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Frictional fluid instabilities shaped by
viscous forces

Dawang Zhang1, James M. Campbell1,2, Jon A. Eriksen2, Eirik G. Flekkøy2,3,
Knut Jørgen Måløy 2,4, Christopher W. MacMinn 5 & Bjørnar Sandnes 1

Multiphase flows involving granular materials are complex and prone to pat-
tern formation caused by competing mechanical and hydrodynamic interac-
tions. Here we study the interplay between granular bulldozing and the
stabilising effect of viscous pressure gradients in the invading fluid. Injection
of aqueous solutions into layers of dry, hydrophobic grains represent a vis-
cously stable scenario where we observe a transition from growth of a single
frictional finger to simultaneous growth of multiple fingers as viscous forces
are increased. The pattern is made more compact by the internal viscous
pressure gradient, ultimately resulting in a fully stabilised front of frictional
fingers advancing as a radial spoke pattern.

Viscous multiphase flows involving two fluids and a granular material
occur in such diverse scenarios as mud and debris flows, methane
venting from sediments, degassing of volatiles from magma, and the
processing of granular and particulate systems in the food, pharma-
ceutical, and chemical industries1–13. The presence of the granular
material introduces solid friction as a governing force in the dynamics,
alongside viscosity, capillarity, and gravity. This multitude of inter-
acting elements and forces can give rise to instabilities and the emer-
gence of patterns14–31, making these multiphase frictional flows
inherently difficult to predict or control.

Multiphase frictional flows inhabit a large parameter space, but
relatively few scenarios have attracted any attention. One suchflow that
is now relatively well understood is the injection of a low-viscosity
invading fluid (viscosity ηinv) to displace a much more viscous defend-
ing fluid (viscosity ηdef≫ηinv) containing sedimented grains, for the
case where the invading fluid is nonwetting to the grains (i.e. drainage).
Without the grains, or with grains that are fixed in place (i.e. within a
rigid porous medium), this problem is famously viscously unstable and
will be subject to classical viscous fingering (i.e. the Saffman–Taylor
instability)32–35.Withmovable grains, the nonwetting invadingphasewill
tend to bulldoze the defending mixture rather than invading the space
between or above the grains as long as capillary forces are strong
enough to overcome friction with the wall(s) and among the grains (i.e.
the capillary entrypressuremustbe sufficiently larger than the frictional

resistance to sliding and rearrangement). This bulldozing behaviour
further destabilises the system as the accumulation of grains on the
defending side of the interface penalises uniformdisplacement, leading
to the formation of fractures, fingers, bubbles, labyrinths, and other
patterns, depending on the injection rate and the packing fraction15,19,28.

Without thegrains, reversing the twoviscosities (ηdef <ηinv) negates
the fingering instability by turning viscous pressure into a stabilising
mechanism.With grains that arefixed inplace, capillary forces andpore-
scale disorder compete with viscous stabilisation to produce fractal
invasion-percolation patterns at low injection rates and rough but stable
fronts at high injection rates34–38.Withmovable grains, however, theflow
is frictionally unstable at all rates due to bulldozing. The competition
between these two mechanisms has not previously been studied in any
detail and even basic questions remain unanswered; for example, to
what extent can viscous forces stabilise the flow against the frictional
instability? Here, we explore this competition systematically using
experiments and simulations. Focusing on the casewhere ηinv≫ηdef, we
show that the pattern formation is controlled by the strength of viscous
forces in the invading phase relative to friction due to bulldozing and
pile-up of grains in the defending phase, as quantified by a “viscous
deformability” parameter Dvisc. Increasing Dvisc leads to a striking tran-
sition from the growth of one solitary finger to the simultaneous growth
of multiple, wandering fingers to the axisymmetric growth of a radial
spoke pattern as the flow is increasingly viscously stabilised.
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Results
Viscously stable frictional fingers
Viscously stable frictional fingering was achieved by injecting water or
a mixture of water and glycerol at a flow rate Q into a Hele-Shaw cell
comprising two parallel glass plates separated by a gap of thickness
b = 0.9 mm and containing a dry layer of polydisperse hydrophobic
beads (Fig. 1a). As such, air was the low viscosity defending fluid in
which the grains were “submerged”. We define the log viscosity ratio
M= logðηdef=ηinvÞ, which is negative for viscously stable scenarios and
strongly negative here, where ηdef≪ ηinv. The flow cells were prepared
with various filling levels φ = h/b of beads, where h is the initial thick-
ness of the layer; the beadswere silanised glass, sievedbetween 70 and
100 μm, with mean diameter d = 87 μm.

In all cases, the frictional instability shaped the invadingwater into
one or more fingers of width 2R surrounded by a compaction front of
thickness L of dry, bulldozed grains (Fig. 1b and c). These fingers grew
only at their tips; the side-walls were immobile after their initial for-
mation, except where new fingers were initiated at larger values of Q,
as discussed below.

Figure 2a shows a selection of experimental results for differentQ
and φ. Figure 2b shows corresponding simulations described in a later
section. Low injection rates resulted in the growth of a single finger
that “wormed” its way through the cell (e.g. Q = 1 ml/min, bottom row
in Fig. 2, SupplementaryMovie 1). At the same injection rate, increasing
φ led to a narrower finger because the compaction front thickened

more rapidly with the advance of the interface (Fig. 3)15,39. Values for R
were obtained from final images (such as those presented in Fig. 2) by
measuring the ratio of fluid-filled invaded area to internal finger
interface length R =Afluid/Sfinger.

