing—a promising approach for energy-efficient
acceleration of deep learning workloads—computes matrix-vector multi-
plications but only approximately, due to nonidealities that often are non-
deterministic or nonlinear. This can adversely impact the achievable inference
accuracy. Here, we develop an hardware-aware retraining approach to sys-
tematically examine the accuracy of analog in-memory computing across
multiple network topologies, and investigate sensitivity and robustness to a
broad set of nonidealities. By introducing a realistic crossbar model, we
improve significantly on earlier retraining approaches. We show that many
larger-scale deep neural networks—including convnets, recurrent networks,
and transformers—can in fact be successfully retrained to show iso-accuracy
with the floating point implementation. Our results further suggest that non-
idealities that add noise to the inputs or outputs, not the weights, have the
largest impact on accuracy, and that recurrent networks areparticularly robust
to all nonidealities.

The ever-increasing compute needed to train and use deep neural
networks (DNNs)1 havemade hardware latency and energy efficiency a
growing concern. However, conventional processor architectures
(e.g., CPUs, GPUs, etc.) incessantly transfer data between memory and
processing through the “von Neumann bottleneck”, inducing time and
energy overheads that significantly degrade latency and energy effi-
ciency. Numerous hardware concepts have been introduced to accel-
erate DNN training and/or inference2–4, by approximating matrix-
vector multiplications (MVMs) and other arithmetic with custom
floating-point representations such as bfloat165 or DLFloat6, or with
reduced-precision fixed-point arithmetic to quantize synaptic weights
and activations7–10. Model compression and sparsification techniques

can further reduce compute requirements by pruning weights and/or
activations11,12.

Analog in-memory computing (AIMC) using non-volatile memory
(NVM) elements is a promising mixed-signal approach for DNN
acceleration13–15, with weights stored using crossbar arrays of tuneable
conductive elements. This enables approximate MVM computation
directly in-memory, by applying activation vectors (as voltages or
pulse durations) to the crossbar array, and then reading out analog
physical quantities (instantaneous current or accumulated charge)16–18.
As a “non-von Neumann” architecture, AIMC performs MVM opera-
tions at the location of the storedweights, in a highly parallel, fast, and
energy-efficient manner17—but only approximately.

Received: 16 February 2023

Accepted: 8 August 2023

Check for updates

1IBM Research, TJWatson Research Center, YorktownHeights, NY, USA. 2IBMResearch Almaden, 650 Harry Road, San Jose, CA, USA. 3IBMResearch Europe,
8803 Rüschlikon, Switzerland. e-mail: malte.rasch@ibm.com

Nature Communications | (2023) 14:5282 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0009-0000-3977-5020
http://orcid.org/0009-0000-3977-5020
http://orcid.org/0009-0000-3977-5020
http://orcid.org/0009-0000-3977-5020
http://orcid.org/0009-0000-3977-5020
http://orcid.org/0000-0002-8416-367X
http://orcid.org/0000-0002-8416-367X
http://orcid.org/0000-0002-8416-367X
http://orcid.org/0000-0002-8416-367X
http://orcid.org/0000-0002-8416-367X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0009-0008-8433-963X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40770-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40770-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40770-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40770-4&domain=pdf
mailto:malte.rasch@ibm.com

The success of reduced-precision digital accelerators proved that
DNNs can tolerate surprisingly coarse approximations of the under-
lying MVMs. While naive direct weight-quantization invariably leads to
DNN accuracy loss, original model accuracies can often be recovered
when DNNs are retrained in a quantization-aware manner, even for
aggressive reductions in precision. Weight-quantization into as few as
2–4 bits can often be tolerated without significant accuracy
reduction8,19,20. This observation led to the development of
quantization-aware training (QAT) methods, now commonly used
when deploying DNNs onto reduced-precision digital hardware21.

In general, since reducing MVM precision decreases the repre-
sentational power of each DNN layer as compared to a full floating-
point (FP) implementation, accuracy naturally suffers once the func-
tion approximation becomes too coarse for the task at hand20. In
practice, QAT is known to have limits, and MVM minimum-precision
requirements vary across each DNN topology. For instance, the first
and last layers of convolutional neural networks (CNNs) are invariably
implementedwith high precision FP, even in studies claiming CNN iso-
accuracy at very low fixed-point precision7,8.

Up to now, it has been unclear how and to what degree DNNs can
be retrained to maintain accuracy on emerging AIMC technology. The
successes of QAT cannot be directly translated onto AIMC, since the
MVM approximations arise from fundamentally different concepts. In
AIMC, weights are represented by conductances that are physical
properties of NVM devices. In many materials, such as phase-change
memory (PCM)22,23, resistive random-access memory (ReRAM)24,25,
conductive bridge RAM (CBRAM)26,27, or electro-chemical random-
access memory (ECRAM)28,29, these conductances are effectively con-
tinuous physical quantities, and stored weights are not quantized.

That said, effective AIMC weight precision is impacted by various
nonidealities, including thermal and 1/f noise, randomization during
physical switching induced by electrical and thermal fluctuations,
material inhomogenities30, and device-to-device variability introduced
during device fabrication or operation. These issues cause both MVM
read-out31 and the writing or programming of the conductances32–34 to
be erroneous and non-deterministic. Worse yet, conductances can
evolve over time after programming35–37. Finally, any nonlinearities
within the analog circuitry performing summation can further degrade
MVM precision. Such imperfections include “IR-drop” voltages on
wires and transistors, restrictions on input (output) dynamic range
imposed by discretization and saturation of the digital-to-analog
converter (DAC) (analog-to-digital converter (ADC)) components, and
random noise or variability in the circuitry.

Whereas QAT gets challenging as precision is deterministically
reduced, MVM approximation in AIMC is tied to non-deterministic
signal-to-noise ratio. A number of previous studies have shown that
noise-aware training —simple injection of noise onto weights or acti-
vations during DNN training—can make DNNs more robust for AIMC
deployment33,38–42. However, such studies have typically been limited
to one or two exemplary DNNs of a particular type (e.g., CNN) using
only a limited subset of nonidealities such as NVM noise. Other critical
AIMC system aspects such as output noise, saturation, and circuit
nonlinearities have been neglected. Moreover, since each studymakes
different hardware andNVM-device choices, it is difficult to generalize,
compare, or combine them. Thus more realistic and standardized
AIMC crossbar models—which can support comparison of AIMC
accuracy for hardware-aware trained DNN models across studies—are
needed.

Although some promising, small-sized DNN prototype demon-
strations exist43–49, it remains unclear how robust the AIMC deploy-
ment of realistically sized AI workloads will be. How will the various
nonidealities of AIMC hardware impact the DNN accuracy, across all
the various topologies and thus application domains? And how much
of the lost accuracy could be recovered by hardware-aware training?
Which crossbar-array design choices will be most effective in

maintaining accuracy? And if necessary, what degree of improved
device-to-device uniformity might be required—through better NVM-
device fabrication—in order for AIMC to succeed on all DNNmodels? A
systematic study comparing the various DNN topologies in terms of
robustness to AIMC nonidealities is needed.

In this paper, we establish a robust hardware-aware (HWA) fra-
mework by extending and improving existing training methods for
AIMC to include previously neglected nonidealities (see Fig. 1 for an
illustration). We define a standard inference model for PCM-based
AIMC that can readily be extended to other types of NVM devices. We
explore the functional suitability of AIMC across application domains
by assessing the robustness of awide set ofDNN topologies. Finally, we
estimate the individual impact of various AIMC nonidealities and
gauge their relative importance for consideration in future hardware
designs. Functions for our standard evaluation process are provided in
an open-source IBM Analog Hardware Acceleration Toolkit
(AIHWKit)50, enabling future studies on noise robustness for AIMC to
build seamlessly upon our work.

We find that various DNNs and AI workloads—ranging across
image classification using CNNs, text-prediction and speech-to-text
conversion using recurrent neural networks (RNNs), and natural lan-
guage processing using transformer networks—can actually be
robustly deployed on AIMC given proper HWA training. We show iso-
accuracy inference results (within 1% of the FP reference) using
hardware-calibrated PCM models, for five out of the eleven AI work-
loads tested, even after 1 h (or more) of conductance drift.

gHowever, precision requirements are heterogeneous, and not all
architectures reach this iso-accuracy target easily, even after extensive
HWA training, pinpointing the need for continued device improve-
ment. We find that CNNs are typically much less robust to various
nonidealities and design choices of AIMC hardware. Interestingly,
RNNs—already well-suited for AIMC given their large, dense MVMs51—
also seem to be themost robust to the finite signal-to-noise ratio (SNR)
of AIMC hardware. We further show that among various nonidealities
tested, the sensitivity to additive system noise at the output of each
crossbar array is the most critical for achieving good accuracy.

Results
Analog IMC standard MVM model
Our standard AIMC crossbar model (see Figs. 2 and 3, and Eqs. (1) and
(2) in “Methods”) encapsulates the critical nonidealities incurred dur-
ing MVM operations, including the fixed dynamic ranges of physical
inputs (limited by maximum pulse duration), weights (limited by
maximum conductance), and outputs (limited by maximum output
current). The nonideal MVM is a combination of digital computations
close to the crossbar periphery, namely adjustable input scale α and
column-wise output scales γi and biases βi, as well as fixed-range ADC
and DAC quantizations:

eyi = βi +αγi quant
q out
bout

�Fi quant
qin
1 x=α
� �� �� �

, ð1Þ

where �F is an operator that describes the nonideal multiplication with
the resisitve elements and accumulation of the crossbar currents, and
quantqbð�Þ indicates q quantization steps in the range
−b, …,b (with clipping; see Eq. (5)).

Thus, as illustrated in Fig. 2, digital FP inputs xi are scaled by a
scalar α, quantized in a fixed range (by the DAC), and then subject to
the nonideal analog computation with noisy weights constrained by a
fixed weight range (gray bell curves), as well as an additive system
noise (blue bell curves). The (noisy) outputs of the analog crossbar are
then digitized again by parallel ADC in a fixed output range, and finally
re-scaled and shifted by the combined digital FP scales γiα, and offsets
βi, respectively.

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 2

Fig. 1 | Illustration of the HWA training approach. In our hardware-aware (HWA)
training setup, DNNsare first trained in 32-bitfloating point (FP32), then retrained in
a hardware-aware manner, by adding nonidealities and noise sources into the
forward path and using SGD to improve the robustness to such generic non-
idealities. HWA training is only performed once—no specific device or chip

characteristics, such as failure maps, are taken into account during HWA training,
so resulting models remain widely deployable. This HWA-trained model is then
programmed onto AIMC multiple times (here in simulation) and DNN accuracy is
evaluated over time, taking into account conductance drift of PCM devices and
read noise accumulation31.

Fig. 2 | Illustration of the AIMC crossbar-model abstraction. Our analog in-
memory computing (AIMC) crossbar model (using the nonideal matrix-vector
multiplication (MVM) of Eqs. (1) and (2) together with hardware-calibrated PCM
conductance noise and drift Eqs. (7)–(14) in “Methods”) assumes that each array or
“tile” approximates MVM ey≈Wx, where digital inputs are converted with a digital-
to-analog converter (DAC) to voltages, and current is integrated while weights are
represented as conductances. Analog outputs are converted back from physical

units to floating point (FP), using column-wise parallel analog-to-digital converters
(ADCs), output scale vector γ and bias vector β. Analog weight, input, and output
ranges remain fixed; digital scales are used to map the FP weight values to the
analog weights (ie. normalized conductances) of the crossbar and scale the ADC
output ticks per column appropriately for subsequent (digital) layers. Negative
weights are programmed onto a different conductance for current subtraction in
the evaluation phase, and output noise is fully represented (see Eqs. (1) and (2)).

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 3

The digital input scale α is optimized for each crossbar during
HWA training, then held fixed for inference. Such optimization avoids
issues created if α is chosen poorly (see Fig. 3E). Similarly, optimized
scales (γi) and offsets (βi) map ADC-counts of each output column to
MVM outputs eyi (see Eq. (1)) that can be passed to subsequent digital
compute for auxiliary operations (activation functions, etc.)51 (see also
Supplementary Notes B.3 for an expanded discussion).

We further assume a number of nonidealities so that the analog
MVM �y= �Fð�xÞ canbe describedmathematically as follows (with normal
random variables ξ i,ξ ij ∼N ð0,1Þ):

�yi = σ
outξ i + f

NL
i Δ�y IR-dropi +

X
j

�wijðtevalÞ+ σ
w ξ ij

� �
�xj

 !
: ð2Þ

Thus, our analog MVM model includes programming errors and drift

(�wijðtevalÞ; Fig. 3A), IR-drops within the array Δ�y IR-dropi (Fig. 3C),

short-term weight-dependent read noise (σw = σwð�wijðtevalÞÞ) and

system noise (σout; Fig. 3B). We mainly investigate the situation where
allweight-relatedparameters have been carefully calibrated to existing
PCMhardware31, however, themodel can be adapted to othermemory
technologies as well (see Supplementary Notes B.2). Quantization
levels (8-bit, ref. 44) and system noise (on the order of the ADC bin-
width) are set to reasonable values by default, however, we will also
explore their impact in a sensitivity analysis. The additional point-wise

output nonlinearity f NLi is assumed S-shaped in the sensitivity analysis
only and otherwise omitted. For a more detailed discussion of the
individual nonidealties, see “AIMC standardized evaluationmodel”. All

parameter settings of the AIMC crossbar model are summarized in
Supplementary Table 1.

