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Experimental cheat-sensitive quantum weak
coin flipping

Simon Neves 1 , Verena Yacoub1, Ulysse Chabaud 2,3, Mathieu Bozzio 4 ,
Iordanis Kerenidis5 & Eleni Diamanti 1

As inmodern communication networks, the security of quantumnetworkswill
rely on complex cryptographic tasks that are based on a handful of funda-
mental primitives. Weak coin flipping (WCF) is a significant such primitive
which allows twomistrustful parties to agree on a random bit while they favor
opposite outcomes. Remarkably, perfect information-theoretic security can
be achieved in principle for quantumWCF.Here, we overcome conceptual and
practical issues that have prevented the experimental demonstration of this
primitive to date, and demonstrate how quantum resources can provide cheat
sensitivity, whereby each party can detect a cheating opponent, and an honest
party is never sanctioned. Such a property is not known to be classically
achievable with information-theoretic security. Our experiment implements a
refined, loss-tolerant version of a recently proposed theoretical protocol and
exploits heralded single photons generated by spontaneous parametric down
conversion, a carefully optimized linear optical interferometer including beam
splitters with variable reflectivities and a fast optical switch for the verification
step. High values of our protocol benchmarks are maintained for attenuation
corresponding to several kilometers of telecom optical fiber.

Communication network users must operate or interact with poten-
tially untrusted parties, servers, nodes and transmission channels in
order to handle sensitive data, sign digitally, perform online banking,
delegate computations, and electronically vote, among many other
tasks. To guarantee the security of such network tasks against mal-
icious entities, it is necessary to rely on a collection of building blocks,
called cryptographic primitives, which can be combined with one
another to guarantee overall security1. Coin flipping is a fundamental
primitive that comes in two versions. In strong coin flipping (SCF), two
parties remotely agree on a random bit such that none of the parties
canbias theoutcomewith probability higher than 1/2 + ϵ, where ϵ is the
protocol bias2. It is essential for multiparty computation3, online
gaming and more general randomized consensus protocols involving
leader election4. In weak coin flipping (WCF), on the other hand, there

is a winner and a loser, in the sense that both parties have a preferred,
opposite outcome.

In classical communication networks, there exist no secure SCF
and WCF protocols without computational assumptions or trusting a
third party2,5–7. Although accepting a nonzero abort probability allows
for information-theoretically secure classical schemes to exist8, such
schemes cannot detect malicious behaviours deviating from the
original protocol. On the other hand, cheat-sensitive coin flipping
becomes possible when using quantum properties. Quantum SCF
protocols have in fact been shown to display a fundamental lower
bound on their bias9, but quantumWCFmay achieve biases arbitrarily
close to zero10–12. Interestingly, quantumWCF can also be used for the
construction of optimal quantum SCF and quantum bit commitment
schemes13–15.
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While quantum SCF protocols have been experimentally
demonstrated16–18, along with other quantum two-party
computations19–23, the implementation of quantum WCF has
remained elusive so far, because of the absence of protocols bringing
together the use of practical states and measurements with tolerance
to losses. Recently, a linear optical implementation, exploiting photon-
number encoding, was proposed in24, but the quantum advantage it
canprovide in termsof bias is very sensitive to losses: a dishonest party
may always declare an abort when they are not satisfied with the out-
come of the coin flip.

Here, we provide an experimental demonstration for quantum
WCF. Our demonstration relies on the generation of heralded single
photons by spontaneous parametric down conversion (SPDC), which
are effectively entangled with the vacuum on a beam splitter of vari-
able reflectivity. The outcome of the coin flip is then provided by the
detection or absence of a photon. Our protocol is a refined version of
the theoretical protocol from24, which provides a new desirable
property in the presence of losses that relates to cheat sensitivity
rather than bias: by dropping the condition from24 that both parties
have equal probabilities ofwinningwhen cheating, our protocol allows
them to detect whether their opponent is cheating during a verifica-
tion step, and does not sanction an honest party, while retaining
security in terms of bias. There are no known classical protocols that
achieve such cheat sensitivity25,26. Inorder to emphasize the robustness
of our protocol to losses, we show that it remains secure over an
attenuation that corresponds to several kilometers of telecom
optical fiber.

