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Identification of gene function based on
models capturing natural variability of
Arabidopsis thaliana lipid metabolism

Sandra Correa Córdoba 1,2 , Hao Tong 1,2, Asdrúbal Burgos3, Feng Zhu4,
Saleh Alseekh 5,6, Alisdair R. Fernie 5,6 & Zoran Nikoloski 1,2,6

Lipids play fundamental roles in regulating agronomically important traits.
Advances in plant lipid metabolism have until recently largely been based on
reductionist approaches, although modulation of its components can have
system-wide effects. However, existing models of plant lipid metabolism
provide lumped representations, hindering detailed study of component
modulation. Here, we present the Plant Lipid Module (PLM) which provides a
mechanistic description of lipid metabolism in the Arabidopsis thaliana
rosette.Wedemonstrate that the PLMcanbe readily integrated inmodels ofA.
thalianaCol-0metabolism, yielding accurate predictions (83%) of single lethal
knock-outs and 75% concordance betweenmeasured transcript and predicted
flux changes under extended darkness. Genome-wide associations with fluxes
obtained by integrating the PLM in diel condition- and accession-specific
models identify up to 65 candidate genes modulating A. thaliana lipid meta-
bolism.Usingmutant lines, we validate up to 40%of the candidates, paving the
way for identification of metabolic gene function based on models capturing
natural variability in metabolism.

Lipids comprise a class of structurally diverse molecules that facil-
itate compartmentalization of biochemical activities and are
involved in critical cellular functions1–3. The structural diversity of
plant lipids is generated by an underlying metabolic network whose
fine-tuned regulation adjusts the lipidome to internal and exogen-
ous cues4, relevant in agricultural and biotechnological
applications5,6. A considerable part of our knowledge concerning
the regulation of plant lipid metabolism has been obtained through
reductionist approaches7,8. In contrast, approaches from the
constraint-based modeling framework9 can be used with genome-
scale models (GEMs), that include mechanistic descriptions of lipid
metabolism, to: (i) characterize how lipid metabolism is

interconnected with pathways of primary metabolism and (ii)
design manipulation strategies for lipid-related traits10,11.

In comparison to the GEMs of yeast12–14 and microalgae15–17,
however, that include a comprehensive description of lipid meta-
bolism, with few notable exceptions18–21, most existing plants
metabolic models do not consider reactions compartmentalization,
pathway redundancy, and enzyme promiscuity in lipid metabolism.
This results in a largely lumped representation of lipid metabolic
pathways5 in existing plant models, reflecting the limited degree of
annotation of plant genomes. Hence, despite numerous data
sources22–25 and pathways databases26–28 the use of automated tools
to reconstruct lipid metabolic pathways is not warranted even for
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the model plant Arabidopsis thaliana (Arabidopsis). This in turn
limits the applications of constraint-based modeling to gain better
understanding of plant lipid metabolism.

To capitalize from the constraint-based modeling framework,
here we provide a reconstruction of a Plant Lipid Module (PLM),
including a mechanistic description of lipid metabolism in the
Arabidopsis rosette. The PLM can be readily integrated in a semi-
automated fashion into a metabolic model of any size (Fig. 1). We
demonstrate the functionality of the resulting tool and the accuracy
of predictions by integrating the PLM into five plant metabolic
models and through three case studies in which we predict and
validate: (i) the effects of gene lethality on growth, (ii) the response
of lipid metabolism to extended darkness, and (iii) putative candi-
dates of genes that modulate leaf lipid metabolism under extended
darkness. The validated genes involved in plant lipid metabolism
are identified based on flux genome-wide association (fGWA) per-
formed with predicted fluxes from Arabidopsis accession-specific
metabolic models that include the PLM. Therefore, predictions
from the PLM provide model-driven insights in the natural varia-
bility of lipid metabolism across Arabidopsis accessions, demon-
strating its utility as a complement to experimental genome-wide
association studies.

Results
Generation and integration of the PLM into plant metabolic
models
The reconstructed PLM comprises 5956 reactions and 3108 metabo-
lites in 16 compartments (Fig. 1a). It includes metabolic pathways for
the biosynthesis and degradation of structural, storage and signaling
lipids, grouped into 26 lipid classes (Supplementary Data 1). In addi-
tion, it comprises the pathways necessary for the generation of
essential organic cofactors and metabolic intermediates (Supplemen-
tary Method 1).

