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Parabolic avalanche scaling in the
synchronization of cortical cell assemblies

Elliott Capek 1,4, Tiago L. Ribeiro 1,4, Patrick Kells1, Keshav Srinivasan1,2,
Stephanie R. Miller 1, Elias Geist1, Mitchell Victor1, Ali Vakili1, Sinisa Pajevic 1,
Dante R. Chialvo 3 & Dietmar Plenz 1

Neurons in the cerebral cortex fire coincident action potentials during ongo-
ing activity and in response to sensory inputs. These synchronized cell
assemblies are fundamental to cortex function, yet basic dynamical aspects of
their size and duration are largely unknown. Using 2-photon imaging of neu-
rons in the superficial cortex of awake mice, we show that synchronized cell
assemblies organize as scale-invariant avalanches that quadratically grow with
duration. The quadratic avalanche scaling was only found for correlated
neurons, required temporal coarse-graining to compensate for spatial sub-
sampling of the imaged cortex, and suggested cortical dynamics to be critical
as demonstrated in simulations of balanced E/I-networks. The corresponding
time course of an inverted parabola with exponent of χ = 2 described cortical
avalanches of coincident firing for up to 5 s duration over an area of 1 mm2.
These parabolic avalanches maximized temporal complexity in the ongoing
activity of prefrontal and somatosensory cortex and in visual responses of
primary visual cortex. Our results identify a scale-invariant temporal order in
the synchronization of highly diverse cortical cell assemblies in the form of
parabolic avalanches.

Neuronal synchronization is fundamental to many theories of the
cerebral cortex. Cortical neurons, by preferentially integrating recur-
rent activity from neighboring cells1 as well as from distant inputs,
support at least two main synchronization dynamics: oscillations2 and
cascades, the latter in the form of waves3,4, synfire chains5,6, and neu-
ronal avalanches7,8. Cortical cascades, in which a neuronal group that
fires coincident spikes facilitates synchronization in downstream
neurons through select, converging connections, suggest a particular
powerful mechanism to establish robust, yet flexible information
processing in the cortex5–7. However, both, the growth of cascades and
their overall temporal profile, i.e., the number of neurons or spikes
encountered over time, have been found in simulations to be variable,
challenging their ability to reliably transmit information within the
cortical network5,7,9–11. This problem has been particularly prominent
for neuronal avalanches7, which represent highly diverse, scale-

invariant cascades of neuronal activity predominantly found in the
superficial layersof cortex. Avalanches are readily observed in the local
field potential12, selectively engage single neurons13,14, and carry high
information capacity15,16. Yet, it is currently not clear whether ava-
lanches, when measured at the single cell level in vivo8,17–19, do exhibit
robust neuronal synchronization that unfolds in a predictive manner.

Traditionally, the hallmark of neuronal avalanches has been their
scale-invariant spatiotemporal statistics quantified by power laws in
size and duration7 with exponents α ≈ 3/2 and β ≈ 2, respectively. More
recently, their temporal profile, i.e., how the size of an avalanche
unfolds in time, hasbeen suggested todiscriminate betweenmodels of
avalanche generation. Specifically, the scaling of their mean size with
duration and their universal, duration-invariant temporal profile20–22,
can both be captured in a single scaling exponent χ. For models of
avalanches lacking interactions, generated by noise, or those found
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near a 1st-order phase-transition, χ ranges between 1 and 1.5 and tem-
poral profiles are non-parabolic, e.g., flat, semi-circle, or even saw-
tooth like23,24. In contrast, for avalanches that unfold according to a
critical branching process, a close approximation for synchronized
cascades7,25, χ = 2 and avalanche profiles are parabolic11,20–22, similar to
what can be found close to 2nd-order phase transitions that fall into the
directed percolation universality class26 (see also ref. 27). This rela-
tionship has recently been shown for LFP-based avalanches in non-
human primates28, which suggests that avalanches describe rapid,
scale-invariant unfolding of neuronal synchronization, i.e., coincident
spiking. However, when measured at the cellular level in the mam-
malian cortex, neuronal avalanches exhibited χ between ~1 and 1.3 with
non-parabolic, even asymmetrical profiles17,19,29,30, disenfranchising
neuronal avalanches as a potential framework for cortical
synchronization.

Contrary to those reports, we demonstrate here, at cellular reso-
lution using 2-photon imaging (2PI) in the cortex of awake transgenic

mice, that χ = 2 for neuronal avalanches which identifies a scale-
invariant, temporal profile in the form of a symmetrical, inverted
parabola that maximizes temporal complexity and increases temporal
correlation in cortical population activity. Our findings establish a
robust scaling relationship for the synchronization of cortical cell
assemblies in the form of parabolic avalanches.

Results
Synchronized assemblies in prefrontal cortex exhibit quadratic
avalanche scaling in mean size vs. duration
We studied neuronal synchronization in the prefrontal cortex of awake
mice during resting and spontaneous locomotion using 2PI (Fig. 1).
Chronic implantation of a prism31 allowed us to simultaneously image
from ~200 to 300 neuronswithin awindowof 450× 450μmacross the
fissure in the contralateral, intact superficial layers of anterior cingu-
late andmedialprefrontal cortex (ACC,mPFC) at a temporal resolution
Δt = 22ms (~45.5 Hz frame rate; Fig. 1a; Supplementary Fig. 1).
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Fig. 1 | Neuronal synchronization exhibits avalanche scaling of χ = 2 in pre-
frontal cortex. a Ongoing neuronal activity in mPFC/ACC of awake mice exhibits
epochs of increased population activity (columnar organization; original)
enhanced after deep-interpolation (+Deep-IP;2PI, jRGECO1a). Spike density raster of
50 randomly selected neurons each (singlemouse).Middle: Full population activity
(Pop). Bottom: Locomotion velocity (v). b, c Deep-IP increases neuronal firing
(Rate), cross-correlation (CC), and sharpens population activity transients visible in
a faster decay of the autocorrelation (AC). d Locomotion onset is preceded by
population activity increases (CC). b–d Corresponding experiment in (a). e Sketch
of continuous epoch in population synchrony perΔt above ‘hard’ thresholdΘ(k = 1)
(blue line). Corresponding size S (gray) and duration L in multiples of time bins
(blue). A ‘soft’ threshold discards the subthreshold area (light gray; k = 1). Note that
the two suprathreshold epochs a and b, separated at 1·Δt (arrowhead), will merge
upon temporal coarse-graining (2·Δt, k = 2; greendotted line), despite an increase in

synchrony requirement per Δt (Θ(k = 2); broken green line). f Suprathreshold
epochs fulfill the criteria of neuronal avalanches. Epoch size S (left) and duration L
(right) exhibit power laws robust to temporal coarse-graining (k = 1–25; color code).
Note cut-offs for S > 1000 and L > 50 (beige areas). Inset: Corresponding decreasing
slopesα(k) andβ(k) cross the value of 1.gChange inmean size<S> vs. duration L for
k = 1–17. Slope estimates for L = 1–4 (χsh) and L ≥ 10 (χlg). h Summary of χsh and χlg as
a function of k. SD from n = 10 bootstrapping repeats. i For ‘parabolic’ avalanches
with durations of T < 1 s, χsh = 2 at k = 8,whereas ‘flat’ avalanches exhibit χlg≅ 1.3 and
T > 2 s. Avalanches combined for single mice and for allmice. Solid line: fit. j χsh = 2
reflects inter-neuronal correlations and χsh≪ 2 when neurons are made indepen-
dent by random temporal shifts (black: see (h); 10 surrogates/condition). f–i Data
pooled fromn = 5miceand 17 experiments; jRGECO1a. Valuespresented asmeanor
mean ± SD.
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Machine-learning based deep-interpolation32 (Deep-IP) markedly
improved the extraction of spike densities from each neuron yielding
significantly higher average firing rate and pairwise correlation among
neurons (n = 5 mice; Fig. 1b; Supplementary Fig. 2). We summed
activity across all neurons to obtain the time course of population
activity. This time course exhibited rapid transients during which
neurons showed coincident firing, i.e., spike synchronization in their
activities, either spontaneously or prior to self-initiated locomotion
(Fig. 1a, c, d).

