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Unlocking the general relationship between
energy and entanglement spectra via the
wormhole effect

Zheng Yan 1,2,3 & Zi Yang Meng 1

Based on the path integral formulation of the reduced density matrix, we
develop a scheme to overcome the exponential growth of computational
complexity in reliably extracting low-lying entanglement spectrum from
quantumMonteCarlo simulations.We test themethodon theHeisenberg spin
ladder with long entangled boundary between two chains and the results
support the Li and Haldane’s conjecture on entanglement spectrum of topo-
logical phase. We then explain the conjecture via the wormhole effect in the
path integral and show that it can be further generalized for systems beyond
gapped topological phases. Our further simulation results on the bilayer
antiferromagnetic Heisenberg model with 2D entangled boundary across the
(2 + 1)D O(3) quantum phase transition clearly demonstrate the correctness of
the wormhole picture. Finally, we state that since the wormhole effect ampli-
fies the bulk energy gap by a factor of β, the relative strength of that with
respect to the edge energy gap will determine the behavior of low-lying
entanglement spectrum of the system.

The fruitful dialogand fusionbetweenquantum informatics andhighly
entangled condensed matter systems, have been gradually appre-
ciated and recognized in recent years1,2. Within this trend, quantum
entanglement serves as the quintessential quantity to detect and
characterize the informational, field-theoretical and topological
properties of many-body quantum states3–6. It offers, among many
interesting features, the direct connection to the conformal field the-
ory (CFT) and categorical description of the problem at hand7–24. More
than a decade ago, Li and Haldane proposed that the entanglement
spectrum (ES) is an important, maybe more fundemental, measure-
ment in this regard than the entanglement entropy (EE)25–27. Although
the generality of such statement has been questioned28, since then,
low-lying ES has been nevertheless widely employed/discussed as a
fingerprint of CFT and topology in the investigation in highly entan-
gled quantum matter29–50. Moreover, for topological states (e.g.
quantumHall state), they pointed out a possible deep correspondence
between the low-lying ES and the true energy spectra on the edge. This

is another famous Haldane’s conjecture, other than the one for the
gapped spin-1 chain. Later, Qi, Katsura and Ludwig theoretically
demonstrated the general relationship between entanglement spec-
trum of (2 + 1)D gapped topological states and the spectrum on their
(1 + 1)D edges51. However, besides such gapped topological phases,
howuniversal the Li andHaldane’s conjecture is remains an interesting
and open question to this day.

On the numeric front, most of the ES studies so far have focused
on (quasi) 1D systems. Due to the exponential growth of computation
complexity andmemory cost, the existing numerical methods such as
exact diagonalization (ED) and density matrix renormalization group
(DMRG) have obvious limitations for entangling region with long
boundaries and higher dimensions. Quantum Monte Carlo (QMC) on
the other hand is a powerful tool for studying large size and higher
dimensional quantum many-body systems, as the importance sam-
pling scheme can in principle convert the exponential complexity into
polynomial when there exists a sign bound for the Hamiltonian
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simulated52,53. But in the first appearance, it looks difficult to obtain ES
fromQMC, as it can’t obtain the quantum (ground state) wavefunction
directly. However, it has been successfully shown that the computa-
tion of Rényi EE can be cast into the sampling of the partition function
in modified manifold with different boundary condition for the
entangling region and the rest of the system2,54–60, and the universal
information of many interesting quantum many-body phases and
phase transitions in EE have been reliably extracted in QMC
simulations17,19,21,61–65.

This paper is a response to these open questions and recent
developments. Here we develop a protocol to overcome the expo-
nential growth of computational complexity in obtaining the ES via
QMC combined with stochastic analytic continuation66–76. Then, we
test the method on a Heisenberg ladder with long entangling region
between two coupled chains. Our QMC results remove the finite size
effects in previous ED results27 and further show the low-lying ES does
indeed behave as the energy spectra of one chain, highly consistent
with Handane’s conjecture. In the next step, the principle of equiva-
lence is proposed based on the rules of worldline evolution to explain
the similarity of ES and edge energy spectrum for this ladder system.
According to such physical picture, Handane’s conjecture should not
only be true in the gapped topological phase, but can be further
generalized to other systems such as the quantum critical point (QCP),
as long as the subsystem A has only edge without bulk. We then
compute the ES of antiferromagentic (AFM) Heisenberg bilayer model
across the (2 + 1)D O(3) QCP, where the entanglement boundary is the
entire 2D layer, to demonstrate the correctness of the equivalence
principle. Furthermore, to extend the understanding of Haldane’s
conjecture for the general subsystem with both edge and bulk, we
develop a pedagogical theory of phenomenology within the path-
integral formulation to explain Handane’s conjecture, in which we find
a wormhole effect on the imaginary time edges of environment to
induce the modes of entanglement Hamiltonian (EH). Since the
wormhole effect amplifies the bulk energy gap by a factor of β = 1