The grains in the compaction front bridge the gap between the
plates. In a straight segment of the side-wall, the capillary pressure
imparted by the meniscus is opposed by the effective stress in
the granular material, which disperses through grain-grain contacts to
the plates. Deformation of the front requires dilation, which is
opposed by the confining plates and the granular pressure from
neighbouring front segments. Assuming Coulomb friction between
the granular material and the plates and that out-of-plane stresses are
proportional to the imposed in-plane stress (the “Janssen law”40), the
frictional stress resisting motion of the front increases exponentially
with front width: σ(L)∝ eL/ξ, where ξ = b/(2μκ) is the characteristic
length, μ is the effective coefficient of friction between the grains and
the plates, and κ is the ratio of out-of-plane normal stress to in-plane
normal stress in the granular packing (i.e. the Janssen coefficient)39,41.

At the tip of a growing finger, the front is curved (Fig. 1c) and the
streamlines of granular motion diverge as the grains are pushed out-
wards normal to the interface. In the reference frameof themoving tip,
the granular material in the front is therefore continuously being
stretched tangentially to the interface. This extensional motion redu-
ces the granular pressure against the plates by weakening tangential
granular force chains. The confinement-induced jamming that pro-
duced exponentially increasing friction at the straight side-walls is
therefore significantly reduced at the moving tip, where the finger
width is set. In agreement with previous work42, we find that a simple
linear friction model provides a good fit to the experimental data in
Fig. 3 (seemodel results describedbelow). Following42, we estimate the
frictional stress at the tip asσt ≈ σ0Lt/b, where Lt is the frontwidth at the
tip (see Fig. 1c) and σ0 represents the total frictional force per unit
contact area with the plates; we use σ0 as a fitting constant.

At the curved tip, the menisci in the pores between the grains
collectively generate an effective interfacial tension at the scale of
several grains that acts to minimise the curvature of the tip. The fluid
pressure at the tip of a growing finger is therefore partly opposed by
the Laplace pressure γeff/Rt associated with its in-plane curvature Rt
(Fig. 1), where γeff is the effective interfacial tension at the liquid–gas/
grain interface39. We approximate the latter with the liquid–gas inter-
facial tension, γeff ≈ γ. Note that we ignore the out-of-plane curvature
because it is independent of the finger shape.

Following previous work15,42,43, we now estimate the characteristic
rate-independent fingerwidth 2Rf that balances capillarity with friction
by seeking the value of Rf that minimises the capillary pressure at the
tip Pt. Conservation of mass for the finger as a whole suggests that
(1 −φ)Lf ≈φRf, where Lf is the characteristic front width and where we
have neglected the small tip region; we assume for simplicity that the
same argument applies independently at the tip, (1 −φ)Lt ≈φRt. From
the arguments above, the total yield pressure at the fingertip is then
Pt ≈ σ0Lt/b + γ/Rt ≈ (σ0/b)[φ/(1 −φ)]Rt + γ/Rt, suggesting that friction
favours narrower fingers (displacing fewer grains) while surface ten-
sion favours wider fingers (less curvature). We then identify the Rt at
which Pt is minimised by setting dPt/dRt =0. Finally, we link Rt to Rf by
requiring that this same yield pressure Ptmust apply along the straight
side walls of the finger where the frictional stress is σ0Lf/b and the
curvature is negligible, noting that we are neglecting viscosity over
the distance ~ 2Rf over which fingers transition from the curved tip to
the straight side walls. Combining these ingredients, we arrive at a
simple expression for Rf:

Rf =2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γbð1� φÞ

σ0φ

s
: ð1Þ

Fig. 1 | Frictional fingering in hydrophobic grains. a Schematic cross-section of
an invading fluid-fluid interface (red line) bulldozing a layer of hydrophobic grains
with initial filling level φ into a compaction front of width L that bridges the gap
between the plates.b Photographic top viewof an invadingfinger. Thewhite region
has been invaded with water and cleared of grains, while the black region (the
compaction front) has been completely filled with grains. c Advancing finger tips
have radius of curvature Rt and compaction-front width Lt; away from the tips, fully
expandedfingershave half-widthR and compaction-frontwidth L.dViscousflowof
liquid along a growing finger leads to a pressure gradient from the injection pres-
sure at the inlet to the capillary pressure Pt at the tip.
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This finger width 2Rf is thus the emergent natural length scale in
our system. A very similar expression has been derived and used for
viscously unstable frictional fingers15,42,43.

We plot 2R as a function of φ in Fig. 3 for experiments and
simulations at low rates Q, comparing against 2Rf (φ) from Eq. (1).
The theory agrees well with the experimental observations, in
common with previous research on viscously unstable air-invasion
labyrinths15,42 and confirming the expectation that there exists a rate-
independent regime where viscous forces within the fingers are
indeed negligible, such that capillarity and friction compete to set
the finger width.

Transition from a single finger to multiple fingers
As we increase Q over two orders of magnitude, we observe a tran-
sition toward a regime where viscous pressure gradients become
significant. As Q increases, the number of simultaneously growing
fingers increasesmonotonically from one at lowQ to nearly 20 at the
highest values of Q explored here (Figs. 2 and 4, Supplementary
Movie 2). Thus, strikingly, viscous forces drive the pattern to be
more space-filling in this system by promoting the formation of
more fingers.