We quantify MVM errors in computing ey with respect to the ideal
outcome y through ϵM, the ratio of the l2-norm of the deviation (y� ey)
relative to the l2-norm of the ideal outcome y (see Eq. (20)). Figure 3D
shows that, even after including PCM drift, the effective MVM error of
our standardAIMC crossbarmodel roughly corresponds to 4-bit fixed-
point quantization of weights or inputs.

DNN accuracy impact when directly using AIMC
To test the effect of AIMCnonidealities ona variety of AIworkloads,we
consider 11 medium- to large-scale DNNs of various topologies as a
benchmark set (see Table 1). These cover a wide spectrum of target-
applications (image classification, natural language processing,
speech-to-text), network topologies (convolutional, recurrent, trans-
former with attention), model sizes (from 0.3M to 108M parameters),
crossbar utilization (from 4% to 86%), total number of MVMs per data
input (from 2.2K to 240K), MVM sizes (from 0.1G to 96.5G flops),
average weight-matrix reuse-factor per data input (from 17 to 1285),
and network depth (up to 121 layers). Our benchmark set thus covers a
wide variety of network topologies and challenges for AIMC.

For comparison, we first directly map weights produced by stan-
dard stochastic gradient descent (SGD)-training in FP32 onto our
standard AIMCcrossbarmodel and evaluate the resulting test error, to
measure the accuracy drop (with respect to the FP32 model) due to all
the various AIMC nonidealities. Output scales γi are initially estimated
according to the absolutemaximumweight value for each column (see
Eq. (21); having individual scales per column available in the chip

Fig. 3 | Nonidealities of the AIMC crossbarmodel. ACorrelations between analog
in-memory computing (AIMC) outputs—for matrix-vector multiplications (MVMs)
performed between Gaussian randomweightmatrices and uniform random inputs
—and the ideal (FP32) expected results reveal significant deviations, due primarily to
weight-programming errors and PCM conductance drift (shown here without any
mean-drift compensation36). B Short-term noise sources induce cycle-to-cycle
noise for repeated MVM calculations even with the same programmed weight
matrix. C “IR-drops” due to finite wire resistance result from input-position
dependencyof the accumulatedAIMCcolumn-currents. Anexpected0output—the
correct result when a linearly-gradedweightmatrix (ranging from −1 to 1 inorder) is
read with a constant input on all rows—can actually deviate drastically due to the
degree of ordering of weights here shown from 0 (completely unordered, typical
case) to 1 (fully ordered, extreme case). D The MVM error ϵ*M Eq. (20) of our

standard PCM-based AIMC inference model (Fig. 2; dotted lines) ≈15% roughly
corresponds tofixed-point quantized digital (solid lines) at ~4 bits. ECorrelations of
MVM deviation, ~yi � yi, vs. desired MVM output yi =wijxj illustrate the importance
of proper input scaling α, forwij ∼N ð0,0:246Þ and xj ∼N ð0,1Þ. Red dots mimic the
weight-to-activation correlations that SGD learning will produce, using
~xj =ρwkj + ð1� ρÞxj , while blue dots represent the uncorrelated component for
comparison, (ρ =0.0). Low α = 1 leads to input clipping (a, e, i) and ϵ*M exceeding
35% (gray text). Intermediate α values can still lead to saturated outputs for cor-
related inputs, even without input clipping (f, j); excessive α values reduce clipping
but increase ϵ*M dramatically (d, h, l). We optimize α during hardware-aware (HWA)
training, then keep it fixed during AIMC inference, minimizing ϵ*M regardless of
input correlation (c, g, k).

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 4

design is crucial, see Supplementary Table 6 for directmapping results
if only a single output scale γ is available). To adjust the digital para-
meters of our standard AIMC crossbar model for these directly
mapped-from-software weights, we use our HWA training flow—but
without any weight noise injection, with weight learning rates set to
zero, and for only 1000batches. As expected, such “direct”mappingof
DNNs onto AIMC, without any additional retraining of the weights,
generally results in significant increases in test error (accuracy drop) in
comparison to the floating-point reference (Table 2).

Direct comparison of accuracy values between DNNs is compli-
catedby the fact that these various AI tasks exhibit differentworst-case
(randomguessing) and best-case (well-trainedDNNmodel) accuracies.
To quantify and compare accuracy drop across different topologies,
we therefore define a normalized relative accuracyA1h

* , which re-scales
the AIMC test error ϵ1htest (at 1 h PCMdrift) by the distancebetween the
original FP32 test error and the “chance” test error from random
guessing, as follows:

A1h
* = 1�

ϵ1htest � ϵFPtest
ϵchance � ϵFPtest

: ð3Þ

Thus a value of A1h
* = 100% means that the AIMC DNN achieves the

same accuracy as the FP32 reference model (no accuracy drop at all),
while a value of A1h

* = 0% implies that the AIMC crossbar model is so
inaccurate that it is indistinguishable from random guessing.

Ideally, deploying a given DNN in an AIMC system should have no
impact on model accuracy. We define our iso-accuracy target as
A1h

* >99%, allowing less than a 1%drop in accuracy, as judged relative to
the distance between the FP32 reference accuracy and the chance
(random guessing) accuracy floor. Table 2 shows that direct AIMC
mapping fails to achieve this iso-accuracy target for almost all of the
DNNs tested, establishing both the challenge posed by the non-
idealities existing in AIMC (as compactly encapsulated by our standard
crossbar model, Figs. 2 and 3), as well as the need for HWA training
methods that can greatly improve the robustness and reduce these
accuracy drops.

HWA training improves AIMC accuracy for all DNNs
Building on previous approaches (see refs. 38,40,41), we set out to
retrain these 11 DNNs in a hardware-aware (HWA) manner. In our
methodology for HWA training followed by delayed inference (Fig. 1),
eachDNN is retrainedwith noise injection using SGD. But in contrast to
earlier approaches, we incorporate a much more comprehensive and

Table 1 | Properties of the benchmark set of 11 DNNs

DNN Type # par. # mapped # tiles util. # MVM 〈reuse〉 Flops

ResNet-32 CF10 C 0.36M 0.36M 34 4.0% 14K 435. 0.1G

WideResNet-16 CF100 C 11M 11M 68 61.7% 19K 286. 3.1G

ResNet-18† ImNet C 11.7M 11.2M 75 56.8% 40K 533. 3.4G

ResNet-50† ImNet C 25.6M 23.4M 149 60.0% 74K 497. 7.9G

DenseNet-121† ImNet C 8M 6.9M 266 9.8% 143K 537. 5.4G

WideResNet-50† ImNet C 69M 66.8M 296 86.0% 101K 342. 22.6G

BERT-base MRPC T 108M 85M 486 67.1% 61K 126. 21.8G

Albert-base MRPC T 12M 7.8M 48 61.7% 61K 1285. 21.8G

Speech□SWB300 L 30M 30M 153 74.8% 2.5K 17. 0.9G

LSTM PTB L 19.8M 13.3M 88 57.5% 2.2K 26. 0.7G

RNN-T L 57M 57M 304 71.6% 240K 790.* 96.5G

Awide rangeofDNNs topologies (Type) and sizes are studied, includingCNNs (C), LSTMs (L), and transformers (T). ForeachDNNmodel anddataset,model size isquantifiedbynumber ofparameters
(# par.); number of parametersmapped to analog crossbars (#mapped); number of 512 × 512 crossbars (# tiles) needed for naivemapping (each weight matrix gets at least 1 tile); overall utilization of
thedeviceswithin the tiles (util.); total number ofMVMsper inputdata (#MVM); average tile-reuse for one input data (〈reuse〉; *formaximal input length in dataset); and the number of FP32 operations
in the mapped MVM for one input data (FLOPS); †

first conv-layer and last FC layer in FP32;
□additional hidden Markov model used as decoder.

Table 2 | Inference of floating-point (FP)-trained DNNs

Direct mapping Test error in % Normalized acc. in %

DNN FP32 1 second 1 hour 1 day 1 year A1h
* A1d

* A1y
*

ResNet-32 CF10 5.80 12.25 ± 0.29 13.14 ± 0.41 13.64 ± 0.34 18.49 ± 0.62 91.3 90.7 84.9

WideResNet-16 CF100 20.00 24.06 ± 0.16 25.11 ± 0.20 25.74 ± 0.31 30.58 ± 0.39 93.5 92.7 86.6

ResNet-18† ImNet 30.50 36.56 ± 0.17 37.98 ± 0.16 40.11 ± 0.34 47.61 ± 0.69 89.2 86.2 75.4

ResNet-50† ImNet 23.87 35.28 ± 0.17 36.51 ± 0.28 37.77 ± 0.23 46.25 ± 0.61 83.4 81.7 70.6

DenseNet-121† ImNet 25.57 35.25 ± 0.29 35.59 ± 0.34 38.82 ± 0.30 53.73 ± 0.72 86.5 82.2 62.1

WideResNet-50† ImNet 21.53 33.41 ± 0.19 34.14 ± 0.13 36.59 ± 0.22 46.54 ± 0.33 83.9 80.8 68.1

BERT-base MRPC 14.60 21.77 ± 0.21 22.87 ± 0.20 23.39 ± 0.26 28.01 ± 0.18 83.9 82.9 73.9

Albert-base MRPC 15.08 32.00 ± 0.00 32.00 ± 0.00 31.25 ± 0.00 31.50 ± 0.00 66.8 68.2 67.8

Speech□SWB300 14.05 21.40 ± 0.03 15.43 ± 0.02 14.77 ± 0.02 14.78 ± 0.02 98.4 99.2 99.1

LSTM PTB 72.90 72.98 ± 0.01 73.11 ± 0.01 73.27 ± 0.01 73.52 ± 0.02 99.2 98.6 97.7

RNN-T SWB300 11.80 18.90 ± 0.34 12.33 ± 0.02 12.35 ± 0.02 12.86 ± 0.05 99.4 99.4 98.8

Inference results using analog in-memory computing (AIMC) for the 11 benchmark DNNs when deployed directly without any weight retraining. Test errors in % ± standard error of mean (across 24
inference repeats; italic font) are shown after 1 hour and 1 year of PCMdrift (center columns) and compared to the original FP32 test error (leftmost column). Digital parameters needed for the AIMC
crossbar model are estimated by initial conductance mapping according to Eq. (21) and training briefly with the AIMC MVM in the forward pass (1000 batches), but without touching the directly
mapped analog weights. This helps adjust statistics of each batch norm to the new output distributions caused by the AIMC MVMs. During these 1000 batches, we estimate α by averaging the
maximal absolute inputs for eachbatchduring thefirst 500batches, and then allowSGD to tune it furtherduring the secondhalfof thebrief digital-parameter-onlyHWAtraining. Right-handcolumns
show normalized accuracy values after 1 hour (A1h

*) and 1 year (A1y
*), as scaled to the range between the FP32 reference test error and the test error obtained by random guessing. Except for a

respectable result for the RNNs (where in some cases longer PCM drift counter-intuitively improves accuracy because the reduction of the weight values better meets the fixed output range
constraints), all othermodels fail to achieve values close to iso-accuracy, as defined by >99% in this normalized accuracy and indicated in bold font. Note that for BERT andAlbert only oneGLUE task
(MRPC) is used here; †

first conv-layer and last FC layer in FP32; □additional hidden Markov model used as decoder.

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 5

realistic set of software-simulated AIMC nonidealities, including
dynamic-range limitations, weight-programming errors, PCMdrift and
system noise. Once a given DNN is trained and mapped to AIMC, the
inference is then gauged for noise and drift at various delays (1 s, 1 h,
1 day, and 1 year) after programming the weights into the crossbar
arrays.We also introducea set ofAIMCcharacteristics, including input,
output, and weight scales (see Fig. 3 and “Methods”), and introduce an
approach for optimizing these scaling factors during HWA training for
use during inference (see Sec. B.1).

As shown in Table 3, our HWA training approach significantly
improves achievable accuracy for AIMC across the full set of bench-
mark DNN results. The normalized accuracies (relative to the FP32
model) at 1 h after programming are all higher than 97% (A1h

* , toward
right edge of Table 3). This represents a significant improvement over
“direct” weight mapping without retraining shown earlier (Table 2),
while establishing a state-of-the-art in HWA training, as revealed by
detailed comparisons on ResNet-32 with CIFAR10 (see Supplementary
Table 2).

Table 3 indicates thatfive out of the 11 AIworkloads can be trained
to reach the A1h

* >99% iso-accuracy target, including the BERT trans-
former model as well as all workloads based on long short-term
memory (LSTMs) (last 3 rows, see “Type” column in Table 1). Most of
the remaining workloads use CNNs and exhibit more-pronounced
accuracy drops of up to 2.8% on AIMC, although one CNN does reach
iso-accuracy (WideResNet-16 on CIFAR100).