Results
Protocol
We first introduceour protocol for quantumweak coin flipping using a
single photon, building on the protocol proposed in24. Our protocol
accounts for potential losses and the detection of a cheating party (see
Fig. 1 and Box 1). It ends with five mutually incompatible outcomes:
Alice wins or is sanctioned, Bob wins or is sanctioned, or the protocol
aborts. The protocol uses three beam splitters, whose reflectivities x, y,
and z are chosen in order to satisfy two conditions on these events.
Firstly, the fairness condition, which states that Alice and Bob have
equal winning probabilities when both of them are honest, i.e.
PhðA:winsÞ=PhðB:winsÞ, or

Ph ðb, v1, v2Þ= ð0, 1, 0Þ
� �

=Ph ðb,aÞ= ð1, 0Þ� �
: ð1Þ

Secondly, the correctness condition, which states that an honest
party should never be sanctioned for cheating, i.e.
PhðA: sanctionedÞ=PhðB: sanctionedÞ=0, or

Ph ðb, v2Þ= ð0, 1Þ
� �

=Ph ðb,aÞ= ð1, 1Þ� �
=0: ð2Þ

Note that contrary to the previous protocol24, we drop the
balancing condition,which states thatAlice andBob should have equal
probabilities of winning when using an optimal cheating strategy, as it
cannot be satisfied together with the correctness condition in pre-
sence of experimental imperfections. Consequently, a practical
balanced protocol would sanction an honest Alice for cheating, with
non-zero probability. This impacts the cheat sensitivity, as one cannot
trust the verification step if it sanctions honest parties (see
Supplementary Note 1 for details on the protocol and the chosen
conditions).

BOX 1

Protocol for cheat-sensitive quantum weak coin flipping with a single
photon

1. Preparation. Alice sends a single photon on a beam splitter of reflectivity x, keeps the reflected mode, and sends the other to Bob.
2. Decision. Bob sends the state he receives on a beam splitter of reflectivity y, measures the transmittedmodewith a single-photon detectorDB,

and broadcasts the outcome b = 0 (no photon detected) or b = 1 (a photon was detected).
3. Verification. If b = 0, Alice sends her reflected mode to Bob, who mixes it with his own reflected mode on a beam splitter of reflectivity z, and

measures the two outputs with single-photon detectors DV1
and DV2

. He distinguishes three cases depending on the corresponding out-
comes (v1, v2):

- v2 = 1: Alice is sanctioned for cheating,
- (v1, v2) = (1, 0): Alice wins,
- (v1, v2) = (0, 0): the protocol aborts.

If b = 1, Bob discards his state. Alice measures her state with a single-photon detector DA. She discerns two cases depending on the out-
come a:

- a = 0: Bob wins,
- a = 1: Bob is sanctioned for cheating.

Fig. 1 | Schematic description of cheat-sensitive quantum weak coin flipping.
The preparation, decision and verification steps, along with the role of measure-
ment outcome b and beam splitter reflectivities x, y, z, are detailed in Box 1. The
sources for Alice and Bob representations can be found atWoman icons created by
Freepik - Flaticon and Man icons created by Freepik - Flaticon, respectively.
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Experimental setup
The experimental setup used for the implementation of our protocol is
shown in Fig. 2. Alice generates heralded single photons via type-II
SPDC in a periodically-poled potassium titanyl phosphate (ppKTP)
crystal. The protocol is implemented using fibered components at
telecom wavelength. As polarization is a degree of freedom not used
for encoding, Alice entangles it with the spatial modes, using polariz-
ing beam splitters (PBS). In this way, the beam splitters (BS) reflectiv-
ities x, y, and z, can be effectively tuned by rotating the single-photon
polarization before each PBS, using polarization controllers. We use a
fast optical switch in order to select the party who performs the ver-
ification step, depending on the outcome b. During this operation, the
photon is delayed using optical fiber spools; Alice’s source together
with Bob’s verification setup then form a >300 m-long fibered Mach-
Zehnder interferometer. In order tomitigate the resulting interference
noise, we carefully insulated the spools and achieved an interference
visibility of v ≳ 96% (see Methods for details).