Low- and high-Q experiments are compared in Fig. 4a and b,
where the invading-fluid-filled fingers are colourised by invasion time.
At low Q, growth is localised to the tip of a single finger into which all
the injected fluid flows. Branching is sometimes observed, but usually

only one finger is actively growing at any time. At high Q, several
fingers grow simultaneously, as indicated by the rough axisymmetryof
the colours in Fig. 4b. New fingers sprout by side-branching as the
injected fluid flows through the network of fingers toward the
active tips.

The viscous pressure gradient is located within the viscous
invading fluid, with the pressure decreasing along the fingers from the
inlet toward themoving tips (Fig. 1d). A sufficiently highpressure along
the length of a finger can drive new fingers to break out from the side
walls, leading to growth in the central parts of the pattern; this is the
manifestation of viscous stabilisation in this frictionally unstable sys-
tem. Figure 5a shows that the number of active fingersN increaseswith
injected volume V and with injection rate Q, which is consistent with
the fact that thefluidpressure at anyfixed radial position along afinger
must increase with the length of that finger and with the flow rate
through it.

Breakout of new fingers is suppressedby at least twomechanisms.
First, the stress required to deform a straight side-wall is higher than at
the already curved tip, where the divergent flow of grains relieves
bridging stresses by accommodating dilation. Second, the coefficient
of static friction μs at the side walls is likely to be higher than the
coefficient of dynamic friction μd at the moving tips, leading to higher
frictional strength along the side walls. We represent these effects by
introducing a higher threshold pressure Pb = Pt +ΔPb required to
sprout a new finger from a side wall.

The results in §II A suggest that larger values ofφ produce thicker
compaction fronts, Lf /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ=ð1� φÞ

p
15. These thicker fronts should

provide a stronger resistance to breakout, meaning that ΔPb should
increase with Lf; thus, it should become more difficult to form new

Fig. 2 | Phase diagram of water invasion patterns at different φ and Q.
a Experiments and (b) simulations. Water (bright fingering structure) invades from
a central inlet, displacing a layer of dry hydrophobic beads (dark grey) (see

Supplementary Movies 1 and 2). All images show the moment when the first finger
reaches a radius of rout = 13.4 cm and are cropped to that radius.

Fig. 4 | Transition froma single finger tomultiple fingers asQ increases. a Time
evolution of a single finger (Q = 1 mL/min) and (b) multiple fingers (Q = 200mL/
min) colourised according to invasion time t.

Fig. 3 | Frictionalfingerwidth 2Rdecreaseswithfilling fractionφ.Diamondsand
circles show experimental and simulation results, respectively (mean and standard
deviation of three repeats). Black, dark grey and light grey represent experiments at
Q = 1, 3 and 10mL/min respectively. Red circles represent simulation data atQ = 1, 3
and 10mL/min. R is measured as the ratio of total invaded area to total interface
length. The solid line shows the characteristic finger width 2Rf (φ) from Eq. (1),
having taken σ0 = 16 Pa as the best fit to the experimental results.
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fingers as φ increases. This observation suggests that the number of
fingers N should decrease withφ, as is confirmed in Fig. 5b. To capture
this feature, we follow previous work15,39,40 by hypothesising an expo-
nential friction law of the form

ΔPb½Lf ðφÞ�= σβ exp
Lf ðφÞ
ξ

� �
= σβ exp

2
ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γbφ

σ0ð1� φÞ

s" #
, ð2Þ

where we use the pre-factor σβ as a fitting parameter.
The viscous contribution to the liquid pressure vanishes at a

moving finger tip and increases linearly with distance upstream of the
tip. The viscous pressure ΔPv a distance Δrb upstream of a moving
finger tip can be estimated via Darcy’s law,

Q
2Rf bN

≈
b2

12ηinv

ΔPv

Δrb
! ΔPv≈

6ηinvQ

Rf b
3

Δrb
N

, ð3Þ

where Q/(2Rf bN) is the average flux within each active finger. Thus, a
new finger will form a distance Δrb behind a moving finger tip when
ΔPv ~ΔPb, suggesting that

Δrb
rout

∼
N

Dvisc
, ð4Þ

where rout is the radial system size (i.e. the outer radius) and

Dvisc =
ΔPvðΔrb = rout,N = 1Þ

ΔPb
=
6ηinvQrout
Rf b

3ΔPb
ð5Þ

is the dimensionless viscous deformability, which compares the char-
acteristic viscous pressure drop to the characteristic frictional resis-
tance of the side walls for a single finger of length rout. Note that Δrb
decreases withDvisc, so that faster injection or amore viscous invading
phase will promote branching closer to the tip.

To sprout a single new finger from an existing one requires that a
volume 2Rf bΔrb of invading fluid be added to that finger. Thus, the
addition of a volume ΔV to the flow cell will sprout ΔN new fingers,
where

ΔN =
ΔV

2Rf bΔrb
ð6Þ

For large N, we approximate the discrete variation ΔN as a continuous
one and integrate from V =0, giving

NðV Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VDvisc

Rf brout

s
, ð7Þ

where we have eliminated Δrb using Eq. (4).