The PLM can be integrated into existing metabolic models via
an easy-to-use tool (Fig. 1b). To this end, we tested the integration of
the PLM in five published plant metabolic models of different
size19,21,29–31 that: (i) have COBRA model structure32; (ii) include
metabolites with molecular neutral and/or charged formulas,
accompanied by the respective charges and identifiers (e.g. KEGG
and/or ChEBI); and (iii) can be imported and exported with standard
software packages/toolboxes (e.g. via COBRA Toolbox)33. The
integration of the PLM was completed efficiently even for the
largest model (Supplementary Table 1). In the following, we pre-
sented the results of the expanded model based on the medium-
scale AraCore model29 as a template.
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Fig. 1 | Diagramof the steps for the integrationof thePlant LipidModule (PLM)
into ametabolicmodel. aThe PLMcomprises the existing up-to-date information
from heterogeneous data sources, including the metabolism of structural, storage
and signaling lipids, grouped into 26 lipid classes, in addition to the set of essential
organic cofactors andmetabolic intermediates.bThe integration of the PLM into a
template metabolic model comprises four steps: (1) selecting the template model;
(2) consolidating the information of the compartments in the template model and

the PLM; (3) consolidation of the information on the metabolites shared between
the PLM and the template model and adding to the latter the metabolites only
present in the PLM; (4) adding the PLM reactions to the template model, followed
by the removal of duplicated reactions. COBRA constraint-based reconstruction
and analysis, ER endoplasmic reticulum; euk. eukaryotic, FA fatty acid, mets
metabolites, mit. mitochondria, pl plastid, prok. prokaryotic, rxns reactions, SLI-
MEr split lipids into measurable entities reactions14, TG triacylglycerol.
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PLM improves predictions of lethal genes
The functionality of the PLM was initially assessed through a synthetic
lethality analysis that was performed before and after its integration
into the template model. Our results demonstrated that the incor-
poration of the PLM resulted in a larger number of synthetic lethal
genes (up to 47% more) compared to the template model itself (Sup-
plementary Table 2). The accuracy of the classification of the genes
according to the synthetic lethality analysis was verified by using the
available experimental evidence from Arabidopsis mutants27,34 (see
Supplementary Data 2 and 3). From 627 genes in the template model
before the integration of the PLM, 108 were identified as single lethal
genes; of these, for thirteen there was experimental evidence from
mutants in the SeedGenes Project website34, of which lethality was
confirmed for 10 genes (Fig. 2a). In contrast, after the integration of the
PLM in the templatemodel, the number of genes increased to 1091; 174
of these genes were found to be single lethal, of which 29 were in line
with experimental evidence from SeedGenes Project34 (Fig. 2b). Fur-
thermore, for an additional 85 genes from the extended model evi-
dence was obtained from the ARALIPID website27. Therefore, our
results showed that up to 86% of the lethality predictions were aligned
with the experimentally observed phenotype (Fig. 2c). In contrast, for
the templatemodel before the integrationof the PLM itwaspossible to
find evidence of lethality only for two genes. In addition, we found
more false-positive predictions in the template model before the
integration of the PLM (up to 23%), in comparison to the expanded
model (up to 17%). Therefore, our results demonstrate that the inte-
gration of the PLM resulted in better accuracy (83-88%) (Fig. 2b, c),
compared to that of the templatemodel (77-80%) (Fig. 2a). In addition,
we found that genes involved in double synthetic lethals are part of
metabolic pathways that present a higher degree of robustness given
the existence of isoenzymes and/or pathway redundancy. These
pathways included the production of lipids, carbohydrates, nucleotide
sugars, adenosine 5′-triphosphate (ATP), and sugar phosphates (see
Supplementary Fig. 1 and Supplementary Table 3).

PLM predicts reliable condition- and accession-specific flux
distributions
The integration of the PLM in accession-specific metabolic models
provides the basis for investigating the natural variability and genetic
architectureoffluxes in lipidmetabolism.To this end,we created a diel
model35 that includes the PLM to simulate fluxes for extended dark-
ness, a condition known to induce changes in the lipidome of vege-
tative tissues36–41. The resulting model was rendered accession- and
condition-specific by creating biomass reactions that incorporate
experimental data measured in a population comprised of 284 Arabi-
dopsis natural accessions belonging to the HapMap panel42, that were
exposed to the condition of extended darkness43.

We used these accession- and condition-specific models with
parsimonious flux balance analysis (pFBA)44 to calculate flux distribu-
tions for eachaccession.We found that the predictedfluxdistributions
were in line with evidence available for the condition-dependent (de)
activation of reactions for different pathways of lipid metabolism. For
instance, we predicted: (i) the activity of chloroplast FAs synthesis and
FAs elongation pathways in dark (Fig. 3a), but with reaction rates
substantially reduced compared to the flux values predicted in the
light45–47 (Fig. 3b); (ii) enrichment of phosphatidylcholine (PC) with
polyunsaturated FAs, through the acyl editing cycle48,49, that despite
having low reaction rates (Fig. 3b), was active in all accessions (Fig. 3a,
Supplementary Data 4); (iii) reduced activity in biosynthetic pathways
of various classes of phosphoglycerolipids (PGLs) (e.g. phosphati-
dylglycerol (PG), phosphatidylinositol (PI), and phosphatidylethano-
lamine (PE)) (Fig. 3a, b); besides a strongdecline in the reaction rates of
PC synthesis (Fig. 3b) in agreement with the reduced levels measured
for the above PGLs41; (iv) higher activity displayed by reactions
involved in chloroplast membrane lipid degradation mostly through

