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Data integration across conditions improves
turnover number estimates and metabolic
predictions

Philipp Wendering 1,2,3, Marius Arend 1,2,3, Zahra Razaghi-Moghadam2 &
Zoran Nikoloski 1,2

Turnover numbers characterize a key property of enzymes, and their usage in
constraint-based metabolic modeling is expected to increase the prediction
accuracy of diverse cellular phenotypes. In vivo turnover numbers can be
obtained by integrating reaction rate and enzyme abundance measurements
from individual experiments. Yet, their contribution to improving predictions
of condition-specific cellular phenotypes remains elusive. Here, we show that
available in vitro and in vivo turnover numbers lead to poor prediction of
condition-specific growth rates with protein-constrained models of Escher-
ichia coli and Saccharomyces cerevisiae, particularly when protein abundances
are considered. We demonstrate that correction of turnover numbers by
simultaneous consideration of proteomics and physiological data leads to
improved predictions of condition-specific growth rates. Moreover, the
obtained estimates are more precise than corresponding in vitro turnover
numbers. Therefore, our approach provides the means to correct turnover
numbers andpaves theway towards cataloguing kcatomesof other organisms.

Genome-scale metabolic models (GEMs) together with advances in
constrained-based modeling have led to an improved understanding
of how cellular resources are used to fulfill different cellular tasks1–3.
Recent advances are largely propelled by the development of protein-
constrained GEMs (pcGEMs) in which the catalytic capacities of indi-
vidual enzymes are linked to the allocation of enzyme abundances4.
Such models have led to more accurate predictions of maximum
specific growth rates on different carbon sources5–7, fluxdistributions7,
and other complex phenotypes8 in Escherichia coli and Saccharomyces
cerevisiae. However, the development of pcGEMs critically depends on
the integration of organism-specific enzyme turnover numbers, kcat,
comprising the kcatome of an organism9.

Measuring the kcatome of an organism based on in vitro
characterization is limited due to the impossibility to purify specific
enzymes, lack of availability of substrates, and knowledge of
required cofactors, such that their relevance for studies of in vivo

phenotypes remains questionable10,11. Proxies for in vivo turnover
numbers also termed maximal apparent catalytic rates, can be
estimated by combining constraint-based approaches for flux pre-
diction with measurements of protein abundance under different
growth conditions or genetic modifications12–14. The results from
this approach, which entails ranking condition-specific estimates
that use individual data sets, have shown that the proxies for in vivo
turnover numbers generally concur with in vitro kcat values in
E. coli12. However, applications with data from S. cerevisiae15 and
A. thaliana16 indicated that these proxies for in vivo turnover
numbers do not reflect in vitromeasurements. Another approach to
estimate the kcatome relies exclusively on the machine and deep
learning methods that use a variety of features of enzymes (e.g.
network-based, structure-based, and biochemical)17–19, resulting in
predictive models that can explain up to 70% of the variance in
turnover numbers obtained in vitro.
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The estimates of turnover numbers are integrated into metabolic
models by different constraint-based approaches that have
been grouped into coarse-grained (e.g. MOMENT5, sMOMENT20,
eMOMENT21, and GECKO7, which all result in the same feasible space in
protein limited growth scenarios) and fine-grained (e.g. resource bal-
ance analysis1 and ME-models2,3). Of these, GECKO7 has been adopted
in several recent studies due to the elegantly structured formulation of
the protein constraints. In addition, GECKO allows for the integration
of protein contents and correction factors that account for the mass
fraction of enzymes (f ) included in the model as well as the average
in vivo saturation (σ) of all enzymes, facilitating the development of
condition-specific models. While data-driven estimation of in vivo
turnover numbers improves the coverage of kcat values in pcGEMs, the
available estimates usually lead to over-constrained models when
using the allocation of total protein mass, not considered in flux bal-
ance analysis (FBA)22,23.

Here, we propose PRESTO (for protein-abundance-based correc-
tion of turnover numbers), a scalable constraint-based approach to
correct turnover numbers bymatching predictions from pcGEMswith
measurements of cellular phenotypes— simultaneously—over multiple
conditions. As a constraint-based approach, PRESTO facilitates the
investigation of the variability of the proposed corrections. We show
that predictions of growth by pcGEMs of S. cerevisiae with turnover
numbers corrected by PRESTO aremore accurate than those based on
the models that include kcat values corrected based on a contending
heuristic that relies on enzyme control coefficients22. We also
demonstrate that the same conclusions hold when enzyme abun-
dances are integrated into the E. coli pcGEM using PRESTO. Therefore,
PRESTO paves the way to broaden the applicability of pcGEMs for
organisms with biotechnological applications and to arrive at
genotype-specific estimates of the kcatome.

Results
Protein-abundance-based correction of turnover numbers
For a given data set of protein abundances over a set of conditions, the
enzymes with turnover numbers in a pcGEM can be partitioned into
three groups. For instance, a data set of protein abundances that was
recently used to estimate in vivo turnover numbers in S. cerevisiae15

includes 45%, 41%, and 14%measured overall, at least one (but not all),

and none of the 27 used conditions, respectively. Therefore, there is
then different data support for correcting the kcat values of these
classes of proteins. PRESTO relies on solving a linear program that
minimizes a weighted linear combination of the average relative error
for predicted specific growth rates and the correction of the initial
turnover numbers integrated into the pcGEM (Fig. 1, see the “Methods”
section). It further employs K-fold cross-validation (here, K = 3) with 10
repetitions while ensuring a steady state and integrating protein con-
straints for proteins measured overall conditions (Fig. 1, see the
“Methods” section). The training set of conditions is used to generate a
single set of corrected in vitro kcat values, by using the respective
in vivo protein abundances. The resulting corrected kcat values are in
turn used to determine the relative error of the predicted specific
growth rate for each condition in the test set using flux balance ana-
lysis with the pcGEM, while only constraining the total protein content
andmeasured uptake rates. The relative error of the predicted specific
growth rate alongwith the sumof introduced corrections is lastly used
to select the value for the tuning parameter λ in the objective function
of PRESTO, as done in machine learning approaches that rely on
regularization.