For someDNNs,wefind that the regularization effect of the added
AIMC nonidealities allows HWA training to actually improve the
attainable accuracy (compare test errors at 1 s after programming for
WideResNet-16 and BERT). Both RNNs and transformers are quite
robust when subject to PCM conductance drift over longer periods as
well. The rightmost column of Table 3 shows the long-term relative
accuracy of the DNNs, A1y

* , for an hypothetical 1 year after program-
ming without weight refresh.

While the RNNs and transformers remain near iso-accuracy over
time, larger CNNs with higher resolution ImageNet inputs show the
largest drop in accuracy. The deep DenseNet-121 (121 layers), as well as
the large WideResNet-50 (69M parameters), and the Albert transfor-
mer (with layer re-usage) models are the most challenging for AIMC.
That said, the resiliency to long-term drift is greatly improved by HWA
training as compared to “direct” deployment without retraining. For

instance, the HWA-trained models for both the Speech-SWB300 and
LSTM-PTBmodels remain iso-accurate out to a year, unlike the directly
mapped models (Table 2).

In general, we find that CNNs are more difficult to train to iso-
accuracy for AIMC deployment compared to RNNs and transformers.
In terms of AIMC workload execution latency and system mapping51,
CNNs are already less well-suited for resistive crossbar arrays due to
the uneven temporal reuse between layers and spatial under-
utilization of the large analog tiles by the small kernel matrices (see
Table 1), although some optimization and mapping tricks52 are avail-
able. Our results here indicate that AIMC noise-robustness issues will
pose additional challenges when implementing CNNs onto AIMC
systems.

Sensitivity ofHWA-trainedmodels to variousAIMCnonidealities
To determine which nonidealities are particularly problematic for
analog inference across DNNs, we “stress test” our HWA-trained
models. For each individual nonideality, such as PCM programming
error or IR-drop, we vary its strength and evaluate the resulting
inference accuracy across DNNs using our base HWA-trained model.
Our standard AIMC MVM model exhibits ϵ*M≈15% (see Fig. 3 and Eq.
(20)), but combines many nonidealities. To estimate the relative
accuracy impact due to each individual nonideality, we boost only that
parameter value until MVM error increases to ϵ*M =20%, and then re-
measure DNN accuracy.

Even at constant MVM error, each parameter changes a different
aspect of the AIMC compute. For instance, output noise is applied at
eachMVM, whereas PCM programming errors are only applied during
programming and then persist throughout inference. Other non-
idealities such as IR-drop or ADC “S-shaped” nonlinearity change the
shape of the MVM deviations (Fig. 4A), causing large outputs to incur
very significant MVM error. As a result, even at an identical average
MVM error of ϵ*M =20%, the impact on DNN accuracy can be much
more pronounced. Such nonidealities are particularly detrimental for
DNN inference, and thus deserve additional attention in future hard-
ware designs or HWA training methods.

To gauge the relative impact of each individually boosted non-
ideality parameter, Fig. 4B shows the loss in normalized accuracy (A1h),
defined not with respect to the FP32 model error (A1h

* Eq. (3)), but with
respect to our standard AIMC crossbar model (at 1-h drift). A value of

Table 3 | Inference of HWA-trained DNNs

HWA training Test error in % Normalized acc. in %

DNN FP32 1 second 1 hour 1 day 1 year A1h
* A1d

* A1y
*

ResNet-32 CF10 5.80 6.73 ± 0.02 6.99 ± 0.02 7.33 ± 0.03 8.55 ± 0.09 98.6 98.2 96.7

WideResNet-16 CF100 20.00 19.61 ± 0.02 19.78 ± 0.02 20.10 ± 0.02 21.12 ± 0.03 100.3 99.9 98.6

ResNet-18† ImNet 30.50 31.28 ± 0.02 31.59 ± 0.02 31.98 ± 0.03 33.43 ± 0.05 98.4 97.9 95.8

ResNet-50† ImNet 23.87 24.56 ± 0.01 24.83 ± 0.02 25.29 ± 0.03 27.21 ± 0.04 98.7 98.1 95.6

DenseNet-121† ImNet 25.57 26.46 ± 0.02 26.96 ± 0.03 27.67 ± 0.04 30.85 ± 0.08 98.1 97.2 92.9

WideResNet-50† ImNet 21.53 23.43 ± 0.02 23.76 ± 0.02 24.21 ± 0.03 26.71 ± 0.06 97.2 96.6 93.4

BERT-base GLUE8 17.47 17.43 ± 0.09 17.55 ± 0.12 17.58 ± 0.12 17.99 ± 0.12 99.8 99.8 98.9

Albert-base GLUE8 19.46 20.52 ± 0.18 20.45 ± 0.16 21.08 ± 0.18 22.18 ± 0.21 97.8 96.4 94.0

Speech□SWB300 14.05 14.24 ± 0.01 14.24 ± 0.01 14.29 ± 0.02 14.42 ± 0.02 99.8 99.7 99.6

LSTM PTB 72.90 72.97 ± 0.00 73.00 ± 0.00 73.02 ± 0.00 73.10 ± 0.01 99.6 99.6 99.3

RNN-T SWB300 11.80 12.22 ± 0.04 12.36 ± 0.02 12.42 ± 0.04 12.78 ± 0.04 99.4 99.3 98.9

Test error in % ± standard error of mean (across 15–25 inference repeats per training trial and up to three training trials; italic font) for DNN deployment on analog in-memory computing (AIMC)
crossbars after hardware-aware (HWA) training. Rightmost two columns show the normalized accuracy, scaled between the FP reference and chance error, at 1 h, 1 day, and 1 year after weight
programming. Note that PCMdrift is a post-programming physical effect that is initially rapid but then slows down logarithmically in time23. This means that themultiplicative conductance changes
inducedbydrift between 1 s and 1 h (time-since-programming increased3600×), andbetween 1 h and1 year (time-since-programming increased8760×) areactuallyquite similar. HWA traininghyper-
parameters (injected noise strength, etc.) were chosen to produce the best average accuracy across the four widely spaced timepoints shown here. Other choices could bemade to focus just on
performance in either longer or shorter periods of drift. Models deemed iso-accurate (A*> 99%) are marked in bold. BERT and Albert results are averaged across eight GLUE tasks, as evaluated on
validation datasets; SWB300 results are averaged over twobenchmark tasks; results for Speech-SWB300 andWideResNet-16–CIFAR100 use HWAwith distilling.†first conv-layer and last FC layer in
FP32; □additional hidden Markov model used as decoder.

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 6

0% means that boosting this particular nonideality has no impact on
accuracy, as compared to our standard AIMC crossbar model. A value
of 100%means that simply boosting this nonideality to the sameMVM
error of ϵ*M =20% has degraded DNN accuracy to the level of random
guessing.

Clearly, DNN accuracy reacts vastly differently to individual non-
idealities. We observe that nonidealities that effectively add noise to
the inputs or outputs—such as ADC and DAC resolution, additive
output noise, and S-shaped nonlinearity of the ADC—have the largest
impact on theDNNaccuracy, as normalized to impact on averageMVM
error. CNNs are the most-sensitive DNN topology, while RNNs are the
least-sensitive (in particular the PTB-LSTM network).

Nonidealities that mostly affect weight precision (all other non-
idealities listed in Fig. 4B), have a much less severe impact on the DNN
accuracy. In contrast to additive output noise, such weight-related
nonidealities all scalewith the input norm, and thus disappearwhen no
inputs are given. Since it arises from large currents, IR-drop becomes
negligible when either inputs or weights are reduced (in either
amplitude or occurrence). Such weight-related nonidealities impact
CNNs slightly more than RNNs or transformers. In particular,
DenseNet-121 with small kernel matrices and a high tile reuse factor
seems the most affected by weight disturbances. Figure 4 shows it is
not enough to focus only on weight-related nonidealities, as most
previous studies have done, when investigating AIMC.

We use this sensitivity analysis to assess additional nonidealities
which our standard AIMC crossbar model assumes to be perfect. For
instance, imperfect device yield—where some fraction of the weight
conductances are “stuck” either at zero (PCM reset), at ĝmax (PCM set),
or at some intermediate random value —is shown to have the same
modest effect on DNN accuracy as other weight-related parameters.
Weight asymmetry—a systematic difference in conductance for posi-
tive versus negative inputs such that −w(− ∣x∣) ≠w(∣x∣) – is shown to
have only modest impact on DNN accuracy. Interestingly, RNNs and
transformers are the models impacted by such polarity-dependent
device response, since the ReLU activations used in CNNs cannot

create negative inputs. Finally, systematic PCM programming errors—
applied once to the conductance values and then remaining constant
through repeated MVMs—are shown to have a slightly larger effect
than the cycle-to-cycle short-term PCM read noise that gets redrawn
for every MVM.

AIMC robustness of DNN topologies
To extract the specific sensitivities of each individual DNN, we find the
threshold value x* at which each nonideality degrades accuracy to
A1hðxÞ=99%, with respect to the standard AIMC crossbarmodel. From
scans of A1h as each nonideality is increased (Fig. 5A), we use linear
interpolation to identify x* from the intersection with the dotted line
at A1h =99%.

The grid in Fig. 5B shows this threshold value x*, for each non-
ideality and each DNN. For example, considering just total PCM noise,
even small increases beyond the current hardware-calibrated values
markedly degrade ResNet-18 (x* = 1.2 × forA1h =99%), while LSTM-PTB
is not affected until this particular nonideality is significantly larger
(x* = 3.3 ×). The colors ranging from red to green in Fig. 5 illustrate the
relative sensitivity among the DNNs, obtained by scaling x* linearly
between theminimal andmaximal values across the 11 DNNs. Formany
of these nonidealities, yet again RNNs tend to be the most robust,
followed by small CNNs on the CIFAR datasets.

Some nonideality parameters can be increased quite dramatically
with respect to our standard AIMC crossbar-model baseline. For
instance, DAC precision can be lowered from 8-bit to 6-bit without any
retraining, with little accuracy impact across all DNNs—this could
produce considerable energy savings and throughput improvement
for AIMC designs. Also, IR-drop can be increased beyond the baseline
before becoming problematic, and short-term weight noise could be
up to3 × larger, similarly informing futureAIMCdesigns, bothwith and
without PCMdevices.While direct examination of Fig. 5 might suggest
that IR-drop could be increased by 10 ×without issue, note that the
assumptions inherent in our IR-drop calculations, concerning average

Fig. 4 | Comparison of AIMC nonidealities. Comparison of the relative impact of
various analog in-memory computing (AIMC) nonidealities on DNN accuracy.
A AIMC deviations (~y� y) from the ideal matrix-vector multiplication (MVM) out-
put (y) are shown, for uncorrelated (blue dots) and weakly correlated (ρ =0.05)
random activations (red dots), as a single nonideality is increased until standard
MVM error reaches ϵ*M = 20%. All other parameters remain fixed to our standard
crossbar model (ϵ*M = 15%, Fig. 3). For instance, IR-drop needs to be scaled 11.7 × to
incur ϵ*M = 20%. Even at constant ϵ*M = 20%, MVM deviations are structured

differently and thus the impact on DNN accuracy can vary significantly. B Grid
shows loss in normalized accuracy (A1h) over the base HWA-trained model at 1 h
after programming when boosting a given nonideality to ϵ*M = 20%. Thus 0%means
no accuracy impact despite the amplified nonideality, whereas 100%means a drop
to chance level. For the HMM, LSTM sensitivity is reported for a portion of the
training set (insteadof the benchmark set) directly on the LSTMoutputwithout the
hiddenMarkovmodel to speed up computations. For the transformermodels, only
one GLUE task is evaluated (MRPC).

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 7

rather than instantaneous currents, imply a small safety margin of
perhaps 3 × (see “Methods”).

We also estimated the effect of imperfect PCM device yield. Even
the least robust model can tolerate 0.42% failed-at-zero devices (stuck
in the reset state, at random locations), rising to 3–4% for some of the
RNNs. However, DNN accuracies are more sensitive to devices stuck
either at random intermediate conductancevalues or at ĝmax (in the set
state). As few as 0.05% of such failed devices would already cause a
noticeable accuracy drop in some large CNNs. However, our analysis
only assumes one pair of conductances per weight —since many
existing AIMC designs provide multiple pairs of PCM devices per
weight44,47, such additional redundancy can potentially counteract
such stringent device yield requirements.

Impact of weight distributions on AIMC MVM fidelity
The MVM error of each AIMC crossbar is affected by the shape of the
weight distributions in interesting ways. While weight-clipping might
seem disadvantageous, directly programming a very “long-tailed”
weight distribution by mapping its largest outlying weight value to
ĝmax can cause even larger problems. Suchmappings tend to produce
low average output currents which fail to employ the available ADC
range, leading to larger MVM errors thanks to ADC quantization,
output noise, and other nonidealities that remain stubbornly inde-
pendent of the reduced output signal levels.