T, it is
the relative strength of that with respect to the edge energy gap that
will determine the behavior of low-lying ES of the system. Therefore,
the bulk gap becomes much larger thus the edge gap contributes
almost all the low-lying ES at low temperature β→∞. The wormhole
mechanism ismore general than the Li andHaldane conjecture in that,
it not only explains the working of the conjecture, but also has pre-
dicting power to suggest situation where the ES is different from the
energy spectrum on the edge but resembles that in the bulk77.

Results
The scheme to extract the entanglement spectra
The ESof a subsystemA coupledwith environmentA is constructed via
the reduced density matrix (RDM), defined as the partial trace of the
total density matrix ρ over a complete basis of A, ρA =TrAρ. The RDM
ρA can be interpreted as an effective thermodynamic density matrix
e�HA through an entanglement Hamiltonian HA. As known in closed
system, the spectral function S(ω) for physical observable, represented
asO, can bewritten by the eigenstates ∣niwith the eigenvalue En of the
HamiltonianH,

SðωÞ= 1
π

X
m,n

e�βEn ∣hm∣O∣ni∣2δðω� ½Em � En�Þ: ð1Þ

Therefore, there is a relation between energy spectrum S(ω) and
imaginary time correlationG(τ) asGðτÞ= R1

0 dωKðω, τÞSðωÞ. TheK(ω, τ)
is a kernel with slightly different expressions for bosonic/fermionic
O66–76. The energy spectrum of the corresponding operator can be
analytically continued from the correlation function in imaginary time.
However, the relation betweenRDMand themodularHamiltonian45–48,
ρA = e

�HA , doesn’t contain any information of an effective imaginary
timeβAof the subsystem.To compute ES, the first task is to construct a
“partition function” ofHA with effective imaginary time βA.

The solution comes from the n-th order of RDM, ρn
A, which can be

written as ρn
A = e

�nHA . In this way, we can readily make use of such
effective imaginary time βA = n at n = 1, 2, 3,⋯ integer points. It’s
similar to how the Rényi EE is computed in QMC via the replica parti-
tion function19,21,55,61,64,78,79,

ZðnÞ
A =Tr½ρn

A�=Tr½e�nHA �: ð2Þ

As depicted in Fig. 1, ZðnÞ
A is a partition function in a replicated

manifold, where the boundaries of area A of the n replicas are con-
nected in imaginary time and the boundaries of the area A are inde-
pendent (for sites in A for each replica, the usual periodic boundary
condition of β is maintained). It can be seen that the effective βA = n of
the subsystemA is in the unit of integer numberswhereas the β = 1/Tof
the total system is in the inverse unit of the physical energy scale of the
original system, J of the Heisenberg model, for instance. We note a
similar approach was carried out in the interacting fermion
systems37,38,44 via determinant quantum Monte Carlo (DQMC),
although the entangling region therein is still (quasi) 1D. However, we
think the relative complicated mathematical derivation in the DQMC
to translate an interacting fermionic partition function into sampling
of determinants and the lack of the simple but deep wormhole picture
in the previous works, may obscure the widespread usage of the
computation of ES in QMC, for example, we were not aware of these
works as we carried our independent wormhole approach. In this
regard, our work is the first one in doing so in boson/spin QMC, and
our path-integral interpretation and the wormhole picture greatly
simplified the key physical idea of the computation of ES in QMC
simulations with the first computation of ES for a 2D entangling region
presented. We hope our presentation will make such computation
more accessible to the broader audience.