Fig. 5 | Simultaneously growing fingers.N as a function of injected volume V =Qt
for (a)φ =0.56 and different injection ratesQ and (b)Q = 100mL/min and different
filling fractionsφ.We alsoplot Eq. (7) for eachQ–φ combination (curves),fitting the
value of ΔPb(φ) in each case. c We then plot these values of ΔPb(φ) against

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ=ð1� φÞ

p
on a semi-log scale (same legend as (d)), indicating an exponential

relationship with σβ =0.20 (red line, Eq. (2)). d Finally, we plot N againstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VDvisc=ðRf broutÞ

q
for all experiments, as suggested by Eq. (7) (red line).
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On the right-hand side of Eq. (7), the only unknown is ΔPb, which
appears within Dvisc (recall that Rf (φ) is given in Eq. (1)). We therefore
plot the number of active fingers N against the total injected volume V
from experiments at fixed φ for several different values of Q (Fig. 5a)
and at fixed Q for several different values of φ (Fig. 5b). Then, we use
ΔPb (φ) as a fitting parameter to achieve the best match between these
results and the predictions of Eq. (7). In Fig. 5c, we then plot these best-
fit values of ΔPb against

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ=ð1� φÞ

p
/ Lf , as suggested by Eq. (2); the

linear trendof thedata on this semi-logarithmic scale provides support
for the exponential friction model for the side-walls (Eq. (2)). A least-
squaresfit of these empiricalΔPb values against

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ=ð1� φÞ

p
(red line in

Fig. 5c) suggests that σβ =0.20 ±0.02 Pa, where the 95% confidence
interval of the fit is used for the uncertainty. Finally, we plot N(V)
against

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VDvisc=ðRf broutÞ

q
for all of our experimental results in Fig. 5d

(symbols), alongwith the prediction of Eq. (7) that these twoquantities
are directly proportional (red line).

The simple model captures the overall trend in the data, despite
containing none of the geometrical complexity of the branching pat-
terns. Note, however, that there is considerable variability in the data.
The actual strength of viscous forces within a finger depends on the
finger width, which exhibits 10–20% variability around the character-
istic value Rf at the same value of φ (Fig. 3). On the vertical axis, we
observe that N can vary both between different experiments and also
within a single experiment as fingers start, stop, and sometimes restart
again, making this measurement inherently imprecise. Note also that,
for large N, the fingers begin to fill the available space, crowding out
the formation of new fingers. This effect is not included in the model,

but should suppress the growth of N at even higher values offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VDvisc=ðRf broutÞ

q
. Nevertheless, our simple model captures reason-

ably well the roles of viscosity and friction in controlling the sprouting
of new fingers.

Simulations of viscously stable frictional fingering
To better understand the complex patterns generated in experiments,
we develop a frictional-fingering simulator by building on a code pre-
viously used to model air invasion into a wet hydrophilic packing42,43.
The granular filling-level field is represented as a 2D array (grey-scale
pixels in Fig. 6a). The interface between the invading fluid and the
defending mixture is represented by a chain of nodes (red points in the
inset of Fig. 6a). As in the experiments, forward motion of the interface
accumulates a compaction front. To implement viscous flow inside the
invading phase, we skeletonise the finger structure into a branching tree
(blue nodes and edges in the inset of Fig. 6), on which we calculate the
local viscous pressure Pv (Eq. (12)). Flow through the viscous skeleton is
determined by the volume change dictated by growth at the tips of the
fingers. An interface segment advances incrementally when its yield
pressure is exceeded by the local fluid pressure, after which the filling
fraction, the local interface curvaturesRlocal, and the viscous pressuresPv
along the flow network are updated. Note that we neglect the viscosity
of the defending fluid, and that we use two fixed fitting parameters, the
friction coefficient and a viscous coefficient, both set to match finger
widths and viscous stabilisation across the range of experimental para-
meters (see Methods).

Figure 6a shows a detailed view of a simulation at moderate
Dvisc = 22 with multiple active fingers. The skeletonised viscous flow
network shows the fluid pressure, which decreases toward the tips of
active fingers and is uniform along inactive fingers, with themaximum
pressure at the inlet. Figure 6b shows the evolution of injection pres-
sure for Dvisc = 31, comparing the experimental pressure measured at
the inlet with the simulation pressure calculated at the central node for
three realisations. In both experiment and simulations, the pressure
initially increases rapidly as bulldozing mobilises friction and capillary
forces, thenmore slowly due to build-up of viscous pressure as fingers
grow in length. The simulations reproduce the trend in the pressure
data from experiments, as well as the typical frequency andmagnitude
of the fluctuations; however, the overall magnitude of the injection
pressure is somewhat higher in the simulations than in the experiment.
Figure 2b shows simulation results across a range of filling fractions
and injection rates, reproducing the experimental transition from
single-finger to multi-finger growth as a function of Q, although
somewhat under-predicting the number of fingers at high Q. Figure 3
includes the simulated finger width 2R at low Q, which decreases a bit
more steeply with φ than what is observed in the experiments.

These differences between experiment and simulation may be due
to the fact that the simulations use an exponential friction model (Eq.
(11)) along the entire the compaction front, regardless of curvature. Our
experimental data indicates that friction along the finger side walls is
indeedwell capturedwith an exponentialmodel (Fig. 5), but that friction
at the finger tips is better captured by a linear frictionmodel (Fig. 3). We
have used the exponential model in the simulations to prioritise viscous
stabilisation, which is controlled by side-wall friction. However, tip fric-
tion controls the finger width and the resistance to finger propagation,
so it is not surprising that the simulations exhibit a steeper variation of
2R with φ and a larger injection pressure than observed in experiments.
Resolving this discrepancy would require the use of curvature-
dependent friction along the compaction front, which may be the sub-
ject of future work.