PRESTO outperforms a contending heuristic in S. cerevisiae
To determine the performance of PRESTO and compare it to that of
contending heuristics, we used a data set comprising protein abun-
dances and exchange fluxes from 27 diverse conditions, as supported
by the principal component analysis (Supplementary Fig. 1). Applica-
tion of PRESTO with a pcGEM of S. cerevisiae with initial in vitro turn-
over numbers obtained fromBRENDA resulted in amean relative error
of 0.68 from the cross-validation procedure, yielding a correction of
on average 213 turnover numbers (Supplementary Fig. 2a). For the
S. cerevisiae pcGEM, we found a value of 10�7 for the parameter λ in
the PRESTOobjective provides the optimal trade-off between both the
relative error and the sum of introduced corrections (see the “Meth-
ods” section). Moreover, we observed a high overlap between the sets
of proteins with corrected turnover numbers in the cross-validation
(average Jaccard distance of 0.07 (Supplementary Fig. 2b, c)), sug-
gesting that the integrated data from different conditions point to a
specific subset of enzymes that need to be corrected to improve per-
formance of growth prediction.
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Fig. 1 | Schematic overview of the PRESTO approach for kcat correction. The
approach uses a GECKO-formatted pcGEM7 containing turnover numbers from
BRENDA48. Using available data from n experimental conditions, n condition-
specific models are generated using nutrient uptake rates and protein contents.
PRESTO then uses data on abundances for the enzymes measured across the n
investigated conditions and solves a linear program thatminimizes a weighted sum
of two objectives, the relative error to measured specific growth rates and the sum
of positive kcat corrections, δ. The optimalweighting factor, λ, whichmodulates the

trade-off between the two objectives, is then determined by cross-validation (Tr:
training set; Ts: test set), choosing the parameter, which is associated with the
lowest average relative error. Using the optimal value for λ, PRESTO combines all
models for the experimental conditions to find a kcat correction for each enzyme
with measured abundance. Last, the precision of δ values is assessed by variability
analysis aswell as by sampling and corrected kcat values are validatedby comparing
them to values obtained from other approaches.
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Unlike PRESTO, GECKO implements a heuristic for the correction
of turnover numbers that are based on the objective control coeffi-
cient calculated for each protein in a given condition (Supplementary
Fig. 3)22. The control coefficient of a protein is determined by
increasing the turnover number by 1000-fold and scoring the effect on
the predicted specific growth rate. The proteins are then ranked in
decreasing order of their control coefficients, and the turnover num-
ber of the first enzyme in the list is changed to the maximum value
found in BRENDA for this enzyme across all organisms. This procedure
is repeated with the remaining enzymes until the pcGEM predicts a
growth rate that is at most 10% smaller than the measured specific
growth rate for that condition or no additional kcat value that strongly
constrains the solution canbe found (Supplementary Fig. 3). This leads
to condition-specific sets of corrected kcat with large intersections or
full containment over a considered order of conditions (Supplemen-
tary Fig. 4a).

In contrast to this procedure, PRESTO corrects at once the
turnover numbers of multiple enzymes that are measured in all
investigated conditions by simultaneously leveraging the data from
the different conditions, considerably reducing runtime and the
number of solved problems. As a result, rather than deriving
condition-specific corrected kcat values, which are difficult to use in
making predictions for unseen scenarios or for building large-scale
kinetic metabolic models24,25, PRESTO results in a single set of cor-
rected kcat values.

We compared the performance of PRESTO with the heuristic
implemented in GECKO in three modeling scenarios that consider: (i)
only condition-specific total protein content, (ii) both total protein
content and uptake constraints, and (iii) additional constraints from
abundances of enzymes measured in all conditions (Fig. 2). For cor-
rections of turnover number from PRESTO, we observed that the
relative error spans the range from0.15 to 0.88 in the least constrained
scenario (i) (Fig. 2a) and from 0.69 to 0.98 in the most constrained
scenario (iii) (Fig. 2c). In contrast, the relative error with the correc-
tions of turnover numbers from the GECKO heuristic is in the range
from 0.96 to 1.00 in scenario (iii) (Fig. 2c). In addition, in scenario (iii),
the median relative error in the case of the GECKO heuristic for each
condition is larger than the relative error of the PRESTO predicted
specific growth rate (Fig. 2c). We observed that predictions from FBA,
considering enzyme abundances, without a constraint on the total
protein content, led to anaverage relative error of 0.70with kcat values
corrected according to PRESTO and 0.99 with kcat values corrected
according to GECKO (Supplementary Table 1).

We also performed a sensitivity analysis by investigating a smaller
value, of 10�10, for theweighting factor λused in the PRESTOobjective.
We found that when the weighting factor is 10�10 (at which the total
corrections of the initial kcat values plateaus), the relative errors from
PRESTO cross-validation can be further decreased to 0.69 considering
the constraint on the total protein content, with no effects on the other
findings (Supplementary Fig. 2a). We also note that the relative error
lies in the range from 0.35 to 0.80 over the considered weighting
factors in the range from 10�14 to 10�1. Together, these results
demonstrated that kcat values corrected according to PRESTO provide
bettermodel performance than the values obtained by the contending
heuristic in the case of S. cerevisiae in the scenarios where all available
data are integrated into the model constraints.

PRESTO provides precise corrections of turnover numbers
In the following, we investigated the precision of the corrected kcat

values from the application of PRESTO to data and a pcGEMmodel of
S. cerevisiae. To this end, we determined the range that the correction
of the kcat value of each enzyme can take while fixing the relative error
in specific growth rate and total corrections from the optimum of
PRESTO (see the “Methods” section). Moreover, we complemented
this analysis by sampling corrected kcat values that achieve the

optimum of PRESTO with two values of the weighting factor λ of 10�7

and 10�10.
In the case of the corrected kcat values for S. cerevisiae with a

weighting factor of 10−7, we found that the kcat values with the largest
corrections are more precisely determined (Supplementary Fig. 5). In
addition, the sampled corrections per enzyme show an average
Euclidean distance to the respective mean of 4.88 s−1, indicating that
the corrected values are more precise than the values in BRENDA,
exhibiting an average Euclidean distance of 27.54 s−1 to the mean per
EC number (Supplementary Fig. 6). Importantly, while kcat values with
smaller correction showed larger variability, the 25 and 75 percentiles
of the sampled corrections for 42 enzymes are concentrated around
those resulting from PRESTO. Repeating the analysis with a weighting
factor of 10−10 showed that the larger total corrections of the initial kcat

values resulted in also larger variability for the corrections over all kcat

(Supplementary Fig. 7). Here, too, for 62 enzymes the 25 and 75 per-
centiles of the sampled corrections are concentrated around those
resulting from PRESTO. Therefore, we concluded that the corrections
from PRESTO are precise and can be used in downstream analyses.