As shown in Fig. 1, since the imaginary times τA between two
nearest replicasdiffersbyδτA = 1 (aneffective imaginary timeevolution
operator e�HA of subsystem acts between them), we can measure the
imaginary time correlation function at integerpoints, toobtainG(τA) of
τA =0, 1, 2, . . . , n. The correlation function GðτAÞ∼ e�ΔτA when βA→∞
whereΔ is the lowest energy gap in the ES.When there is large gap, the
G(τA) decays very fast and it is very hard to extract the high energy part
of spectrumbecause the distanceδτA = 1 is not small enough. However,
since the important information of ES is usually encoded in the low-
lying spectra, it can be obtained with controlled accuracy from the
long-time imaginary time correlations in QMC simulations, i.e. the
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Fig. 1 | A geometrical presentationof the partition functionZðnÞ
A .The entangling

region A bewteen replicas is glued together in the replica imaginary time direction
and the environment regionA for each replica is independent in the imaginary time
direction. Therefore, the imaginary time length for HA is βA = n and that for total
systemH is β = 1/T.
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more number of replicas n, the longer the imaginary time correlation
τA, and lower “energy” ωHA

in ES accessed. With the good quality G(τA)
at hand, the stochastic analytic continuation (SAC) scheme can reveal
reliable spectral information, SðωHA

ðkÞÞ, as have been widely tested in
fermionic and bosonic quantum many-body systems in 1D, 2D and
3D66–68,70–74,80–86. In the following twoexamples,we use stochastic series
expansion (SSE) QMC for quantum spin systems87–91 combined with
SAC to obtain the related ESs. All the imaginary time correlations are
computed via spin Sz operators, i.e., GkðτAÞ= hSz�kðτAÞSzkð0Þi.

Spin-1/2 Heisenberg ladder
As the first example to demonstrate the power of our method, we
compute the ES of the Heisenberg ladder with L = 100 and compare
with the ED results in small sizes L = 10, 12, 1427. The spins on the ladder
are coupled through nearest neighbor Heisenberg interactions as
shown Fig. 2a, with the strength J along the leg and J0 on the rung. The
Hamiltonian of the spin-1/2 ladder is

H = J
X
hiji

ðSA,iSA,j + SA,iSA,jÞ+ J0
X
i

SA,iSA,i ð3Þ

Here, SA,i and SA,i are spin-1/2 operators at site i of A and A. 〈i, j〉
denotes apair of nearest-neighbor sites on the spin chain of L siteswith
periodic boundary conditions. J is the coupling strength intra-chain
and J0 is coupling inter-chains.

We first simulate with J = 1 and J0 = 1:732 at β = 100 and βA = 200
(200 replicas). OurQMCES in Fig. 2b are consistentwith the ED results,
but our larger system sizes clearly reveal new features at the thermo-
dynamic limit (TDL). First, with L = 100, the finite size gaps at k = 0 and
π aremuch smaller than the ED results with L = 14, e.g.Δ(π) ~ 0.48 in ED
[Fig. 3a in ref. 27] whereas Δ(π) ~ 0.1 in QMC, suggesting the gap closes
at TDL. Second, the ES here is expected to bear the low-energy CFT
structure, i.e., the ground level of ES, ξ0, will scale as
ξ0=L= e0 +d1=L

2 +Oð1=L3Þ where the d1 =πcv/6 according to the CFT

predication with the central charge c = 1 and v the velocity of ES from
the entanglement Hamiltonian near its gapless point27, i.e. the
Cloizeaux-Pearson spectrum of the quantum spin chain, v∣ sinðkÞ∣92.
The ED fit at L = 14 gave v ~ 2.36 [from the Fig. 3a in ref. 27], however,
the fitting of QMC reveals the v ~ 4.58, as shown by the fitting line in
Fig. 2b. This again reflects ES is greatly affected by finite size effect and
it is necessary to access larger system sizes for quantitatively correct
information.

Furthermore, we simulate the cases with both ferromagnetic
(FM) J = − 1 and antiferromagnetic (AFM) J0 = 1:732 at β = 100 and
βA = 800 on the same ladder to compare with the results in ref. 27,
where the ladder is in the gapped rung singlet phase. Since the ES in
TDL is expected to show the spectrumof FM spin chain, i.e. quadratic
dispersion ∼ sin2ðk=2Þ close to k = 093,94, we purposely chose
βA = 800 such that more low-lying ES can be obtained. As shown in
Fig. 2c, the obtained dispersion of ES indeed resembles that of an
edge Hamiltonian of the FM chain. In the Fig. 4e of ref. 27, a linear
dispersion is found and it was attributed to the finite size effect. Now
that we can access L = 100, the ES indeed reveals a quadratic dis-
persion 7:96sin2ðk=2Þ as shown by the white line therein. The results
in Fig. 2b, c, clearly demonstrate the correspondence between the ES
and the true spectra of the edge Hamiltonian, consistent with the
previous ED study, and achieve the TDL readily.