hydrolysis (Fig. 3a, lipid remodeling—DGL), together with the reduced
proportion of active reactions for the eukaryotic and prokaryotic
galactolipid synthesis pathways (Fig. 3a, b), consistent with the
observed breakdown of major membrane lipids of chloroplast (e.g.
monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol
(DGDG))41; (v) reduced activity of the de novo synthesis pathways of
several precursors of neutral lipids (e.g. triacylglycerol—TG) such as
lysophosphatidic acid (LPA), phosphatidic acid (PA) and diacylglycerol
(DG) (Fig. 3a), in parallel to the enhanced activity of the pathways of
neutral lipids synthesis. The latter agrees with the reported accumu-
lation of TG in the ER48 (Fig. 3a, b, TG synthesis—ER) and
chloroplasts38,48,50 (Fig. 3a, b, lipid remodeling—PES) that occur at the
expense of membrane lipid degradation upon recycling the resultant
FAs and DG; and (vi) the increased flux rates of reactions responsible
for TG hydrolysis (Fig. 3b), and the enhanced FA degradation via β-
oxidation (Fig. 3a, b), in line with the observed greater activity of
neutral lipid degradation pathways41. This is also accompanied by the
induced transcription of specific genes assigned to FAs peroxisomal β-
oxidation51–53, and genes coding for isoforms of the lipase enzyme53,54.
Interestingly, we also predicted that the degradation routes were
inactive in 15% and 0.4% of the accessions after 3 and 6days of
extended darkness, respectively (see Supplementary Data 4); that
deviates from the experimental evidence for plants exposed to
extended darkness41. A detailed analysis of the flux distributions
allowed us to identify that the predicted maltose consumption rates
were higher in the accessions with inactive degradation routes (see
Supplementary Fig. 2).

We also extended the lethal gene analysis to identify if the results
were accession- and condition-specific. We found that the knockout of
genes from the single lethal set resulted in a consistent prediction of
non-viable phenotypes for all accessions (Supplementary Data 5). On
the other hand, for the double lethals, we identified that 10.2% of gene
knockout combinations for which the predicted phenotype was not
lethal in some of the accessions under the considered conditions
(Supplementary Data 6). The latter was attributed to the accession-
specific biomass composition since the remainingmodel reactions are
invariant across the models used.

Concordance of transcriptomic and fluxomic changes in Col-0
Since natural selection acts towards improving resourceuse efficiency,
changes in expression of genes are expected to entail changes in
corresponding fluxes. Therefore, we next determined the correspon-
dence between the patterns of activation/deactivation of reactions
with the increase/decrease expression of the respective genes for
Arabidopsis Col-0 exposed to extended darkness. In line with our
expectations, we found that the pathways with reduced reaction
activity for FA elongation51,54 the synthesis of FAs51,53,54,
galactolipids51,53,54, and PGLs41 (e.g. PE, PC, and PG) (Supplementary
Data 7), and the de novo synthesis pathways for LPA, PA, and DG (see
Supplementary Data 7, GPAT, LPAAT and PAP reactions) included
genes with decreased expression. In addition, we found increased
expression of genes related to pathways for which enhanced activity
was found, including: TG synthesis in the ER and chloroplasts (via PES
enzyme), TG hydrolysis, β-oxidation, and chloroplast membrane lipids
degradation (via DGL enzyme) (Supplementary Data 7). However, we
also identified discrepancies to our expectation, such as the increased
expression of genes associatedwith PI synthesis, although the pathway
was predicted to have a low activity41 (Supplementary Data 7); simi-
larly, the genes coding for a phospholipase (NPC5) and a cholinepho-
sphotransferase (PDCT) showed no significant changes in the
transcript levels (see Supplementary Data 7), although the reactions
catalyzed by the gene products were predicted to be active (Fig. 3a,
lipid remodeling—NPC5 and phospholipid metabolism).

To quantify the correspondence between flux and gene expres-
sion changes,we used the gene-protein-reaction (GPR) rules. The latter
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are representedas logical rules thatdescribe the relationships between
genes, their protein products and the reactions they catalyze55. Thus
the rules capture how gene products concur to catalyze the associated
reaction, and therefore served to map gene expression from two
transcriptomics data sets measured in Arabidopsis Col-0 exposed to
extended darkness53,54. We found that the direction of changes
between fluxes and expression levels agreed in up to 76% of the

enzymes for which data were available (referred as concordant
enzymes). The remaining enzymes (up to 25%), corresponded to
the so-called outliers, in which there was no agreement in the
direction of change (Table 1, Supplementary Figs. 3 and 4). These
results were consistent between the two transcriptomic data sets
(χ2 1,N =472ð Þ=0:05; p=0:831; effect size =0:01; chi-square test;
Table 1).
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We hypothesized that the presence of outlier reactions, whose
flux and corresponding transcript expression change did not agree,
may be due to post-translational modifications (PTMs). To test the
hypothesesweemployed the FAT-PTMdatabase56 to obtain a list of the
PTMs reported to date for the enzymes (Fig. 4) which we used in a
comparative analysis based on the classification of concordant (Sup-
plementary Data 8) and outlier (Supplementary Data 9) enzymes.
Contrary to our expectations, we did not identify significant differ-
ences between the type andproportion of the PTMs that are present in
the outlier and concordant enzymes (Supplementary Data 10).
Therefore, other types of regulation (e.g. allostery) may explain the
discrepancy between the changes in transcript and fluxes.