Pathways enrichment for corrected turnover numbers
In pcGEMs generated by the GECKO toolbox7, turnover numbers are
assigned to each of the enzymes in the GEM using a fuzzy matching
algorithm. It takes into account the organism, substrate, and EC
number of a BRENDA entry. When we investigated the magnitude of
the turnovernumber correctiondependent on thequality of thematch
between BRENDA entry and the corresponding enzyme, we found that
kcat values measured in S. cerevisiae were associated with smaller
corrections than those from other organisms (Supplementary Fig. 8a).

To check which metabolic processes are more likely to require
correction of in vitro kcat values, we next conducted an enrichment
analysis based on the KEGG pathway terms linked to corrected kcat

values (see the “Methods” section). The most prominent pathway in
this analysis was the synthesis of secondary metabolites, particularly
the synthesis of cofactors and terpenoids (Fig. 3a). However, several
terms linked to central carbon metabolisms, such as the tricarboxylic
acid cycle and oxidative phosphorylation, were also significantly
enriched. Interestingly, amino acid synthesis was the only term linked
to nitrogen metabolism that came up in this analysis, although many
pathways of nitrogen metabolism were among the tested terms. This
analysis suggested that particularly in vitro turnover numbers in car-
bon metabolism need to be corrected, due to the underestimation of
in vitro assays.

Comparison of turnover number corrections from GECKO
Next, we aimed to identify the extent to which the corrected kcat

values differ between PRESTO and the GECKO approach. To this
end, we determined the intersection of enzymes with kcat values
corrected manually7, by PRESTO, and by the GECKO heuristic. For
this comparison, we considered the union of all condition-specific
corrected kcat values from the GECKO approach. With the
weighing factor λ= 10�7, PRESTO adapted the kcat values of 48% of
enzymes corrected by the GECKO heuristic (Fig. 3b, Supplemen-
tary Data 1). We did not find a significant Spearman correlation
(ρS =0:17, P =0:45) between the log-transformed kcat values in this
intersection (Fig. 3c), owing to the different principles employed
in the two procedures. To determine the pathways that comprise
enzymes whose turnover number are corrected by GECKO and
PRESTO, we next repeated the pathway enrichment analysis for
the enzymes in the overlap. Among the significant terms, like in
PRESTO, we again found 2-Oxocarboxylic acid, amino acid, and
secondary metabolism to be enriched (Fig. 3a, S9). However, the
more specific pathway terms were associated with pathways that
are part of carbohydrate metabolism and aromatic amino acid
metabolism corrected by both approaches (Supplementary Fig. 9,
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Supplementary Data 2). In addition, the intersection between
enzymes with manually corrected values and those corrected by
the GECKO heuristic is higher than with PRESTO. This is expected
since the manual curation is partly aimed at correcting the most
constraining turnover numbers7.

We also compared the kcat values adjusted by GECKO against
estimates of in vivo kcat values obtained by parsimonious FBA (pFBA)
using the same proteomics data15 (Supplementary Fig. 10a, b). We
confirmed the low correspondence (ρS = 0:23) between the kcat values
obtained fromBRENDA, included in theGECKOmodel withoutmanual
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Fig. 2 | Comparison of predicted growth of S. cerevisiae from pcGEMs with kcat
corrections fromGECKOandPRESTO.Condition-specific pcGEMswith corrected
kcat values generated by the GECKO heuristic were used to predict the specific
growth rate for each condition (n = 27, a, b). The boxplots indicate the distribution
of the relative error resulting from each set of condition-specific corrected kcat

values obtained from the GECKO heuristic. Relative prediction error from each set
is indicated by a circle. The red diamonds show the relative error of the predicted
specific growth rate from the PRESTO model ðλ = 10�7Þ by using the single set of
corrected kcat values in the respective pcGEM. a Only the measured total protein
pool was used to constrain the solution and condition-specific uptake rates were

bounded by 1000 mmol
h gDW; b measured uptake rates were also considered;

c abundances of enzymes measured in all conditions were used as additional
constraints. The compared pcGEMs in each condition (n = 19) used the same
respective biomass reaction, GAM, σ, and Ptot values (see the “Methods” section). L:
Lahtvee et al.34, D: Di Bartolomeo et al.37, Y20: Yu et al.35, Y21: Yu et al.36. Middle line
and boxes in the box charts in panels a–c indicate the median and 25th and 75th
percentiles, respectively.Outlier values (circlesoutside thewhisker range) aremore
than 1.5× the interquartile range away from the top or bottom of the box, and
whiskers connect the lower or upper quartiles with the non-outlier minimum or
maximum. Source data are provided as a Source Data file.
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modifications, and the in vivo kcat estimates. As expected, the corre-
spondence of the estimated in vivo kcat values to the turnover numbers
corrected based on PRESTOwas higher (ρS =0:34). To investigate how
these estimates perform as model parameters, we also generated a
pcGEM in which BRENDA values were substituted by in vivo kcat values
from pFBA15, whenever available. In scenarios without enzyme abun-
dance values, this model performed worse than that including the kcat

values corrected by PRESTO as well as the model combining the
maximumof all condition-specificGECKOcorrections (Supplementary
Fig. 11a, b). In the enzyme abundance-constrained scenario, the model
with in vivo turnover numbers estimated by pFBA performed slightly
better than GECKO but still only achieved a minimum relative error
of 0.93, which is larger than 0.69 resulting from PRESTO (Supple-
mentary Fig. 11c). These results demonstrated the value of PRESTO in
combining the genome-scale coverage of BRENDA with in vivo pro-
teomics chemostat measurements to obtain less biased estimates of
kcat values.