We examined these epochs of synchronization systematically (1)
by requiring the summed spike density within a time of Δt, i.e.,
population activity, to be larger than a threshold Θ, and (2) by con-
catenating successive suprathreshold population events (Fig. 1e). This
commonly employed approach (e.g., ref. 33) to identify contiguous
periods of significant network activity is sensitive to spatial sub-
sampling and noise. Spatial subsampling prematurely terminates
contiguous periods by missing neuronal activity, which we compen-
sated for by systematically relaxing our concatenation criterion. Noise,
on the other hand, reduces the ability to correctly identify supra-
threshold periods. This error can be reduced by increasing Θ, which
selects higher coincident neuronal activity in the network, i.e., higher
synchronization. Accordingly, suprathreshold population events,
identified at Δt, were concatenated at the temporally coarse-grained
resolution of k·Δt, k = 1, …, kmax, kmax < 40. We further set Θ(k) =
−2SD(k) of the z-scored distribution in number of epochs, which
increases the absolute value ofΘwith k (Fig. 1e; Supplementary Fig. 3a,
b; see “Methods”). We found that, independent of temporal coarse-
graining, epochs in population synchrony exhibited the hallmark of
neuronal avalanches7,8,12,14 with their sizes, S, i.e., summed suprathres-
hold spike densities (see “Methods” and Supplementary Fig. 6), and
durations, L, i.e., the number of time bins or generations per epoch,
distributed according to power laws (Fig. 1f; Supplementary Figs. 3c,
4). The high diversity in size and duration of avalanches was quantified
by the corresponding slopes α and β being smaller than 2 and rapidly
crossing the value of 1 upon temporal coarse-graining, demonstrating
a broadening of the corresponding distributions despite robust size
and duration cut-offs of S > 103 and L > 50, respectively (Fig. 1f; inset).

Next, we derived the scaling exponent, χ, which describes the
power-law dependence between avalanche size and duration, visua-
lized by plotting the mean avalanche size for avalanches of a given
duration20–22. We found that χ for short-lasting, i.e., few-generation
(L < 5) avalanches, χsh, significantly increased with temporal coarse-
graining, reaching maximal values around 2 (Fig. 1g, h). In contrast, χ
for long-lasting, i.e., many-generation (L > 10–30) avalanches, χlg,
remained close to 1 independent of the temporal scale atwhichepochs
were observed (Fig. 1g, h). The corresponding transition marks the
scaling range,Φ, obtained by fitting power law functions to these two
regimes (see “Methods”) and demonstrates that avalanches with
absolute duration T = L·k·Δt shorter than 1 s (Φ = 0.52 ± 0.21; n = 5)
exhibited a quadratic, rapid growth in size as they unfolded in the
network, which was not found for longer lasting avalanches (T > ~2 s;
Fig. 1i). For simplicity, we define short-lasting avalanches with quad-
ratic growth as ‘parabolic’ avalanches, in contrast to long-lasting, ‘flat’
avalanches.

Parabolic avalanches strongly depended on spatial correlations in
the network. First, parabolic avalancheswere abolishedwhenneuronal
time series were randomly shifted in time (Supplementary Fig. 2g) and
secondly, χsh monotonically decreased to values lower than 2 with the
percentage of spatial correlations removed (Fig. 1j) or percentage of
uncorrelated spikes introduced (Supplementary Fig. 5a).

Our approach was robust to subsampling given that up to a 50%
reduction in our neuronal sampling fraction, f, still allowed us to
robustly recover χsh≅ 2 due to a concomitant decrease in minimal
requirement for coincident activity Θ (Supplementary Fig. 5b). The
identification of χsh≅ 2 was also robust to different forms of

thresholding. Thresholding of an activity time series introduces a
systematic error in the scaling estimate of χ34. Our analytical derivation
(SupplementaryNotes) and corresponding data analysis demonstrates
χsh≅ 2 to be within the boundaries of both approaches (Supplemen-
tary Fig. 6a, b) and to be robust over a large range of thresholds
(Supplementary Fig. 6c). Separating population activity into resting
and locomotion periods did not change our finding of χsh≅ 2 despite a
significant increase in neuronal firing rate when mice were sponta-
neously running (Supplementary Fig. 7).

We repeated our findings using GCaMP7s, which has a slower
decay time constant and less tissue penetration capability for 2PI
compared to jRGECO1a35 (Fig. 2a–d;n = 3mice;Δt = 22ms). To focus on
population synchrony without applying Deep-IP, we removed weakly
correlated neurons after z-scoring each neuron’s correlation with the
population activity (Supplementary Fig. 8a–d; 10–30% of neurons
removed per recording; see “Methods”). In line with our findings using
jRGECO1a, suprathreshold epochs in population activity exhibited the
hallmark of avalanches (Supplementary Fig. 8e–g). Temporal coarse-
graining revealed parabolic avalanches at k≅ 16 with duration of
~0.3–1.8 s that demonstrated χsh≅ 2 (Fig. 2a–c), which was sensitive to
contributions from uncorrelated cells or shuffling (Fig. 2d; Supple-
mentary Fig. 8h). In contrast, flat avalanches exhibited χlg≅ 1 inde-
pendent of temporal coarse-graining (Fig. 2b).

Our findings suggest that the two categories of parabolic and flat
avalanches might arise from experimental shortcomings in accurately
tracking neuronal avalanches in the cortical network. Sizes and dura-
tions of flat avalanches overlap with the cut-off regimes in the corre-
sponding duration and size distributions (Fig. 1g, Fig. 2a;
Supplementary Fig. 8e, f). Such cut-offs reflect finite-size effects from
the recording field of view (FoV), which greatly impacts avalanche
measures36. Indeed, when employing mesoscope imaging in somato-
sensory cortex of Thy1 transgenic mice expressing GCaMP6s (Fig. 2e,
f), the maximal duration of parabolic avalanches, i.e., Φ, correspond-
ingly increased to ~5 s with a FoV of ~1 mm2 (Fig. 2g, h; Supplemen-
tary Fig. 9).

Our results establish that synchronization of ongoing cell
assemblies in frontal and somatosensory cortex organizes as parabolic
avalanches with rapid, quadratic expansion in coincident firing
over time.

