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Migratory allylic arylation of 1,n-enols
enabled by nickel catalysis

Dan Zhao1,3, Bing Xu1,2,3 & Can Zhu 1

Transition-metal-catalyzed allylic substitution reactions (Tsuji−Trost reac-
tions) proceeding via aπ-allylmetal intermediate have beendemonstrated as a
powerful tool in synthetic chemistry. Herein, we disclose an unprecedentedπ-
allyl metal species migration, walking on the carbon chain involving 1,4-
hydride shift as confirmed by deuterium labeling experiments. This migratory
allylic arylation can be realized under dual catalysis of nickel and lanthanide
triflate, a Lewis acid. Olefin migration has been observed to preferentially
occur with the substrate of 1,n-enols (n ≥ 3). The robust nature of the allylic
substitution strategy is reflected by a broad scope of substrates with the
control of regio- and stereoselectivity. DFT studies suggest that π-allyl metal
species migration consists of the sequential β-H elimination and migratory
insertion, with diene not being allowed to release from themetal center before
producing a new π-allyl nickel species.

Transition-metal-catalyzed allylic substitution reactions (Tsuji
−Trost reactions) have emerged as a powerful tool for the con-
struction of carbon−carbon and carbon−heteroatom bonds with a
broad scope of both electrophiles and nucleophiles (Fig. 1a)1. By
employing an appropriate ligand, the utilization of a transition
metal catalyst, including Pd2–5, Ir6,7, Rh8–14, Ru15–20, Co21–23, Cu24–32,
Mo33–41, W42, and Ni43–60 realizes the control of regio- and stereo-
selectivity during nucleophilic substitution of the key π-allyl metal
intermediate (Int-A), thus to deliver regio- and/or stereomerically
pure organic compounds. On the other hand, migratory coupling
reactions, combining bond migration with a coupling process, dis-
play unique regioselectivity controls, e.g., multiple 1,2-hydride
shifts result in the walking of carbon−metal bond over long dis-
tances via olefin-metal intermediate (olefin-[M]-Int), leading to
remote selectivity in coupling reactions (Fig. 1b)61–70. Recently, the
groups of Kawatsura54 and Stanley57 independently reported nickel-
catalyzed arylative substitution of homoallylic carbonates and
alcohols respectively, and 1,3-hydride shift was involved during
olefin migrations. In contrast, migratory allylic substitution, in
which the walking of π-allyl metal species proceeds over the carbon
chain via multiple 1,4-hydride shifts, are still unexplored (Fig. 1c).
During one migration cycle, sequential β-H elimination and

migratory insertion occurs with diene-metal complex (diene-[M]-
Int) as the key intermediate71,72.

Herein, we disclose our recent observations on the migratory
dehydroxylative allylic arylation under the catalysis of nickel and lan-
thanide triflate, a Lewis acid (Fig. 1d).

Results and discussion
Optimization of the reaction conditions
Preliminary attempt began with the substitution reaction of allylic
alcohol 1a with PhB(OH)2 (2a) under the catalysis of Ni(cod)2. To our
surprise, when electron-rich ligand PCy3 was employed, the reaction
does not undergo a direct allylic phenylation pathway to access 3-A or
3-B73. Instead, migratory phenylation product 3 was unexpectedly
obtained in 30% yield (Table 1, entry 1), meanwhile the formation of
ketone 4 was also detected, generated from 1a via intramolecular
transfer hydrogenation. Obviously, migration of allylic species occurs
preferentially, and product 3 was consequently produced via cou-
pling reaction with PhB(OH)2 as the last step. Interestingly, base does
not favor the Suzuki coupling reaction towards 3 (Table 1, entry 2).
Therefore, a series of Lewis acids were investigated as additive to the
reaction respectively (Table 1, entries 3–9). To our delight, La(OTf)3
gave the best performance, and the yield was dramatically improved
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to 68%, with side product 4 less than 5% (Table 1, entry 9). Further
ligand screening fails to give better results (Table 1, entries 10–14). It is
noteworthy tomention that bidentate ligands completely prevent the
formation of 3. The yield of migratory arylation was improved to 75%
in the solvent of methyl tert-butyl ether (MTBE) (Table 1, entries
15–19). Increasing the temperature to 110 °C does not give further
promotion (Table 1, entry 20). Finally, Ni(cod)2 (10mol%), PCy3
(20mol%), La(OTf)3 (20mol%), and PhB(OH)2 (2.0 equiv) in MTBE at
90 °C for 12 h were defined as the optimal reaction conditions for
additional studies.