PRESTO with protein-constrained model of E. coli metabolism
To demonstrate the applicability of PRESTO across species, we
deployed itwith apcGEMof E. coli (eciML1515)22,26. To this end,weused
a large dataset comprising 31 different growth conditions12,27–29. Due to
the lack of data on nutrient exchange rates, the same GAM value (i.e.,
75.55 mmol

gDWh) was used across all conditions. Similarly, we used the same
value for total protein content since condition-specific measurements
were not available (see the “Methods” section).

By applying three-fold cross-validation, we found the optimal
value for the λ parameter to be 10�5 (Supplementary Fig. 12a). This
value was associated with an average relative error of 1.95 (average
over all λ: 3.32) and 73 corrected turnover numbers, while on average
156 kcat values were corrected across all explored values for λ. On
average, the Jaccard distance between cross-validation folds was 0.13
(Supplementary Fig. 12b), while the average Jaccard distance between
unique sets of enzymes with corrected turnover numbers for each λ
parameter was three-fold larger (0.4, Supplementary Fig. 12c). Thus,
the corrected kcat values among cross-validation folds for each λ are
more similar (maximum Jaccarddistanceof 0.29).Moreover, the union
of the set of enzymeswith corrected kcat values can remain similarover
a range of chosen λ parameters up to four orders of magnitude
(Supplementary Fig. 12c), demonstrating the robustness of the
method.

The performance of PRESTO was assessed and compared to
GECKO using scenarios (i) and (iii) since no condition-specific uptake
rates were available. With default uptake rates, the relative error for
predicted growth rangedbetween0.01 and8.56 in the less constrained
scenario (i) (Fig. 4a). Further, we obtained relative errors between 0.01
and 0.88 for the more constrained scenario (iii), when using the kcat

values corrected by PRESTO (Fig. 4b). In contrast, when using the kcat

values from the GECKO approach, the relative error was in the range
between 0.01 and the 4.89 for scenario (i) and between 0.89 and 0.99
for scenario (iii). In this scenario, too, we observed that the relative
error using kcat values corrected by GECKO was consistently larger
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than the relative error resulting from the single set of corrected kcat

values obtained by PRESTO (Fig. 4b).
Since we observed high relative errors in the less-constrained

scenario (Fig. 4a), we added a second step to PRESTO, which intro-
duces negative corrections that lead to the same relative errors with
consideration of proteomics data. This is an optional step that a user
can choose to perform in addition to the positive corrections (i.e.
relaxation of turnover numbers), introduced in the first step (Supple-
mentaryMethod 1). As a result, we found 170 negative corrections that
reduced the relative error in scenario (i) (Supplementary Fig. 13).

We do not perform a simultaneous search for positive and nega-
tive corrections because negative corrections can only reduce the

relative error when the current kcat values lead to an overprediction of
growth, which is not the case when considering proteomics data.
Therefore, no negative corrections are found if the absolute value of
introduced positive and negative corrections are to be considered in a
single step.

Importantly, the aim of PRESTO is to correct turnover numbers,
which represent upper limits on the catalytic efficiency of enzymes.
Therefore, we can assume that in vitro turnover numbers that lead to
underprediction of specific growth rates when paired with protein
abundance data are too low. However, an overprediction of specific
growth rates in the same scenario can be caused by thermodynamic,
temperature effects, or in-vivo-specific effects. Thus, a reduction of
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Fig. 4 | Comparison of predicted growth of E. coli from pcGEMs with kcat cor-
rections from GECKO and PRESTO. Condition-specific pcGEMs with corrected
kcat values generated by the GECKO heuristic were used to predict the specific
growth rate for each condition (a: n = 31, b: n = 27). The boxplots indicate the
distribution of the relative error resulting from each set of condition-specific cor-
rected kcat values obtained from the GECKO heuristic. Relative prediction error
from each set is indicated by a circle. The red diamonds show the relative errors of
predicted specific growth rates from the PRESTO model ðλ= 10�5Þ by using the
single set of corrected kcat values in the respective pcGEM. a Only the measured
total protein pool was used to constrain the solution and condition-specific uptake

rates were bounded by 1000 mmol
h gDW; b abundances of enzymes measured in all

conditions were used as additional constraints. Missing data points originate from
the infeasibility of the respectivemodels. The compared pcGEMs in each condition
used the same respective biomass coefficients, GAM σ, and Ptot values (see the
“Methods” section). P: Peebo et al.28, V: Valgepea et al.27, S: Schmidt et al.29. Middle
line and boxes in the box charts in panels a and b indicate themedian and 25th and
75th percentiles, respectively. Outlier values (circles outside the whisker range) are
more than 1.5× the interquartile range away from the top or bottomof the box, and
whiskers connect the lower or upper quartiles with the non-outlier minimum or
maximum. Source data are provided as a Source Data file.
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in vitro turnover numbers results in average apparent catalytic rates
for the considered conditions, rather than corrected turnover
numbers.

Considering the models with positive kcat corrections, the sum of
corrections reached a plateau at 10�11 for the weighting factor λ in the
PRESTO objective. We found that the relative cross-validation error at
this value was 5.26, which is 2.7-fold larger than the relative error
obtained using the optimal λ. Hence, allowing for more and larger
corrections in PRESTO leads to a decrease in the overall relative error
within the PRESTO program at the cost of highly biased parameters.
The predictionswith the highly biased parameters areworse in the test
conditions and result in a larger specific growth rate when no enzyme
abundance constraints are enforced. This observation is in line with
the small number of corrections introduced by the GECKO approach,
where only the pool constraint is considered. We conclude that the
prediction performance of the eciML1515 model was improved by
using turnover numbers corrected by PRESTO only when enzyme
abundances are integrated.

To assess the precision of the introduced kcat corrections, we
performed variability analysis and sampling (see the “Methods” sec-
tion) of the introduced corrections to the initial kcat values for two
values of the weighting factor λ, namely 10�5 and 10�11. We observed
that the 25th and 75th percentiles enclose a narrow interval around the
values resulting fromPRESTO (Supplementary Fig. 14) and are thus not
evenly distributed across the respective interval determined by the
variability analysis. We further noted that here, the predictions of
smaller δ are generally more precise than the large corrections
(δ ≥p50), which span ~2 orders of magnitude (small δ (<p50): 1.83,
Supplementary Fig. 14). However, we also observed that the precision
decreased when more corrections were allowed in PRESTO. This fur-
ther justified our choice for the optimal parameter λ, which results in a
lower number of 73 corrections compared to 204 at λ= 10�11; more-
over, this value guarantees more precise estimates (Supplementary
Fig. 17). In conclusion, the application of PRESTO is not limited to a
single species but presents a versatile tool for the correction of turn-
over numbers across species.