Under these conditions, the thermally-induced fluctuations are
slow enough such that we can easily post-select the protocol runs in
which there was no phase difference between the two arms of the
interferometer. This post-selection does not threaten the protocol
security, as the parties could monitor the interference before per-
forming the coin flip, and agree on starting the protocol onlywhen the
phase difference is null. Single photons are detected with threshold
superconducting nanowire single-photon detectors (SNSPDs) in order

to maximize the detection efficiency. Finally, to simulate commu-
nication distancebetweenAlice andBob, and the corresponding losses
induced by the photon storage that is necessary in this case, we use
variable optical attenuators (VOAs).

Because of their central role in the analysis of the protocol, we
wish to distinguish the BS reflectivities from the losses induced by the
rest of the components in the setup. For that purpose we define dif-
ferent transmission (or heralding) efficiencies, measured when the
reflectivities and the state of the switch are set to trivial values x, y,
z, s∈ {0, 1}. These values reflect the losses in every possible path in the
experiment, which are induced for instance byfiber spools, VOAs,fiber
coupling and mating, or detectors. We detail the notations for the
efficiencies corresponding to each path and their measured values in
Table 1. Each path is defined by the detector it ends in and the arm it
goes through (Alice’s or Bob’s).

Results with honest parties
We are first interested in the protocol when both Alice and Bob are
honest. In our experiments, because of dark counts, double-pair
emission, or imperfect interference visibility, Alice and Bob can still be
sanctioned even though they are honest and the setup is optimized. In
general, we cannot tune the reflectivities perfectly, so Alice and Bob
may have slightly different winning probabilities. This means our
implementation cannot satisfy perfectly the fairness and correctness
conditions. Therefore, we define the fairness F and correctness C in
order to quantify the closeness to these two conditions as follows:

F = 1� PhðA:winsÞ �PhðB:winsÞ
PhðA:winsÞ+PhðB:winsÞ

����
����, ð3Þ

C = 1�PhðA: sanctionedÞ+PhðB: sanctionedÞ
PhðA:winsÞ+PhðB:winsÞ

: ð4Þ

Both quantities are equal to 1 when the corresponding conditions
are perfectly fulfilled, and C,F < 1 otherwise. In our implementation,
the probability of emitting a pair in a pump pulse is p≃0.015, so
double-pair emissions are highly unlikely. We condition any detection
event on the detection of both a pump pulse and a heralding photon,
which effectively minimizes the already low dark count rates in
SNSPDs. In this way, we can omit the double-pair emissions and dark
counts as a first approximation, such that only the interference
visibility v limits C and F . Under these assumptions, we show that the

Fig. 2 | Experimental setup for cheat-sensitive quantum weak coin flipping. A
ppKTP crystal (30mm-long, 46.2μmpoling period) is pumped by a 770 nm pulsed
laser (≈2 ps long pulses, 76 MHz rate). Twin photons at telecom wavelengths are
generated via type-II SPDC, separated from the pump by a dichroic mirror (DM),
and from each other by a PBS. The signal photon is used to perform the protocol as
shown in the scheme in Box 1, which is the reference for defining the reflectivities x,
y and z. These are tuned with polarization controllers, placed before PBSs. At the
end of each of the possible paths, the signal photon is detectedwith high-efficiency
SNSPDs (DA,DB,DV 1

,DV 2
). A coincidence counter (c.c.) conditions each detectionon

the idler photon, detected with an InGaAs avalanche photodiode (APD)Dherald, and

on the emission of a pump pulse, detected via an internal photodiode,measured in
a 500 ps coincidence window. The signal from Bob’s detector, conditioned on the
heralding signal via a logic AND gate, triggers a fast optical switch on Alice’s side.
While these signals are being processed, the photon is delayed by 300 m-long
optical fiber spools on each party’s side. A delay line allows for fine-tuning of the
wave-packets timing on the last PBS. Communication distance L between Alice and
Bob is simulatedbyVOAsof transmission e−0.02L, which are shownon thedashed line
marking visually the separation between the two parties. Two more VOAs are
included in the setup to simulate losses due to photon storage corresponding to
this distance.