Candidate genes modulating lipid metabolism identified by
flux GWA
Thepredicted condition- and accession-specificfluxdistributionswere
in turn used to determine the genetic architecture of lipid metabolism
fluxes in Arabidopsis leaves. To this end, we determined genome-wide
association for each of the predicted fluxes in every condition using
the available single-nucleotide polymorphisms (SNPs) (Supplementary
Table 4). We found that a modest number (up to 5%) of fluxes were
associated with SNPs in enzyme-encoding genes included in the GPR
rules of the underlying reactions. Further, a higher number of fluxes
(up to 25%) were associated with SNPs in genes that encode enzymes
catalyzing reaction steps immediately upstream or downstream of the
corresponding reaction flux, corroborating the relevance of the find-
ings. In addition, for up to 70% of fluxes, the significant SNPs occurred
in genes encoding transcription factors (TFs) (Fig. 5, Supplementary
Table 5). Two TFs, WRKY18 (AT4G31800) and TREE1 (AT4G35610),
were identified as candidate genes in fluxes predicted for control
(light) and extendeddarkness conditions (Fig. 5, SupplementaryNote 1
and Supplementary Figs. 5–8). WRKY18 is known to be expressed in
leaves,where it positivelymodulates the expression of defense-related
genes and disease resistance57. Besides, it could also play a potential
role in cuticle formation, since it is among the most up-regulated and
highly expressed genes in top stem epidermis58. TREE1 is primarily
expressed in flowers59, and the available experimental evidence points
to its role in the regulation of transcriptional repression of shoot
growth in response to ethylene60.

Upon further examination of the TF-coding genes as putative
regulators of fluxes, we found that between 53–64% contained
potential DNA-binding domains for the genes in the GPR rules of the
corresponding reactions (Supplementary Table 5). In further support
of our findings, between 82–86% of the TF-coding candidates related
to lipid metabolism are expressed in leaves (Supplementary Note 1).
We identifiedWRINKLED 1 (WRI1—AT3G54320) (SupplementaryNote 1,
Supplementary Figs. 5 and 6), a regulator of embryo development and
maturation, that also regulates the expression of several enzymes of
the glycolytic and FA synthesis pathways5. In addition, the TFs found
associated with the largest number of fluxes (>32) are related to

various biological processes, for instance, embryogenesis and orga-
nogenesis, hormone signaling, DNA transcription, senescence,
response to abiotic factors (light) and development phase transition
(Supplementary Data 11).

For the remaining fluxes, we found that up to 37%were associated
with candidates for which it was not possible to establish the type of
protein encoded. Of these, up to a fifth of the underlying reactions do
not have GPR rules assigned, of which the majority (up to 92%) are
related to transport of metabolites (Supplementary Table 5). Although
the allocation of the transport reactions in the PLM reconstructionwas
based on extensive literature search (see Supplementary Method 1), it
is also true that a good part of the intra-/extra-cellular transport pro-
cesses remain to be fully characterized.

To validate the putative candidates regulating fluxes in lipid
metabolism, we used the lipid profiles for a collection of 364 Arabi-
dopsis T-DNA insertion lines61 (Supplementary Data 12 and 13). From
60 enzyme-coding gene candidates identified by fGWA across condi-
tions, we found that up to 19% of the corresponding T-DNA lines
resulted in changes in the relative abundances of the lipids involved in
the underlying reactions (Supplementary Table 4, Supplementary
Data 14). For instance, these gene candidates are involved in acyl
editing, transglycosylation, glycerophospholipid metabolism, trans-
port of PGLs and PA, and synthesis of PA, DG, and TG. On the other
hand, we found that in up to 68% of TF-coding candidates, there is: (i)
information about the potential association (e.g. DNA-binding
domains) among the knocked-out enzymatic genes and the TFs, and
(ii) have potential binding sites with genes associated to reactions that
produce lipids which exhibited changes in relative abundance in
mutants (Supplementary Table 4, Supplementary Data 15). Validation
of the remaining candidates would necessitate finer lipidomic char-
acterization of themutants forwhich currently data frombroader lipid
analysis were not available61. Together, the validation demonstrated
that up to 40% of the putative candidate genes predicted to modulate
lipid metabolism could be validated against published data sets from
mutant lines (Supplementary Table 4), paving the way for expanding
such model-driven fGWA to other pathways.