Temporal coarse-graining recovers χ= 2 for critical branching
process under subsampling conditions
Next, we use simulations to explore the hypothesis that temporal
coarse-graining can recover parabolic avalanche synchronization in
critical networks that are incompletely observed, i.e., spatially sub-
sampled.Wechose anetwork ofN = 106 binary, probabilistic, integrate,
and fire neurons (80% excitatory, E; 20% inhibitory, I) and all-to-all
connectivity (Fig. 3a) with excitatory and inhibitory connectivity
matrices WEE =WIE = J and WII =WEI = −g·J that were constant. We set g
to 3.5 and obtained an E/I-balance that supported avalanche dynamics
in the fully sampled system with critical exponents α = 3/2, β = 2, and
χ = 2 approximating a critical branching process triggered by external
Poisson inputs37 (Supplementary Fig. 10). We found that temporal
coarse-graining recovered χsh = 2 for few-generation avalanches over a
wide range of subsampling conditions denoted by the neuronal sam-
pling fraction, f = [0.01%, …, 100%] and population activity threshold,
Θ = [0,…, <20,000 spikes per time unit]. We exemplify these findings
in Fig. 3b–f using a sampling fraction of f = 0.1% and Θ = 1, i.e., the
minimum requirement of 2 spikes per time unit. In line with our
experimental findings, temporal coarse-graining of subsampled ava-
lanches reduced the power law slopes in size and duration and iden-
tified the mean size vs. duration power law relationship of χsh ≅ 2 for
parabolic avalanches (Fig. 3e). We note that successive avalanches are
uncorrelated in the model, which reduces χsh for very large k inde-
pendent of the total simulation time (Supplementary Fig. 11). As found
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for our 2PI data, noise reduces the recoveredmaximumvalue of χsh ≤ 2
without shift in k (Supplementary Fig. 12a) and better tracking of
spiking activity shifts the recovery of χsh towards smaller k as found for
deep-interpolation (Supplementary Fig. 12b). In general, we found that
sampling of fewer neurons (low f) and less sensitivity (highΘ) required
more temporal coarse-graining to recover χsh ≅ 2 (Fig. 3e). The model
also demonstrated that the scaling rangeΦ for which χsh ≅ 2 reflects a
finite-size effect that is reliably recovered within the accuracy of the
temporal coarse-grain (Fig. 3f). As expected, χlg≪ 2 for many-genera-
tion, i.e.,flat, avalanches,which, similarly to our data, are located in the
cut-off of the corresponding size and duration distribution (Fig. 3c, d).

Importantly, our simulations show that the recovery of χsh ≅ 2
under spatial subsampling conditions is only possible when the net-
work exhibits critical dynamics, whereas χsh remains ≅ 1 for subcritical
dynamics regardless of temporal coarse-graining (Fig. 3g; Supple-
mentary Fig. 13). These simulations support the view that our 2PI data
represent spatially subsampled activity of critical dynamics in cortex.

Evoked synchronization in primary visual cortex exhibits χ= 2
avalanche scaling
Evoked visual and auditory responses in primary visual (V1) and audi-
tory (A1) cortex have been found to organize as neuronal avalanches
exhibiting power laws in size and duration distribution17,18. Yet, the
relationship between the duration of evoked avalanches and their
mean size, χ, has been reported to be between 1–1.3 whenmeasured at
typical 2PI frame rates of, e.g., 33 Hz17,19. We studied χ for neuronal
responses in superficial layers of V1 to large-field gratings drifting in 8
directions using GCaMP7s and in conjunction with Deep-IP and tem-
poral coarse-graining (Supplementary Fig. 14a–d; n = 2 mice and 3

recordings). In line with our findings for ongoing activity, temporal
coarse-graining recovered χsh≅ 2 for few-generation avalanches of
durations T = ~0.1–1.6 s (Fig. 4a). These parabolic avalanches were
abolished by trial-shuffling demonstrating their dependence on spatial
correlations within each trial (Supplementary Fig. 14e–g). We then
extended our analysis to the publicly available Allen-Institute data set
on V1 evoked responses in superficial layers of cortex of the awake
mouse (n = 8mice, 5males/3 females, 8 recordings fordrifting gratings
and movies each). This data set used GCaMP6f, which preferentially
reports action potential bursts38 equivalent to applying a high, local Θ
in our analysis. Responses to drifting gratings as well as to movies
demonstrated χsh≅ 2 under temporal coarse-graining for few-
generation avalanches, which again was abolished after trial and tem-
poral shuffling, respectively (Fig. 4b; Supplementary Fig. 14h). Our
analysis confirms and extends χ≅ 2 from ongoing activity to evoked
parabolic avalanches during sensory processing.

Avalanche scaling of χ= 2 maximizes temporal complexity and
identifies a scale-invariant inverted parabola in cortical
synchronization
Next, we explored how the initial increase and subsequent decrease in
χsh with temporal coarse-graining relates to the temporal organization
of neuronal population activity. Accordingly, we quantified the tem-
poral complexity in population activity by dividing the thresholded
population activity time course into D∈ 4, …, 7 successive temporal
bins of duration k·Δt. For each pattern depth, D, and coarse-graining
factor k, we calculated the pattern complexity, Cx, quantified as the
number of different temporal sequences of length D (ref. 39; see
“Methods”). We found that Cx peaked near the k for which χsh = 2, for
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threshold Θ normalized by sampling fraction f. c Power law in size (left) and
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coarse-graining k. Note cut-off regimes for S > ~103 and duration L > ~50. Inset:
Corresponding slopes α(k) and β(k). d Temporal coarse-graining uncovers χsh = 2
for short-duration avalanches (L = 1–10), whereas χlg remains ~1–1.2 for long-

duration avalanches (L > 10). e Summary of change in χsh and χlg with k for 5 sam-
pling fractions f. A decrease in f requires a higher k to recover χsh = 2. Note failure of
recovery for very low f. χlg does not depend on k. f Temporal coarse-graining
recovers avalanches up to the finite-size cut-off ofΦ≅ 400 time steps. Note plateau
in maximal scaling rangeΦ for χsh = 2 plotted in simulation time steps as a function
of k. g Temporal coarse-graining recovers χsh = 2 for critical network dynamics but
fails for subcritical dynamics. Note that weak subcritical (g = 3.75) and critical
conditions (g = 3.5) can exhibit similar χsh at the original temporal resolution yet
diverge with temporal coarse-graining. Broken, black lines: visual guide to the eye.
Results obtained from T = 108 simulation time steps.
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population activity). Top: each experimental condition. Bottom: E/I-model. With
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see (c).

Article https://doi.org/10.1038/s41467-023-37976-x

Nature Communications |         (2023) 14:2555 5



both ongoing and evoked activity independent of pattern depth
(Fig. 4c, d; Supplementary Fig. 15a, b). Our experimental findings were
confirmed in the E/I-balanced model but only for critical dynamics
(Fig. 4c, bottom), whereas subcritical dynamics lacked peak com-
plexity with temporal coarse-graining. Our simulations also demon-
strated that lower sampling fractions require higher temporal coarse-
graining to recover peak complexity (Supplementary Fig. 15c), which is
in line with our findings for χsh in the data (cf. Fig. 3e). This increase in
temporal complexity was in linewith our finding that the delayed auto-
correlation AC(1) peaked for parabolic avalanches at the k for which
χsh = 2, which was not found for flat avalanches or when all avalanches
were taken into account (Fig. 4d; Supplementary Fig. 16).

