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Prediction of transition state structures of
gas-phase chemical reactions via machine
learning

Sunghwan Choi 1

The elucidation of transition state (TS) structures is essential for under-
standing the mechanisms of chemical reactions and exploring reaction
networks. Despite significant advances in computational approaches, TS
searching remains a challenging problem owing to the difficulty of con-
structing an initial structure and heavy computational costs. In this paper, a
machine learning (ML) model for predicting the TS structures of general
organic reactions is proposed. The proposed model derives the interatomic
distances of a TS structure from atomic pair features reflecting reactant,
product, and linearly interpolated structures. The model exhibits excellent
accuracy, particularly for atomic pairs in which bond formation or breakage
occurs. The predicted TS structures yield a high success ratio (93.8%) for
quantum chemical saddle point optimizations, and 88.8% of the optimization
results have energy errors of less than 0.1 kcal mol−1. Additionally, as a proof of
concept, the exploration of multiple reaction paths of an organic reaction is
demonstrated based onML inferences. I envision that the proposed approach
will aid in the construction of initial geometries for TS optimization and
reaction path exploration.

Transition states (TSs) are essential for understanding chemical reac-
tions and reaction networks1–3. In principle, the characteristics of
chemical reactions are determined not by a specific molecular con-
formation but by molecular trajectories that are affected by the entire
potential energy surface (PES). Various advanced computational
methods have been proposed to simulate themolecular trajectories of
chemical reactions effectively4–8. However, owing to the tremendous
computational costs of obtaining accurate PESs and trajectories, the
elucidation of chemical reactions still relies heavily on classical TS
theory9,10. TS theory is used to derive many reaction properties from a
TS, such as saddle points on PESs11,12.

Experimentally capturing TS structures is impractical owing to
their transient nature. However, they can be accurately derived using
computational methods. Over the past five decades, various quantum
chemicalmethods using thefirst and secondderivatives of energywith
respect to atomic coordinates have been proposed to capture saddle

points in PESs accurately13–16. Thesemethods can be used to determine
the TS of a target reaction reliably based on a given initial structure.
However, they require precise chemical knowledge regarding a target
reaction to construct an initial conformation. Based on the high
complexity of PESs and high sensitivity of quantum chemical calcula-
tions to initial structures, dozens of numerical experiments may be
required to design an appropriate initial structure, even for trained
chemists. This repetitive trial-and-error process is one of the major
hurdles for calculating TS structures, along with the high computa-
tional cost of quantum chemical methods.

Machine learning (ML) techniques have been broadly applied in
many areas of chemistry to derive chemical knowledge from a wide
database17–19. Based on the introduction of various neural network
architectures,manymolecular and reaction properties (e.g.,molecular
energy and activation barriers) can be predicted accurately20–23.
Despite significant advances in ML techniques, the prediction of 3D
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molecular structures is not easily achievable because inferred 3D
structuresmust satisfy not onlypermutation invariancewith respect to
atomorder, but also physical (rotational and translational invariances)
and Euclidean (triangle inequality) constraints.

Recently, various researchers have developed ML architectures
that can predict TS structures while satisfying these conditions. Pat-
tanaik et al24. used a graph neural network to generate an initial
interatomic distance andweightmatrix from the interatomicdistances
of reactant and product structures. This model, which is referred to as
TSGen hereinafter, adopts internal nonlinear optimization to find the
atomic positions with the interatomic distance matrix closest to the
initial matrix. A second model called TSNet was proposed by Jackson
et al25. This model is based on a tensor-field network that applies
spherical harmonics as convolution filters to distinguish relative
atomic positions and directly predicts the atomic positions of TS
structures26. These ML architectures mathematically satisfy the con-
ditions for determining TS structures. To achieve further improve-
ments in terms of the quality of prediction, specialized ML models for
specific reaction types can be introduced27. However, the applicable
ranges of specializedMLmodels are limited to reactions with the same
mechanisms. Therefore, thesemodels are unsuitable for exploring the
full chemical reaction space.