Scope of the reaction
With the optimized conditions in hand, we started to investigate the
scope of this coupling reaction under dual catalysis (Fig. 2). Aryl-
boronic acids irrespectively bearing electron donating groups or
electronwithdrawinggroups all reactedwith goodyields (3, and 5−10).
To our delight, a variety of functional groups, including 2-Me, 2-OMe,
2-F, 3-Me, 3-OMe, 3-F, 3-CF3, 4-Me, 4-tBu, 4-Ph, 4-OMe, 4-F, 4-Cl, 4-CF3,
and 4-OCF3 on the benzene ring turnedout to be compatible under the
standard reaction conditions (11−25). Notably, medicinally prevalent
aromatic moieties other than benzene were incorporated smoothly,
including 1-naphthyl, 2-naphthyl, 3-indolyl, 2-thiophenyl, and
3-thiophenyl groups (26−30). 1,2-Enol featuring a terminal olefinworks
as well, affording arylated product 31 in 63% yield correspondingly.
Scope of 1,2-enols could also be extended to those bearing long ali-
phatic chains (32−35). However, migratory phenylation fails to

construct a quaternary carbon center in 36. Moreover, 1,2-enol fea-
turing a tertiary alcohol led to tri-substituted alkene via migratory
arylation process. The reactions of cyclic 1,2-enols work nicely to
afford indene derivative 37, bearing a fused five-membered ring, as
well as product owning a fused six- (38) or seven-membered ring (39),
and such units have beenwidely found in various natural products and
drug molecules. Finally, it is noteworthy to mention that all the reac-
tions give regio- and stereospecific products via migratory allylic
substitutions, exhibiting the synthetic robustness of this dual catalytic
protocol.

To learn more about reactivity of the migratory allylic arylation
transformation, comparison experiments were carried out under the
standard conditions by employing (E)-enol and its stereoisomer (Z)-
enol parallelly. The reaction of (E)−1a afforded migratory phenylated
product 3 in 72% yield, and almost the same yield (73%) of 3 could be
produced starting from its stereoisomer, (Z )−1a (Fig. 3a). Similar
results could be obtained with tertiary enol (E)-1b or (Z )-1b as sub-
strates, yielding 59% and 58% of the same product 37 respectively.
These outcomes suggest the reaction proceeding via the same
intermediate from both stereoisomers, implying the intermediacy of
π-allyl metal species. Next, the scope of enols was investigated with
OH group and/or olefin moiety at a different position on the carbon
chain (Fig. 3b). 1,3-Enol 1c, with a terminal olefin could also be
employed to yield 3 in 71%, the sameproduct as the reaction of 1a. 1,4-
enol 1d, witholefindistancing onemore carbon fromOHgroupgave a
decreased yield of 38%. Direct allylic arylation occurs efficiently with
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allylic alcohol 1e. The reaction of allylic alcohol 1 f, in which twomore
carbons locate between phenyl and OH group compared with 1e,
resulting in the corresponding phenylated product in a decreased
yield of 42%, implying consecutive π-allyl metal species migrations
before the final coupling with PhB(OH)2. Further studies were carried
out by employing 1,n-enols 1g-m (n = 3–10), featuring different dis-
tances of olefin unit fromOHgroup. To our delight, these enols are all
compatible in the migratory arylation transformations, leading to the
migration products in 25–85% yields. These observations make clear
that olefin migration preferentially occurs to generate the corre-
sponding allylic alcohol, which further undergoes a substitution
reaction with ArB(OH)2 under nickel catalysis. It is worth noting that,
in these types of reactions, the preferential olefin migration under-
goes via multiple 1,2-hydride shift, and 1,3-hydride shift was also
possibly involved in the reaction of 1,3-enols (e.g., 1 g)54. Given the fact
that mixtures of olefin or alcohol isomers are abundant industrial
feedstocks, and aremore easily accessiblewith less expense thanpure
isomers, the direct employment of isomers in regio- and stereo-
convergent reactions to produce value-added products is of con-
siderable interest. As shown in Fig. 3c, the reaction using a mixture of
six regio- and stereoisomers (1:1:1:1:1:1) delivers regio- and stereo-
definedproduct 3 in 64% yield. Next, when an alkenylboronic acidwas
employed in the reaction of (E)−1a, we are glad to obtain the corre-
sponding alkenylated product 3-alkenyl in 24% yield (Fig. 3d). How-
ever, cyclopentylboronic acid fails to promote the alkylation reaction

of (E)−1a. Finally, asymmetric migratory allylic arylation of enols 1o
and 1 hwas investigated, andpreliminary attemptswere conducted to
achieve good enantioselective controls with chiral bidentate nitrogen
ligands L1 and L2 respectively (91:9 er for 31, 82:18 er for 3), but with
low yields in both reactions (for details see page S57-60 in the sup-
plementary discussion section of Supplementary Information).