Theory and experiment predict that the slope value of χsh≅ 2,
consistently found in our experiments, predicts scale-invariant,
inverted parabolic profiles for avalanches, which can be collapsedwith

an exponent χcoll ≈ 2 (refs. 20–22; see “Methods”). We show in Fig. 5 the
corresponding collapsed avalanche profiles for few- and many-
generation avalanches for all experimental conditions and the critical
model. Indeed, an inverted parabolic shape was only found for tem-
poral coarse-graining k that maximized χsh (Fig. 5a, top) for short-
lasting, i.e., few-generation avalanches but not long-lasting, many-
generation avalanches (Fig. 5a, bottom). The corresponding value of
χcoll was significantly increased to approximately 2 after temporal
coarse-graining of few-, but not many-generation avalanches (Fig. 5b).
Accordingly, after temporal coarse-graining to χsh≅ 2, short-
generation avalanches demonstrated a significantly better parabolic
fit thanmany-generation avalanches, which revealed a flattened profile
that deviated from a parabola (Fig. 5c). We note that parabolic ava-
lanches (L = 3–6; χsh ≥ 2) did not recur regularly, which separates them
from oscillatory activity (Supplementary Fig. 17). Using the temporally

Fig. 5 | Spontaneous and evoked neuronal assemblies follow the universal
temporal profile of an inverted avalanche parabola with scaling collapse of
χ = 2. a Top: for few-generation avalanches (L = 3–6; k > 5), inverted parabolas are
recovered from flattened profiles present at k = 1 (inset). Bottom:Many-generation
avalanches (L = 10–20) exhibit non-parabolic profiles at k = 1 (inset) and after
temporal coarse-graining. Average profile ± SD. Avalanches were pooled from all
recordings and mice per condition (color). Mean activity within an avalanche
normalized by the number of generations L to the power of χcoll-1 plotted for each
relative time step, t/L. Note the match for the critical, subsampled E/I-model
(f =0.1%, Θ = 1), in line with the recovery of the critical exponent χcoll = 2, and
inverted-parabola collapse for few-generation avalanches. b For few-generation
avalanches, the scaling exponent forprofile collapse, χcoll, is significantly higher and
close to 2 after coarse-graining compared to k = 1, whereas no difference is found

for many-generation avalanches (t = −11.94, DF = 4, p =0.00028 vs. t = 1.6, DF = 4,
p =0.185, two-sided paired t-test). Summary statistics for all conditions from (a).
Orange circles: Critical E/I-model (SD< symbol size). c After temporal coarse-
graining, short-lasting avalanches exhibit profiles closer to a parabola compared to
long-lasting avalanches, but not at k = 1 (t = −3.7, DF = 4, p =0.021 vs. t = −0.25,
DF = 4, p =0.81, two-sided paired t-test). d In the critical model, population activity
sequences ti defined by L = 5 at k = 10 (blue) exhibit interruption of contiguous
suprathreshold epochs due to subsampling (gray), not found in the fully sampled
model (yellow). Bottom: Parabolic profiles of L = 5, k = 10 epochs (blue) match
corresponding time averages from subsampled and fully sampled condition.
e Summary for L30, L40, L50, and L60 at Δt and corresponding avalanche profiles
at k = 10 and χcoll = 2. f Corresponding analysis pooled over all experiments.
d–f Averages are shown for clarity. Box plots: mean ± SD.
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coarse-grained time segments of parabolic avalanches, we recovered
their corresponding inverted parabolic shape in the average at the
original temporal resolutionofΔt for themodel andourdata (Fig. 5d–f;
Supplementary Fig. 18a, b). In themodel, this approach can be used to
recover segments of parabolic and flat avalanches in the subsampled
system at original temporal resolution (Supplementary Fig. 18c).

A summary of our findings is shown in Fig. 6. In short, parabolic
avalanches, in contrast to flat avalanches, can be properly recovered in
subsampled critical networks within the field of view using temporal
coarse-graining in combination with thresholding. We conclude that
parabolic avalanches represent spontaneous andevoked synchronized
cell assemblies in the cerebral cortex that exhibit high temporal
complexity.

Discussion
We identified an inverted parabolic profile in the synchronization of
cell assemblies in prefrontal and primary sensory cortex. The sym-
metrical profile exhibits scale-invariance over hundreds of milli-
seconds to many seconds in line with predictions for parabolic
avalanches. The corresponding temporal occurrences of parabolic
avalanches maximizes the temporal complexity of neuronal synchro-
nization during quiet resting and spontaneous locomotion as well as
for visually evoked responses under a variety of different recording
conditions.

The synchronized groups reconstructed here at cellular level for
superficial layer 2/3 reside robustly within the framework of neuronal
avalanches, defined by power laws in neuronal group size and duration
within the experimentally defined field of view. These power laws,
when interpreted within the framework of self-organized criticality
(SOC; ref. 40), suggest a critical state of cortex that supports diverse
andpotentially system-wide propagationof synchronized activity13,16,41.
This interpretation has been challenged recently by alternativemodels
of avalanche generation utilizing balanced noise in the absence of
neuronal interactions23,42 and noise-induced fractures near a dis-
continuous, 1st-order phase transition including hysteresis43, recently
summarized as self-organized bi-stability (SOB; refs. 24,44). Our find-
ing of a scaling exponent of χ = 2 that is sensitive to spatial correlations

does not support these models, for which χ ranges between 1 and 1.5
and for which shapes are non-parabolic, closer to semi-circles or saw-
tooth like (e.g., refs. 23,24,34). Our results also clarify recent experi-
mental findings on neuronal avalanches in cortex with a scaling
exponent χ close to ~1.3 (refs. 17,19,29). By introducing temporal
coarse-graining in combination with deep-interpolation-based de-
noising, we overcame experimental limitations on spatial subsampling
and demonstrated that indeed neuronal avalanches in cortex reflect
synchronized cell assemblies exhibiting a scaling exponent of χ = 2.

Our findings are in line with avalanche-generating mechanisms
that reside close to a 2nd-order phase transition, belonging to the
directed percolation universality class, e.g., a critical branching pro-
cess (see also Fig. 3)7,10,45–48 and specific types of processes found in
intermittentmagnetization near a critical state21. Our results are also in
line with experimental results on ‘Barkhausen noise’ by Sethna et al.21,
who demonstrated power laws in size and duration with α ≈ 1.5 and
β ≈ 2, respectively, and an inverted parabolic profile with χ = 2 for short
avalanches, whereas a flattened profile and χ = 1 was found for long
avalanches20 in line with recent findings in simulations of critical
networks27.

Our simulations also show that the recovery of χ = 2 under sub-
sampling conditions is only possible at criticality, regardless of coarse-
graining level or threshold applied.While it has been shownthat, under
conditions of complete ‘separation of time scales’, subsampling in
critical models can be compensated for by simply temporally inte-
grating up to the finite-size cut-off of the system49, these assumptions
are not applicable for experimental data where the precise beginning
and end of avalanches is unknown. Our simulations, though, demon-
strate that temporal coarse-graining can recover χ = 2 even when a
‘separation of times scales’ cannot be assumed. Extending beyond
cortex, recent whole-brain zebra fish analysis demonstrated ‘crackling
noise’21 to describe 3-dimensional propagation of activity with expo-
nents α ≈ 3, β ≈ 2, much steeper than in the current analysis, and esti-
mates of χ to range between 1.6 and 1.8 (ref. 50).

It can be shown that the critical power law exponents for ava-
lanche duration, size, and duration-size scaling are related by the for-
mula (β−1)/(α−1) = χ at the critical point, which was found for certain
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models21,22. We consistently found that temporal coarse-graining pre-
serves the power laws in avalanche size and duration distributions
under subsampling conditions, however, it does so with increasingly
shallower slopes14 introducing a singularity in (β−1)/(α−1) when α = 1
(cf. Figs. 1f, 3c; Supplementary Fig. 8g). This singularity was even
present in our subsampled model, despite the fully sampled model
exhibiting critical exponents α = 3/2, β = 2 which fulfilled the analytical
predictionof χ = (β−1)/(α−1) = 2.We conclude that spatial subsampling,
as shown here and reported previously51 as well as finite-size effects
from spatial windowing52 prevent straight-forward ratio calculations of
the critical exponent χ from slope ratios obtained for size and duration
distributions. We also note that this ratio relationship was derived in
the absence of any external drive and with infinite separation of time
scales, which differs from brain activity.