Equivalence principle of ES
We use the equivalence principle to understand why the ES resembles
the energy spectrumof the subsystemwithin the frame of the replicas.
The schematic diagram of the path integral of the RDM is shown in
Fig. 3a, the x/y/z axis represents the direction of the J0 bond/J bond/
imaginary time, respectively. Because both the subsystem A and
environment A are spin chains, there are only two pieces paper-like
configurations along x-axis in thefigure, that is, whole of the chain is an
entangled edge without bulk. The wavy lines mean the interactions
between subsystem A and environment A. The A has been divided into

-
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Fig. 2 | ES of Heisenberg ladder. aHeisenberg spin ladder. The red dashed line cut
it into two entangled constituents, A and A. b The low-lying ES with L = 100,
J0 = 1:732, J = 1 and β = 100, βA = 200. The white line is fitting to the data with the

dispersion 4:58 sinðkÞ. c The low-lying ES with L = 100, J0 = 1:732, J = − 1 and β = 100,
βA = 800. The white line is fitting to the data with the dispersion 7:96sin2ðk=2Þ.
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several disconnected replicas along the imaginary time axis while all
the replicas of A are connected in time. It’s worthy noting that the
evolution inside one replica can not reflect the information of ES. As
mentioned above, we have to measure the ES information at the
connections of replicas. As drawn in the Fig. 3a, the eyes observe the
information of ES at the integer time point of βA.

The Fig. 3b is the x − z plane view of Fig. 3a. The gray part is the
subsystem A in which all the replicas are connected and the white part
is the environment A in which all the replica are disconnected. At the
same time, the black plaquettes mean the replicas and the green line
represents the worldline of a particle (spin). From this figure, we note
that even though the worldline can walk around everywhere inside a
replica, it has to go back to A region on the connections where we
observe the information of ES. Thus, what we see from the measure-
ment is an effective system as large asA, even thoughwe simulate both
A and A. So far, it just explains the spatial size of the entanglement
Hamiltonian is the same as the subsystem A, but we haven’t explained
why the entanglement Hamiltonian resembles the Hamiltonian of A.

With the above picture, it is easy to understand the working of
Haldane’s conjecture in the path integral, i.e. the entanglement spec-
trum of A is similar with the energy spectra of a closed system A
without coupling toA. Fig. 3c is that of a replicated system (Heisenberg
ladder) under the view of y − z plane in Fig. 3a, d is an example of the
evolution of worldline in such a closed system (Heisenberg chain). For
the replicated system, we canmeasure the physical observables at the
integer βA points to extract the information of ES, denoted by the
observing eyes, and the physical rules (e.g., Hamiltonian operators and
worldlines) one sees at these time points of replicamanifold should be
similar as in a closed system A controlled by at the same Hamiltonian
operator imaginary times. In short, what is observed in the replica
system is the Heisenberg Hamiltonian operators and the correspond-
ing worldline evolution, so ES is very much like a Heisenberg model of
subsystem A.

The reader may ask that even if the rules on the connections of
replicas (integer imaginary time) resemble the closed system, how
about the rules of other imaginary times? As shown in Fig. 3c, the real
worldline (solid line) means it is at the τA =0, 1, 2, . . . we can measure,
i.e., the connected part of two nearest replicas, and the virtual process
goes in/out of one replica are denoted as thedashed line. Furthermore,

because HA is independent on imaginary time, the rule of worldline
evolution should be same in any time, i.e., the translation invariance of
time. Thus,HA is likely to be the similar asH of real closed A system all
the time. A more intuitive diagram can be seen in Fig. 3e, the blue line
means the space-time world of EH which is time independent. The
green line represents the space-timeworld of replicamanifold, i.e., the
system drawn in (a). These two worlds cross at integer time points,
thus, we can obtain the information of EH from the green system at
integer time.

The above argument can be applied to the case where every
sites of subsystem A is coupled with environment A, i.e., the A has
only entangled edge without bulk. It should not only work in the
ladder case, but should also work in other similar cases, such as
bilayer. To further verify our argument of the equivalence principle,
we simulate a coupled bilayer system, in which one layer is the
subsystem A and the other is the environment A. We find the ES is
indeed similar to the energy Hamiltonian of a closed one layer
system, even the system goes through a quantum phase transition.
The results are shown below.