Discussion
Through the creation of the PLM, we made a comprehensive com-
pilation of the biochemical knowledge of lipid metabolism in
vegetative tissues (for which there is sufficient evidence to date) for
the model plant Arabidopsis. The functionality of the PLM was
demonstrated through several case studies. For instance, we simu-
lated the influence of environmental conditions (i.e. extended
darkness) on the modulation of lipid metabolism and related
pathways, where overall, we found a good agreement with the
available experimental evidence. We also carried out gene essenti-
ality analysis, where the integration of the PLM allowed the identi-
fication of a much larger number of lethal genes compared to the
original model. Despite these advances, our results pointed at a

Fig. 2 | Synthetic lethal gene analysis. Genes of the AraCore model before and
after the integration of the PLM were classified as single- (SLG), double- (DLG) and
non-lethal genes according to results of the lethality analysis. a The lethal sets
obtained for the AraCore model before the integration of the PLM were validated
using evidence from 25 characterized Arabidopsis mutants available in SeedGenes
Project database34. The information from ARALIPID website27 was not used in this
case because it contained data from mutants for only two genes included in the
AraCore model. The validation was then made for the lethal sets identified for the
AraCore model expanded with the PLM. We used (b) data for 60 mutants from
SeedGenes and (c) information for 85mutants from ARALIPID. The accuracy of the
results was verified by comparing the SLG and non-lethal sets with the phenotype
exhibited by the respective mutant. The cases in which the phenotype did not
correspond to the lethality classification were considered as false positives. The
DLG set was not used for the validation since the lethality is given by the

simultaneous deletion of a pair of genes, which makes it difficult to find char-
acterized Arabidopsismutant plants with the double gene knock-outs. Source data
are provided as a Source Data file. *Evidence obtained from SeedGenes and ARA-
LIPID points that the mutation of these genes is embryo lethal. Conversely, the
lethality analysis predicted the deletion of these genes as a non-lethal mutation.
The discrepancy arises from the fact that the model was built for leaves, where in
addition to these genes, high levels of expressionhave also been reported for genes
that encode isoenzymes. Therefore, the essentiality of these genes depends on the
developmental stage. **The genes encode lipid-related enzymes identified as SLG,
but the corresponding phenotypes only exhibits developmental defects. Seven of
the twelve genes are related to plastidial transport of lipid species and to cutin and
wax synthesis pathways, which are not fully elucidated. Discrepancies may result
from the existence of isoenzymes not yet annotated, or alternative routes not
elucidated to date.
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series of discrepancies, such as the identity of the enzymatic steps
that catalyze specific lipid remodeling events taking place under
extended darkness. These discrepancies open possibilities to use
the PLM to guide future efforts in filling knowledge gaps about lipid
metabolism in vegetative plant tissues. Finally, the identification of
candidate genes modulating leaf lipid metabolism via flux genome-
wide association yielded a valuable resource of candidate genes for

experimental validation. Of note, our findings confirmed up to 40%
of regulators of lipid metabolic pathways in vegetative tissues and
pave the way for model-driven discoveries in plant lipid metabo-
lism. Together, these advances due to the refined representation of
lipid metabolism in vegetative plant tissues in the PLM can be used
to speed-up the engineering and selection of lines with improved
lipid traits. The latter can further benefit from implementing the
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PLM for other species and conditions. This can be achieved by
developing a pipeline to: (i) render the PLM organ-specific (e.g.
seeds), by integrating organ-specific data (e.g. transcriptomics,
proteomics) using well-established approaches for generating
context-specific models62; (ii) map the orthologs that are included
in the GPR rules of the PLM, making the PLM species-specific; and
(iii) integrate the PLM in a condition-specific manner through the
use of lipid profile measurements. These advances are expected to
also improve knowledge-generation and characterization of gene
functions following the proof of principle presented in this study.

Methods
Reconstruction of the lipid metabolic network of Arabidopsis
leaves
The reconstructed PLM consists of 5956 reactions, 3108 metabolites,
and 16 compartments. Since the evidence for plant lipidmetabolism is
incomplete, we did not rely on automated tools and performed a
manual bottom-up reconstruction using all bibliomic data available for
the model plant Arabidopsis thaliana, as well as different database
resources23,24,27,28,63–65. The PLM includes all metabolic steps necessary
for the synthesis and degradation of 26 classes of lipids