From individual fingers to radial spoke patterns
To further increase the strength of viscous stabilisation relative to
capillarity and friction, we increase the viscosity of the invading

Fig. 6 | Simulation of frictional fingers. a Dvisc = 22, corresponding to injection of
water atQ = 100mL/minwithφ =0.42. The viscous pressurefield (cyan tomagenta)
is calculated on a branching tree that follows the skeleton of the fingers. The outer
radius is rout = 13.4 cm and the gap thickness is b =0.9mm. Inset: Close-up showing
the filling-fraction field (grey-scale pixels), the interface (red chain of nodes), and
the viscous skeleton (blue nodes and edges). b Fluid pressure at inlet for experi-
ment and simulation at Dvisc = 31 (Q = 1mL/min, η = 141.4 Pa.s).

Article https://doi.org/10.1038/s41467-023-38648-6

Nature Communications |         (2023) 14:3044 5



fluid. Figure 7 shows the time evolution of glycerol injection at
Q = 10mL/min, producing extreme viscous stabilisation and fingers
that radiate outward in an axisymmetric spoke pattern. Here, the
frictional instability produces fingers and viscous stabilisation forces

them to grow radially, with an axisymmetric viscous pressure field. The
tips remain equidistant from the inlet, creating a circular displacement
front with embedded radial streaks of packed grains. As the pattern
expands over time, the fingers increase in number by splitting to
populate the growing circumference while maintaining a constant
characteristic finger width (see Supplementary Movie 3).

Figure 8a shows an experimental ηinv–Q phase diagram in a log-
log plot. The viscosity of the invading fluid ηinv (i.e. the fraction of
glycerol) increases from bottom to top and the injection rate Q
increases from left to right. The top-right corner is empty because of
the force limitation on the pump. Figure 8b shows a corresponding
ηinv–Q phase diagram for the simulations over a wider range of Q.

In these phase diagrams, similar patterns fall along diagonal lines
corresponding to constant values of the product ηinvQ, which is a
measure of the strength of viscous forces. We quantify the balance of
viscous forces, which drive the motion of the grains, to friction, which
resists the motion of the grains, via the dimensionless viscous
deformability Dvisc introduced above (Eq. (5)), which captures pre-
cisely this balance.

Our Dvisc is similar in spirit to the large-capillary-number limit of
the ‘fracturing number’ of Holtzman et al.21, where the motion of a
granular solid is resisted by friction under confining stress; to the
‘viscous fracturing number’ of Carrillo and Bourg44, where the motion
of a porous viscoplastic solid is resisted by a yield stress; and to the
‘fluidisation number’ of Campbell et al.25, where the motion of a
granular material was resisted by friction due to the weight of the
grains. In the present context, friction is instead controlled by bull-
dozing, pile-up, and bridging.

Fig. 7 | Time evolution of spoke pattern. a Experiment and (b) simulation of
glycerol injection producing a viscously stable spoke pattern. Time tn is normalised
by the time the first finger reaches the boundary. These results are for Q = 10mL/
min, ηinv = 1414mPa ⋅ s,φ =0.49, b =0.9mm, and rout = 13.4 cm (see Supplementary
Movie 3).

Fig. 8 | ηinv–Q phase diagrams. a Experiments and (b) simulations of the invasion
of water-glycerol mixtures into dry hydrophobic grains. The viscous deformability
at which the pattern transitions from single to multiple fingers (D*

visc) and from
multiple fingers to radial spokes (D**

visc) are plotted in blue and orange, respectively
(Eqs. (8) and (9)). c Definitions of front length Sfront (red curve) and displaced area
Adis (invaded area plus compaction front, blue region), with rmax the reach of the

most advanced finger. d Pattern compactness c =Adis/Areach, (e) front instability
number s = Sfront/Sfinger, and (f) finger width 2R normalised by the characteristic
rate-independentfingerwidth2Rf (Eq. (1)) as functionsofDvisc.D

*
visc andD**

visc in blue
and orange lines, and theoretical lower c0 indicated in (d). In all panels, φ =0.49,
b =0.9mm, and the outer radius is rout = 13.4 cm.
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Viscous stabilisation relates to the twomacroscopic length scales:
the system size, represented by the cell radius rout, and the emergent
finger width 2Rf. At low Dvisc, a single finger may grow to reach the
perimeter of the cell without spawning a new finger if Δrb is greater
than the system size rout. Taking Δrb = rout and N = 1, Eq. (4) suggests
that the transition between a single finger and multiple fingers should
occur around

D?
visc = 1, ð8Þ

which is ultimately the scenario that motivated our definition of Dvisc.
Note that Dvisc is proportional to system size, so a larger system
requires a smaller viscosity or a lower injection rate to avoid branching.