Table 1 | List of notations and measured values for the
efficiencies corresponding to the different paths involved in
the experiment

Notation Path x y z s Efficiency

ηs
A x→ switch→DA 1 1 0.315 ± 0.008

ηy
B x→ y→DB 0 0 0.303 ± 0.008

ηV1
A x ! switch ! z ! DV1

1 1 0 0.231 ± 0.008

ηV2
A x ! switch ! z ! DV2

1 0 0 0.219 ± 0.008

ηV1
B x ! y ! z ! DV1

0 1 0 0.184 ±0.008

ηV2
B x ! y ! z ! DV2

0 1 1 0.175 ± 0.008

The paths are described by the PBSs (labelled by the corresponding reflectivities) and/or the
switch they go through, as well as thedetector at the endof thepath.We also list the values of x,
y, z, and the state of the switch s, required to measure these efficiencies. Values are given for
VOAs set at 0 dB.
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correctness and fairness conditions are optimally approached by
setting the following reflectivities:

xh = 1 +
ηV 1
A

ηV 1
B

+
ηV 1
A

ηy
B

ð1 + vÞ
" #�1

, ð5Þ

yh = 1 +
ηV 1
B

ηy
B

ð1 + vÞ
" #�1

, ð6Þ

zh =
1
2
: ð7Þ

The reader can refer to Supplementary Note 1 for the detailed
proof and Supplementary Note 2 for the values used in our imple-
mentation. Then, as long as the parties are honest, we obtain the fol-
lowing probabilities for significant events:

Ph A:winsð Þ=Ph B:winsð Þ= xhη
V 1
A ð1 + vÞ, ð8Þ

Ph B: sanctionedð Þ=0, ð9Þ

Ph A: sanctionedð Þ= xhηV2
A ð1� vÞ: ð10Þ

Note here the importance of maximizing the interference visibility
v so that Alice is not sanctioned while being honest. The above
expressions also provide a systematic way to optimize the reflectivities
for honest parties, which does not require their direct measurement
(see Methods for details).

We perform the protocol for different communication distances
between Alice and Bob. These are simulated by setting each of the
VOAs to a transmission η = e−0.02L with L the distance in kilometers,
introducing additional losses to each arm of the setup. We optimize
the fairness and correctness at each distance by tuning the reflectiv-
ities.We continuously run the protocol and record all detection events
regardless of the phase difference between the two arms of the
interferometer. Detection of both a heralding photon and a pump
pulse triggers aprotocol run. The averageprotocol rate is≃51 kHz. As if
Bob was monitoring the phase difference, we post-select the runs for
which the phase spontaneously goes to zero thanks to slow tempera-
ture fluctuations, such that the rate in DV2

(which essentially corre-
sponds to the probability of honest Alice being sanctioned) is

minimized. In this way, we measure at least 1.5 × 105 valid iterations of
the protocol for a 15-min run, making the Poisson noise negligible. In
Fig. 3 we give the probabilities of the different events for several
distances.

We notice that the abort probability takes relatively high values,
even whenwe trivially set the communication distance to L = 0 km. This
has to do with important losses, particularly in mating sleeves con-
necting the numerous optical fiber components, the delay line, or in
crystalline components suchas thePBSsor theoptical switch. Significant
improvements could be made by fusing optical components for
instance. Other critical features are the single-photon coupling and
SNSPDs efficiencies. Both of these aspects are being actively studied27–32

and could see significant improvement in the near future.We also notice
that thewinning probabilities of Alice andBob are indeed very close and
the probability of an honest party to be sanctioned is minimized.

To further illustrate theperformanceof our protocol, we show the
fairnessF and correctness C in Fig. 4. Thanks to the appropriate tuning
of reflectivities x, y, and z, as well as low dark count rates and high
visibility, we were able to keep both of these quantities very close to 1,
thus approaching the ideal conditions.

Cheat sensitivity, results with dishonest parties
The security ofWCFprotocols ismeasured by the bias that a dishonest
party can induce on the flip. While we drop the balancing condition
compared to the protocol in24, our protocol retains the same security
guarantees in terms of bias, i.e., the winning probability of a dishonest
party is bounded away from 1 (see Supplementary Note 1). Now we
highlight the cheat sensitivity of our protocol, by implementing pos-
sible attacks by dishonest parties. We consider one party to be dis-
honest, the other one being honest. Bob’s optimal cheating strategy is
quite straightforward, and consists in claiming b = 1 regardless of the
actual measurement in detector DB

24. As Alice is honest she sets the
reflectivity x = xh given in Eq. (5). When Bob claims b = 1 then Alice’s
switch directs her mode in detector DA so that she can verify whether
Bob is being honest. She then detects a photon with probability:

Pða= 1∣B: cheatsÞ= xhηs
A, ð11Þ

in which case Bob is sanctioned for cheating. Otherwise, Bobwins with
probability:

Pða=0∣B: cheatsÞ= 1�Pða= 1∣B: cheatsÞ
= 1� xhη

s
A:

ð12Þ

In this way, Alice’s conditional verification, enabled in our setup by the
fast optical switch, allows for a first kind of cheat sensitivity.