To show this effect, we calculate the MVM error for different
arbitrarily-constructed weight distribution shapes, obtained by sam-
pling the generalized normal distribution,

pðxjμ,α,βÞ= β
2αΓð1=βÞ e

�ðjx�μj=αÞβ , ð4Þ

where we use α = 1 and μ = 0. As β increases, this distribution becomes
more compact, moving through the Laplace (β = 1) and normal dis-
tributions (β = 2) along the way (see red curves above Fig. 6A). Fig-
ure 6A shows the MVM error ϵM at 1-h drift, for weight values sampled

from Eq. (4) as β increases from long-tailed (β ≤ 1) to compact (high β)
weight distributions. Here we map weights directly to conductance
values, with the maximum weight assigned to ĝmax; inputs are
uniformly distributed between (−1, 1). MVM error increases rapidly
for longer-tailed distributions (β ≤ 1).

One simple measure of a distribution’s shape is the kurtosis,
obtained by dividing the fourth moment (〈(x − μ)4〉) of the dis-
tribution by its variance squared (½hðx � μÞ2i�2). In the plots and the
remainder of this section, we use the excess kurtosis—defined as the
kurtosis minus 3, so that its value is 0 for normal distributions. Since
kurtosis increases for long-tailed distributions, we find that lower
kurtosis—and thus more compact weight distributions—means
lower MVM error (Fig. 6B).

Fortunately, our HWA training and conductance mapping
approach tends to inherently produce more compact conductance
distributions, for several different reasons. First, the individual digital
scales γi available for each MVM output (see Eq. (1)) are initialized to
scale conductances by the absolute maximal value of each weight-
matrix-column rather than by the overall maximum across the entire
weight matrix. With each column individually scaled, the overall con-
ductancedistribution becomesmore compact than the original weight
distribution. During HWA training, these digital scales are optimized—
which may lead the system to choose to clip some output columns—
and any large weight deviations and outliers created during training
are also clipped. Finally, since the AIMC nonidealities cause large
weights and outputs to increase the errors that SGD is attempting to
correct, HWA training should be expected to drive towards more
compact weight distributions during retraining.

Indeed, we find that our HWA training and mapping scheme
greatly increases the compactness of the conductance distributions
for each layer, as indicated by the kurtosis values shown for our 11 DNN
models in Fig. 6C. Hashed bars show kurtosis for directmapping of the
FP32 model without HWA training, using a single global digital scale
factor per layer. Solid bars illustrate that our column-wise-scaled and
HWA-trained models get mapped into conductance distributions that

Fig. 5 | Specifications of AIMC nonidealities. Tolerances of individual analog in-
memory computing (AIMC) nonidealities across DNNs. A As a single nonideality
parameter is increased from the our standard setting, accuracy A1h eventually
drops to 99% (compared to accuracy of the standard AIMC crossbar model). Four
nonidealities are shown, with DNN line-colors matching the text-label color in (B).
B Grid shows x*, the threshold value at which that particular nonideality produces
A1h =99% (DNN’s curve crosses dotted line in (A)). For instance, reducing DAC
precision from 8-bit down to 5-bit, while maintaining all other parameters from the

standard AIMC crossbar model, causes exactly 1% additional accuracy loss in the
LSTM-PTB model. Text-label colors at the top match the lines in (A); grid colors
reflect relative sensitivity index rs =

x*�min x*
maxx*�min x* , with min and max values taken

across all DNNs. rs = 1 (red) indicates the most-sensitive and rs =0 (green) the least-
sensitive DNN. RNNs are generally observed to be more robust to AIMC non-
idealities than CNNs, even with the limited hyper-parameter tuning available for
RNN-T due to its large number of MVM FLOPS and parameters.

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 8

are significantly more compact, which helps reduce both MVM and
DNN error.

Improving AIMC fidelity of selected layers to reach iso-accuracy
in large CNNs
Our results show that larger CNNs, particularly those using the Ima-
geNet database, are the most challenging for AIMC. Even with HWA
training, our standard AIMC crossbar model cannot achieve iso-
accuracy for these DNN models (Table 3). Clearly, the fidelity of the
MVMs must be further improved, either through better materials or
through hardware design choices. For instance, designers could ded-
icate multiple conductance pairs per weight53 to reduce PCM pro-
gramming errors, but at the cost of larger tile area and energy. Or
designers could average the results from multiple passes through the
tile to reduce the effects of cycle-to-cycle PCM read and additive
output noise, but at significant cost to latency, throughput, and energy
efficiency. Given these unpleasant tradeoffs, such approaches should
be used as infrequently as possible, ideally only on a small set of DNN
layers that really require these extra resources, which can then allow
the entire model to achieve iso-accuracy.

Thus, we need to determinewhich of the layers in ImageNet CNNs
are the most-sensitive to AIMC nonidealities, and then assess whether
improving just a small subset of these layers would have sufficient
impact. To do this, we sequentially introduce AIMC nonidealities at
each layer of the HWA-trained DNNs individually, while turning off all
nonidealities in all other layers (using FP32 operations on their HWA-
trained weight matrices). By repeating this process over the L layers
with different overall PCM noise settings, we can determine the sen-
sitivity and relative importance of single layers.

We first rank the layers according to accuracy impact for each
DNN by exposing each layer to significant PCM noise with all other
layers exempted from noise (Fig. 7A). Then, in order from most- to
least-sensitive layer, we introduce this noise-exemption into multiple
layers (Fig. 7B), causing normalized accuracy at 1-h drift A1h

* with

respect to the FP32 model to increase as more and more model para-
meters are made noise-exempt (Fig. 7C). Eventually the 99% iso-
accuracy is achieved (dashed horizontal line) and then exceeded for
most of these models. For Fig. 7A, the one layer being assessed sees
15 × the usual PCM noise; for Fig. 7B, the layers not yet PCM-noise-
exempted see our standard AIMC crossbar model. While PCM-noise-
exempt layers experience no long-term conductance noise, program-
ming errors, or drift, they still are subject to the same cycle-to-cycle
read noise, additive output noise, and DAC/ADC quantization choices
in our standard AIMC crossbar model.

For ResNet-18, ResNet-50, and DenseNet-121, we find that
improving just a few layers can help achieve iso-accuracy (A1h

* ≥99%,
dashed line in Fig. 7B). This involves only 6.4%, 2%, and 11.3% of the
model parameters, respectively (Fig. 7C). Improving MVM fidelity for
such a limited number of parameters should prove less costly than
across the full DNN. Moreover, we show in Supplementary Notes B.4
that the number of parameters can generally be further reduced—
within those most-sensitive layers, only half of the columns need to be
PCM-noise-exempted to reach iso-accuracy. However, for the
WideResNet-50DNN,MVMfidelitywouldneed tobe further improved,
beyond just suppressing PCM weight noise but reducing system noise
as well, in order to reach iso-accuracy. Therefore, this particular DNN
would require further advances in either HWA training or the overall
AIMC specifications, in order to support AIMC deployment without
significant accuracy drop. Nevertheless, note that even with the 2%
accuracy drop, the WideResNet-50 actually shows the lowest absolute
test error among the ImageNet DNNs (see Table 3, e.g., at 1 day), which
might make this DNN useful for AIMC deployment despite its sig-
nificant relative drop (from its own FP baseline).

Discussion
We have introduced an approach for successfully deploying DNNs
onto realistic AIMC inference hardware, at or near iso-accuracy. Our
standard AIMC crossbar model incorporates well-known but

Fig. 6 | Compactness of conductance values distributions. The hardware-aware
(HWA) training reducesmatrix-vectormultiplication (MVM) error by creatingmore
compact conductance distributions. A MVM error decreases as constructed con-
ductance distributions, produced by a generalized normal distribution Eq. (4), are
mademore compact by increasing β. Example distributions in red at top show β = 1
(Laplace distribution), β = 2 (normal distribution), and even more compact dis-
tributions for higher β. “SEM̀” indicates standard error of themean.BData from (A)
is replotted as a function of the (excess) kurtosis of the distribution. According to
the definition of excess kurtosis, a normal distribution (that is β = 2 in A) has a value
of 0, and positive or negative values for longer tail distributions (i.e., β < 2) ormore

compact distributions (ie. β > 2), respectively. Note that longer tail distributions
(large kurtosis) lead to higherMVMerror, whilemore compact distributions (lower
kurtosis) reduce MVM error (C) Kurtosis of the conductance values per layer,
comparing HWA-trained models (solid bars), to FP32 weight data scaled by the
overall absolute maximum weight (hashed bars). Column-wise scaling, and the
tuning of both weights and scaling parameters during HWA training, help lead to
significantly more compact distributions with smaller kurtosis values. Box plot
showsfirst quartile and third quartile with a line at themedian. Thewhiskers extend
1.5× the interquartile range. Outlier points are those past the end of the whiskers.

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 9

hardware-calibrated nonidealities caused by the analog devices, such
as read noise, programming errors, and conductance drift. Going well
beyond previous studies, our model also includes nonidealities due to
MVM circuit integration, such as system noise, DAC and ADC quanti-
zation, and dynamically computed IR-drop. Finally, our model fully
addresses the fixed dynamic-range constraints on inputs, weights, and
outputs found in all AIMC systems, but previously neglected.

We here investigate the scalability and applicability of the HWA
training approach for larger DNNs of various topologies, whichmostly
have not yet been deployed on actual AIMC hardware due to size
constraints of current prototypes. It has been already verified in
hardware, however, that HWA training using noise injection is very
effective at improving the robustness for selected (smaller) DNNs. For
instance in a recent study54, a ResNet9 CNN was trained with a similar
general HWA training approach yielding vastly improved AIMC accu-
racy in hardware. It remains to be seen whether our simulated iso-
accuracy results for the larger-scale DNNs can be verified in hardware
in future.

While a few aspects of our study are not directly applicable to
hardware designed around non-PCM devices, our standard AIMC
crossbar model and our carefully designed inference protocols can
readily serve as the basic core for studying such systems (see Sup-
plementary Notes B.2 for a generalization to ReRAM). The intuition we
have developed in terms of how various types of noise affect different
families of DNN models is also readily transferable.

Some aspects of our AIMCcrossbarmodel have been investigated
individually in earlier studies, such as the effect of ADC/DAC quanti-
zation, IR-drop, and general read noise55–57, as well as data-dependent
long-term noise38. Our main contribution is to combine the long-term
data-calibrated noise models of ref. 38 with a more realistic MVM-to-
MVM noise model (e.g., quantization, system noise, and IR-drop), and
to also include input, weight, and output range restrictions. Moreover,
our crossbar model also includes (trainable) digital input and output

scales that, as we show here, improve accuracy of large-scale DNNs
when HWA training algorithms are adapted accordingly (see also
Supplementary Notes B.3 for an expanded analysis). Since our stan-
dard AIMC crossbar model is described here in mathematical detail
together with default parameter settings, it should be straightforward
to implement it in any modern machine learning or AIMC simulator
framework to simulate the expected accuracyuponAIMCdeployment.
As such, the present work establishes a baseline that can both guide—
and be compared against—future AIMC simulation studies. To help
make this even more straightforward, our standard AIMC crossbar
model has now been incorporated into our open-source AIHWKIT50,58,
which is based on the popularML framework PyTorch59, and allows for
automatic evaluation of any DNN on AIMC.

However, while our AIMC crossbar model aims at easing the
development of new algorithms and their comparisons by establishing
a reproducible benchmark, it cannot replace ultimate AIMC hardware
verification of the algorithms. Beyond the inevitable variation of
design details across different AIMC hardware prototypes, we also use
many simplifications and abstractions of the various AIMC non-
idealities, since our goal is quick and relatively realistic functional
verification of larger DNN workloads. For instance, we assume noise
sources are Gaussian, avoiding physically modeled distributions that
would be more accurate but significantly slower. We also devised a
method to rapidly approximate IR-drop which can adjust dynamically
with the input. We chose to intentionally ignore static crossbar effects
that would change the conductance value systematically55,60, since
read–write-verify conductanceprogramming can readily adapt to such
effects.

Some prior works propose using on-chip or chip-in-the-loop
training methods38,43,49,55,61, which can greatly increase the attainable
accuracy by addressing the specific fabrication variations found on
that particular chip. However, we strongly believe that the time and
cost of such individualized preparation is likely to be untenable for

Fig. 7 | Layer-wise noise impact for ImageNet CNNs. A Bar-charts reveal the
relative impact that different DNN layers have on AIMC accuracy when the PCM
conductances in just that layer are made very noisy (overall PCM noise scale set to
15), while all other layers see only minimal PCM noise (overall noise scale set to 0).
The height of each bar-segment, arranged in sequential DNN layer order, corre-
sponds to the relative impact of that layer; colors simply delineate layer bound-
aries. Note that ResNet-50 and WideResNet-50 have very similar graphs since their
layers only differ in width. B Accuracy A1h

* as the most critical layers in these four

CNNs are exempted from PCMnoise, plotted as the fraction of noise-exempt layers
is increased, in order from most-sensitive to least-sensitive. C Corresponding
cumulative fraction of weight-parameters that are PCM-noise-exempted. For
ResNet-50, ResNet-18, and DenseNet-121 reducing PCM noise in just a few layers
(dotted vertical lines) allows an AIMC crossbar model to achieve iso-accuracy
(dashed horizontal line). However, for WideResNet, even non-PCM nonidealities
would need to be improved since the residual system noise already causes a sig-
nificant (≈ 2%) drop in accuracy.