The coincident firing of neurons within a temporal windowΔtwas
used to identify brief periods of synchronous population activity. Our
minimal threshold increased with temporal coarse-graining, which
equates to requiring an increasingly higher minimal number of coin-
cident spikes within the population of neurons. This synchronization
requirement applies to each generation or k·Δt and thus, the overall
duration of an avalanche does not affect the definition of minimal
coincident spiking activity. Secondly, our randomization controls
demonstrated that χsh rapidly drops below 2 and cannot be recovered
by temporal coarse-graining. In these controls, we reduced the per-
centage of coincident spikes by either adding random spikes or
removing correlated pairs of neurons for which correlation was mea-
sured at zero-time lag, thus quantifying coincident firing. Accordingly,
we conclude that parabolic avalanches capture spiking activity of
synchronized neuronal groups, i.e., cell assemblies, in the cortex.

The scale-invariant, inverted parabola represents a robust form of
synchronization that complements commonly considered synchroni-
zation dynamics such as oscillations, waves, and synfire chains. The
temporal profile of oscillations, while similar to an inverted parabola,
would exhibit dominant durations and repeat regularly. Both aspects
are not supported by our findings, which suggest scale-invariance
without prominent periodicity. Propagating wave fronts that traverse
the field of view would result in more flattened profiles and χ ≈ 1 like
what we found for many-generation avalanches. A similar argument
holds for synfire chains with their typically assumed constant layer
width, which approximates extent-limited propagating wave fronts.
Waves or synfire chains limited to the field of view would not be
expected to unfold according to a scale-invariant, inverted-parabola.

Our finding of a symmetrical profile across numerous experi-
mental conditions and spatial resolutions such as cellular spiking and
the mesoscale-based LFP28 suggests profile symmetry to be an
important constraint for theories on brain synchronization. Such
robust symmetry is unexpected. Avalanche propagation in the brain
exhibits robust functional connectivity that is heavy-tailed or small-
world53,54, which simulations and theory suggest to support asym-
metric profiles of critical network cascades11. Asymmetric avalanche
profiles have also been reported for Barkhausen noise55 when experi-
mentally applying external forces, which, again would predict asym-
metric profiles for, e.g., sensory-driven, neuronal avalanches.

The reconstruction of local synchronization reported here from
cellular 2PI data approximates local synchronized activity captured in
the local field potential12,14. Accordingly, our identification of χ = 2 for
450× 450 µm field of view of superficial cortex using 2PI is in line with
our recent demonstration of χ = 2 for LFP avalanches in superficial
layers of nonhuman primates over an area that is 100 times larger28.

We propose that the scale-invariant, inverted parabola in syn-
chronization complements alternative frameworks of synchronization
and potentially circumvents challenges presented by other measures.
It is now well established that neuronal avalanches and oscillations co-
exist in vitro and in vivo28,56,57, a co-emergencedependent on e.g., the E/
I-balance33,58–60. However, oscillations emphasize phase-locked firing

among neurons, which limits the number of patterns that can be
phase-coded per cycle61,62. Similarly, although the spatial unfolding of
neuronal avalanches favors nearby spatial sites in the aggregate36, the
spatial compactness of travelingwaves3,63might limit spatial selectivity
and simultaneous occurrence of waves within a brain region64. The
relationship between avalanches and synfire chains is less clear. Synfire
chains, by recruiting specific groups of neurons in each feed-forward
layer5,6,9, in principle could be highly adaptive and selective. On the
other hand, they are difficult to stably embed in recurrent networks. In
contrast, neuronal avalanches represent selective neuronal participa-
tion in propagated synchrony thatmaximizes the information that can
be stored in highly diverse avalanche patterns15,16,65,66. Our results and
simulations demonstrate a temporal gestalt of highly variable cell
assembly synchronization in line with predictions of critical dynamics
in cortex.

Methods
Overview on data sets analyzed
To demonstrate the robustness of our scaling results, we used 6 dif-
ferent data sets and 4 different probes to monitor ongoing activity in
superficial layers of frontal cortex (ACC/mPFC) and evoked activity in
superficial layers of primary visual cortex.

Ongoing activity in contralateral ACC/mPFC monitored with
jRGECO1a and GCaMP7s. Mice (C57BL/6; Jackson Laboratories; age
>6 weeks) were injected with a viral construct to express either
GCaMP7s or jRGECO1a in cortical neurons using the Syn promotor.
Chronic 2PI started after >2weeks in the contralateral ACC/mPFC at an
estimated depth of ~150–300μmusing amicroprism. Recordingswere
collected over the course of several days from n = 5 mice (3 males,
2 females; age 8–20 weeks) with jRGECO1a expression (n = 17 record-
ings; 30min each) and n = 3 mice (all females; age 8–12 weeks) with
GCaMP7s expression (n = 27 recordings; 30min each). Recordings
were conducted over the course of several weeks and analyzed sepa-
rately for each mouse.

Ongoing activity in somatosensory cortex using transgenic Thy1-
mice expressingGCaMP6s. C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/
J mice were obtained from Jackson labs (https://www.jax.org/strain/
024275) and bred inhouse with C57BL/6J mice (Jackson Laboratory).
Under a reversed 12:12 h light/dark cyclewith ad lib access to a running
wheel, mice were group-housed until the day of surgery and single-
housed thereafter. Recordings of 10min of ongoing activity from n = 2
mice (all females; age >10 weeks) were performed over an area of ~1
mm2 of cortical superficial layers.

Visually evoked activity in V1 monitored with GCaMP7s. Mice were
injected with a mixture of a viral construct to express GCaMP7s in
pyramidal neurons using the CaMKII promotor. Chronic 2PI started
after >2 weeks in identified V1 at a depth of ~150 μm in response to
drifting gratings from n = 2 mice (all females; age >8 weeks) over the
course of several days.

Allen Brain Observatory Visual Coding dataset monitored with
GCaMP6f. Two additional data sets on visually evoked V1 responses
were analyzed from the publicly available Allen Brain Observatory
Visual Coding dataset (https://observatory.brain-map.org/
visualcoding). These data were collected using GCaMP6f in n = 8
transgenicmice (Cux2-CreERT2-GCaMP6fAI94; 3 females, 5males; age
10–14 weeks) passively viewing drifting gratings and natural movies,
imaged at 275 μm depth in V1 (~25min recordings). For analysis,
we used the deconvolved time series, extracted from the 2-photon
ΔF/F signal using an L0 regularization algorithm, made available
through ‘allensdk’ by the Allen Institute. We limited our analysis to
recordings from superficial layers in V1 that contained at least several
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hundreds of neurons and total stimulation time of many minutes.
Data corresponding to ‘drifting gratings’ and ‘natural movie 3’ stimu-
lation conditions were picked out of a longer recording using the
‘allensdk’ ‘stimulus_table’ object. For stimulation conditions with
quickly varying stimulus, the ‘stimulus_table’ object was used to
extract the start/end time for the entire stimulation epoch.