In this paper, anMLmodel that infers the TS structures of general
single-step reactions is proposed and used to find multiple TSs that
yield the target reactants and products. By using two organic reaction
databases, it is confirmed that the proposed model outperforms
existing models, particularly for predicting rarely distributed cases
(e.g., bond formationor breakage). In addition to estimating the errors
of predicted distances, quantum chemical calculations are performed
to measure the chemical validity of predicted TS structures. The most
frequently predicted TS structures converge to saddle points, and
their energies have strong agreement with the reference energies.
Additionally, based onMLpredictions of TS structures, a fast TS finder
is implemented.

Results
Prediction accuracy
Schematic representations of the proposed model architecture and its
inference procedure are presented in Fig. 1. The proposed model is
designed to predict the interatomic distances of TS structures based on
threemolecular structures, namely reactants, products, and their linear
interpolations. Each structure is represented by a set of atomic pair
features. The pair features of the three structures are constructed by
concatenating features from two atomic numbers and an interatomic
distance, dij. The sets of pair features from reactant, product, and line-
arly interpolated structures are marked with green, red, and purple
round boxes. These sets of pair features are updated by pair sequence
interaction (PSI) layers without loss of permutation invariance and size
extensivity. Figure 1b presents a PSI layer consisting of two different
types of components, namely transformer encoder and bidirectional
gated recurrent unit (GRU) layers. The transformer encoder updates
pair features by reflecting only the set of pair features belonging to one
structure, whereas the following bidirectional GRU updates feature by
considering the samepairs indifferent structures. Basedon theupdated
features of the interpolated structures, f I,pairij ), the model predicts the
normalized distances of TS structures based on those in the inter-
polated structure, dTS

ij =d
I
ij . Additional details regarding the model

architecture and training procedure are provided in “Model archi-
tecture and training”.

The model outputs are then converted into the predicted intera-
tomic distances, dTS

ij , and used to generate the atomic positions in TS
structures, X*, through nonlinear optimization. As shown in Fig. 1c, the
nonlinear optimization process determines atomic positions by mini-
mizing the differences between predicted and reconstructed intera-
tomic distances. To mitigate the effects of prediction errors on the

results of nonlinear optimization, inferences frommultiple trainedML
models can be utilized to form an ensemble. In this study, 90 trained
models were employed for ensemble predictions. For both single-
model and ensemble cases, linearly interpolated structures are used to
determine the initial geometry for nonlinear optimization. The details
of ensemble prediction are described in “Nonlinear optimization and
ensembles”.

The proposed model was trained and validated using the organic
reaction database released by Grambow et al28. Table 1 presents the
test errors of the single-model and ensemble prediction results in
terms of two metrics: molecular mean absolute error (MAE) and
molecular mean absolute percentage error (MAPE). Molecular MAE is
appropriate for estimating the overall deviations of bond distances.
However, from a chemical perspective, errors in interatomic distances
arenot fairly important.While relatively large errors canbe tolerated at
sufficiently long interatomic distances, even small errors can be critical
to a TS structure if they occur in the chemical bonding region. To
reflect errors at small distances sensitively, themolecularMAPE is used
in conjunction with the molecular MAE. The mathematical definitions
of both metrics are provided in “Metrics”.

For the test subset, the molecular MAPEs of the single-model and
ensemble were measured as 3.681% and 3.407%, respectively. The
corresponding molecular MAE values are 11.56 pm and 10.70 pm. The
error is reduced further by test-time augmentation (TTA), which uti-
lizes the results of inferences of augmented test inputs to mitigate the
variance of test inferences. For image data, flipped, rotated, and
translated test images were used to enhance the quality of predictions.
TTA can be implemented in many different ways depending on the
methods used to augment data andmerge inferences29,30. In this study,
augmented data were obtained by reversing the directions of chemical
reactions, and the predicted interatomic distances from both original
(forward) and reversed (backward) reactions are averaged. This not
only enhances accuracy, but also eliminates the directional depen-
dence of TS structures, which is an important invariance. Because this
augmentationwas not applied during training, no problems associated
with artificial data such as reduced generalization were introduced.