Fig. 3 | Average of reaction fluxes and proportions of active reactions over
accessions. a The proportion of active reactions per subsystem was calculated
using the flux distributions obtained via pFBA, for all of the Arabidopsis accessions
evaluated under three environmental conditions, e.g. illumination (control), and
under extended darkness for three (3DD) and six (6DD) days. Only the subsystems
related to lipid metabolism are shown, and for each case, the proportions calcu-
lated for all accessions is plotted, including the coefficients of variation of fluxes.
n =0 to 117 fluxes in each metabolic system are used. b After the flux distributions
were computed via pFBA, the average flux rates (mmol g−1DW) per subsystemwere
obtained for each accession by first eliminating the reactions for which physiolo-
gically meaningless flux values were obtained, followed by the estimation of the
mean for each subsystem. The average flux rates were mean centered in order to

improve the visualization of subsystems with rather small reaction rate values. The
number of fluxes in each metabolic system used were n = 560, n = 278 and n = 282
for control, 3DD and 6DD conditions, respectively. Center line, median; box limits,
75th and 25th quartiles; whiskers, 1.5×interquartile range; points, outliers. DG dia-
cylglycerol, DGL chloroplastic galactolipase DONGLE, DW dry weight, EP eukar-
yotic pathway, ER endoplasmic reticulum, HIL heat inducible lipase, LPA
lysophosphatidic acid, NPC5 non-specific phospholipase C5, PA phosphatidic acid,
PC phosphatidylcholine, PE phosphatidylethanolamine, PES chloroplastic phytyl
ester synthase, PG phosphatidylglycerol, PGP phosphatidylglycerol phosphate, PI
phosphatidylinositol, PP prokaryotic pathway, PS phosphatidylserine, SFR chlor-
oplastic galactolipid galactosyltransferase enzyme SFR2, TG triacylglycerol. Source
data are provided as a Source Data file.

Table 1 | Concordance among flux distributions and transcriptomics data sets under extended darknessa

Data set 21h-XD % agreement sign changeb % outliers χ2 1,N =472ð Þc p-value

Data set Caldana et al.54 75.00 25.00 0.046 0.831

Data set Usadel et al.53 75.85 24.15
aSource data are provided as a Source Data file.
bThe concordance in sign changewas calculated among the log2 of fold change (FC) for thefluxdistributions and two transcriptomic data sets of Arabidopsis plants under illumination (control), and
21 h of extended darkness (21h-XD).
cDifferences between the sets (n = 472) was assessed by a chi-square test of independence (two-sided).

0

10

20

Fig. 4 | List of post‐translational modifications (PTM) in concordant and out-
lier enzymes. Comparison of sign change among the log2 of fold change (FC) for
the flux distributions and transcriptomics data led to the classification of enzymes
as concordant and outlier. The enzyme sets were further examined by listing the

post‐translational modifications (PTM) identified to date. Transcriptomics data
sets were obtained from Caldana et al.54 and Usadel et al.53 publications. Source
data are provided as a Source Data file.
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(Supplementary Data 1), comprising structural, storage, and signaling
lipids, besides growth regulators and terpenoids distributed in 16
compartments, for which there is sufficient evidence regarding bio-
synthesis/degradation mechanisms and subcellular localization. The
metabolic routes for the biosynthesis of a set of organic cofactors
required for the synthesis of the lipidmoieties are also included in the
model. The transport reactions considered in the model are based on
extensive literature search to have confidence about location, stoi-
chiometry, and transport mechanisms (see Supplementary Data 16).
The PLM also includes constraints on both lipid classes and acyl chain
distributions following the SLIME approach14, which we expanded to
allow modeling of glycerolipids, glycerophospholipids, and wax
monomers (see Supplementary Method 1). Demand reactions were
added for several cofactors, since they were detected to participate in
blocked reactions due to the coenzyme pseudo-gap problem66. For
more details about how the reconstruction was conducted see Sup-
plementary Method 1.

Integration of the lipid metabolic network into existing plant
models
To test the functionality of the PLM, it was initially integrated into five
different published models, the AraCore model29, the Evidenced-
Arabidopsis-Model21, the GEM created in the Path2Models project30,
the CAM diel model31 and a medium scale model build for Jatropha
curcas19. For the subsequent simulation procedures, we used the Ara-
Core model, referred to as the “Template Model”. To integrate the
model, we first adjusted the Template Model to ensure physiologically
relevant simulations (see Supplementary Method 2), followed by the
implementation of the “LipidModuleIntegration” software in MATLAB
(R2022a, The Mathworks Inc.), interfacing with COBRA Toolbox v3.033

and the Gurobi Optimizer (version 8.0.1). Further details of the func-
tionalities of the software can be found in the Supplementary Fig. 9
and Supplementary Method 2.