Mechanistic studies
To gain a deeper insight of the mechanism of this migratory arylation
reaction, control experiments with enol 1nwere performed. When the
reaction was stopped in 1 h, corresponding product 21 was formed in
18% yield, while diene 40 was not detected via dehydration from 1n
(Fig. 4a). Further reaction of diene 40 directly under the standard
reaction conditions also failed to yield product 21. When diene 40was
introduced as an additive in the reaction of 1a, migratory arylation
product 3 was generated from 1a in 70% yield, while 21 was not
detected from diene additive 40. These observations point out that
migratory arylation transformations are not proceeding via simple
dehydration of enols, and diene cannot access the final products via
hydroarylation, indicating that the intermediacy of diene could be
ruled out. Moreover, deuterium labeling experiments were carried out
to investigate the reaction details during migration (Fig. 4b). When
deuterated d2−1a was employed under the standard conditions, 95%
deuterium incorporationwasobserved at 4-position,making clear that
a specific 1,4-hydride shift occurs during the migratory process.

Table 1 | Migratory dehydroxylative allylic arylation of 1,2-Enols: condition optimizationa

Entry Solvent Ligand additive Yield of 3 (%)b Yield of 4 (%)b Recovery of 1a (%)b

1 toluene PCy3 — 30 <5 n.d.

2 toluene PCy3 K2CO3 19 <5 28

3 toluene PCy3 FeCl3 n.d. 8 36

4 toluene PCy3 Fe(OTf)2 60 7 n.d.

5 toluene PCy3 Zn(OTf)2 36 <5 n.d.

6 toluene PCy3 Mn(OTf)2 54 <5 n.d.

7 toluene PCy3 In(OTf)3 21 6 n.d.

8 toluene PCy3 Sc(OTf)3 25 <5 n.d.

9 toluene PCy3 La(OTf)3 68 <5 n.d.

10 toluene PtBu3 La(OTf)3 11 <5 10

11 toluene PPh3 La(OTf)3 n.d. 43 n.d.

12c toluene BINAP La(OTf)3 n.d. 20 n.d.

13c toluene bpy La(OTf)3 n.d. n.d. 52

14c toluene Phen La(OTf)3 n.d. n.d. n.d.

15 dioxane PCy3 La(OTf)3 52 7 n.d.

16 DCE PCy3 La(OTf)3 13 <5 12

17 THF PCy3 La(OTf)3 27 6 26

18 n-hexane PCy3 La(OTf)3 55 <5 n.d.

19 MTBE PCy3 La(OTf)3 75(72) <5 n.d.

20d MTBE PCy3 La(OTf)3 75 <5 n.d.
aThe reaction was carried out with PhB(OH)2 (2.0 equiv.), Ni(cod)2 (10mol%), Ligand (20mol%), and 1a (0.2M) in indicated solvent (1.0mL) at 90 °C for 12 h. bDetermined by 1H NMR analysis using
dibromomethane as the internal standard, and value in parentheses is the isolated yield. c10 mol% of bidentate ligand was used. dThe reaction was conducted at 110 °C. n.d. not detected, DCE 1,2-
dichloroethane, THF tetrahydrofuran,MTBE methyl tert-butyl ether, bpy: 2,2′-bipyridine, Phen 1,10-phenanthroline.
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Finally, no intermolecular H/D exchange was observed from the deu-
terium cross-over reaction of d2−1a and 1e in a one-pot manner
(Fig. 4c), implying the prior formation of the new π-allyl nickel inter-
mediate from diene-Ni-Int before the possible disassociation of diene-
ligand from the metal, which differs frommany cases involving chain-
walking process via olefins57.