The interatomic distances obtained fromML inferences are highly
accurate. However, they do not directly correspond to reliable 3D TS
structures. Fortunately, based on nonlinear optimization using the
results of inferences, accurate molecular geometries whose errors in
termsof interatomic distances are less than thoseof both single-model
and ensemble results can be obtained. This indicates that the
remaining error in the predicted distances can be mitigated by con-
straining the set of interatomic distances to satisfy the Euclidean
condition. Despite highly accurate results using nonlinear optimiza-
tion, because enantiomers are not distinguishable in terms of intera-
tomic distances, nonlinear optimization cannot guarantee the correct
chirality of TS structures. The incorrect prediction of chirality is not
considered by the error metrics adopted in this study. Therefore,
incorrect chirality prediction is observed even in the lowest-error case
(0.88% molecular MAPE and 2.28pm molecular MAE) shown in Sup-
plementary Figure 1, which plots a few best and worst prediction
results. This chirality issue is a common limitation of the ML model
based on interatomic distance 24.

To evaluate our model in comparison to other ML models, two
existing models, TSGen and TSNet, were trained on the same train
dataset24,25. . TSGen exhibited slightly better performance than TSNet.
However, bothmodels exhibitedmore than twofold greater errors (for
both error metrics) compared to the proposed model.

For detailed error analysis, Fig. 2 plots the averages of the abso-
lute percentage errors for four different categories of atomic pairs.
The first category, which is the most common in the database, corre-
sponds to atomic pairs that are not bonded in either the reactants or
products. The second and third categories correspond to atomic pairs
that undergo bond formation and breakage, respectively. The last
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category corresponds to atomic pairs that are bonded in both the
reactants and products. Because only a limited number of bond
changes occur in single-step reactions, the second and third cases are
relatively rare (1.27% and 1.96% of all interatomic pairs in the training
set, respectively). Despite the limited number of the pairs belonging to
the second and third categories, the ensemble predictions yields ~5%
errors in both categories, whereas the two comparison models yield
errors of >15%. For the prediction of TS structures, determining

interatomic distances that induce chemical bond formation and
breakage is essential. The comparison models fail to identify such
distances accurately.

To highlight the dependency of model accuracy on interatomic
distances and atomic numbers, the changes in absolute percentage
errors and distributions of atomic pairs in the database are presented
in Fig. 2b. The colored bars represent the distributions of six different
combinations of atomic pairs at intervals of 4.125 pm. For improved
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Fig. 1 | Schematic representations of machine learning (ML) models. a Overall
MLprocedureutilizing reactant, product, and linearly interpolated structures. Two
different readout layers derive the molecular properties (molecular energy and
entropy values, E and S) and the ratio between interatomic distances of linearly
interpolated structures,dI

ij , and transition state,dTS
ij , from thepair features of three

structures (f R,pairij : reactant, f I,pairij : linearly interpolated structure, f P,pairij : product).
b Illustration of the pair sequence interaction layer consisting of transformer