Integrating quantitative information of biomass components
The biomass components were incorporated via representative
metabolites or precursors: (i) Proteins: the fractional amount of the
protein-bound amino acids was calculated using proteomics data
under control67 and dark68 conditions, together with the total protein
data for control29,69 and dark-treated70 A. thaliana Col-0 plants. Since
the ultimate amino acids fraction in the biomass is the combination of
free and protein-bound amino acids, the absolute concentration of
free amino acids for control plants was obtained from69. For dark-
treated plants, the relative abundances of soluble metabolites were
measured in a population of 284 Arabidopsis natural accessions of the
HapMap panel42, then the absolute concentration of GC-MS data were
obtained by multiplying the respective ratios calculated from the
relative abundance data and the absolute values from control plants69;
(ii) Starch and sugars: quantitative data for starch accumulation in
dark-treated plants was obtained from70, as hexose equivalents. The
data for organic acids, sugars and several intermediates of primary and
secondary metabolism was obtained by GC-MS measurements and
handled as explained above for free amino acids. In brief, the absolute
concentration levels of Arabidopsis (Col-0) obtained from69 were
adjusted by multiplying by the corresponding relative abundance
ratios (dark- vs. light-grown plants); (iii) Cell wall and nucleic acids: to
account for this biomass components, we followed the procedure
described in SupplementaryMethod3. Since it is not possible to obtain
condition- and/or accession-specific experimental information for cell
wall and nucleic acids, these components are incorporated in a
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Fig. 5 | Classification of candidate genes according to the functional role of
proteins encoded.Afluxgenome-wide association study allowed the identification
of associated Single Nucleotide Polymorphisms for predicted fluxes under three
environmental conditions, e.g. illumination (control), and under extended dark-
ness for three (3DD) and six (6DD) days. Candidate genes were in turn classified
according to the functional role of the proteins encoded by mapping them to the
gene-protein-reaction (GPR) rules of the extended model, and to a database of

transcription factors (TFs)80, hence: (i) candidates encoding TFs and candidates
encoding enzymes catalyzing the reactions (ii) underlying the trait (exactGPR rule);
(iii) generating precursors used by the reaction underlying the trait (GPR rule
upstream); and (iv) consuming the metabolic products generated by the reaction
underlying the trait (GPR rule downstream). Source data are provided as a Source
Data file.
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condition-unspecific manner; (iv) Lipids: since it was not possible to
obtain condition- and accession-specific quantitative data for all the
lipid species, a search in the literaturewasmade to retrievedata for the
absolute content of lipids in leaves of Arabidopsis plants grown under
standard conditions. The values for 125 lipid species distributed in
various glycero(phospho)lipid classes were obtained from71. Data for
sphingolipid composition27, wax precursors72, cutin monomer
composition27,73 and total chlorophyll content74, were obtained from
the respective literature sources. In addition, a targeted lipid profiling
analysis by LC–MSwas performed for the previously described natural
accessions. Analysis and processing of raw MS data were done with
REFINER MS® 10.0 and XCalibur (Version 3.0) software. The absolute
values for lipids were calculated as explained above for free amino
acids using the ratios among dark- vs. light-grown plants, and the
absolute content retrieved for control plants (see Supplementary
Method 3 for further details).

Creation of accession- and/or condition-specific biomass
reactions
For the generation of biomass reactions, which are either condition- or
accession-specific, we created scripts which retrieve the experimental
data for the desired Arabidopsis accession and growth condition and
calculates the stoichiometric coefficients for each biomass component
(see Supplementary Method 4 for further details).

Identification of synthetic lethal gene sets
To validate the model obtained by merging the Template Model with
the Plant Lipid Module, we identified synthetic lethal sets for Arabi-
dopsis plants cultivated under control conditions, using the Fast-SL
algorithm75. To this end, after the integration of the Plant LipidModule
into the Template Model, we estimated the optimal relative growth
rate (max vbio) under the constraints of (i) steady-state; (ii) lower and
upper flux capacities; (ii) biomass reaction under standard conditions
(vbio,Col0), (vi) the bound on the ratio between the carboxylation and
oxygenation reactions catalyzed by RuBisCO was set to 2.8876, and (v)
the stoichiometric coefficients for chain- and backbone-SLIME pseudo
reactions were assigned according to14 by implementing the custom
script mentioned above. Next, we constrained the model with the
determined optimal relative growth and computed a reference flux
distribution (vCol0) via pFBA. We performed the synthetic lethal ana-
lysis according to75, upon excluding demand, exchange and main-
tenance reactions as well as SLIME reactions. A gene was identified as
essential (lethal) when biomass flux was abolished upon its removal
from the model75. The synthetic lethal and non-lethal gene sets
obtained were further examined to calculate the accuracy of the
results by using information on Arabidopsis mutants available27,34 (for
further details see Supplementary Method 5 and Supplementary
Data 17).

Condition-specific flux distributions for Arabidopsis accessions
For the simulation of the extended darkness conditions we used a
similar approach to35 for the generation of a diel flux balance model
where the light and dark phases are simulated simultaneously in a
single optimization problem. The photoautotrophic phase was simu-
lated by allowing a photon influx, while for the heterotrophic meta-
bolism under dark conditions the photon influx was set to zero. We
added transport reactions for a predefined list of storage compounds
that are assumed to accumulate over the light conditions and are used
as substrates during the dark phase. These reactions are assumed to be
irreversible given that the plants were subjected to extended darkness
conditions. To obtain accession-specific flux distributions, the same
constraints were imposed as described in Supplementary Method 5,
except for the biomass reaction and the chain- and backbone-SLIME
pseudo reactions whose respective stoichiometric coefficients were
calculated from measurements performed for sugars, organic acids,

amino acids, and lipids, in a population comprised of 284 Arabidopsis
natural accessions belonging to the HapMap panel42, that were sub-
jected to extendeddarkness for three and six days, as explained above.
Finally, thefluxdistribution for each accessionwas computed via pFBA
as described in Supplementary Method 5. For more details about the
construction of the diel model see Supplementary Method 6.