Antiferromagnetic Heisenberg Bilayer
An AFM Heisenberg model on bilayer square lattice is shown Fig. 4a,
where J and J0 are the intra- and inter-layer couplings. We define the
spin-1/2 Hamiltonian on a bilayer lattice via the same equation as
Eq. (3), where SA,i and SA,i are spin-1/2 operators at site i of A and A, 〈i, j〉
denotes a pair of nearest-neighbor sites on the square lattice of L × L
sites with periodic boundary conditions.

We compute the ES with the bottom layer as A and the top layer
as A. The (2 + 1)dO(3) QCP, separating theNéel phase and inter-layer
dimer product state, is found to locate at J0=J =2:5220ð1Þ from high-
precision QMC simulations19,22,95,96. The EE of antiferromagnetic
Heisenberg bilayer has been studied in ref. 97, but the ES is still
lacking. We simulate three cases to demonstrate our prediction:
J0=J = 1:732 in the Néel phase [Fig. 4b], J0=J = 2:522 at the critical point
[Fig. 4c], J0=J = 3 in the dimerized phase [Fig. 4d] at β = 100 and
βA = 32 with size L = 50.

All the three cases strongly support our understanding: the ESs
have two gapless modes with a strong one at (π,π) and a weak one at
(0,0), closely resembling those the Goldstone modes in square

Fig. 3 | The equivalence principle of ES and energy spectrum. a The schematic
diagram of the path integral of the reduced density matrix. The x/y/z axis repre-
sents the direction of the J0 bond/J bond/imaginary time. The wavy lines mean the
interactions between subsystem A and environment A. The A has been divided into
several disconnected replicas along the imaginary time axis while all the replicas of
A are connected in time, which is the same as the Fig. 1. The eyes observe the
information of ES at the integer time point of βA which means we can only extract
the information of ES on the connections of replicas. b The x − z plane view of (a).
The gray part is the subsystem A and thewhite part is the environment A. The black
plaquettes mean the replicas and the green line represents the worldline of a

particle (spin). c A worldline evolution in a replica system under the view of y − z
plane in (a). The realworldline (solid line) locates at the τA =0, 1, 2, . . . layers and the
line goes in/out of a hole means it goes in/out of one replica. Between a pair of
holes, we can imagine a virtual process (dashed line) which is equivalent to a real
process in normal system. d A worldline evolution in a normal path-integral of
closed system. e The blue line means the space-time world of entanglement
Hamiltonian (EH) which is time independent. The green line represents the space-
timeworld of replicamanifold, i.e., the systemdrawn in (a). These twoworlds cross
at integer time points, thus, we can obtain the information of EH from the green
system at integer time.
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antiferromagnetic Heisenberg model70,72,98. We therefore fit all the
three ESs in Fig. 4b, c and d with the smilar linear spin wave99,100 dis-
persions. As far as we are aware of, these results serve as the first
measurement of ES in 2D entangling region, also consistent with the
equivalence principle of ES and our wormhole picture of worldline in
QMC simulation of ES, as we now turn to.

Wormholes in the path integral
Although the equivalence principle (Fig. 3) well explains the relation
between the ES and energy spectra in above cases, both these systems
have only entangled edges without bulk, they are special. We find the
geometrical manifold of replicas (Fig. 1) provides a very intuitive pic-
ture to understand the general Haldane’s conjecture. It points to a
wormhole effect in the space-time of the replica manifold to make the
edgemode of energy spectrummore important in the low-lying ES. As
shown in Fig. 5a, b, the gray part is the subsystem A and the white part
is the environment A and (a) is a zoom-in of the region inside dotted
box of (b). It’s worthy noting that the replica system is much thicker
here than in Fig. 3b, which represents it has both edge and bulk. As
shown in Fig. 5a, when a worldline (black line) goes into one replica, it
has many choices for the possible paths. The imaginary time correla-
tions caused by the worldline will decay to zero if the worldline goes
straight into depth of replica along time direction, because the cor-
relation function G(τ) ~ e−Δτ and the time length inside replica is infinite
when β→∞. At the same time, the other worldline goes through the
imaginary-time-edge of environment A will reach the other side
through “wormhole” without much attenuation. Because tracing A
actually provides awormhole-like escapeway through connecting both
imaginary-time-edges of environment, i.e., the periodic boundary
condition (PBC) of the imaginary time of A. It automatically guarantees
the imaginary time correlations near the connection between replicas
is stronger, which contribute to the ES. This picture is proved in our
numerics via the correlation function along imaginary timedirection in
Fig. 5c, where the Gk=π(τ) for AFM Heisenberg ladder [the case of