In order to illustrate this aspect, we implement Bob’s optimal
cheating strategy by systematically forcing the switch to send the
photon to DA. Wemeasure the probability of sanctioning Bob for each
of the communication distances simulated in the honest case. As dis-
played in Fig. 5, we show experimentally that the probability of

Fig. 3 | Probability of each outcome of the protocol, measured for different
communication distances between Alice and Bob. The abort probability is
shownon the right axis, inmagenta. The lines represent the theoretical evolutionof
probabilities, calculated via Eqs. (5) to (10), with efficiencies given in Table 1. The
error bars are mainly due to error propagation on these efficiencies.

Fig. 4 | Correctness C and fairness F measured in our experimental imple-
mentation of the protocol with honest parties, for different communication
distances. The dashed line gives the target value for an ideal protocol.
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sanctioning Bob decreases as communication-induced losses increase,
therefore limiting Alice’s cheat sensitivity. This gives a substantial
advantage to BobwhenAlice’s arm is particularly lossy. Note thatwhen
Bob implements that strategy, only two events are possible, namely
Bobwinning or Bob being sanctioned; Alice can neverwin except if the
sanction is precisely giving Alice the win (see discussion below).

On the other hand, when Bob is honest and Alice is dishonest, her
optimal cheating strategy is less straightforward. In particular, our
security proof does not derive her optimal strategy but rather derives a
security bound valid for all strategies (see Supplementary Note 1).
Nevertheless, we can illustrate this scenario using suboptimal strate-
gies by simply tuning the value of x, so that Alice sends the photon to
her side with higher probability: intuitively, without taking the ver-
ification setup into account, we can naively expect Alice’s winning
probability to increase as she increases the reflectivity x. We experi-
mentally perform the protocol for different values of x, all of them
higher than the honest value (5). In that case, the expected event
probabilities are given by the following formula (see Supplementary
Note 1 for the detailed proof):

PðA:winsÞ= 1
2

xηV 1
A + ð1� xÞyhηV 1

B + 2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞyhηV 1

A ηV 1
B

q� �
, ð13Þ

PðA: sanctionedÞ= 1
2

xηV2
A + ð1� xÞyhηV2

B � 2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞyhηV2

A ηV2
B

q� �
,

ð14Þ

PðB:winsÞ= ð1� xÞð1� yhÞηy
B: ð15Þ

In Fig. 6(a), we show the probabilities of significant events. Contrary to
our naive conjecture, we see that thanks to Bob’s verification, and thus
cheat sensitivity, Alice does not have a clear interest in forcing x = 1, as
her winning probability peaks around x≃0.78.

Alice’s interest in cheating actually depends on how deterrent the
sanction is.Wedefine a factor δ ≥0, whichquantifies that deterrability,
or alternatively how harmful the sanction is for a cheating party. From
this parameter we can derive an empirical function that quantifies
Alice’s interest in cheating:

IAðδÞ =
PðA:winsÞ �PðB:winsÞ � δPðA: sanctionedÞ
PðA:winsÞ+PðB:winsÞ+ δPðA: sanctionedÞ : ð16Þ