encoder and bidirectional gated recurrent unit(GRU), which are responsible for
intermolecular interaction among three structures and interatomic interactions in
each structure, respectively. c Predicted interatomic distances are used to recon-
struct 3D atomic positions, X*, through nonlinear optimization. For ensemble
predictions, the results from multiple models can be utilized to perform a single
nonlinear optimization.
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readability, Fig. 2b visualizes six cases among 10 possible combina-
tions. The entire distribution is presented in Supplementary Figure 2.
The dotted, dashed, and solid black lines represent the absolute per-
centage errors of the interatomic distances of TSNet, TSGen, and the
ensemble approach. The points along the presented lineswere derived
by averaging thepercentage errorsof all training interatomicdistances
belonging to the same interval. The red line represents the criterion for
chemical bonding at a value of 156.6 pm. In Fig. 2b, relatively large
absolute percentage errors can be commonly observed for intera-
tomic distances where the data are rarely distributed. In particular, in
the bonding region (under 156 pm), all models yield relatively high
errors, except around the 105 pm and 150pm regions, where large
numbers of C–H and C–C bonds are distributed. Despite this common
trend, the proposed model outperforms both TSNet and TSGen over
the entire distance range. Even for atomic pairs in the bonding region,
maximum errors of 6% can be observed for the ensemble prediction
approach, whereas the comparison models record up to 15% or more
errors. This analysis confirms that the proposed model provides reli-
able predictions for all types of atomic pairs even for atomic pairs that
have chemical bonds. Additionally, it provides relatively high accuracy
for atomic pairs consisting of infrequently distributed elements. All
inference results of TSNet, TS.

To investigate the applicability of the proposed approach to a
small database, model performances trained with SN2 reaction

database and reduced Grambow’s database are measured. The SN2
reaction database was published by the authors of TSNet25. For SN2
reactions, the proposed ensemble approach yielded amolecularMAPE
of 1.738% and molecular MAE of 4.54pm. The best-reported MAE for
the TSNet model is 18.31 pm25. The definition of error in the TSNet
model study is slightly different from the molecular MAE. If the same
definition to the TSNet results is applied, then the error of the
ensemble prediction is 4.97 pm. These results indicate that the pro-
posed model is more than three times as accurate as TSNet. Although
the SN2 database contains only 48 training data, the proposed ML
approach still yields high accuracy. Additionally, for the tests based on
the reduced training set of Grambow’s reaction database, the pro-
posed model achieved high accuracy. The accuracy of ML prediction
according to the size of the training set is presented in the Supple-
mentary Figure 3 of the Supporting Information. The proposedmodel
trainedwith only 25% of randomly sampled reactions from the training
set outperforms the comparison models trained with the entire
training set. These test results verify that theproposedMLarchitecture
can learn the interatomic distances of TS structures efficiently, even
with a small number of reaction data.

To estimate the chemical validity of the predicted TS structures,
quantum chemical simulations were performed. Although the SN2
database contains a number of realistic chemical reactions, validation
based on quantum chemical calculations was conducted only for the
database released by Grambow et al28. because of the small size of the
SN2 database.

Quantum chemical validation
To validate prediction quality, saddle point optimizations were con-
ducted using the predicted TS structures as initial structures. Among
the 1196 test molecules, 1122 (93.8%) of the molecular structures suc-
cessfully converged. Among the failed saddle point optimizations, 60
failed because the maximum number of iterations for geometry
relaxation was exceeded, six failed because the self-consistent field
failed to converge, and eight failed for other reasons. Unlike the
reference calculations, the saddle point calculations performed in this
work used ML inferences as initial structures. Although all options of
saddle point optimization except for the initial structure used the
same values as the reference options, saddle point calculationmay fail
to converge or converge to the different structure to the reference
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(1.27%)
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[nonbond] (83.56%)

Bond breaking
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a b Bonding region

Atomic Symbols

Absolute percentage error (%)

Fig. 2 | Error analysis ofMLpredictions. aBoxplot of absolute percentage errors of
four interatomic pairs depending on bond change types during a reaction. Blue,
orange, and green boxes represent the prediction errors of TSNet, TSGen, and the
ensemble approach, respectively. The percentages in parentheses represent the ratio
of the type of interatomic pair among the entire training set. The presence or absence
of chemical bonds in reactants and products is simplified as determining whether the
interatomic distance is <156.6pm. b Absolute percentage errors and numbers of
atomic pairs with different element sets according to interatomic distance. The

dotted, dashed, and solid lines represent the average errors of TSNet, TSGen, and the
ensemble approach, respectively. The bars represent the frequencies of distances in
the training set by atomic number. The red line represents a value of 156.6pm, which
is the criterion for the presence of a chemical bond. For clarity, only the distributions
of selected atomic pairs are visualized. The distributions of the atomic pairs that are
not visualized are plotted in Supplementary Figure 2 in the supplementary informa-
tion. All predicted interatomic distances from the TSNet, TSGen, and Ensemble
methods are provided in Supplementary Data 1–3, respectively.