Validation of the flux distribution results obtained under
extended darkness
To validate the simulations under extended darkness conditions, we
compared the concordance of signs between the log2—fold change
(FC) values of each flux and the corresponding transcripts, measured
under comparable environmental conditions. The calculation of the
flux distributions via pFBA, and the construction of condition-specific
biomass reactions were performed as described in Supplementary
Method 6 (with the exception that soluble metabolites and lipids were
obtained from Col-0 plants under control conditions and a period of
21 hof extendeddarkness (21h-XD)54). Twosets of transcriptomicsdata
for plants under 21h-XD were obtained from previous studies53,54, and
processedfirst by calculating themeanof the biological replicates, and
then assigning the abundance of the transcripts for each enzyme
included in the model according to the GPR rules, considering the
presence of isoenzymes and protein complexes77, followed by the
calculation of log2 FC (Supplementary Method 7).

Identification of candidate genes that modulate leaf lipid
metabolism
For this analysis, we made use of the flux distributions calculated for
Arabidopsis accessions under extended darkness (see Condition-
specific flux distributions for Arabidopsis accessions), where the fluxes
were regarded as traits. For each flux, the R package rMVP (R version
4.2.1.) was used for genome-wide association studies78. A total of
1.329.408 SNPs from imputation of 1.001 Arabidopsis Genomes and
Regional Mapping (RegMap) panel were tested, after filtering with
minor allele frequency >0.0579. The GWAS linear mixed model con-
sidering both kinship and population structure was applied. The first
three principal components were considered to represent population
structure. The significant threshold was set to 1/n, where n is the
number of SNPs. The significant SNPs within an interval of 20 kb were
considered as one and all genes in the interval of the most significant
SNPs were considered as the candidate genes.

The lists of candidates obtained were validated using information
from GPR rules, and from transcription factors (TFs) and gene
expression databases. Hence, from the GPR rules, the list of genes
associated to each reaction flux was retrieved. Each gene was then
mapped to the list of candidate genes obtained for the corresponding
trait. The mapping process of the candidate genes was later extended
to the GPR rules associated to the reactions immediately up- and
down-stream of each of the traits for which a list of candidates was
available. The next step consisted in building a list with the TFs con-
tained in theAthaMapdatabase80, thatwasused to select the candidate
genes coding for TFs. Since the list of TF-encoding candidates was
substantially large, we selected only those obtained for lipid-related
reactions. For each TF-encoding candidate, the list of genes with
potential binding sites was obtained80. The latter was mapped to the
GPR rules of the underlying reaction flux. We further examined the TF-
encoding candidates with DNA-binding domains for the genes of the
corresponding GPR rules, by reviewing their expression profiles. For
this, we searched on TRAVA database59 the expression levels of genes
in whole leaves. The read counts were normalized by applying the
median-of-ratio method, followed by dividing by the maximum value
of expression level, so all values vary from0 to 159. The candidateswere
classified into four categories according to their level of expression.:
(0) not expressed, (<0.3) low, (0.3 ≤ ≤0.6) intermediate, and
(>0.6) high.
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We validated the list of candidate genes by using the lipid profiles
measured for a collection of 364 Arabidopsis T-DNA insertion lines61.
To this end, the candidates were first grouped according to the type of
protein they encoded (i.e. enzyme- or TF-coding gene). For the case of
the enzyme-coding candidates, the metabolites associated to each
reaction flux were mapped to the lipid profiles of the respective
mutant, and the fold-change (mutants/wild-type) was calculated for
the lipid species for which data were available (see Supplementary
Method 8, Supplementary Data 14 and 18). For TF-coding candidates,
we made use of the list of genes with potential DNA-binding domains
obtained previously, which were mapped to the lipid profiles as in the
previous case (see Supplementary Method 8, Supplementary Data 15).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For the reconstruction of the PLM the following databases were con-
sulted: Aralipid website (http://aralip.plantbiology.msu.edu/)27, the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.
kegg.jp/), the enzyme repository BRENDA (https://www.brenda-
enzymes.org/), the universal protein database (UniProt) (https://
www.uniprot.org/), the Arabidopsis Information Resource (TAIR)
(https://www.arabidopsis.org/), the Arabidopsis Information Portal
(https://www.araport.org)65 and the central resource for Arabidopsis
protein subcellular location data (SUBA) (https://suba.live/)23. Source
data are provided with this paper.

Code availability
The software for the integration of the PLM is available online in
Zenodo (https://doi.org/10.5281/zenodo.8179057)81 and GitHub
(https://github.com/marce2336/PlantLipidModule).
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