In contrast to the observationsmade in S. cerevisiaewe found that
a model parameterized with in vivo turnover numbers estimated by
pFBA12 outperformed both PRESTO and GECKO in the modeling sce-
nario where no enzyme abundance constraints are taken into account
(Supplementary Fig. 11d). This is due to the fact, that pFBA, in contrast
to PRESTO and GECKO, can generate estimates lower than the in vitro
kcat values, in turn leading to more accurate predictions. However, in
the scenario with enzyme abundance constraints, PRESTO predicts
specific growth rates closer to the experimental observation in 87% of
the conditions (Supplementary Fig. 11e). Thus, in this scenario the
integration of information from different modeling conditions
achieved in PRESTO serves to obtain kcat value that performs better
than the pFBA approach applied by12.

Finally, we compare the resulting flux distributions and predicted
protein abundances bymodels that are parameterized with kcat values
that were corrected using either GECKO or PRESTO. Overall, the fea-
sible ranges (vmax � vmin) for both approaches resulted in Pearson
correlation coefficients of 0.985 across all conditions (Supplementary
Method 2). The difference between both flux distributions is mani-
fested in a smaller interquartile range in feasible ranges with PRESTO
(Supplementary Fig. 15). More specifically, there are fewer reactions
with highly constrained flux after introducing kcat corrections with
PRESTO compared to GECKO. Moreover, we used the models that
were corrected using GECKO and PRESTO to predict protein abun-
dances (Supplementary Method 3), which were then compared to the
measured proteomics data using Spearman correlation. Since PRESTO
only considers abundances of proteins that were measured across all
considered conditions, we computed the correlations for (1) the set of
proteins that are measured across all conditions and (2) all protein

abundances per condition. In the first scenario, the correlation was
higher after correction with PRESTO in 70% of conditions, compared
to the median correlation with GECKO and outperformed all GECKO
pcGEMs in 30% of conditions (Supplementary Fig. 16a). When all
measured proteins were considered, PRESTOonly performed better in
54% of conditions (Supplementary Fig. 16b). Similar to the predicted
specific growth rate we also observed better performance for PRESTO
models that were subjected to an additional kcat down correction step
(Supplementary Method 1). However, we note that the reduced kcat

cannot strictly be considered condition-independent kcat values
because theremayexist physiological stateswhere these enzymesmay
achieve the efficiency given by the original kcat value (see the “Dis-
cussion” section). Since PRESTO considers protein abundances for the
correction, which is not the case for GECKO, we expected to find the
increased prediction performance with PRESTO compared to GECKO;
however, we still observe low overall predictability of protein abun-
dances using the resulting models. Recently, a more sophisticated
protein abundance prediction approach using pcGEMswas introduced
that can be used to predict more reliable values and might further be
improved by considering corrections introduced by PRESTO30.

Interestingly, in contrast to S. cerevisiae, we did not observe larger
corrections by PRESTO for organism-unspecific in vitro kcat values
(Supplementary Fig. 8b). For the condition-specific sets of kcat cor-
rections introduced by GECKO we observe that all smaller sets were
proper subsets of larger sets (Supplementary Fig. 4b) The low number
of corrections introduced by GECKO leads to an overlap of only three
(75%) enzymes whose kcat values were also corrected by PRESTO
(Supplementary Data 3, Supplementary Fig. 18a). These three enzymes
catalyze reactions in three distinct metabolic pathways: Phosphor-
ibosylformylglycinamidine synthase acts in the synthesis of purines,
while serine acetyltransferase and NADP dependent Ketol-acid reduc-
toisomerase are involved in the synthesis of sulfur amino acids and
hydrophic amino acids, respectively (Supplementary Data 4). The
pathway enrichment analysis for all PRESTO corrections at λ= 10�5,
indeed also identified amino acid and secondary metabolite synthesis
as significantly enriched terms among the enzymes with corrected
turnover numbers (Supplementary Fig. 18b). These results argue for a
systematic underestimation of in vivo turnover numbers in the path-
ways in in vitro experiments, irrespective of the investigated organism.
However, the lower-order KEGG pathway terms enriched in E. coli do
not overlap with the ones found in S. cerevisiae. Here, fatty acid
metabolism and the synthesis of hydrophobic amino acids are among
the pathways requiring the correction of turnover numbers.

Robustness of turnover number corrections
All of the approaches for estimation of in vivo turnover numbers rely
on predicted (or estimated) fluxes and protein abundances from
multiple conditions12,14,15, but have not investigated the robustness of
the estimates to the number of conditions used. Therefore, next, we
investigate the difference in the sets of enzymes with corrected turn-
over numbers and the concordance of their corrections when ten
randomly sampled subcollections of M experimental conditions
(M = 3, 5, 10, 15) were used instead of all experiments. The differences
and concordance were quantified with respect to the estimates
obtained by considering data from all available experiments using the
Jaccard index and the Pearson correlation coefficient, respectively. In
the case of S. cerevisiae, we found that the smallest Jaccard difference
over 200 scenarios was 0.36, while for E. coli this was 0.41 (Supple-
mentary Figs. 19 and 20). In addition, the Pearson correlation coeffi-
cient between the (log-transformed) corrected turnover numberswith
consideration of all versus a subcollection of M experiments in S. cer-
evisiae ranged from0.99 to 1.00 (forM = 15) to 0.11 and 1.00 (forM = 3)
(Supplementary Fig. 19). Repeating the analysis in the case of E. coli, we
found that that the Pearson correlation coefficient ranged from0.15 to
1.00 (for M = 15) to 0.14 and 1.00 (for M = 3) (Supplementary Fig. 20).
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This is in linewith the expectation that the corrections stabilizewith an
increasing number of experiments. Altogether, these findings pointed
out the robustness of turnover number corrections derived from
PRESTO with the number of available experiments.