This function is built such that it can be linked to the fairness (3)
when taking the appropriate sanction. Indeed, if for δ∈ [0, 1] we
sanction a cheating Alice by giving the win to Bob with probability δ,
then the relationF = 1� ∣IAðδÞ∣ holds. In thisway, δ =0 corresponds to
a protocol that simply aborts without sanction when Alice is caught,
and δ = 1 gives a protocol that always declares Bob the winner when
Alice is caught. Ultimately IAðδÞ can be interpreted as a sort of
expectation value of a cheating Alice, or a comparison between what
she can gain by cheating and what she can lose. In Fig. 6b we plot
Alice’s cheating interest for different values of δ and x. If no sanction is
taken (δ =0), we see that her interest in cheating grows with x. Indeed,
even if her winning probability decreases for high values of x, Bob’s
then approaches zero, such that Alice wins with absolute certainty as
long as the protocol does not abort. On the contrary, as the sanction is
tightened and the value of δ increases, Alice has less interest in
cheating for a given value of x. Furthermore, the value of x that max-
imizes IA also goes down, showing how strengthening the sanction
actually forces Alice to adopt a strategy that leaves a chance for Bob to
win. We finally discuss scenarios in which both parties cheat simulta-
neously in Supplementary Note 1.

Discussion
After refining a previous theoretical proposal for a practical quantum
weak coin flipping protocol24, we were able to perform an imple-
mentationof thisprotocol by generating aheralded singlephoton, and
entangling it effectivelywith the vacuum.Thanks to the use of lowdark
counts SNSPDs, tunable beam splitters and a fast optical switch, while
keeping a high visibility in our fibered interferometer, we demon-
strated a fair and cheat-sensitive protocol. Importantly, this last

Fig. 5 | ProbabilitiesofBobwinningorbeing sanctioned,whenhe is performing
an optimal attack, measured for different communication distances between
Alice andBob.Only one set of points is shown for the twoaxes, as these twoevents
are complementary. The line is plotted from Eqs. (11) and (12), with ηs

A given in
Table 1. The error bars are mainly due to error propagation on this efficiency. The
observed deviation from the theory is linked to systematic errors when setting the
reflectivities, which is discussed in Supplementary Note 2.

Fig. 6 | Results for a dishonest Alice who sets different values of x than the
honest value.The lines show theoretical predictions, calculated fromEqs. (13)-(16),
with efficiencies given inTable 1. The error bars aremainlydue to error propagation

on these efficiencies. a Probabilities of different outcomes. b Alice’s cheating
interest for different deterrent factors δ. The dashed black line indicates the points
of maximum interest.
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property allows to detect a cheating party with non-negligible
probability.

Note that in order to sanction a dishonest party with high prob-
ability, one could systematically sanction thewinning party, regardless
of their honesty. Thus, in order to display genuine cheat sensitivity, we
highlight the primary importance of the correctness condition, which
ensures an honest party is never sanctioned for cheating. This forced
us to ignore the balancing of the benefit gained by each party when
adopting an optimal cheating strategy, which was previously assessed
as a necessary condition for a weak coin-flipping protocol24. Still, we
propose a way of restoring this balance, by using the deterrent factor
and interest function introduced in the previous paragraphs.

The balance could indeed arise from choosing different sanctions
for Alice andBob, associatedwith different deterrent factors δA and δB,
in order to equalize the corresponding interest functions IAðδAÞ and
IBðδBÞ. A dishonest party who could dramatically increase their win-
ning probability would therefore take a bigger risk of being harshly
sanctionedwhen cheating. Interestingly enough, one could actually set
arbitrarily big deterrent factors δ > 1 in order to account for harsher
sanctions.We leave the evaluation of these sanctions, deterrent factors
and potential alternative interest functions as an interesting game
theory open question.

Froman experimental perspective, we remark that the robustness
to losses in our implementation was illustrated by simulating com-
munication distance with variable optical attenuators. In a practical
implementation of the protocol, it would be necessary to maintain a
high visibility for a longer interferometer, which could be achieved
with active stabilization techniques used in twin-field quantum key
distribution implementations for instance33,34. Furthermore, optical
implementations of quantumWCF with arbitrarily small biases are yet
to be discovered—such implementations would be challenging since
they require a rapidly growing number of rounds of communication
between the parties35.