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 10

widespread deployment. Thus in this paper, we have focused on HWA
training that can be general enough to be performed once per model
per AIMC chip-family, greatly simplifying the deployment onto indi-
vidual chips. That said, our HWA training approach could readily be
combined with more sophisticated online compensation methods,
with on-chip or chip-in-the-loop training, or withmore thanone device
pair used per weight, including optimization of how weights are
assigned across these conductances62.

Since HWA training is performed in software before deployment,
it has no first-order impact on the latency, throughput or energy effi-
ciency of AIMC hardware. However, as we have shown, HWA training is
essential to understanding the tradeoffs between accuracy and these
important system performance metrics. For instance, because of the
sequential nature of layers of a deep network, shallower but wider
layers should generally be preferable for AIMC, since higher utilization
of large matrices stored on the crossbar arrays does not significantly
change the runtime52,63 and helps improve energy efficiency. In terms
of noise robustness, excessively deep DNNs have disadvantages.
Among the ImageNet CNNs tested, DenseNet-121 showed the worst
long-term accuracy drop from its FP32 model (7.1% in normalized
accuracy after 1 year), while WideResNet-50 offered the best raw test
error (e.g., 23.76%, versus 24.83% for the next best ResNet-50 at 1 h, see
Table 3).

We also find that the RNNs investigated were particularly noise
robust. In a complementary recent study51, a subset of the DNNs
investigated here were compared in terms of latency, throughput, and
energy efficiency, including the RNN-T, ResNet-50, and BERT-base
DNNs. The authors found that the RNN-T was more efficient on a
realistic AIMC architecture than the CNNs or transformer models, due
to the high utilization as well as reduced need for digital auxiliary
operations. Together with our result indicating robustness to non-
idealities, RNNs seem highly suited for AIMC. In general, information
about performance as well as expected accuracy drop is critical when
trying to decide which DNN model to deploy.

A few previous studies have attempted to improve the robustness
of DNNs to nonidealities by noise-aware training, where multiplicative
or additive Gaussian noise38,41 is added toweights or activations during
training. Similarly, other studies seeking to prevent overfitting or to
enhance robustness to adversarial attacks have injected noise into
standard floating-point training as a regularization technique64–70.
While all these methods qualitatively increase the noise robustness of
DNNs, the quantitative benefits on real AIMC can neither be accurately
reported nor fully optimized by these studies. Since our HWA
approach keeps weights mapped in conductance units, a variety of
realistic hardware-relevant constraints can be incorporated in a
straightforward manner. These include the complexities of PCM pro-
gramming, and the shallow input-output ranges, IR-drop and quanti-
zation affecting the MVM compute—aspects neglected in most
previous studies.

We have tried distilling with the FP model as a teacher (similar to
ref. 71) and found some benefits when HWA training time is limited.
However, since the improvements offered by distilling disappeared at
longer training times for most DNN models, we mostly report results
without distilling. However, we did find that accuracy with distilling is
significantly higher for theMarkovmodel (HMM) Speech LSTM as well
as the WideResNet-16 DNN, and these results are shown in Table 3,
implying that distilling can be helpful for some DNNs.

Rather than simple Gaussian weight noise38, we use the expected
weight noise distribution characterized from PCM measurements31

and found it in general superior to other noise structures even when
evaluated on an ReRAM-based AIMC evaluation model (see Supple-
mentary Table 5). We find that injection of noise on the weights—
together with the correct incorporation of injected longer-term pro-
gramming noise when modifying the weight matrix during the

backward pass—is crucial for achieving AIMC robustness. One draw-
back of our approach is that this type of noise injection is currently
applied only once per mini-batch, which reduces the effectivity of the
noise as batch-size increases. One possible improvement would be to
sample the weight noise sources multiple times per mini-batch. Such
an extension of our methods should further improve the noise
robustness of the HWA-trained DNNs.

In conclusion, we show that comprehensive hardware-aware
(HWA) training can greatly enhance the robustness of a variety of deep
neural networks (DNNs)—including convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and transformers—to the
unavoidable device and circuit nonidealities of emerging analog in-
memory computing (AIMC) accelerators. In five of the 11 models stu-
died, the techniques we introduce lead to software-equivalent accu-
racy, defined as 99% of the accuracy-performance offered by the
original DNN model beyond random guessing. Averaged across all
models, HWA training reduces the gap in model accuracy from 11.3%
down to just 1.1% (judged at 1 h).

Through a systematic sensitivity analysis, we identify the non-
idealities that are most critical for maintaining accuracy in future sys-
tem designs. For instance, we observe that nonidealities that
effectively add noise to the inputs or outputs—such as ADC and DAC
resolution, additive output noise, and S-shaped nonlinearity of the
ADC—have the largest impact on DNN accuracy. We also show that
certain DNN topologies, such as RNNs, can tolerate more AIMC non-
idealities than others. It would be interesting to pinpoint the
mechanistic reasons for the increased robustness in particular topol-
ogies in future works.

By making this standard AIMC crossbar model available in the
open-source AIHWKIT50, we make it possible for future advances in
HWA training techniques to be readily compared to these results. By
pinpointing the measures needed to compensate for imperfect AIMC
hardware, the tools we have introduced here enable better under-
standing and optimization of the tradeoffs between model accuracy
and desirable performance characteristics such as latency, through-
put, and energy efficiency. Continued coordination between HWA
training and architectural assessments may even lead to brand-new
DNN topologies, specifically designed to maximize the benefits of
AIMC hardware—accurate inference at high speed and low power.

Methods
AIMC standardized evaluation model
Affine transform in tile periphery. We assume that each output col-
umn of the analog crossbar has a floating-point scale αi and offset βi
available which implement together an affine transformation. We
assume that conductances can be linearlymapped toweight values, so
that we can normalize the analog weight values from −1 to 1, corre-
sponding to �ĝmax, . . . ,ĝmax (see “Weight programming” sub-section).
This affine transform then maps the column’s physical output (e.g.,
current), as quantized using an ADC into integers within a certain
range, to the value expected by the DNN for the next layer (e.g., acti-
vation). Note that such ADC conversion using a scale and bias per
column is already available in prototypes44 but has not previously been
incorporated into studies on HWA training.

This digital periphery of an analog MVM can thus be summarized
as in Eq. (1), where the operator �F : Rn ! Rn describes the analog
aspects of the AIMC MVM (see (2)), and

quantqbðzÞ � clipb
�b

2b
ð2q � 2Þ round

ð2q � 2Þz
2b

� �� �
, ð5Þ

describes linear quantization to 2q − 1 values in− b,…, b centered
around 0. One bin is discarded to force an odd number of bins on
either side of zero. Here, clipb

aðxÞ constrains z betweenminimum a and

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 11

maximum b,

clipb
aðzÞ=

z, if a< z <b

a, if z ≤ a

b, if z ≥ b:

8><>: ð6Þ

α is a scalar, per-crossbar value which determines the usable input
range. This can either be a learned parameter which is then held fixed
during inference (static input range), or can depend dynamically on
the current input vector x (dynamic input range). While main results
assume a static input range, we examine performance improvements
for the dynamic option (Supplementary Notes B.1).

The scales γi determine the mapping of conductances to weight
values, individually for each crossbar column i. During HWA we allow
SGD to optimize this parameter, starting from values initialized. βi is
used to implement the bias of theMVM, which we implement in digital
(FP) precision here. We assume 8-bit quantization, and investigate
lower precision as part of our sensitivity analysis.

DynamicMVM range. A critical feature of our crossbarmodel is that it
fully encompasses the finite dynamic-range constraints on inputs,
weights and outputs that will be present and unavoidable in any real
AIMC implementation. Since both input and weights are normalized
within −1, …1 (in analog units), our output-bound setting of bout = 10
means that just 10 fully- on inputs, applied to rows containing
maximal-value weights, would fully saturate the output. This is a con-
servative choice that works for modest-size crossbars and for our
assumption that positive current contributions (produced by weight
and activation pairs of the same sign) and negative contributions
(weights and activations have opposite signs) cancel within the array.
This mode is energy-efficient andminimizes IR-drops, but requires the
ADC to be capable of measuring bipolar currents44. If the crossbar is
made much larger, or the positive and negative terms are integrated
separately, this may increase energy usage and exacerbate IR-drops,
but simplify the ADCdesign. Furthermore, such choices will likely alter
the overall dynamic-range limitations, calling for a reoptimization
of bout.

Analog MVM model. Our basic model is illustrated in Fig. 3A. The

analog MVM �y= �Fð�xÞ in Eq. (1) for the quantized, clipped and scaled
input vector �x � quantq1 ðx=αÞ takes the following general form of Eq.
(2), where analog weights �wijðtÞ represent normalized conductances
with programming errors, drift, and long-term noise up to time teval
applied (see “Weight programming”). We include a point-wise non-

linear functions f NLi ðxÞ to support special cases such as ADC non-

linearities; in our standard model, f NLi ðxÞ � x. Normal random
numbers (ξ i,ξ ij ∼N ð0,1Þ are drawn for each MVM, representing addi-
tive output noise with standard deviation σout = 0.04, and short-term
weight noise σwð�wÞ that depends on the current weight values (see
“Short-term PCM read noise”), respectively. Since the analog output
values running from − 10,…10 get quantized into digital values from
−127, …127 (8-bit), this choice of σout = 0.04 corresponds to almost
exactly half of one ADC quantization bin.

Weight programming. We adopt a previously described and -char-
acterized weight-programming and drift model for PCM devices31 as
detailed in the following. We assume that the crossbar provides one
pair of conductances per weight, where the first (second) member of
the devicepair is programmed to a conductance between reset (0) and
set (ĝmax) to handle positive (negative) weights, with the non-active
conductance programmed to reset. Only the active conductance is
considered in our model. Although recent prototypes support two
pairs per weight44,47, having only one conductance pair increases the

weight density and thus compute efficiency, and poses amore difficult
challenge in terms of accuracy and yield.

Each column wi of each weight matrix is mapped to a column of
target conductances ĝi. We first initialize each affine scale coefficient
using the maximum weight found in that column, γi = max

j
jwijj. This

allows each weight to be mapped to a scaled target conductance,
ĝij = ĝmax

wij

γi
. In our HWA training approach, after this initialization of

target conductance and affine scales based on the FP32 model weights,
we then use SGD to further optimize both the mapped target con-
ductances and scales γi separately. Table 3 uses this learned weight-to-
conductance mapping when evaluating AIMC inference performance.

In a real AIMC system, a positive ĝ value gets programmed onto a
different physical device than if that particular ĝ hadbeennegative.We
here assume that only one of the two devices are programmed to
particular target conductance whereas the other device is always at
reset conductance (ĝij =0). In this case, one can simplify and compute
theMVMdirectly with signed conductances as done in ourmodel. The
programmed conductances g Pij differ from thedesired target values ĝij

as g Pij = ĝij + σ
PðĝijÞ ξ due to programming noise, assumed to be

Gaussian (ξ 2 N ð0,1Þ). In turn, the standard deviation of this pro-
gramming noise depends on the target conductance as

σPðĝÞ= c0 +
Xn
k=1

ck
ĝk

ĝk
max

, ð7Þ

where n = 2 and c0 = 0.26348μS, c1 = 1.9650μS, and c2 = − 1.1731μS, as
obtained by fitting to extensive PCM hardware data31.

Weight drift and read noise. Once a PCM device is programmed, the
device exhibits both conductance drift and 1/f (long-term) read noise.
Both are modeled in a statistical manner based on measurements of
doped-Ge2Sb2Te5 (d-GST) mushroom PCMs from a large device array
integrated in 90nm CMOS technology31.

PCM drift: PCM conductance drift, attributed to post-
programming structural relaxation, follows an empirical relation

gDðtevalÞ= g
P teval + t0

t0

� ��ν
, ð8Þ

where gD(teval) is the conductance measured at time teval after the
programming (assumed to complete at t0 = 20s72) and ν is the drift
coefficient.

The drift coefficients for each device are assumed to be normally
distributed, that is νij 2 N μνðĝijÞ,σνðĝijÞ

� �
, where the mean and stan-

dard deviation are empirically determined by fitting to experimental
data. The data fits are expressed by a clipped linear function in log-
space, that is (with Eq. (6))

L xja,b,ymin,ymax

� � � clipymax
ymin

a lnx +bð Þ ð9Þ

where here x � ĝ
ĝmax

. The parameters for μν are given by a = −0.0155,
b = 0.0244, ymin =0:049, and ymax =0:1. For σν the parameter are
a = −0.0125, b = −0.0059, ymin =0:008, and ymax =0:045. The drift
coefficient νij thus determined for each device are used to model the
conductance at any time teval using Eq. (8).

PCM readnoise: PCM is alsoknown todemonstrate low-frequency
noise such as random telegraph noise (RTN) and 1/fγ noise with
γ∈ [0.9, 1.1]. We follow the empirical noise model of ref. 31, which
assumes γ = 1 and arrives at a read noise standard deviation at time teval
of ref. 31

σreadðtevalÞ= ĝ QsðĝÞ

ffi
ln

teval +Tread
2Tread

 !vuut , ð10Þ

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 12

where QsðĝÞ is measured to be

QsðĝÞ= clipc3
0 c1

ĝ
ĝmax

� �c2
 !