Discussion
Characterization of enzyme parameters that can inform models of
reaction rates is key to expanding and further propelling the usage of
metabolic models in diverse biotechnological applications. While the
generation of pcGEMs has facilitated the integration of more biophy-
sically relevant constraints, it necessitates access to estimates of
turnover numbers as key enzyme parameters. We assessed the bias in
the available in vitro and in vivo estimates of turnover numbers as the
discrepancy between measured and predicted growth in the ultimate
validation scenario when they are combined with constraints from
protein abundances. We use the modeling scenario that considers
measured protein abundances as the ultimate validation scenario not
only for the prediction of metabolic fluxes but also for the prediction
of specific growth rates as it contains considerablymorebiochemically
relevant constraints. Indeed for this scenario, we showed that
condition-specific growth rates cannot be reliably predicted with
pcGEMs of S. cerevisiae and E. coli when available in vitro (Figs. 2c and
4b) and in vivo estimates (Supplementary Fig. 11c, e) of turnover
numbers are used. GECKO resolves this issue by flexibilities measured
protein abundances without considering physiological information
during the procedure. To overcome this limitation, we developed
PRESTO, which corrects turnover numbers and facilitates the inte-
gration of enzyme abundance constraints.

In contrast to PRESTO, GECKO uses measured total protein con-
tent from a single condition to achieve specific growth rates in the
process of correcting the turnover numbers. As a result, the corrected
turnover numbers vary between different experiments. Like all exist-
ing approaches for the estimation of in vivo turnover numbers based
on GEMs, we integrated protein abundance data directly to correct
turnover numbers. Following this strategy in PRESTO is further justi-
fied by the observation that the turnover numbers included in pcGEMs
are often neither from the same enzyme (i.e., EC number), substrate,
nor organism. While in vivo turnover number estimates can be adjus-
ted by considering recently proposed Bayesian statistical learning18,
this approach hasnot consideredprotein abundance information from
proteomics measurements.

We employed PRESTO with the largest data set of these mea-
surements available to date for S. cerevisiae15 and E. coli12. Through a
series of comparative analyses, we demonstrated that the corrections
of turnover numbers from PRESTO ultimately increase the prediction
accuracy of condition-specific growth for the two organisms when
enzyme abundance data are integrated into the corresponding
pcGEMs.

Since PRESTO generates a condition-independent kcat set it is
bound to correct parameters that lead to the underprediction of
biological fluxes. The same reasoning is applied when obtaining
in vivo kcat estimates frompFBA by taking themaximumof apparent
catalytic rates, and overall conditions12,15. Nevertheless, we included
an optional step, that additionally allows for the reduction of
in vitro kcat values, which can be considered average apparent cat-
alytic rate estimates and result in better performance in the E. coli
experiments (Supplementary Figs. 13 and 16). Moreover, we showed
that in vivo turnover number proxies, obtained by the ranking of
condition-specific estimates that use proteomics and fluxomics
data, are more highly (but modestly) correlated to estimates from
PRESTO than to in vitro turnover numbers. Owing to the constraint-
based formulation of PRESTO, we also determined the precision of
the correction of turnover numbers. Previous studies have shown
that even for the well-studied model organism Saccharomyces cer-
evisiae, only 52% of enzyme turnover numbers in the pcGEM can be

obtained from organism-specific in vitro measurements22. Using
organism unspecific kcat values for parameterization and correction
of pcGEMs, as done in the GECKO pipeline, assumes that enzyme
kinetic properties are comparable within one EC number class31,32.
However, we did not identify clear differences between EC classes,
down to the second digit, when considering the distribution of kcat

similarities within EC classes (Supplementary Fig. 21). Indeed, it has
been reported that EC class plays only aminor role in the prediction
of turnover numbers19 and show stronger similarity with con-
cordant GO categories33. Interestingly, our findings show that the
turnover number corrections obtained from PRESTO are more
precise than EC class-based corrections. (Supplementary Fig. 6).
Together, these findings demonstrated PRESTO can be readily used
to decrease the bias of turnover numbers. This paves the way for
employing the outcome of PRESTO and future extensions toward
effectively predicting the kcatome from available protein
sequences.

Methods
Experimental data
For S. cerevisiae, we made use of a dataset gathered by15 from four
different studies34–37, which included protein abundance data
(mmol gDW�1) as well as measured growth or dilution rates (h�1) and
nutrient exchange fluxes (mmol gDW�1h�1). Exchange fluxes missing
in certain conditions were set to 1000mmol gDW�1h�1 if the nutrient
was present in the used culture media. We further extended this data
set by total protein content measurements (g gDW�1) from the origi-
nal studies. For subsequent analyses, we used the maximum abun-
dance of each protein over all replicates per experimental condition.
Similarly, we used the average value for specific growth rates and
nutrient exchange rates. Since no measurement of total protein con-
tent was available for the two conditions evaluated in the Di Bartolo-
meo study37, we used the maximum protein content measured across
the remaining conditions for these conditions (i.e., 0:67g=gDW).
Moreover, we excluded three temperature stress conditions (i.e.,
Lahtvee2017_Temp33, Lahtvee2017_Temp36, Lahtvee2017_Temp38)
from the analysis since the temperature can have a large effect on the
catalytic activity of an enzyme. Gene names in the proteomics dataset
were translated to UniProt identifiers using the batch retrieval service
of the UniProt REST API38.

For E. coli, we used a dataset comprising 31 experimental con-
ditions, which was gathered by Davidi and colleagues and aug-
mented by Xu et al.12,14 from three publications27–29. Here, too, we
used the maximum protein abundance over all replicates (in
mmol gDW�1). Due to the absence of total protein content mea-
surements in two of the original studies, we relied on the maximum
protein content measured in the Valgepea study (i.e., 0:61 g=gDW)
to be used for all conditions. Since precise data on nutrient uptake
rates were only given for a few conditions, we assigned a default
upper bound of 1000mmol gDW�1 h�1 to all nutrients contained in
the minimal medium (Supplementary Table 2) with additional car-
bon sources as specified. Gene identifiers were translated to UniProt
similar as for S. cerevisiae.