Animal surgery
All procedures were approved by the NIH Animal Care and Use Com-
mittee (ACUC) and experiments followed the NIH Guide for the Care
and Use of Laboratory Animals. Mice were obtained from Jackson Labs,
bred inhouse with C57BL/6 backgrounds (Jackson Laboratory) under a
reversed 12:12 h light/dark cycle. Chronic 2PI imaging was performed
using a head bar in combination with a cranial window implanted in
adult (>6 weeks) mice. Implants consisted either of (1) a microprism/
coverslip assembly to image through the medial wall of the con-
tralateral ACC/mPFC following the procedure detailed in ref. 31 or (2) a
stack of circular glass cover slips using established protocols67. For
ACC/mPFC recordings, 2–3 injections of virus (100–400 nL; <1 µL in
total; 1013 vg/mL; pAAV/.Syn.NES-jRGECO1a.WPRESV40--AAV9, pGP-
AAV-syn-jGCaMP7s-WPRE AAV9, Addgene) were administered into the
hemisphere contralateral to the prism implant (+0.75–1.25mm AP,
0.1–0.3mm lateral, ~250 µm below the pial surface). To monitor
V1 activity, the cranial window was placed centered at ~2.5mm
from themidline (right hemisphere) and ~1mmrostral to the lambdoid
suture.

For mesoscope experiments using transgenic Thy1-GCaMP6s
mice, adult mice (age >6 weeks) underwent a head bar surgery in
combination with a slightly modified cranial window implant to allow
for a larger area of imaging. In short, thewindow implant consistedof 3
layers of No. 0 coverslips. The top coverslip (5mmdiameter) was used
to close the craniotomy, whereas two smaller diameter cover slips
(4mm diameter) were used to gently fill the cavity between dura and
the removed skull in order to prevent bone regrowth. This procedure
resulted in clear craniotomies over extended periods of time with an
area of approximately 4mm×4mm accessible for imaging. The cra-
nial window was centered above the midline at ~0 Bregma68.

Identification of V1 maps
Retinotopic maps of V1 and higher visual areas (HVAs) were generated
for all mice prior to recording using published protocols69,70. Briefly,
awake, head-fixed mice faced with their left eye a 19″ LCD monitor
placed at 10 cm distance and tilted 30° towards the mouse’s midline.
Using Psychophysics toolbox71, contrast-reversing, spherically cor-
rected checkerboard bars were drifted across the screen vertically
(altitude) andhorizontally (azimuth) for eachof the four directions (30
repeats per direction). Simultaneous wide-field imaging (Quantalux,
Thorlabs) captured GCaMP7s fluorescence, which was averaged for
each direction. Altitude and azimuth phase maps were calculated by
phase-wrapping the first harmonics of the 1D Fourier transform for
each of the four averages and subsequently subtracting the maps of
the opposite directions70. Signmaps were generated by taking the sine
of the angle between the gradients in the altitude and azimuth maps
and processed69. Borders were drawn around visual area patches and
overlaid onto anatomical reference images to identify V1.

Visual stimulation and response measures
Visual stimuli were prepared in Matlab (Mathworks) using the Psy-
chophysics Toolbox71 and delivered via a monitor (Dell, 60Hz refresh
rate) placed ~25 cm in front of the contra-lateral eye of themouse. The
stimulus was composed of moving gratings at 8 different directions
presented for 1 s at maximum contrast, 0.04 cycles per degree and 2
cycles per s. Stimuli were interspaced by gray screen (average lumi-
nance matched to stimuli) for 7 s. Each direction was presented 20
times in randomized order, for a total of 160 iterations.

2PI imaging, pre-processing pipeline, and meta data collection
For standard 2PI, images were acquired by a scanning microscope
(Bergamo II series, B248, Thorlabs Inc.) coupled to a pulsed femtose-
cond Ti:Sapphire 2-photon laser with dispersion compensation (Cha-
meleon Discovery NX, Coherent Inc.). The microscope was controlled
by ThorImageLS and ThorSync software (Thorlabs Inc.). The wave-
length was tuned to either 940 nm or 1120 nm in order to excite
GCaMP7s or jRGECO1a, respectively. Signals were collected through a
16× 0.8 NA microscope objective (Nikon). Emitted photons were col-
lected through 525/50 nm (GCaMP7s) or 607/70 nm (jRGECO1a) band
filters using GaAsP photomultiplier tubes. The field of view was
~450× 450 μm. Imaging frames of 512 × 512 pixels were acquired at
45.527Hz by bidirectional scanning of a 12 kHz Galvo-resonant scan-
ner. Beam turnarounds at the edges of the image were blanked with a
Pockels cell. The average power for imagingwas <70mW,measured at
the sample.

For mesoscope imaging, images were acquired by a dual-plane 2
Photon Random Access Mesoscope (2P-RAM, Thorlabs Inc.) coupled
to a pulsed femtosecond Ti:Sapphire 2-photon laser (Chameleon Dis-
covery NX, Coherent Inc.). The Mesoscope was controlled by Scan-
Image software (ScanImage, Vidrio Technologies). Thewavelengthwas
tuned to 920nm in order to excite GCaMP6s. The specimen was
excited at NA =0.6 and 2-photon signals were collected at NA = 1 using
4 separate GaAsP photomultiplier tubes for 2 channels and 2 planes of
imaging. The field of view was ~1 × 1 mm2. Imaging frames of
1024 × 1024pixels (yields to 0.97 µmper pixel in lateral direction) were
acquired at ~10.5 Hz by a 12 kHz resonant scanner combined with a
virtually conjugated Galvo scanner set. Continuous recording times
were limited to 10min each. The total power delivered to the specimen
for imaging was <70mW, which was split approximately equally
between the 2 planes. The dual-plane imaging adds a shadow of each
plane onto the other. Redundant cells were removed bydetecting cells
located at the same coordinates (with a 2 µm tolerance) across the two
planes that are highly correlated (>0.7) and then selecting only the one
with the highest signal.

The obtained tif-movies in uint16 format were rigid motion-
corrected via the python-based software package ‘suite2p’72. Regis-
tered images were further denoised using machine-learning-based,
deep interpolation32 (see below) and then semi-automatically pro-
cessed by suite2p for ROI selection and fluorescence signal extraction.
For each labeled neuron, raw soma and neuropil fluorescence signals
(red for jRGECO1a; green for GCaMP6f/s, GCaMP7s) over time were
extracted for each ROI. Spiking probabilities were obtained from
neuropil corrected fluorescence traces (Fcorrected = FROI –0.7*Fneuropil)
via MLspike (https://github.com/MLspike) by utilizing its autocalibra-
tion feature to obtain unitary spike event amplitude, decay time, and
channel noise for individual ROIs.

Deep-interpolation. Deep-interpolation32 (Deep-IP; https://github.
com/AllenInstitute/deepinterpolation) removes independent noise
by using local spatiotemporal data across a noisy image stack of
Npre +Npost frames to predict, or interpolate, pixel intensity values
throughout a singlewithheld central frame. Thedeepneural network is
a nonlinear interpolation model based on a UNet inspired encoder-
decoder architecture with 2D convolutional layers where training and
validation are performed on noisy images without the need for ground
truth data.

After rigid motion correction, individual denoised frames were
obtained by streaming one 60-frame (Npre =Npost = 30 frames) regis-
tered, image stack through the provided Ai-93 pretrained model32 for
each frame to be interpolated. At an imaging rate of ~45Hz, these 60
frames correspond to a combined ~1.3 s of data surrounding the frame
to be interpolated. To study the effect of Deep-IP, we omitted this step
in our analysis of ongoing activity from our jRGECO1a recordings. In
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addition, we compared the additional effect of removing weakly
population-correlated ROIs (see Supplementary Fig. 2).