Fig. 5 | The wormhole effect. a Wormhole effect of worldlines going through a
replica. It is a zoom-in of the region inside dotted box of (b). The gray part is the
subsystem A and the white part is the environment A. The arrows go into bulk will
decay to zero as β→∞. At the same time, the arrows go through the imaginary-time-
edge of environment will reach the other side through “wormhole” without much
attenuation. b The path integral of replica system which has both bulk and edge.
The gray part is the subsystem A and the white part is the environment A. The red/
blue line represents the worldline path inside the bulk/on the edge. c The Gk =π(τ)
along imaginary time direction of the replica system for AFM spin ladder in Fig. 2b
with L = β = 100 and βA = 100. The fast mode inside one replica and the slow mode
between the replicas are clearly seen. c A worldline evolution in a normal path-
integral of closed system.
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Fig. 4 | ES ofHeisenberg bilayer across (2+1) O(3) transition. aAntiferromagnetic
Heisenbergbilayer. The reddashed line cut it into two entangledconstituent layers,

A and A. b The low-lying ES of in the Néel phase with L = 50, J0 = 1:732, J = 1 and
β = 100, βA = 32. c The low-lying ES at the quantum critical point with L = 50,

J0 = 2:522, J = 1 and β = 100, βA = 32. d The low-lying ES in the dimerized phase with

L = 50, J0 = 3, J = 1 and β = 100, βA = 32. We show the obtained ES along the high-
symmetry path (0, 0)− (π, 0)− (π,π) − (0, 0). The white line is fitting to the data

with the dispersion 7:5
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Fig. 2b] is shown. It is obvious that there are two time/energy scales:
The fast-decaying one is led by the original Hamiltonian, which hap-
pens inside replica between two integer βA points. It goes into the
depth of replica along time direction as the “decay” ones in Fig. 5a. The
slow-decaying one (envelope of upper boundary at the βA = 0, 1, 2, . . . )
is generated by the wormhole effect, which reflects the imaginary time
dynamics of the entanglement Hamiltonian. It obviously demon-
strated that the wormhole effect strengths the imaginary time corre-
lations of EH, that is, leads the low-lying ES.

We note such wormhole effect in the path-integral formulation is
for the first time reported, and it not only offers the explanation of the
Li and Haldane conjecture, but also predict new phenomena that can
be tested within the replicated manifold settings77, as we
discuss below.

Amplification of bulk energy gap in ES
Our wormhole picture of the path-integral in replicated manifold for
ES is very general. Although the ladder and bilayer we studied above
belong to the subsystem A has only edge without bulk, the wormhole
effect also plays important role in the systemswith bothbulk and edge.
In the following,wewould discussHandane’s conjecture in thesecases.

As the summation of weights in path integral is e�
R

DðLÞΔðLÞ, where
the L is the path and ΔðLÞ is the gap of this path. In a roughmean field
estimation, the cost can be treated as L×ΔðLÞ. The L is the (imaginary
time) path length andΔðLÞ is themeangapalong this path. The smaller
cost L×ΔðLÞ make the related weight of the path integral more
important.

Comparing the two typical paths in the depth of bulk and around
the entangled edge as the red line andblue line shown in the Fig. 5b, it’s
obvious that the edgemode takesmore important role. Under a rough
estimation, the scale of the red path length is about β × n and the blue
path length is about 1 × n. The n is the number of the replicas. Thus, the
ratio of the two paths can be simplified as β: 1. Therefore, wormhole
effect gives the ratio of the cost between the bulk and entangled edge
as βΔb : Δe. The energy gap of bulk is amplifiedby a factor of β in the ES
and it makes the low-lying ES always close to the edge energy mode at
β→∞ limit, not only in the topological state cases (gapped bulk and
gapless edge), but also both bulk and edge have finite gaps. We
therefore conject that if the β is finite, the entangled edge are gapped
and subsystem bulk is gapless, the low-lying ES will be more like the
energy spectra of bulk. Such “reversal” of the Li and Haldane con-
jecture has been shown in recent work77. Moreover, if both bulk and
edge are gapped, the β will lead to a competition of both gaps and
induce a transition of the ES at finite temperature. We note the similar
dynamical behaviors (amplification of bulk gap) has also been
observed in 1D system when it can be described by CFT101. However,
our result is beyond CFT and dimension, and is more general and
fundamental. We also note that the forms of the entanglement
(modular) Hamiltonian across such transitions have been discussed in
the rich literature45–48, it is possible to foresee if the entanglement
(modular) Hamiltonian exhibits a local structure, then one could in
principle extract (or “learn”) the entanglement Hamiltonian from the
time evolution of local observables in QMC.We leave these interesting
directions to future works.