, ð11Þ

with c1 = 0.0088, c2 = −0.65, c3 = 0.2.
This read noise is added to the post-drift conductance gD(teval) to

arrive at the final PCM conductance

~g = clip1ĝmin
gDðtevalÞ+ σreadðtevalÞξ
� �

ð12Þ

whereweset ĝmin =0 hereand ξ ∼N ð0,1Þ. Theweight values �wij of the
crossbar array for (2) are then obtained by scaling and combining
positive and negative parts

�wij =
~gij

ĝmax
signwij ð13Þ

These long-term PCM effects are applied to all weights prior to the
evaluation at time teval and the weights are subsequently fixed during
the evaluation of the test set. Short-term weight noise, redrawn for
each MVM, is included separately in Eq. (2) as described in the
following paragraph.

Short-term PCM read noise: When evaluating the AIMC DNN at a
time teval, the analogweights �W are established as described in Eq. (13).
However, weights are often re-used multiple times during a single
input, say across image pixels in a CNN or sequence-tokens in an RNN
or transformer model. Here short-term weight noise can cause small
but perceptible cycle-to-cycle variations (Fig. 3B).

Modifying the weight matrix at each MVM would be highly inef-
ficient for our HWA training software running on GPUs. To efficiently
model such short-term readnoise, we use the readnoise definition (10)
to set σw in Eq. (2), but refer the resulting noise to the output �yi.
Assuming zero-mean independent normal distributions, we can sum
the variances as

~σwi = σw0

ffiX
j

j�wijj j�xjj2
s

, ð14Þ

implying that the weight dependence of the read noise can be

approximated as /
ffiffiffiffiffiffiffi
j�wj

p
. Thus weight noise σw in Eq. (2) effectively

adds ξ i~σ
w
i (with ξ i ∼N ð0,1Þ) to the analog output �yi. The parameter

σw0 can be identified with c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðΔt + tr2tr

Þ
r

for read noise accumulated

over time-period Δt (Eq. (10)31). Assuming a read duration of tr = 250ns
and approximate waiting time between two consecutive MVMs (Δt) to
be 100 × longer, we find σw0 ≈0:0175.

Drift compensation. For evaluation times teval long after NVM
programming, the conductance drift Eq. (8) can be compensated
in the digital domain without any expensive re-programming36,73.
This can be done by running a number of analog MVMs on some
known test inputs {xk} immediately after weight programming and

recording the overall output magnitude as sref =
P

ik jyðkÞi j. At time

teval, just before beginning inference, the same inputs can be
applied to measure seval. We then correct the MVM outputs by

adjusting the digital γi (see Eq. (1)) by
sref
seval

to accommodate the

average conductance decrease due to drift. We assume one global
drift compensation applied to all columns, although this could be
done individually at each column if sref∣i can be measured

sufficiently accurately. Other more sophisticated drift compensa-
tion and adaptive refresh methods including in-memory retraining
could potentially be applied as well38.

Crossbar tile size. TheNVMcrossbars available on anAIMC chip areof
finite size, typically ranging from 256 × 256 (ref. 44) to 512 × 512
(ref. 47). We assume a tile size of 512 × 512, and assume that enough
crossbars are available to support separate crossbars for each weight
matrix. Any weight matrix with input dimension >512 is divided into
roughly equal parts for programming on as many tiles necessary.
Partially used tiles have weights are situated at the bottom of the
crossbar, to minimize interference and potential IR-drop, and unused
inputs are clamped to zero.

Each tile computes an MVM Eq. (2) using its own periphery Eq.
(1). Inter-tile summation is performed at FP precision (FP16), after
affine-scaling but before being passed to subsequent digital com-
pute such as activation functions. Because our AIMC nonidealities
have no dependencies across output columns, the HWA training
code does not need to explicitly break the compute along the out-
put dimension into tile-sized chunks. This helps the simulations run
more efficiently on GPUs.

IR-drop. Ideally, the voltage along each long bitline in the crossbar
would remain constant, so that conductances with the same value
could contribute the same current, whether in the farthest or nearest
row from where peripheral circuitry is holding the bitline voltage and
measuring currents. In a physical crossbar, however, IR-drops imposed
by finite wire resistance cause the bitline voltage to vary74, especially as
instantaneous currents get large. To keep the simulation time rea-
sonable, we make a number of approximations when modeling this
effect. IR-drop is modeled independently for each crossbar column
because any column-to-column differences will be implicitly corrected
(to first order) when programming the weight with an appropriate
read–write–verify scheme.

However, within each crossbar column, the current contributed
by each weight depends on the local bitline voltage, which in turn
depends on the other currents being generated elsewhere along the
column by that particular input vector. This situation will evolve
throughout the integration period due to the pulse-lengthmodulation
of those inputs as well as any resulting transients, including the
response of theperipheral circuit establishing thebitline voltage.Here,
for simplicity and speed of computation for large DNNs, we only
consider the average integration current.

The steady-state bitline voltages �vi can be computed by solving
the equation system

�vi + 1 � �vi
� �

gw + g +
i ðv+

i � �viÞ= �vi � �vi�1
� �

gw + g�i �vi � v�i
� � ð15Þ

where gw is the wire conductance between the crosspoint nodes
and g + =�

i the weight programmed onto either the positive or
negative conductance (with the other programmed into the reset
condition, g = 0). The individual input voltages, v�i and v+

i of spa-
tially ordered inputs i, are linearly prorated from the supply vol-
tages (vref ± Vread) to represent the time-averaged current. The
analog output current �y located at location i = 0 is given by
gw �v0 � vref

� �
, with Vread = 0.2 V.

This linear system Eq. (15) can be solved by inverting the unique
coefficient matrix produced by a given input vector. To speed up the
simulation and avoid inverting a 512 × 512 matrix for each MVM, we
further approximate the solution with a quadratic equation. Thus, in
our analog MVM Eq. (2), the IR-drop amount is computed from the

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 13

normalized weights and inputs by

ai � γn
X
j

j�wijjj�xjj ð16Þ

ci � 0:05a3
i � 0:2a2

i +0:5ai ð17Þ

Δ�y IR-dropi � �ci
X
j

�wij�xj 1� ð1� j
n
Þ
2

 !
, ð18Þ

where γ is the unitless product of the wire resistance between adjacent
cross-points (assumed 0.35Ω) and the maximal (set) conductance of
the device (gmax = 5μS), and n is the number of cross-points occupied
by the weight matrix. We assume that smaller weight matrices are
located at the lower edge of the crossbar to avoid excess IR-drop. We
use Eq. (18) to dynamically approximate the IR-drop across the 512
input channels in Eq. (2) when computing normalized MVM outputs ey
in all our results. Multiplying these normalized outputs by gmaxVread
produces the (time-averaged) physical output currents. To amplify
these IR-effects for the sensitivity analysis (Fig. 4), we simply multiply
the IR-drop error Δ�y IR-dropi by a varying scaling factor.

For large inputs where current is flowing throughout the inte-
grationwindow, our estimations using time-averaged current are quite
accurate. However, for small inputs where much of the current flow
occurs in a small portion of the integrationwindow, instantaneous and
average currents differ strongly, and IR-drop will be underestimated.
We find that for a Normal distributed weight matrix and random but
correlated inputs (as in Fig. 3E), IR-drop deviations are underestimated
by roughly a factor of 5. Unfortunately, similar conditions arise across
many of our DNNs. Fortunately, our sensitivity analysis (Fig. 4) finds
that scaling our time-averaged IR-drop approximation by a factor of
>10× does not significantly impact the accuracy of the DNNs, sowe can
still conclude that DNNs are reasonably robust to IR-drop, albeit by a
modest rather than large safetymargin. Since IR-drop depends heavily
on both on the hardware design (crossbar size, wire resistances,
and absolute device conductances) and on the input and weight dis-
tributions, detailed circuit-based simulations using the intended
workload(s) will remain a critical part of assessing new hardware
designs.

Additional nonlinearities for sensitivity analysis
PCM device yield. Emerging memory devices such as PCM exhibit
imperfect yield, and some fraction of the devices in a given crossbar
array will simply not switch properly30,75. PCM devices can end up
stuck-at-set (ĝmax), stuck-at-reset (conductance set to 0) and stuck-at-
random (stuck somewhere between 0 and ĝmax). In our sensitivity
analysis (Fig. 4), we vary the fraction of failed devices and randomly
select their locations.

S-shaped ADC output nonlinearity. The output level might gradually
saturate more gradually than the desired linear response due to non-
linearity in the ADC44,76. To estimate the impact of this for our sensi-
tivity analysis (Fig. 4), we define f NLi in Eq. (2) with

f NLi ðzÞ � 1 +
2

dout

Xdout
k=1

jζ k j
0@ 1A2

z
1 + jζ izj

, ð19Þ

which models a S-shaped saturation with variable slope scaled to
approximately cover the full output range. Each of the dout outputs has
an independent ADC and thus a slightly different (pre-determined)
shape, ζi = μζ (1 + σζξ) with ξ ∼N ð0,1Þ and μζ =

1
4. σζ is only varied in the

sensitivity analysis (“ADC S-shaped nonlinearity”); for our standard
AIMC crossbar model, μζ and σζ are both set to 0, causing f NLi ðzÞ= z.

PCM polarity. Depending on the hardware and unit-cell design, posi-
tive and negative inputs might not create perfectly symmetric read
currents. The measured conductance of a PCM device can depend on
whether read-current passes from top to bottom electrode, or vice
versa. This read-polarity dependence can cause weights to appear
systematically altered for negative inputs as compared to positive
inputs. Although the average effect can be corrected by adjusting read
voltages, device-to-device or conductance-dependent variations can
remain. To model this effect in our sensitivity analysis, we separate
positive and negative inputs into two phases (setting a negative input
to 0 in the positive phase and vice versa), and scale each weight in the
negative phase by (1 + aij) where aij ∼N ð0,σaÞ. We then vary this non-
ideality parameter σa as “weight asymmetry std.”

MVM error calculation
To quantify the fidelity of the analog MVM, we calculate the expected
deviation of the analog MVM as compared to the ideal MVM as MVM
error ϵM, defined by the relative normalized deviations (see ref. 77)

ϵMðW , xk

	
Þ= hjjyk � eyk jj2ik
hjjyk jj2ik

, ð20Þ

where yk =Wxk is the idealMVMoutput to input vector xk usingmatrix
W, and ey is the actual AIMC output considering all hardware-related
nonidealities as defined in Eq. (1).

The MVM error is obviously zero if the AIMC is equal to the ideal
outcome, but otherwise it depends on both the particular weight
matrixW and set of input vectors xk used to estimate Eq. (20). To best
reflect the impact of the nonidealities on the DNN, inputs xk should
ideally be taken from the distribution of actual input activation vec-
tors, and W should be the target weight matrix, for the specific DNN
layer in question.

However, to quantify the MVM error independent of the DNN in
question, we calculate the standard MVM error ϵ*M by using normal
distributed weights, wij ∼N ð0,0:246Þ and uniform inputs xi ∼Uð�1,1Þ
with a tile size of 512 × 512. For our standard AIMC crossbar model as
described in “AIMC standardized evaluation model”, the standard
MVM error is ϵ*M = 15% (not considering drift).

AIMC hardware-aware DNN training
Robustness to the nonidealities of AIMC inference hardware can be
improved by hardware-aware (HWA) training—a DNN retraining
method that applies expected nonidealities to the forward pass of the
SGD, with the backward pass performed using regular FP precision.

Our HWA training approach is to use the general form of the
expected analog MVM nonidealities as described in Eq. (2), together
with the injection of the expected programming errors (but without
any conductance drift). Further, we use the HWA training step to also
establish the digital peripheral parameters of Eq. (1), in particular the
static input range α (see “Learning the input range”) and the weight-to-
conductance mapping γi (see “Learning of weight-to-conductance
conversion factors”). In addition, we find that ramping up the injected
programming error strength (see “Re-training with weight noise
injection”), fixed scales and individual learning rates per tile (see
“Learning of weight-to-conductance conversion factors”), weight-
clipping (see “Weight mapping and clipping”) and distilling (see “Dis-
tilling with floating-point teacher”) improved the robustness and
achievable accuracy in the presence of AIMC nonidealities.

In general, the HWA training starts from an already FP-trained
DNN, and hyper-parameters (learning rate, injected noise strength) are

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 14

optimized.We verified the effectiveness of ourHWA training approach
on the very same DNNs used in a previous study38 and found, on
average, a >10% decrease in AIMC test error for long teval times. This
directly indicates the improvement of our approach over previous
methods (see Table 2).

In the following paragraphs, our HWA training methods are pre-
sented in more detail.

Retraining with weight noise injection. Injecting noise to improve
robustness to nonidealities was suggested by a number of
studies38,40,41, and has been one of the hallmarks of HWA training for
AIMC. In previous studies, noise has been injected in multiple ways,
such as output38,40, input38, or weight noise38,41. Different types of
weight noise distributions have been used, such as additive (scaled by
the current maximal weight38) or multiplicative41 Gaussian.