Locomotion speed. During imaging sessions,micewere head-fixed on
a wheel on which they were free to run during collection of ongoing
activity. The wheel was arrested during visual stimulation to reduce
trial-by-trial variability. Locomotion speed was recorded via a custom-
made photo diode sensor attached to the bottom of the recording
platform. As themice ran, thewheel turningmade its teethperiodically
block the IR light emitted by the sensor. This produced a square-wave
pattern of reflected IR light on the sensor. Usingwavelet denoising and
thresholding, an instantaneous locomotion speed was reconstructed
at frame rate resolution. Population activity was correlated with
locomotion for ongoing activity using instantaneous or 1-s smooth
locomotion speed estimates. Cross-correlation functions were
detrended, combined over recordings for each mouse, and averaged
across mice.

Postprocessing pipeline
Our postprocessing pipelines were custom-written in Matlab (Math-
works) and Python (www.python.org). Some routines utilized NumPy
(https://numpy.org/) and Matplotlib (https://matplotlib.org/).

Uncorrelated cell removal. In order to focus on synchronized
population activity, we identified those cells in the population that
were uncorrelated with the overall neuronal population. This proce-
dure proved necessary in data sets that were not denoised by deep-
interpolation. In contrast, once our imaging data were denoised, the
percentage of uncorrelated cells dropped to negligible values (see
Supplementary Fig. 2).

For each cell i in anevent raster, the cell’s population correlation ci
was computed by taking the Pearson’s R between the cell’s activity,
ri(t), and the all-except-i population activity time series p tð Þ=Pj≠irjðtÞ.
Then, a null population correlation c0i,τ was computed as the Pearson’s
R between the all-except-i population activity and r0 i,τ tð Þ, where r0 i,τ tð Þ
is cell i’s activity time series shifted forward in time by τ frames, where
the last τ frames are shifted to the start of the activity (circular shift).
Null correlations were computed for τ in range τ∈ [−100,100]. From
this, a distribution of null correlations C0 was formed, and from that a
z-scored correlation value was calculated as zi = ðci � �C0Þ=σ2

C’
: All cells

with zi <0.01 were removed from the recording.

Continuous epochs of suprathreshold population activity. Con-
tinuous periods of population activity were identified by applying a
threshold Θ on the population activity p(t), the sum of the spike den-
sities from all neuronal ROIs at a given time t, such that:

pΘ tð Þ= pðtÞ, pðtÞ>Θ
0, pðtÞ ≤ Θ

�
ð1Þ

This procedure is known as hard-thresholding and was employed
for all analysis unless otherwise stated. See Supplementary Notes and
Supplementary Fig. 6 for a comparison between hard-thresholding
and soft-thresholding. For a given recording p(t) and coarse-graining
value k, thedependence of thenumberNof epochs on the thresholdΘ,
N(Θ) was obtained for a range of thresholds Θ ϵ [Θ1, Θ2] such that Θ1

was low enough that it removed no population activity from the time
course and Θ2 was high enough that it would remove all population
activity from the time course. The function N(Θ) was typically well-
approximated by a log-normal distribution and a corresponding fit
yielded shape parameters μ and σ. The threshold used in the analysis
for all recordings and coarse-graining factor was chosen such that
Θ = μ – 2σ and estimated for each k.

We note that thresholding the population activity obtained froma
set of spiking neurons was first applied by Poil et al.33. in neuronal

simulations to study neuronal avalanches. This method is similar to
thresholding the local LFP (see, e.g., ref. 14), the traditional approach in
population-based analysis of neuronal avalanches, where it was shown
that the amplitude of the local negative deflection in the LFP mono-
tonically increaseswith thenumberofneuronsfiringwithin the vicinity
of the microelectrode (e.g., ref. 12). Importantly, we chose Θ to be low
so as to minimize potential errors in the estimate of χ34 and thereby
reduce the number of epochs obtained for our scaling analysis.

Temporal coarse-graining. A temporal coarse-graining operation was
applied to the thresholded population activity pΘ(t). For a given tem-
poral coarse-graining factor k an ensemble of K different coarse-
grained time series p0

k τð Þ,p1
k τð Þ, . . . ,pK�1

k ðτÞ was arrived at through the
following method:

pj
k τð Þ=

Xk τ + 1ð Þ+ j�1

i = kτ + j

pΘ ið Þ for τ 2 f0, 1, . . . , ðT � jÞ=k� �g ð2Þ

For each time series pj
k τð Þ, epochs were extracted by finding pairs

(τ1,τ2) such that pj
k τ1
� �

=0, pj
k τ2
� �

=0 and pj
k τ0ð Þ>0 for all

τ0 2 fτ1 + 1, . . . , τ2 � 1g. The size of the epoch is given by S=
Pτ2

i = τ1
pj
k ið Þ

and its corresponding duration given by τ2 − τ1 − 1. For a given
ensemble of coarse-grained time series, all epochs were combined.

Scaling curve fit. For more precise evaluation of χsh and χlg, we
introduced the following fitting function:

S dð Þ= Cdχsh

1 + d=Φ
� �γ� � χsh + χ lgð Þ=γ ð3Þ

This function is a double power law with initial slope χsh, transitioning
to a second slope χlg at around the point d =Φ. The parameter γ con-
trols how abruptly that transition happens and has been fixed at 4 for
all the curves presented. The other parameters were free to adjust to
the data, and all fits were performed in log-space, i.e., the log(S(log(d))
was fit to the log of data (taking the log of both average sizes as well as
durations).

Removal of inter-neuronal correlations by temporal shuffling.
Removal of inter-neuronal correlations was obtained by circular tem-
poral shifts T of the entire time series of individual neurons. T was
chosen randomly between 0 and up to the full length of the recording.
These circular shifts maintain the precise temporal organization of
each neuronal time series. This approach isolates contributions from
inter-neuronal correlations while maintaining the first-order statistics
and sequences of inter spike intervals. When we tested for the con-
tribution of inter-neuronal correlations, for each percentage of cor-
relations removed, we averaged over n = 10 repeats (see Fig. 1j).

Random spike addition analysis. To analyze the influence of uncor-
related activity on scaling trends, random spikes were added to
recorded rasters after uncorrelated cell removal. This was done by
adding spikes to the raster randomly until the desired noise level was
reached. We note that 100% noise addition corresponds to doubling
the firing rate in the raster. For each percentage of spikes added, we
averaged over n = 10 repeats.

Cell removal analysis. To analyze the robustness of scaling trends to
cell removal, cells were removed from rasters progressively until the
scaling trends were destroyed. ROIs were selected randomly and
removed. Analyses were repeated 5 times and the scaling trends were
averaged over.
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Trial shuffling. Trial-shuffling for the GCaMP7s and GCaMP6f drifting
grating evoked data was obtained by randomly permuting the
responses from each of the presented directions separately. This was
done for each neuron independently. Therefore, in each trial of the
trial-shuffled data set activity fromeach cell corresponds to a response
to the same stimulus presented in the original data, but taken from
different presentations of that stimulus. Note that for shuffled
GCaMP6f movies, we employed circular random shifts instead of
movie repeats.

Bootstrapping. Robustness of avalanche scaling trends and temporal
profiles was assessed using bootstrapping. For a given recording,
avalanches were calculated with the normal pre-processing steps. The
pool of avalanches was then resampled 10 times with replacement,
such that each bootstrapped pool contained the same number of
avalanches as the original pool. Error bars for each plot were reported
as the standard deviation of the scaling trend or temporal profile
across all bootstrapped pools.