Discussion and conclusion
Overall, we realize a practical scheme to extract the low-lying ES from
QMC simulations and the computation of ES for 2D entangling region
is presented for the first time. Combined with the unifying picture of
equivalence principle and wormhole effect in path-integral formula-
tion, our method makes the ES measurement possible for high
dimersion quantum many-body systems with large entangling region.
Our method is not only limited to QMC for spins, as the existed pio-
neering works in computing the ES for interacting fermion
systems37,38,44, but can alsobe extended to other numerical approaches

for highly entangled quantum matter, such as the finite temperature
tensor-network algorithm102–104.

Methods
Stochastic analytical continuation
We employ a stochastic analytical continuation (SAC)66–69,75 method to
obtain the spectral function S(ω) from the imaginary time correlation
G(τ) measured from QMC, which is generally believed a numerically
unstable problem.

The spectral function S(ω) is connected to the imaginary time
Green’s function G(τ) through:

GðτÞ=
Z 1

�1
dωSðωÞKðτ,ωÞ ð4Þ

here K(τ,ω) is the kernel function depending on the temperature and
the statistics of the particles. We restrict ourselves to the case of spin
systems and with only positive frequencies in the spectral, where
K(τ,ω) = (e−τω + e−(β−τ)ω)/π. Then, we have

GðτÞ=
Z 1

0

dω
π

e�τω + e�ðβ�τÞω

1 + e�βω
BðωÞ ð5Þ

here B(ω) = S(ω)(1 + e−βω) is the renormalized spectral function.
In fact, G(τ) for a set of imaginary time τi is obtained by QMCwith

the statistical errors. The renormalized spectral function can be set
into large number of equal-amplitude δ-functions

BðωÞ=
XNω

i =0

aiδðω� ωiÞ ð6Þ

Then the fitted Green’s functions ~Gi from Eq. (5) and the measured
Greens functions �Gi are compared by the fitting goodness

χ2 =
XNτ

i,j = 1

ð~Gi � �GiÞðC�1Þijð~Gj � �GjÞ ð7Þ

where the covariance matrix is defined as

Cij =
1

NBðNB � 1Þ
XNB

b= 1

ðGb
i � �GiÞðGb

j � �GjÞ, ð8Þ

withNB the number of bins, themeasuredGreen’s functions of eachGb
i .

The weight for a given spectrum is taken to follow a Boltzmann
distribution via Metropolis sampling

W ðfai,ωigÞ∼ exp � χ2

2Θ

� �
ð9Þ

with Θ a virtue temperature to balance the goodness of fitting χ2 and
the smoothness of the spectral function. All the spectral functions of
sampled series will be averaged to obtain the final spectrum.

In this paper, we use the correlation of Sz operators to obtain the
spectra. For a broad class of spin models, the operator Sz can reveal a
lot excitations unless it can not connect the ground state and the
excited state (e.g., the excitation changes the total Sz). For example,
previousworks onextracting the spectra of othermodels evenwithout
SU(2) symmetry via Sz correlations: neutron scattering spectrum
through transverse field Ising model105; interaction between visons in
quantum dimer model71; and the Higgs mode in a weak Zeeman field
Heisenberg model72, etc.

In addition, we will need to design different operators to probe
some special spectra. These can be readily implement in many other
systems, for instance, people have measured the vison and dimer
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correlations and their spectra in quantum dimer models71,74,76, the S+S−

and bond-bond correlations and their spectra in quantum spin
models70,72–74. The corresponding entanglement spectral measure-
ments, can be carried out in the similar manner.

Data availability
The data that support the findings of this study are available from the
authors upon reasonable request.

Code availability
All numerical codes in thispaper are available upon reasonable request
to the authors.
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