Model preparation
The proposed approach aims at parsimonious correction of turn-
over values in genome-scale enzyme-constraint metabolic models
using measured protein abundances. Therefore, it is important to
consider the differential association between enzymes and reac-
tions, i.e., isozymes, enzyme complexes, and promiscuous enzymes.
We decided to use the GECKO formalism7, which deals with these
problems elegantly by directly encoding the required information
in the stoichiometric matrix. The genome-scale metabolic models
for S. cerevisiae (YeastGEM v.8.5.0) and E. coli (iML1515) were
obtained from the yeast-GEM and ecModels GitHub repository,
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respectively22,39 [https://github.com/SysBioChalmers; accessed on
22.08.2021]. For subsequent steps, functions of the COBRA v3.0
toolbox40 and GECKO2.0 toolbox22 were employed, of which several
functions were adapted for our purposes.

To arrive at raw protein-constrained models for both organisms,
the GECKO2.0 model enhancement pipeline was adapted to allow the
kcat correction procedure to be omitted. Moreover, any manual cor-
rections of turnover numbers were excluded from model generation.
In the process of adapting the raw pcGEM to the respective experi-
mental conditions for both organisms, the GAM value per condition
was fitted using the scaleBioMass function of GECKO2.0, based solely
on the condition-specific nutrient exchange rates, and returning the
minimum (9 mmol

gDWh) or maximum (161 mmol
gDWh) interval boundary if reached

(only S. cerevisiae). Furthermore, we omitted enzyme abundances,
which were not measured across all experiments as the approach
proposed here is only applicable for enzymes in the set withmeasured
abundances (M).

PRESTO approach
In the design of PRESTO, we modified the enzyme mass-balance con-
straints of the augmented stoichiometric matrix, created by GECKO,
from

� 1

kij
cat

vj + ei =0 ð1Þ

to inequality constraints that use the measured protein abundance
directly. The variable e denotes the predictedprotein abundance in the
pcGEM, while E represents the vector of measured enzyme abun-
dances. Further, we assume a single turnover number per enzyme i
over all catalyzed reactions (kmin

cati
= argmin

j
kij
cat):

8r 2 R
X

i2GPR rð Þ
vr ≤ k

min
cati

� ei: ð2Þ

GPR stands for gene–protein-reaction rule that associates reac-
tions (R) with underlying genes and proteins. The variable E denotes
the measured protein abundance in mmol gDW�1. We justify making
the assumption for Eq. (2) based on our observation that most
enzymes in the S. cerevisiae model are associated with no more than
four reactions (Supplementary Fig. 22a, c). Further, the vastmajority of
enzymes are assigned a single unique turnover number even though
they catalyze multiple reactions (Supplementary Fig. 22b, d).

We then introduced a correction factor δ, which is added to each
kcat if the protein abundances for the underlying enzyme were avail-
able:

8r 2 R
X

i2GPR rð Þ
vr ≤ kmin

cati
+ δi

� �
Ei

� �
: ð3Þ

To find a biologically relevant minimal set of adaptations with
respect to the sumof δ, weminimized theweighted sumof the average
absolute relative errors, ω, between measured (μexp) and predicted
specific growth rates (vbio) overall experimental conditions C, and the
average δ:

min
v,δ,ω

1
∣C∣

X
j2C

ωj +
λ
∣M∣

X
i2M

δi: ð4Þ

Finally, the linear programming formulation of the kcat correction
in PRESTO is the following:

min
v,δ,ω

1
∣C∣

X
j2C

ωj +
λ
∣M∣

X
i2M

δi

subject to

Nvj =0,8j 2 C ð5Þ

X
i2GPR rð Þ

v j
r ≤ kmin

cat,i + δi

� �
Ej
i

h i
,8r 2 R, i 2 M,8j 2 C

v j
min ≤ v

j ≤ v j
max; 8j 2 C ð6Þ

δi ≤ ε� 1ð Þ � kmin
cat,i,8i 2 M ð7Þ

kmin
cat,i + δi ≤K

max, 8i 2 M ð8Þ

v j
bio � ωj ≥μ

j
exp � vjbio,8j 2 C ð9Þ

v j
bio � ωj ≥ v

j
bio � μ j

exp,8j 2 C ð10Þ

ω≤θ, δ≥0:

The value forωwas bound from above by a value θ, whichwas set
to 0.6. Constraints that enforce metabolic steady state are captured in
Eqs. (5) and (6) represent the lower and upper bounds in the flux
through each reaction in each condition, respectively. The constraints
in Eqs. (7) and (8) impose an upper bound on δ, which is the minimum
of the allowed fold change in kcat values, ε, and a cut-off value Kmax,
which denotes themaximumallowed kcat value. The value for εwas set

to 105 since lower values did not yield solutions and Kmax was set to
57,500,000 s−1 (5.3.1.1, Pyrococcus furiosus41). Equations (9) and (10)

ensure that ω is equal to
∣μexp

j �vbio,j ∣
vbio,j

.

The parameter λ controls the trade-off between both minimiza-
tion objectives (see Eq. (4)). As λ is unknown and may also be condi-
tion- and model-specific, it was fitted using a 3-fold cross-validation
scheme, which was repeated for 10 iterations. To this end, we scanned
a log-scale interval between 10�14 and 10�1. In each iteration, we per-
formed kcat corrections on two folds of condition-specific models and
validated the obtained corrections on the remaining fold of condition-
specific models. The validation was done by predicting growth only
with a constraint on total protein content, without constraints from
measured protein abundances. This was done to counteract over-
prediction in the scenario without constraints from proteomics data.
The relative errors (ω) and the sum of δ (i.e., Δ) were then used to
calculate the scores sλ, which helped us choose the optimal value for λ:

sλ =
1
10

X10
τ = 1

ωλ,τ � ωmin
λ,τ

ωmax
λ,τ � ωmin

λ,τ

�
log10

Δλ,τ

Δmin
λ,τ

log10
Δmax
λ,τ

Δmin
λ,τ

: ð11Þ

The score can be described as the average product of min-max-
scaledω and Δ across the 10 cross-validation iterations per explored λ.
The optimal valuewas then determined byfinding the first sign change
in the second numerical gradient over sλ, starting from the maximum
value for λ. In addition to the optimal λ, we also compared our results
to a second λ, where the sum of δ reached a plateau (λ= 10�10 for
S. cerevisiae and λ= 10�11 for E. coli, Supplementary Fig. 2a and 12a).
The presented approach and analysis scripts were implemented using
MATLAB42.
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Variability analysis for δ
While PRESTO considersmultiple experimental conditions to find a set
of universal corrections for kcat values, it does not provide an
exhaustive view over all possible solutions to this problem. To assess
the precision of the corrections, we first performed a variability ana-
lysis for δ to find the minimum and maximum possible values. To
guarantee that a solution of equal quality is found with respect to the
previously determined sum of δ and the relative errors to experi-
mentally measured specific growth rates (i.e., ωopt), corresponding
constraints were added to arrive at the following linear programming
problem:

min
v,δ,ω

=max
v,δ,ω

δi

s.t.