Methods for injecting weight noise have differed across previous
studies. For instance, Joshi et al.38 added newly drawn Gaussian weight
noise to the weight matrix reversibly for each image input (not mini-
batch) only during the forward pass (and not during backward pass
which was done with the actual weight matrix). However, it is more
mathematically correct to also apply these same weight perturbations
during the backward pass (but not to the reference weights to which
updates are applied), as is commonly done for weight regularization
techniques such as drop-connect78. Furthermore, although the exact
noise injectionmethod (input, output, or weight noise) does not seem
to matter much38, generic additive Gaussian noise does not conform
with the expected AIMC noise structure. For instance, PCM program-
ming errors are actually conductance-value dependent and not just
additive.

Here, we improve on the earlier approaches in the following ways:
First, rather than just a generic noise term, we apply all expected non-
idealities and hardware design choices (given by Eq. (2)) into the HWA
retraining. This includes dynamic-range limitations, system noise, and
analog-digital conversions—all previously ignored. We inject weight
noise in amathematically consistent way to both forward and backward
passes, redrawing from random distributions once per mini-batch. We
draw the weight noise from the (scaled) expected programming error
distribution including 20 s of PCM read noise (see Eq. (7) and Eq. (10),
respectively) instead of using generic additive ormultiplicative Gaussian
distributions. We find that injecting PCM noise structure improves the
HWA training across DNNs in comparison to other noise injection
strategies, even when testing for other memory technologies (see also
Supplementary Notes B.2 for an in-depth analysis). Finally, the scale of
the injected weight noise is a hyper-parameter and ramped up linearly
over a number of epochs, which we found to improve the HWA training.
See Supplementary Methods A.1 for the detailed hyper-parameters and
noise settings used for each DNN.

Learning of weight-to-conductance conversion factors. To achieve
a good weight-to-conductance conversion, we train the γi scale factors
in Eq. (1) using SGD. To improve the HWA training, it is beneficial in
most DNNs to represent these scale factors by γi = ~γi κ, where both the
column-wise ~γi and per-tile κ factors can be learned. We treat the
learning of either factor as a hyper-parameter for a particular DNN. In
case of not learning, γi is initialized by the weight mapping (see
“Weight mapping and clipping”) and κ is set to 1.

In case of CNNs, where the matrix-sizes vary widely, the learned
values ~γi are uniquely scaled for each weight matrix by a fixed caws
value, which re-scales the learning rates per tile so that the trained
parameters can all have similarmagnitude ≈ 1. This auto-weight scaling
factor, caws, is set to the value suggested by the Xavier weight
initialization79,80, caws =

ffiffi
3
n

q
, where n is the input dimension of the

weight matrix.
If κ is learned, we encourage the learning of larger outputs and

weights by down-scaling the output range to [− 1, 1] which typically

improves the signal-to-noise ratio, thus κ = ~κ
bout

. Here bout is the fixed

output bound of Eq. (1), and ~κ is a per-tile learnable scalar which is
initialized to bout (and is subject to weight decay).

Note that during inference evaluation, the digital periphery can
simply apply one scale factor per output column, since the various
scale factors described above canbe re-combined after the completion
of HWA training.

Weight mapping and clipping. Since we use the output scales γi to
keep the analog weights �wij of Eq. (2) mapped in (normalized) con-
ductance units (within − 1,…, 1), the FP weights wij of the trained DNN
need to be mapped to conductances before initiating HWA training.
For that, we set initially

�wij
wij

max
j
jwijj ð21Þ

γi max
j
jwijj ð22Þ

so that γi �wij =wij .
We keep training from creating excessively large analog weights.

�w, by clipping after each update to this same range. In some cases (see
Supplementary Methods A.1), we encourage learning of larger analog
weights to maintain signal-to-noise ratio by remapping weights
according to Eq. (21) once every epoch.

Learning the input range. The input range clipping bound cinput in Eq.
(1) is learned during HWA training. To encourage a smaller clipping
value (and thus a more compact input distribution), a decay is intro-
duced. To augment the gradient update for the clipping bound, we
scale gradient updates by the current bound value. For small datasets
(such as for transformer fine-tuning tasks), the HWA training is too
short to learn the clipping bound value from scratch. In such cases, we
initialize cinput to the average absolute maximal value of the input
vectors over a number of mini-batches before starting HWA training,
subject to a cap (nominally maxðcinputÞ= 10).

Distilling with floating-point teacher. If the model output dimension
is large, such as for the LSTM models with large vocabulary size, the
HWA training greatly benefits from distilling with the FP model. In
knowledge distillation81, an already trained “teacher”model augments
the usual one-hot labels with expected class probabilities, which can
drive a “student” model to a good solution more rapidly than when
training only with the one-hot label vectors. We use the distilling
applied at the last layer, with the FP model without any AIMC non-
idealities as the teacher and the HWA training as the student. The
temperature controlling the distribution of pseudo-probabilities was
fixed to 10, and training losswasweightedby amixture of 75% from the
distillation and 25% from the regular loss.

HWA training experiments
We applied and optimized the HWA training process described in this
section to a variety of AI workloads—including text prediction, speech-
to-text translation, and image classification—as listed in Table 1. In
general, our HWA training approach addressed these DNNs similarly,
since a too DNN-specific retraining approach would be impractical. In
Supplementary Methods A.1, we detail any specific differences used in
the HWA training of these DNNs, including learning rates and injected
noise strength. We select the last available rather than the best
checkpoint, andwe repeat experimentsmultiple times and average the
results to obtain repeatable results.

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 15

Data availability
The training and test datasets used for this study are publicly
available82–87. The raw data that support the findings of this study can
bemade available by the corresponding author upon request after IBM
management approval.

Code availability
The full simulation codeused for this study cannotbepublicly released
without IBMmanagement approval and is restricted for export by the
US Export Administration Regulations under Export Control Classifi-
cation Number 3A001.a.9. However, the open-source Apache License
2.0 IBM Analog Hardware Acceleration Toolkit (AIHWKit) at https://
github.com/IBM/aihwkit88 implements and reproduces the full AIMC
inference model evaluation using the same simulation engine. The
HWA training simulations can be reproduced using the AIHWKIT in a
very similar manner as described here.

References
1. Sevilla, J. et al. Compute trends across three eras of machine

learning. Preprint at https://arxiv.org/abs/2202.05924 (2022).
2. Sze, V., Chen, Y. H., Yang, T. J. & Emer, J. S. Efficient processing of

deep neural networks: a tutorial and survey. Proc. IEEE 105,
2295–2329 (2017).

3. Jia, H., Valavi, H., Tang, Y., Zhang, J. & Verma, N. A programmable
heterogeneous microprocessor based on bit-scalable in-memory
computing. IEEE J. Solid State Circ. 55, 2609–2621 (2020).

4. Reuther, A. et al. Ai accelerator survey and trends. in 2021 IEEE High
Performance Extreme Computing Conference (HPEC) 1–9
(IEEE, 2021).

5. Wang, S. & Kanwar, P. BFloat16: the secret to high performance on
Cloud TPUs. Google Cloud Blog 4, (2019).

6. Agrawal, A. et al. Dlfloat: a 16-b floating point format designed for
deep learning training and inference. in 2019 IEEE 26th Symposium
on Computer Arithmetic (ARITH) 92–95 (IEEE, 2019).

7. Sun, X. et al. Ultra-low precision 4-bit training of deep neural net-
works. Adv. Neural Inf. Process. Syst. 33, 1796–1807 (2020).

8. Choi, J. et al. Pact: parameterized clipping activation for quantized
neural networks. Preprint at https://arxiv.org/abs/1805.06085
(2018).

9. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y.
Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning
Research 1, 6869–6898 (2017).

10. Rastegari, M., Ordonez, V., Redmon, J. & Farhadi, A. Xnor-net: Ima-
genet Classification Using Binary Convolutional Neural Networks
(Springer International Publishing, 2016).

11. Albericio, J. et al. Cnvlutin: ineffectual-neuron-free deep neural
network computing. in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA) 1–13 (IEEE, 2016).

12. Han, S., Mao, H. & Dally, W. J. Deep compression: compressing
deep neural networks with pruning, trained quantization and
Huffman coding. Preprint at https://arxiv.org/abs/1510.00149
(2016).

13. Burr, G. W. et al. Neuromorphic computing using non-volatile
memory. Adv. Phys. X 2, 89–124 (2017).

14. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E.
Memory devices and applications for in-memory computing. Nat.
Nanotechnol. 15, 529–544 (2020).

15. Burr, G. W., Sebastian, A., Ando, T. & Haensch, W. Ohm’s law plus
Kirchhoff’s current law equals better AI. IEEE Spectr. 58,
44–49 (2021).

16. Merrikh-Bayat, F. et al. High-performance mixed-signal neuro-
computingwith nanoscalefloating-gatememory cell arrays. in IEEE
Transactions on Neural Networks and Learning Systems 29.10
4782–4790 (IEEE, 2017).

17. Chang, H.-Y. et al. AI hardware acceleration with analog memory:
micro-architectures for low energy at high speed. IBM J. Res. Dev.
63, 1–14 (2019).

18. Murmann, B. Mixed-signal computing for deep neural network
inference. in IEEE TransactionsonVery LargeScale Integration (VLSI)
Systems, Vol. 29, no. 1, 3–13 (IEEE, 2020).

19. Krishnamoorthi, R. Quantizing deep convolutional networks for
efficient inference: a whitepaper. Preprint at https://arxiv.org/abs/
1806.08342 (2018).

20. Nagel, M. et al. A white paper on neural network quantization.
Preprint at https://arxiv.org/abs/2106.08295 (2021).

21. Agrawal, A. et al. A 7nm4-core AI chipwith 25.6 TFLOPS hybrid FP8
training, 102.4 TOPS INT4 inference andworkload-aware throttling.
in IEEE International Solid-State Circuits Conference (ISSCC), Vol.
64, 144–146 (IEEE, 2021).

22. Burr, G. W. et al. Recent progress in phase-change memory tech-
nology. IEEE J. Emerg. Sel. Topics Circ. Syst. 6, 146–162 (2016).

23. Le Gallo, M. & Sebastian, A. An overview of phase-change memory
device physics. J. Phys. D Appl. Phys. 53, 213002 (2020).

24. Jang, J.-W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y.-H. Optimi-
zation of conductance change in Pr1−xCaxMnO3-based synaptic
devices for neuromorphic systems. IEEE Elec. Dev. Lett. 36,
457–459 (2015).

25. Jang, J.-W., Park, S., Jeong, Y.-H. & Hwang, H. ReRAM-based
synaptic device for neuromorphic computing. in IEEE International
Symposium on Circuits and Systems (ISCAS) 1054–1057
(IEEE, 2014).

26. Lim, S., Kwak, M. & Hwang, H. Improved synaptic behavior of
CBRAM using internal voltage divider for neuromorphic systems.
IEEE Transact. Electron Devices 65, 3976–3981 (2018).

27. Fuller, E. J. et al. Parallel programming of an ionic floating-gate
memory array for scalable neuromorphic computing. Science 364,
570–574 (2019).

28. Tang, J. et al. Ecram as scalable synaptic cell for high-speed, low-
power neuromorphic computing. in 2018 IEEE International Electron
Devices Meeting IEDM (San Francisco, CA, USA, 13.1.1-13.1.4
IEEE, 2018).

29. Onen, M. et al. Nanosecond protonic programmable resistors for
analog deep learning. Science 377, 539–543 (2022).

30. Chen, L. et al. Accelerator-friendly neural-network training:
Learning variations and defects in RRAM crossbar. in Design,
Automation Test in Europe Conference Exhibition (DATE) 19–24
(IEEE, 2017).

31. Nandakumar, S. R. et al. Phase-change memory models for deep
learning training and inference. in IEEE International Conference on
Electronics, Circuits and Systems, 727–730 (IEEE, 2019).

32. Papandreou, N. et al. Programming algorithms formultilevel phase-
change memory. in IEEE International Symposium on Circuits and
Systems 329–332 (IEEE, 2011).

33. Tsai, H. et al. Inference of long-short term memory networks at
software-equivalent accuracy using 2.5m analog phase change
memory devices. in 2019 Symposium on VLSI Technology T82–T83
(IEEE, 2019).

34. Mackin, C. et al. Weight programming in DNN analog hardware
accelerators in the presence of NVM variability. Adv. Electron.
Mater. 5, 1900026 (2019).

35. Boniardi, M. et al. Statistics of resistance drift due to structural
relaxation in phase-change memory arrays. IEEE Trans. Electron
Devices 57, 2690–2696 (2010).

36. Ambrogio, S. et al. Reducing the impact of phase-change memory
conductance drift on the inference of large-scale hardware neural
networks. in IEEE International Electron Devices Meeting, 1–4
(IEEE, 2019).

37. Bruce, R. L. et al. Mushroom-Type phase change memory with
projection liner: An array-level demonstration of conductance drift

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 16

https://github.com/IBM/aihwkit
https://github.com/IBM/aihwkit
https://arxiv.org/abs/2202.05924
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/2106.08295

and noise mitigation. in IEEE International Reliability Physics Sym-
posium Proceedings, Vol. 2021, 1–6 (IEEE, 2021).

38. Joshi, V. et al. Accurate deep neural network inference using
computational phase-change memory. Nat. Commun. 11, 1–13
(2020).