Table 1 | Accuracy of trained models for predicting intera-
tomic distances

MAPE (%) MAE (pm)

Prediction types Single model Ensemble Single model Ensemble

Prediction without TTA 3.681 3.407 11.56 10.70

Prediction with TTA 3.642 3.404 11.44 10.69

Prediction with TTA
and NLOpt

3.365 3.083 10.29 9.53

TSGen24/TSNet25 7.738/9.229 −/− 22.46/24.37 −/−

Molecular mean absolute percentage error (MAPE) andmolecular mean absolute error (MAE) of
single-model, ensemble, and comparison model results. The machine learning predictions are
performed under different conditions (with or without test-time augmentation (TTA) and sub-
sequent nonlinear optimization (NLOpt)). The last row lists the test errors ofMLmodelsproposed
by other groups. All compared models were trained on the same database used for training the
proposed model.
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one. (detailed options for quantum chemical calculation parameters
are provided in “Data preparation and quantum chemical validation”)
Without any manual processing of initial structures, a high con-
vergence ratio for saddle point optimizations was still obtained.
Additionally, it does not necessarily indicate that theMLmodel failed if
the initial structures from the model do not converge because con-
vergence is affected not only by initial structures but also by various
parameters and methods of optimization.

For the converged structures, frequency calculations were per-
formed and it was observed that 956 structures (80% of the 1196 test
set data) had one negative frequency. The high success ratio is not
direct evidence of the high accuracy of the ML inferences but con-
sidering the fact thatGrambow’s reactiondatabase includesmanynon-
trivial reactions, an 80% success ratio without anymanual handling is a
noteworthy achievement that reflects the fidelity of ML inferences as
initial structures for saddle point calculations.

The effects of saddle point optimization on TS structures are
visualized in Fig. 3. The orange and green bars in Fig. 3a represent the
molecular MAPE values of the initial and final structures for saddle
point optimization, respectively. The MAPE distribution shifts to the
left by the saddle point optimization, which corresponds to a reduc-
tion of the error. However, a considerable portion of the structures
remains at ~8% molecular MAPE, which yields a bimodal distribution.
Splitting of the distribution caused by quantum chemical refinement
can also be observed in the energy error. Figure 3b presents the dis-
tribution of the absolute energy error for the optimization results. The
absolute energy errors of the predicted structures are broadly dis-
tributed from 0.1 to 100 kcalmol−1. However, for the optimized

structures, the absolute energy errors of most structures (996 cases)
are reduced to below 0.1 kcalmol−1 and only a small number of cases
remainwithin the original error range. This has twomajor implications.
First, the energy of the inferred structures is not sufficiently accurate,
even if the inferred interatomic distances have an error of only a few
percent on average. Second, quantum chemical optimization reduces
energy errors and yields reliable energy in most cases. However, in
some cases, the results of saddle point optimization are still far from
the reference TS.

In addition to frequency calculations, intrinsic reaction coordi-
nation (IRC) calculations were performed to investigate the validity of
the optimized TS structures. The structures with errors >0.1 kcalmol−1

(shown on the right side of the red line in Fig. 3b) were selected for
testing (126 cases). In principle, a TS structure has a single negative
frequency and an IRC calculation beginning from a TS structure pro-
vides target reactants and products. However, among the 126 con-
verged TS structures, there were only 45 structures that satisfied both
conditions (8 and 58 structures did not satisfy the negative frequency
and IRC conditions, respectively, and 15 structures failed on both cri-
teria). If the reference reactant and product structures were obtained
by IRC calculations, then the cases were classified into the IRC success
group. Otherwise, they were classified into the IRC failure group. The
overall distributions of both groups according to the energy error
(∣EOpt − ERef∣) are represented in Fig. 3c. Additionally, each distribution
of structures having a different number of negative frequencies is
plotted in Supplementary Figure 4.