The next transition, frommultiple fingers to radial spokes, occurs
when the critical distance Δrb becomes smaller than the characteristic
finger width 2Rf. Branching will then be suppressed by the presence of
neighbouring fingers as the pattern becomes space-filling. These pat-
terns are viscously stabilised in the sense that a finger that advances
ahead of its neighbours will decelerate due to its larger internal pres-
sure drop, leading to a spoke pattern where all fingers extend roughly
the same distance r from the inlet. The number of fingers Nspoke (r) in
this limit is easily estimated from conservation of mass,
Nspoke (r) =πr(1−φ)/Rf. Taking Δrb = 2Rf and N =Nspoke (rout), Eq. (4)
suggests that the transition to spokes should occur around

D**
visc =

π
2
ð1� φÞ rout

Rf

 !2

: ð9Þ

We indicate these transitional values in the η–Q phase diagrams
(diagonal blue and orange lines, respectively in Fig. 8a and b) for fixed
φ =0.49, b =0.9mm, and rout = 13.4 cm, for which D**

visc = 860. In both
cases, we obtain a reasonablematch to the visual characteristics of the
patterns, transitioning from one finger to several around D?

visc and
from multiple fingers to space-filling radial spokes around D**

visc,
although both transitions are clearly gradual. Note that the D?

visc and
D**
visc lines (blue andorange, respectively) appear steeper in Fig. 8b than

in Fig. 8a because the range of Q is wider in the former.
For a quantitative analysis of the spatial characteristics of these

patterns, we define the ‘pattern compactness’ c=Adis=ðπr2maxÞ, where
the displaced area Adis includes both fingers and compaction fronts
(but not undisturbedmaterial) and rmax is the radial extent of themost
advanced finger (Fig. 8c). For the measurements presented here,
rmax = rout. We plot c against Dvisc in Fig. 8d, indicating the relevant
values of D*

visc and D**
visc by the blue and orange lines, respectively. The

theoretical lower limit c0 =2Rf =ðπroutð1� φÞÞ≈0:04 corresponds to a
single straight finger growing from the inlet to the edge. The com-
pactness c increases as viscous stabilisation creates multiple fingers
and a more compact pattern, approaching 1 for radial spoke patterns.

We define a ‘front instability number’ s = Sfront/Sfinger, where Sfront
is the length of the outer edge of the compaction front (i.e. the outer
boundary between the compaction front and the undisturbed mate-
rial; see red contour in Fig. 8c). For the spoke pattern, this boundary
becomes nearly circular since the compaction fronts of neighbouring
fingers touch. Sfinger is the longer internal perimeter of the finger pat-
tern, tracing the liquid–air interface. The value of s is close to 1 for a
singlefingerwhere theouter front perimeter follows the internalfinger
interface, decreasing as fingers increasingly meet to form a common
front (Fig. 8e).

The finger width 2R (Fig. 8f) is approximately 2Rf in the rate-
independent regime (Eq. (1) and Fig. 3). Naively, one would expect
increased viscous pressure within the finger to expand the width;
instead, the fingers are observed to narrow when approaching D**

visc.
This narrowing is most likely a result of self-confinement, in which the
competition betweennumerousfingers increasingly suppresses lateral

expansion. There is a gradual transition from multiple individual fin-
gers to side-by-side radial spokes as viscous stabilisation becomes
stronger and stronger, as evidenced by 2R beginning to decrease
before the system reaches D**

visc. Note that this self-confinement effect
is not included in the model.

Discussion
We have studied the fluid dynamics of an invading fluid displacing a
defending fluid containing a sedimented granular material that is
wetted by the defending fluid and repelled by the invading meniscus
(drainage). For loose packings of grains, as in this study, capillary
forces dominate over the weak frictional strength G of the initial
granular layer, G = μ0ρbgbφ, where μ0 is the friction coefficient
between the initial layer of grains and the plate, g is the body force per
unit mass due to gravity, and ρb = (ρg − ρdef)(1− n) is the bulk density
difference between the granular layer and the defending fluid, where n
is the porosity of the packing. In other words, the “capillary deform-
ability” Dcap = (γ/d)/G of the system is large in all experiments pre-
sented here, Dcap≫ 1, such that the meniscus can easily bulldoze the
grains into compaction fronts that are then frictionally unstable,
creating frictional fingers.

Holding capillarity constant, we then explored the effect of vis-
cous stabilisation using mixtures of water and glycerol as the invading
fluid and air as the defending fluid (negative M). The log viscosity
contrast is large in all of our experiments (1:7 < ∣M∣<4:9), such that
pressure gradients in the low-viscosity defending fluid (the air) are
negligible.

For lowQ and ηinv, viscous forces are negligible on the scale of the
finger width. Increasing the grain filling level φ increases the bulldoz-
ing friction and leads to narrower fingers. The finger width is set at the
forwardmoving tipwhere a linear frictionmodel σ(Lf) produces a good
fit to the data. Breakout of new fingers from the static side-walls is
suppressed by the frictional resistance of the granular compaction
front, which increases exponentially as a function of its thickness.

Increasing Q or ηinv increases the strength of viscous forces rela-
tive to frictional resistance, increasing the viscous deformability Dvisc.
Viscously stable displacement involves pressure gradients along the
invading fingers, with pressure decreasing from the central inlet
toward the finger tips. Viscous stabilisation manifests as the sprouting
of new fingers once the frictional ‘breakout’ pressureΔPb of thewalls is
exceeded.