State dependency of χsh. To study the effect of behavior state on
network statistics and avalanche dynamics, spike rasters for rest and
locomotion periods were extracted using wheel traces from individual
recordings as follows (n = 3mice andn = 6 recordings forwhich resting
or locomotion periods were >15% of total recording time to allow for
within-recording comparison). First, the instantaneous wheel speed
was binarized using a threshold of 0.25 cm/s. Then, using this vector as
a mask, we obtained separate rest and locomotion spike rasters for
each recording. Spike rate and pairwise correlation CDFs were com-
puted (Supplementary Fig. 7a, b). Avalanches for rest and locomotion
were extracted separately and mean avalanche size vs. duration, scal-
ing exponents, number of avalanches, and thresholds were computed
for different temporal coarse-graining values of k (Supplementary
Fig. 7c–f).

Complexity analysis. Complexity analysis was performed as descri-
bed in ref. 39 exploring patterns of depths D in the range of 4–7.
ComplexityCwas calculated on the population activity as a function of
k and thresholding, identically to how epochs were computed to
obtain scaling. Subthreshold activity was not evaluated. For each
segment of length D, its pattern p is defined as the rank order of the
time series (e.g., for a monotonically increasing trace over D = 4 time
points, the pattern would be 0123; see Supplementary Fig. 15 for more
examples). From all possible length D segments, a probability dis-
tribution P � fpj; j = 1, 2, . . . ,Ng is obtained (N is the number of possi-
ble states, e.g., for D = 3, the possible states are 012, 021, 102, 120, 201,
and 210). Next, the Shannon’s logarithmic information is computed as

S½P�= �
XN
j = 1

pjlnðpjÞ, ð4Þ

and the normalized Shannon entropy is defined as H½P�= S½P�=S½Pe�,
where Pe is the uniform distribution (entropy is maximized for the
uniform distribution, therefore 0 ≤H ≤ 1). Finally, the complexity
measure is defined as

C P½ �=QJ P, Pe

	 

×H½P�, withQJ P,Pe

	 

=Q0 S

P +Pe

2

� �
� S P½ �

2
� S½Pe�=2


 �
:

ð5Þ
Q0 is a normalization constant (0 ≤QJ ≤ 1) equal to the inverse of

the maximum possible value of J[P, Pe].

Temporal profiles. Temporal profiles were calculated on individual
recordings after thresholding and temporal coarse-graining had been
applied. Avalanches were obtained as described for our experimental

data and grouped based on duration. Population activity during all
avalanches of a certain duration was averaged over all avalanches to
get the temporal profile for that duration.

To calculate the profile collapse exponent, χcoll, temporal profiles
werefirst x-rescaled tofit between0and 1, then linearly interpolated to
N = 500 points. Every interpolated temporal profile in the desired
duration range was then y-rescaled by dχcoll − 1. The exponent χcoll was
chosen to minimize the RMS error between all collapsed shapes in the
desired duration range. To calculate temporal profiles at a certain
coarse-graining kusing the original experimental frame rate, avalanche
epochs were calculated at the coarse-grained resolution as described
above. Then, these epochs were mapped back onto the raster at the
original frame rate and temporal profiles were calculated on these
remapped epochs. The standard deviations from the mean rescaled
shapes were visualized as shaded area if not stated otherwise.

Neural simulations
Model topology. We adapted the model by Girardi-Schappo and
colleagues73, an excitatory/inhibitory (E/I) balanced system of
integrate-and-fire (IF) neurons, which exhibits 4 domains of firing (low
rate irregular, high rate, quiescent and intermittent) in addition to a
2nd-order, continuous phase transition. At this phase transition, the
model displays the dynamics of a critical branching process with a
slope of α = 3/2 in avalanche size distribution and β = 2 for avalanche
duration distribution, which has been identified experimentally for
neuronal avalanches7. Our standard network consisted of N = 106 non-
leaky, probabilistic integrate-and-fire neurons. The E/I neuron ratio
was set 4:1 to approximate prevalence of excitatory over inhibitory
neurons in the cortex and neurons had an all-to-all connectivity. The
elements of the connectivitymatrix, W, were initialized asWEE =WIE = J;
WII =WEI = −gJ, that is connections with an excitatory pre-synaptic
neuron had synaptic strength J and synapses with an inhibitory pre-
synaptic neuron had synaptic strength −gJ. Here, g is the synaptic
balance parameter which was used to tune the model to an E/I-
balanced state with critical dynamics, and its critical value for the
parameters of our network is, gc = 3.5 (ref. 73). Values of g higher than
gc shift the network to an inhibition-dominated regimewith subcritical
dynamics, and values of g lower than gc shifts the network to an
excitation-dominated regime with supercritical dynamics.

Model dynamics. The state of a neuron in themodel was described by
2 variables. A Boolean variable, X, denotes a neuron’s firing (or quies-
cence) at time t, i.e., X(t) = 1 (or X(t) = 0). The membrane potential, V,
controls the probability of firing and evolves as

Viðt + 1Þ= μViðtÞ+
XN
j = 1

WijX jðtÞ
 !

1� XiðtÞ
� �

ð6Þ

where μ is a leakage parameter, which in our simulations was set to 0.
The term (1 − Xi(t)) introduces an absolute refractory period of Δt as it
resets the voltage after a spike, i.e., when Xi(t) = 1. The probability of
extra neuronal firing increased linearly with V according to

PðX = 1∣V Þ= V , ΓV < 1

1, ΓV ≥ 1

�
ð7Þ

where Γ is the neuronal gain, which in our simulation was set to
1 supportingprobabilisticfiringnear a 2nd-orderphase transition73. This
network is non-conservative with energy dissipating through inhibi-
tion and spike collision.

Model simulations. The mean-field activity of the neurons show the
hallmarks of neuronal avalanches with α = 3/2, β = 2, and χ = 2 (ref. 73),
which we confirmed in our finite-size, fully-sampled network (see also
Supplementary Fig. 10). Activity in the network is triggered by
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independent Poisson processes to each neuron at low rate set to
activate ~20 neurons on average (0.002% of the network) every time
step. This external driving triggers intermittent, reverberating activity
in the network, which leads to a neuronal firing rate of ~2.5 spikes per
1000 time units for the critical state. 1 time unit in our model thus
equates to about 2.5ms in real time when approximating the ~1 Hz
average neuronal firing in our data. However, it is currently not pos-
sible to match the model further with our in vivo data given their
unknown sampling fraction f, their true spike rate, neuronal topology,
and corresponding threshold dependence of k.

For our analysis, we thresholded the population activity above the
expected average number of spikes from the external drive to focus on
the actual cascading activity in the network. Unless stated otherwise,
the network was simulated for 108 time-steps and the resulting time-
series was analyzed. Epochs were extracted as described for the data
with identical size and duration definition. We consider a random
fraction f of the total neurons in the network. This sampling fraction, f,
was systematically varied from 0.01% (100 neurons) all the way to a
fully sampled network (106 neurons) with corresponding changes in Θ
to study the effects of subsampling on the network activity. All curves
of χsh and χlg for the simulated data use the scaling curve fit
described above.

Statistics
All values are given as mean ± standard deviation (SD) if not stated
otherwise. Violin plots were used to approximate the distribution of
data (shaded area) bordered by the 1st and 3rd quartile. Box plots are
composed of the median, box (25–75% quartiles) and whiskers (1.5×
interquartile range).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The preprocessed imaging data used in this study are available in the
general repository Zenodo using the following access https://doi.org/
10.5281/zenodo.7703224 (ref. 74). The source data for all figures and
supplemental figures in this study are provided for this paper. Source
data are provided with this paper.

Code availability
Computer code used in this study is available at https://github.com/
PlenzLab/ParabolicAvalanches/.
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