39. Yang, X., Wu, C., Li, M. & Chen, Y. Tolerating noise effects in
processing-in-memory systems for neural networks: a
hardware–software codesign perspective. Adv. Intell. Syst. 4,
2200029 (2022).

40. Gokmen, T., Rasch,M. J. &Haensch,W. Themarriage of training and
inference for scaled deep learning analog hardware. in 2019 IEEE
International Electron Devices Meeting (IEDM), 22–23 (IEEE, 2019).

41. Kariyappa, S. et al. Noise-resilient DNN: tolerating noise in PCM-
based AI accelerators via noise-aware training. IEEE Trans. Electron.
Devices 68, 1–7 (2021).

42. Spoon, K. et al. Toward software-equivalent accuracy on
transformer-based deep neural networks with analog memory
devices. Front. Comput.Neurosci. 15, 1–9 (2021).

43. Wan, W. et al. A compute-in-memory chip based on resistive
random-access memory. Nature 608, 504–512 (2022).

44. Khaddam-Aljameh, R. et al. HERMES core—a 14nmCMOSand PCM-
based in-memory compute core using an array of 300ps/LSB line-
arizedCCO-basedADCsand local digital processing. inSymposium
on VLSI Circuits (IEEE, 2021).

45. Xue, C.-X. et al. A cmos-integrated compute-in-memory macro
based on resistive random-accessmemory for ai edge devices.Nat.
Electron. 4, 81–90 (2021).

46. Fick, L., Skrzyniarz, S., Parikh, M., Henry, M. B. & Fick, D. Analog
matrix processor for edge ai real-time video analytics. in 2022 IEEE
International Solid-State Circuits Conference (ISSCC), Vol. 65,
260–262 (IEEE, 2022).

47. Narayanan, P. et al. Fully on-chip Mac at 14nm enabled by accurate
row-wise programming of PCM-based weights and parallel vector-
transport in duration-format. in 2021 Symposium on VLSI Technol-
ogy, 1–2 (IEEE, 2021).

48. Ambrogio, S. et al. Equivalent-accuracy neuromorphic hardware
acceleration of neural network training using analog memory.
Nature 558, 60–67 (2018).

49. Yao, P. et al. Fully hardware-implementedmemristor convolutional
neural network. Nature 577, 641–646 (2020).

50. Rasch, M. J. et al. A flexible and fast pytorch toolkit for simulating
training and inference on analog crossbar arrays. in IEEE Interna-
tional Conference on Artificial Intelligence Circuits and Systems
(AICAS), 1–4 (IEEE, 2021).

51. Jain, S. et al. A heterogeneous and programmable compute-in-
memory accelerator architecture for analog-ai using dense 2-d
mesh. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 31,
114–127 (2023).

52. Rasch,M. J., Gokmen, T., Rigotti, M. &Haensch,W. RAPA-ConvNets:
modified convolutional networks for accelerated training on
architectures with analog arrays. Front. Neurosci. 13, 753 (2019).

53. Le Gallo, M. et al. Precision of bit slicingwith in-memory computing
based on analog phase-change memory crossbars. Neuromorphic
Comput. Eng. 2, 014009 (2022).

54. Gallo, M. L. et al. A 64-core mixed-signal in-memory compute
chip based on phase-change memory for deep neural network
inference. Nature Electronics https://doi.org/10.1038/s41928-023-
01010-1 2, 1–14 (2022).

55. Jain, S., Sengupta, A., Roy, K. & Raghunathan, A. Rxnn: a framework
for evaluating deep neural networks on resistive crossbars. IEEE
Trans. Computer-Aided Design Integr. Circ. Syst. 40,
326–338 (2021).

56. Peng, X., Huang, S., Luo, Y., Sun, X. & Yu, S. Dnn + neurosim: an end-
to-end benchmarking framework for compute-in-memory

accelerators with versatile device technologies. in 2019 IEEE inter-
national electron devices meeting (IEDM), 32–5 (IEEE, 2019).

57. Xia, L. et al. Mnsim: Simulation platform for memristor-based neu-
romorphic computing system. IEEE Trans. Computer-Aided Design
Integr. Circ. Syst. 37, 1009–1022 (2017).

58. Gallo, M.L. et al. Using the IBM Analog In-Memory Hardware
Acceleration Kit for Neural Network Training and Inference arXiv
preprint arXiv:2307.09357. (2023).

59. Paszke, A. et al. Pytorch: an imperative style, high-performance
deep learning library. Advances in neural information processing
systems 32, (2019).

60. Roy, S., Sridharan, S., Jain, S. & Raghunathan, A. Txsim: modeling
training of deep neural networks on resistive crossbar systems. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 29, 730–738 (2021).

61. Wright, L. G. et al. Deep physical neural networks trained with
backpropagation. Nature 601, 549–555 (2022).

62. Mackin, C. et al. Optimised weight programming for analogue
memory-based deep neural networks. Nat. Commun. 13,
1–12 (2022).

63. Gokmen, T. & Vlasov, Y. Acceleration of deep neural network
training with resistive cross-point devices: design considerations.
Front. Neurosci. 10, 333 (2016).

64. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Sala-
khutdinov, R. Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

65. Wager, S., Wang, S. & Liang, P. Dropout training as adaptive reg-
ularization. Advances in neural information processing systems
26, (2013).

66. Goodfellow, I., Warde-Farley, D., Mirza,M., Courville, A. & Bengio, Y.
Maxout networks. In International conference on machine learning
1319–1327 (PMLR, 2013).

67. Kang, G., Li, J. & Tao, D. Shakeout: a new regularized deep neural
network training scheme. in Proceedings of the Thirtieth AAAI-
Conference on Artificial Intelligence, AAAI’16, 1751–1757 (AAAI
Press, 2016).

68. Noh, H., You, T., Mun, J. & Han, B. Regularizing deep neural net-
works by noise: its interpretation and optimization. in Proceedings
of the 31st International Conference on Neural Information Proces-
sing Systems, NIPS’17, (Red Hook, NY, USA) 5115–5124 (Curran
Associates Inc., 2017).

69. Rakin, A. S., He, Z. & Fan, D. Parametric noise injection: trainable
randomness to improve deep neural network robustness against
adversarial attack. in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition 588–597 (IEEE, 2018).

70. Li, Y. & Liu, F. Adaptive Gaussian noise injection regularization for
neural networks. in International Symposium on Neural Networks,
176–189 (Cham: Springer International Publishing, 2020).

71. Zhou, C., Kadambi, P., Mattina, M. & Whatmough, P. N. Noisy
machines: understanding noisy neural networks and enhancing
robustness to analog hardware errors using distillation. Preprint at
https://arxiv.org/pdf/2001.04974.pdf (2020).

72. Nandakumar, S. R. et al. Precision of synaptic weights programmed
in phase-change memory devices for deep learning inference. in
IEEE International Electron Devices Meeting (IEDM) 1–4 (IEEE, 2020).

73. LeGallo,M., Sebastian, A., Cherubini,G., Giefers, H.&Eleftheriou, E.
Compressed sensing with approximate message passing using in-
memory computing. IEEE Trans. Electron. Devices 65,
4304–4312 (2018).

74. Chen, A. A comprehensive crossbar array model with solutions for
line resistance and nonlinear device characteristics. IEEE Trans.
Electron. Devices 60, 1318–1326 (2013).

75. Kim, W. et al. Ald-based confined PCM with a metallic liner toward
unlimited endurance. in 2016 IEEE International Electron Devices
Meeting (IEDM) 4.2.1–4.2.4 (IEEE, 2016).

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 17

https://doi.org/10.1038/s41928-023-01010-1
https://doi.org/10.1038/s41928-023-01010-1
https://arxiv.org/pdf/2001.04974.pdf

76. Tsai, J.-H., Chen, Y.-C. & Liao, Y.-T. A power-efficient bidirectional
potentiostat-based readout IC for wide-range electrochemical
sensing. in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS) 1–5 (IEEE, 2018).

77. Büchel, J. et al. Gradient descent-based programming of analog in-
memory computing cores. in 2022 International Electron Devices
Meeting (IEDM) 33–1 (IEEE, 2022).

78. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y. & Fergus, R. Regularization
of neural networks using drop connect. in Proceedings of the 30th
International Conference on Machine Learning (eds Dasgupta, S. &
McAllester, D.) Vol. 28 of Proceedings of Machine Learning
Research, 1058–1066 (PMLR, 2013).

79. Glorot, X. & Bengio, Y. Understanding the difficulty of training
deep feedforward neural networks. in Proceedings of the
Thirteenth International Conference on Artificial Intelligence
and Statistics 249–256 (JMLR Workshop and Conference
Proceedings, 2010).

80. Rasch,M. J.,Gokmen, T. &Haensch,W. Training large-scale artificial
neural networks on simulated resistive crossbar arrays. IEEE Design
Test 37, 19–29 (2019).

81. Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural
network. in NIPS Deep Learning and Representation Learning
Workshop arXiv preprint arXiv:1503.02531 (2015).

82. Deng, J. et al. Imagenet: a large-scale hierarchical image database.
in 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition 248–255 (IEEE, 2009).

83. Wang, A. et al. Glue: a multi-task benchmark and analysis platform
for natural language understanding. Preprint at https://arxiv.org/
abs/1804.07461 (New Orleans, United States, 2018).

84. Krizhevsky, A. et al. Learning multiple layers of features from tiny
images. (Toronto, ON, Canada, 2009).

85. Cui, X., Goel, V. & Saon, G. Embedding-based speaker adaptive
training of deep neural networks. in Proc. Interspeech 2017, https://
doi.org/10.21437/Interspeech.2017-460 122–126 (2017).

86. Taylor, A., Marcus, M. & Santorini, B. The Penn Treebank: an over-
view. Treebanks: Building and using parsed corpora 5–22
(Springer, 2003).

87. Godfrey, J. J. & Holliman, E. Switchboard-1 release 2 ldc97s62. 926,
927 (1997).

88. Rasch, M. J. et al. IBM Analog Hardware Acceleration Kit 0.8.0. IBM/
aihwkit https://doi.org/10.5281/zenodo.8148598 (2023).

Acknowledgements
We thank the IBM Research AI Hardware Center and Rensselaer
Polytechnic Institute for access to the AIMOS supercomputer,
and the IBM Cognitive Compute Cluster for additional compute
resources. We would like to thank Syed Ghazi Sarwat for help with
the bipolar AIMC model, and Timothy Phillips, Julian Büchel, Corey
L. Lammie, Fabio Carta, Kaoutar El Maghraoui, Irem Boybat-Kara,
Stefano Ambrogio, Tayfun Gokmen, and Omobayode Fagbohungbe
for fruitful discussions.

Author contributions
M.J.R., M.L.G., C.M., H.T., A.S., and V.N. conceived the study; M.J.R.,
M.L.G., C.M., H.T., A.C., S.R.N., O.F., N.L., and A.S. contributed to the
development of the hardware-aware training approach; A.C., M.J.R.,
F.O., and H.T. conducted the HWA training simulations for transformers,
M.J.R. for ImageNet DNNs, C.M. and M.J.R. for LSTM, M.L.G. and M.J.R.
for HMM-LSTM,M.J.R. and S.R.N. for CIFARCNNs, andA.F. andM.J.R. for
RNN-T networks; P.N. and G.W.B. contributed to the IR-drop model and
interpretation; M.J.R. and C.M. conducted to the sensitive analysis, the
impact of weight distribution analysis, and the CNN layer analysis; M.J.R.
conducted the ReRAMsimulations and all supplemental analyses;M.J.R.
developed the simulator software framework; M.J.R., G.W.B., M.L.G.,
C.M., A.S., A.C., A.F., and H.T. contributed to writing and editing of the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-40770-4.

Correspondence and requests for materials should be addressed to
Malte J. Rasch.

Peer review informationNatureCommunications thanks YiranChen, Bin
Gao, Mostafa Rahimi Azghadi for their contribution to the peer review of
this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-40770-4

Nature Communications | (2023) 14:5282 18

https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://doi.org/10.21437/Interspeech.2017-460
https://doi.org/10.21437/Interspeech.2017-460
https://doi.org/10.5281/zenodo.8148598
https://doi.org/10.1038/s41467-023-40770-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators
	Results
	Analog IMC standard MVM model
	DNN accuracy impact when directly using AIMC
	HWA training improves AIMC accuracy for all DNNs
	Sensitivity of HWA-trained models to various AIMC nonidealities
	AIMC robustness of DNN topologies
	Impact of weight distributions on AIMC MVM fidelity
	Improving AIMC fidelity of selected layers to reach iso-accuracy in large CNNs

	Discussion
	Methods
	AIMC standardized evaluation model
	Affine transform in tile periphery
	Dynamic MVM range
	Analog MVM model
	Weight programming
	Weight drift and read noise
	Drift compensation
	Crossbar tile size
	IR-drop
	Additional nonlinearities for sensitivity analysis
	PCM device yield
	S-shaped ADC output nonlinearity
	PCM polarity
	MVM error calculation
	AIMC hardware-aware DNN training
	Retraining with weight noise injection
	Learning of weight-to-conductance conversion factors
	Weight mapping and clipping
	Learning the input range
	Distilling with floating-point teacher
	HWA training experiments

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