Two mechanisms determine the role of viscous stabilisation: (1)
the strength of viscous pressure drop relative to frictional stress, as
measured by Dvisc, and (2) the distance between the central inlet and
the finger tips. We have identified two critical threshold values of Dvisc

that separate different types of fingering patterns within the cell.
Starting with a single finger at low Dvisc, increasing Dvisc eventually
leads to the first threshold value at which the viscous pressure along
the finger grows large enough to cause branching before the finger
reaches the outer boundary; this value depends on the size of the
system, since a longer finger implies a larger viscous pressure drop for
the same value ofDvisc. As a result, larger cells would producemultiple
fingers at lower Dvisc. Further increasing Dvisc leads to the second
threshold valueD**

visc, at which the viscous pressure gradient within the
fingers is large enough to produce breakout pressures immediately
behind the finger tips. Fingers that move ahead of the pack are sup-
pressed by their internal viscous pressure drop and new fingers sprout
continuously to populate an ever increasing pattern perimeter (in a
radial cell). Ultimately, the fingers grow side-by-side in a space-filling
radial spoke pattern.

Figure 9 summarises the interplay between viscous stabilisation
and friction in a Dvisc −φ phase diagram. Moving up the Dvisc axis
increases number of active fingers and the compactness of the final
pattern. Moving along the φ axis increases the frictional resistance to
breakout, suppressing the viscous stabilisation mechanism. The
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estimated transitions from single to multiple fingers D*
visc and from

multiple fingers to spoke pattern D**
visc are plotted in blue and orange,

respectively. Both transitions are gradual and the system exhibits a
fairly large degree of variability, so neither value of Dvisc represents a
sharp phase boundary; rather, they are indicative of the expected
location of the transition region. As such, these transitional values
agree reasonably well with the evolution of the geometric features
(Fig. 8d–f) and visual characteristics (Fig. 9) of the patterns.

Finally, it is instructive to consider our results in the context of
traditional fluid displacement problems. As noted in the introduc-
tion, the corresponding fluid–fluid problem in a rigid Hele-Shaw cell
is viscously stable and generates a circular displacement front in all
cases. The defending phase in our system is amixture of air and solid
grains, so one might naively rationalise this frictional-fingering
instability by thinking of the mixture of air and solid grains as a
complex but effectively highly “viscous” defending phase, in which
case the system would indeed be susceptible to a viscous-fingering-
like instability. However, this naive view is directly contradicted by
the fact that our system is unstable at low rates and increasingly
stabilised by viscosity at higher rates. In a rigid porous medium, this
problem (viscously stable drainage) does have a pattern-forming
mechanism at low rates that is stabilised by viscosity at higher rates,
but those invasion-percolation patterns are fractal and controlled by
pore-scale disorder; they are independent of any macroscopic
physical properties and, by definition, lack a characteristic macro-
scopic length scale. In contrast, our problem features an emergent
macroscopic finger-width that is much larger than the grain size and
that varies in a predictable way withmacroscopic interfacial tension,
gap thickness, filling fraction, and frictional resistance (Eq. (1)). The
fingering patterns themselves are weakly influenced by random
spatial variations in the initial filling fraction, but insensitive to
variations at the grain/pore scale.

Multiphase frictional flows are thus a distinct class of fluid dis-
placement problems in which pattern formation is controlled by
capillarity, viscosity, and both inter-granular and sliding friction.
Drainage at large capillary deformability and strong mobility ratio is
now relatively well understood for both stable and unstable scenarios
(e.g. Ref. 19 and the present study, respectively), but much of the
parameter space remains unexplored.

Methods
Experiments
The Hele-Shaw cell comprised two 40 × 40 × 1.5 cm glass plates sepa-
rated by a gap thickness b =0.9mm. A 6mm diameter hole through
the centre of the top plate provided an inlet. The invading fluid was
injected at controlled volume flow rates Q between 0.3 and 200mL/
min using a syringe pump (Harvard Scientific, PHD Ultra). The cell was
back-lit, and images were recorded using a Nikon 1 J2 digital camera
at 30 fps.

The internal surfaces of the cell and the granular material
were rendered hydrophobic by a silanization procedure following45.
The silanization solutionwas amixtureof Trimethoxy(octadecyl)silane
(OTMS) and Isopropyl alcohol(IPA). The silanization process was as
follows: (1) the OTMS and IPA wasmixed together in the ratio of 1:100;
(2) the pH of the solution was adjusted to 3 by adding diluted Sulfuric
acid (H2SO4, 0.1M) to promote the hydrolysis of OTMS; (3) the solu-
tion was stirred using magnetic stirrer for at least 60min at room
temperature to form a alkylsilanol solution.

The glass pate surfaces were treated by pouring alkylsilanol
solution on the surface and wiping over several times to make the
coating uniform. The subsequently dried glass plates were hydro-
phobic with an estimated air/water contact angle of 120°. Silanization
procedures were performed inside a fume hood.

The granular material was made hydrophobic by silanization
treatment of soda-lime glass beads (Honite 18). The glass beads were
acid-cleaned prior to silanization by the following steps: first, glass
beads were immersed in hydrochloric acid (HCL, 0.1 M) and stirred
using magnetic stirrer for at least 1 h. Then, they were rinsed thor-
oughly with deionized water and oven dried at 80 °C. The dried beads
were then sieved to a diameter range of 75–100 μm. The sieved beads
were immersed into the silanization solution in a beaker and heated on
a hotplate to accelerate the evaporation of the solution. The coated
hydrophobic beads were sieved again to ensure no beads were
clumped together.