Methods
Source and detection
Our single-photon signal was heralded by its idler twin, in a pair
generated via type-II SPDC in a ppKTP crystal (Raicol). Wemaximized
the heralding efficiency ηs = Rsi/Ri, with Ri the idler photon detection
rate and Rsi the pair detection rate. For that purpose, the pump focus
and pair collection modes were tuned carefully when coupling to
single-mode fibers, and losses on the signal-photon path were mini-
mized. In particular, we used >85%-efficiency SNSPDs (ID281 from ID
Quantique) to detect that photon. Losses on the idler photon were
not limiting, so we detected it with a 25%-efficiency InGaAs APD
(ID230 from IDQuantique). In this way, without adding the rest of the
components, we measured a maximum heralding efficiency ηs = 63%.
All detection events were recorded by a time tagger (Time Tagger
Ultra from Swabian Instruments), and dated with picosecond preci-
sion. Two detection events were considered simultaneous when
measured in a 500 ps coincidence window. We also use the pump
laser as a clock, in order to filter out most of the dark counts from the
APD, which occur at a 1 kHz-rate. In this way, protocol runs were
triggered at a rate of 51 kHz, with 40 Hz of runs mistakenly triggered
by dark counts.

Error management
Various factors can generate undesired detection events in our proto-
col. This is true in particular for sanction outcomes, triggered by a
detection inDA orDV2

which should never occurwhen a party is honest.
Most of these outcomes arise from Bob’s verification procedure, which
relies on a Mach–Zehnder interferometer. If this interference is of poor
visibility, thenDV2

can be triggered even if Alice is being honest, andher
winningprobability is also substantially lowered.Considering the length
of this interferometer (>300 m), the visibility is limited by two main

factors, namely the coherence length and phase fluctuations. The
coherence length of photons is≃ 2.4mm,which is small enough to start
losing coherence after a few hours of experiment runs. This is mostly
caused by length variations in the interferometer arms due to thermal
fluctuations (≃2.4mm/∘C for a 300m arm).We therefore regularly tune
the length of one arm of the interferometer, using a free-space micro-
metric delay line. Phase fluctuations can be separated into two regimes.
Slowphase fluctuations, of typical frequency≲1 Hz, are again caused by
thermal variations.We can easilymeasure them, and then either correct
them or simply post-select the desired phase differences. Fast phase
fluctuations, however, are caused by noise spanning the audible spec-
trum from 20 Hz to 2 kHz. This noise is amplified by the 300 m fiber
spools, which act as sort of microphone. These fluctuations are hard to
resolve with our single-photon rate of a few 10 kHz, such that the
interference pattern is averaged on that noise, and we witness an
interference visibility of approximately v≃80%. In order to characterize
that noise,wemeasure the interferencepatternwith a continuousdiode
laser and a fast photodiode. Without any sound insulation, the noise in
the interference fluctuation spans the audible spectrum with a power
spectral density of approximately≃ 7 × 10−3V2/Hz. In order to mitigate
this noise, we wrap the fiber spools into several layers of sound-
absorbing floating parquet underlay. We then achieve an interference
visibility of v≃96%.

Reflectivity setting
When the parties are honest, Bob first sets z = 1/2 by blocking Alice’s
signal, and equalizing the detection rates in DV 1

and DV2
. This later

ensures an optimized interference, and therefore the correctness
condition. Then he can tune y such that the detection rate inDB equals
twice the total rate in DV 1

and DV2
, which should ensure the fairness

condition. Alice then tunes x in order to optimize the interference
visibility, which should complete the setting of reflectivities. If v is
significantly lower than 1, Alice and Bob might have to perform some
mild adjustments on x and y in order to maximize the fairness and
correctness. After performing a protocol with reflectivities x, y, z we
can evaluate them by measuring some specific probabilities (see
Supplementary Note 2).

Optical switching
During the decision step of the protocol, Bob’s detection deter-
mines which party is winning, and which one is performing the
verification. This decision is effectively taken into account by Alice
via her optical switch (Nanospeed from Agiltron). In this way, if Bob
does not claim victory, the switch is in state “0" in order to send
Alice’s state to Bob, who performs the verification. If Bob claims
victory, the switch goes to state “1" such that Alice keeps her state
and performs the verification. In practice, we send the electronic
signal from Bob’s detector, together with the heralding signal, to a
fast programmable logic AND gate, integrated in a time controller
(ID900 from ID Quantique). This AND gate filters out potential
detection events outside of the protocol, which might saturate the
optical switch. The gate’s output signal is then sent to the optical
switch, which executes the decision (see Supplementary Note 2 for
more details).

Data availability
The data that support the findings of this study are available in
the Supplementary Information and from the corresponding authors
upon request.
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