Nv j =0, 8j 2 C

X
i2GPR rð Þ

v j
r ≤ kmin

cat,i + δi

� �
E j
i

h i
,8r 2 R, i 2 M,8j 2 C

v j
min ≤ v

j ≤ v j
max, 8j 2 C

δi ≤ ε� 1ð Þ � kmin
cat,i,8i 2 M

kmin
cat,i + δi ≤K

max, 8i 2 M

v j
bio � ωj ≥μ

j
exp � v j

bio,8j 2 C

v j
bio � ωj ≥ v

j
bio � μ j

exp,8j 2 C

0:99 � ωopt
j ≤ωj ≤ 1:01 �ωopt,8j 2 C ð12Þ

Δopt � 10�3 ≤
X
i2M

δi ≤Δ
opt + 10�3

ð13Þ

ω≤θ, δ≥0:

The minimal relative error determined for each condition j was
fixedwithin a narrow tolerance (±1%, Eq. (12)) and theminimum sumof
corrections Δ was fixed with a tolerance of ± 10�3h�1 (Eq. (13)).

As the distribution within the obtained min/max intervals can be
skewed, we sampled 10,000 points within the obtained intervals. For
uniform random sampling, we created random vectors of corrections
δ* within the determined intervals and projected them onto the solu-
tion space by minimizing the distance of δ to the respective random
vector. Therefore, we updated the objective of the program above:

min
v,δ,ω

X
i2M

∣δi � δ*
i ∣: ð14Þ

To ensure reproducibility and compatibility with the COBRA
toolbox40, we solved all optimization problems using the optimi-
zeCbModel of the COBRA toolbox. Within this environment, we used
the Gurobi solver v9.1.143 but we note that any other supported solver
can also be used. As we observed numerical instability of the problems
in some cases, we decreased the feasibility tolerance (i.e., feasTol
parameter) for the COBRA solver to 10�9 for all predictions. The
results were visualized using MATLAB42.

Validation of corrected models
We used the adapted GECKO pipeline (fitting a condition-specific
GAM; excluding manual kcat adaptions) to obtain models with kcat

values adapted according to the objective control coefficient heuristic.
We note that, when no manual modifications were introduced to the
S. cerevisiae models, the kcat adaption of the GECKO pipeline would
stop because no objective control coefficient above the threshold of
0.001 could be found, and corrected models would still be below the
predicted growth error tolerance of 10%. To compare the predictive
performance of PRESTO and GECKO corrected models, the models
were adaptedwith the samecondition-specificGAM,biomass reaction,
and total protein content, Ptot: Additionally, PRESTO models were
constrained using the same condition-specific saturation rate, σ and
enzyme mass fraction, f, as obtained from the GECKO pipeline. In
contrast to the GECKO formulation, we did not subtract the mass of
measured enzymes from the total protein pool constraint but instead
introduced the measured protein concentration as the upper bound
on the enzyme usage reaction, Ei, in the respective scenario. This
formulation still guarantees that the mass of all used enzymes is lower
or equal to the approximated cellular protein pool according to

X
i2rGPRðrÞ

ei, j �MWi ≤Ptot, j � f � σj, 8j 2 C ð15Þ

where MW is the respective molecular weight of the protein. By con-
sideringmeasured and unmeasured enzymes in Eq. (15) we do not have
to change f anduse the same factor as for the scenariowhere noprotein
abundance measures are used7. Maximum growth was predicted in
three different constraint scenarios: (i) using only the protein pool
constraint and default uptake rates (1000mmol/gDW/h), (ii) using the
pool constraint and experimentally measured uptake rates, (iii) using
the previous constraints plus the absolute enzyme abundance.

The two studies which generated in vivo kcat values from pFBA12,15

calculated a single value per reaction irrespective of the presence of
isoenzymes. Thus, to parameterize the raw pcGEM (containing only
uncorrected BRENDA values) we substituted the in vitro kcat values of
all isoenzyme reactions with the respective estimate provided in the
study. Reactions catalyzed by complexes were not corrected. Since
PRESTO and the pFBA studies provide a single condition-independent
model, we generated a condition-independent GECKO model by fol-
lowing the maximum overall conditions approach: For the compar-
isons, shown in Supplementary Figs. 11 and 15, the condition-wise
GECKOmodelswere aggregated into a single unionmodel in which for
each reaction the maximum kcat value was used.

Pathway enrichment analysis
The KEGG pathway terms44, associated with each enzyme that was
measured in all conditions, were acquired using the KEGG REST API.
The one-sided p-value, p, for significant enrichment of a pathway term
among the enzymeswith corrected kcat valueswas calculated using the
hypergeometric density distribution:

p xð Þ= 1�
Xx�1

i = 1

K

i

� �
M � K

N � i

� �

M

N

� � : ð16Þ

Only KEGG pathway terms associated with at least two corrected
enzymes were taken into consideration. The p-values associated with
all tested pathway terms were corrected for a false discovery rate of
0.05 using the Benjamini–Hochberg correction45.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The protein abundance data used in this study have been previously
published12,14,15. The UniProt database46 (www.uniprot.org) was used
for mapping gene IDs to protein IDs, and the KEGG44 (www.kegg.jp)
database was used to retrieve pathway information for genes. Source
data are provided with this paper.

Code availability
All code that was used to generate the results of this study, including
the PRESTO method, are available at GitHub [https://github.com/
pwendering/PRESTO] and at Zenodo [https://zenodo.org/record/
7675009]47.
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