Preparation of the granular layer: The dry hydrophobic beads
were spread out on one of the treated glass plates (later to form the
bottom surface of the Hele-Shaw cell). In order to achieve a granular
layer of uniform thickness, two strips of adhesive tape were placed
along opposite sides of the bottom plate, and a straight-edged tool
resting on both tape strips was used to scrape the granular material
into a uniform layer along the plate. The top plate was then mounted
on top, separated from the bottom plate with 0.9mm spacers. We
varied the packing height by changing the thickness of the tape strips.
Each strip consisted of several layers of tape film attached on top of
one another. The tape film thickness was 63.5 μm, and between 6 and
12 layers were used to create strips producing granular layer heights h
between 0.38 and 0.76mm, corresponding to φ between 0.42 ± 0.01
and 0.84 ± 0.01, with the values verified and uncertainty estimated
from trials where layers were made and then the mass measured
independently. Experiments with lower filling fraction (φ = 0.21) are
shown for formation of spoke patterns (Fig. 9), but note that filling
fractions below 0.42 were not included in quantitative analysis of fin-
ger widths because of practical problems achieving uniform layer
thickness for the thinnest layers. The cell was clamped together firmly
after assembly to prevent the top plate from lifting. All four edges of
the cell were left open to the atmosphere.

Different viscosities were achieved by mixing glycerol and deio-
nized water, with glycerol volume percentages of 0%, 58%, 84% and
100% corresponding to viscosities of 1, 14.14, 141.4 and 1414mPa ⋅ s
respectively46.

Simulations
The numerical code builds on the frictional fingering simulation pre-
sented in39,43. This code uses a two-dimensional array of values to
represent the height of the sediment layer in the cell at each point in

Fig. 9 | Dvisc −φ phase diagram. Increased viscous forces produces increasingly
compact patterns, while increasing φ leads to thicker compaction fronts that
suppress branching of new fingers, counteracting the stabilisation effect. Blue and
orange lines representD*

visc andD**
visc transitions from single tomultiplefingers, and

to spokes.
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space, and a chain of nodes to represent the interface of the invading
fluid, as illustrated in Fig. 6. Every timestep the modified threshold
pressure Pt is calculated for every interface node, following

Pt =
γ

Rlocal
+ σ +Pv ð10Þ

where Rlocal is the local interface radius of curvature, σ is frictional
stress resisting motion and Pv is the viscous pressure difference
between the inlet and that point. σ is expressed as in15:

σ =
gρbb
2κ

ðκμ+ 1Þ exp 2μκL
b

� �
� 1

� �
ð11Þ

with L being the distance to the nearest point on the array which is not
yet fully filled. The values used for bulk density was ρb = 1450kg/m3,
and κ = 0.58 is the Janssen’s coefficient. A static friction coefficient
μs =0.91 is used, with the dynamic friction coefficient μd = 0.9 being
substituted in the exponent if the interface node has moved in the
previous 500 cycles.

The viscous pressure difference Pv between the inlet and each
point is calculated each timestep on a simplified version of the finger
pattern, reduced to a branching tree of nodes as illustrated in Fig. 6.
New nodes are added dynamically to this tree during the simulation
whenever any section of interface is deemed tobe too far away from its
nearest node, to ensure that the shape of the tree closely mimics the
shape of the invasion pattern. Each interface node reads Pv from its
nearest node on this tree. Each node calculates Pv according to the
Hagen-Poiseuille equation as

Pv =P
0
v +

C6ηQf X

Rb3
ð12Þ

whereP0
v is thePvof its parent nodedownstream, η is the viscosity,Qf is

the flow rate into the finger downstream (averaged over the last 250
timesteps),X is thedistance to its parent node andR is the average half-
width of the finger between itself and its parent node. We use a
calibration factorC = 1.33 tomatch the transitions in the simulations to
the experimental observations. To calculateR, a two-dimensional array
holds a value x for each position in the cell, x being the distance to
the nearest interface; this array is updated whenever the interface
advances. R is then estimated by stepping backwards towards the
parent node along the ridge of the x distribution, taking the mean x
along that ridge as the value of R.

Once the node with the lowest Pt is identified, it is advanced for-
ward slightly; its three nearest neighbours on each side are alsomoved
by a lesser distance to maintain a smooth interface. New nodes are
interpolated into the interface chain when the spacing between nodes
exceeds a critical threshold, to maintain interface resolution as the
interface lengthens. Whenever the interface advances, all granular
material from the invaded region is redistributed to the nearest unin-
vadedpositionswhichhave spaceavailable. Randomness is introduced
by initialising the distribution of granular material with random fluc-
tuations above and below φ.

The 250 timestep period for averaging flow rate and the 500
timestep period for transitioning from kinetic to static friction are
arbitrary numbers. They were chosen for being large compared to the
typical number of growing fingers (to avoid excessive discretisation of
viscous pressure and to prevent slower-moving but still active fingers
from taking on static friction), but still small compared to the typical
time period of an entire simulation. Qualitative tests did not suggest
that the fingering patternswere strongly sensitive to theseparameters.
The simulated patterns match the experiments reasonably well across
a wide range of Dvisc and φ.

Data availability
Images from experiments and simulations are available on the Zenodo
data repository with the https://doi.org/10.5281/zenodo.789069047.

Code availability
The Python code for the simulations are available from the authors
upon request.
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