To account for the 1,4-hydride shift process observed by the
aforementioned deuterium labeling experiments, density func-
tional theory (DFT) calculations were carried out using 1a as model
substrate along with the Ni(0)−PCy3 catalytic system (for details of
the optimized structures see coordination data sets and free ener-
gies in Supplementary Data 1). The free energy profiles of the pre-
ferred 1,4-hydride transfer pathways for (Z)-1a and (E)-1a
represented by the black line and the blue line, respectively, are
shown in Fig. 5, taking the π-allyl nickel species Int1b as the free
energy reference. In thecaseof (E)-1a, isomerizationofπ-allyl nickel
species Int1b affords Int2b,whichundergoesβ-hydrideelimination
via Ts1b with an energy barrier of 20.1 kcal.mol−1 (TS1b with
respective to int1b) to form the diene-nickel complex Int3b.
Hydrometallation of Int4b, generated by the further isomerization
of Int3b, needs to overcome an activation barrier of only
5.1 kcal.mol−1 (Ts2b), providing a new and desired π-allyl nickel
species Int5.Asimilarsituationcanbefoundinthecaseof (Z)-1awith
slightly higher free energy demanding. These calculations indicate
that both stereoisomers of 1a can undergo the 1,4-hydride transfer

process to furnish the same π-allyl nickel complex Int5, which is in
line with the experimental observation in Fig. 3. Moreover, the dis-
sociation of the diene-nickel complex Int3a to form Int3a-p1 and
Int3a-p2 indicated by red line was also considered, and the higher
energy barrier rules out the possibility of the formation of diene,
consistent with the results experimentally observed in Fig. 4.

Based on the regiochemical outcome,mechanistic experiments in
Fig. 4, and DFT calculation results in Fig. 5, a possible mechanism for
the migratory allylic arylation reaction is proposed in Fig. 6. Ligand
exchange of Ni(cod)2 with PCy3 generates the active catalyst Ni(PCy3)2,
which undergoes the reaction with allylic alcohol 1a via oxidative
addition to give π-allyl nickel species Int1. Olefin migration occurs to
produce the corresponding allylic alcohols when 1,n-enols (n ≥ 3) are
employed, e.g., 1,3-enol 1c. The hydroxyl group performs as a leaving
group after being activated by La(OTf)3, a Lewis acid. β-Hydride elim-
ination of Int1 affords diene-nickel complex Int3, which further
transforms to a new π-allyl nickel species Int5 via hydrometallation. It
is noteworthy tomention that the active NiH species in Int3 is believed
to be generated via β-hydride elimination, instead of being formed via
oxidative addition of alcohols inmany other cases74–77. Transformation
from one π-allyl species (Int1) to the other (Int5) proceeds via an
overall 1,4-hydride shift, and disassociation of the diene-ligand in Int3
from the metal seems not possible as confirmed by the deuterium
labeling and cross-over studies. Finally, transmetallation of Int5 with
ArB(OH)2 produces Int6, which on subsequent reductive elimination
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leads to the final product 3, releasing the nickel(0) catalyst to close
the cycle.

To sumup,we have developed amigratory dehydroxylative allylic
arylation of unactivated 1,n-enols enabled by dual nickel/Lewis acid
catalysis with high regio- and stereoselectivity. The reaction proceeds
via unprecedented π-allyl nickel species migration involving 1,4-
hydride shift as confirmed by deuterium labeling experiments. DFT
studies suggest that π-allyl metal species migration consists of the
sequential β-H elimination and migratory insertion, with diene not
being allowed to release from the metal center before hydrometalla-
tion to produce a new π-allyl nickel species. Olefin migration was
observed to preferentially occur starting from 1,n-enols (n ≥ 3). The
method provides a facile and migratory strategy to construct
C(sp2)–C(sp3) bonds with unique selectivity and features a broad
substrate scope for both arylboronic acids and 1,n-enols. Further stu-
dies on themechanism, synthetic application, and asymmetric variants
are currently ongoing in our laboratory.

Methods
Representative procedure for migratory allylic arylation of 1,n-
enols enabled by nickel catalysis
Under a nitrogen atmosphere, a mixture of Ni(cod)2 (5.5mg,
0.02mmol), PCy3 (11.2mg, 0.04mmol), Lewis acid (0.04mmol), and
ArB(OH)2 (0.4mmol) was added a solution of corresponding enol
(0.2mmol) in MTBE (1.0mL). The reaction was sealed and stirred at
90 °C or 100 °C for 12 h. Subsequently, the reaction was cooled down
to room temperature and themixture was evaporated and purified via
column chromatography on silica gel (eluent: petroleum ether/ethyl
acetate) afforded the desired product.

Data availability
All data generated or analyzed during this study are included in this
Article and the Supplementary Information. Details about materials
and methods, experimental procedures, mechanistic studies, char-
acterization data, computational details, NMR and HPLC spectra are

Fig. 4 | Mechanistic studies. a Control experiments. b Deuterium labeling
experiments. c Intermolecular cross-over reaction.
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available in the Supplementary Information. Calculated coordinates
are available in the Supplementary Data file. All other data are available
from the corresponding author upon request.
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