Generally, the IRC success cases (53 structures) have lower
∣EOpt − ERef∣ values than the IRC failure cases. However, wide overlap

Fig. 3 | Quantum chemical validation results for predicted transition state
structures. a Distributions of molecular mean absolute percentage error (MAPE)
values of inferred and quantum chemically optimized TS structures. Orange and
blue bars indicate the molecular MAPE values of structures that yielded successful
and unsuccessful convergence in the saddle point optimizations, respectively.
Green bars indicate the molecular MAPE values of optimized structures.

bDistributions of absolute energy errors of inferred and optimized structures. The
red line represents an absolute energy error of 0.1 kcalmol−1. Intrinsic reaction
coordinate (IRC) calculations wereperformed for the structures on the right side of
the red bar (126 cases). c Distributions of absolute energy errors of structures
whose reference products and reactant structures were acquired (orange) or not
acquired (blue) through IRC calculations.
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between the twodistributions is observed, indicating that a low energy
error does not guarantee the chemical validity of a TS structure. As
shown in Fig. 3c, even someTS structures having errors <0.2 kcalmol−1

do not provide the desired reactants and products. This phenomenon
occurs even inmanual saddle point calculations and is oneof themajor
bottlenecks in the TS searching problem. Interestingly, in contrast to
the failed cases with small errors, a few TS structures having errors
greater than 10 kcal mol−1 successfully recover reactants and products.
This indicates that the optimized TS structures have a significantly
different conformation compared to the reference structure because
of the non-uniqueness of reaction paths.

Figure 4 presents two extreme IRC success cases in terms of their
energy errors. The upper and lower subplots show the reference,
predicted, and optimized TS structures for the cases with the most
positive andmost-negative energy errors, respectively.More examples

of large positive and negative error cases are plotted in Supplementary
Figs. 5 and 6, respectively. In Fig. 4 as well as both Supplementary Figs.,
one can see that the predicted TS structures are not significantly
changed by saddle point optimization, whereas the reference TS
structures are noticeably different from both the predicted and opti-
mized TS structures. This means that the proposed model can predict
TS structures that are well-optimized, but different from the reference
structure. In the positive error case, the activation energy of the
reaction passing through the reference TS (Eref

a ) is lower than that of
the optimized TS (Eopt

a ) because the energy of the optimized structure
is higher than that of the reference structure. In contrast, a negative
error indicates that Eopt

a is less than Eref
a , meaning the ML method

predicts a TS structure that is more energetically favorable than the
reference structure.

Multiple TSs for a chemical reaction is frequently observed in
general polyatomic systems. In a strict sense, it is extremely difficult to
target themost stable TS structure precisely. However, practically, the
most stable TS structure can be found by exploring multiple TSs.
Therefore, the generationofmultiple reactionpathways is essential for
determining the most favorable reaction pathways. Furthermore, to
design catalysts or retrosynthetic pathways, the exploration of many
competitive reactions is frequently required31–33. To tackle this pro-
blem, the generation of multiple TS structures using fast and accurate
ML inference is demonstrated with the aid of reactant and product
sampling.

Exploring multiple reaction paths
For the reactions on which the ML model failed the most (Fig. 4a),
multiple TS structures were derived by using an ensemble approach
with normal mode sampling (NMS) for reactants and products. NMS
can quickly sample a large number of thermally activated structures
because it perturbs atomic positions along the normal modes of
equilibrium structures instead of performing heavy molecular
dynamic simulations34. From the 2000 sets of sampled reactants and
products, the same number of TS structures was generated using this
ensemble method. Generating 2000 TS structures typically requires
significant human labor or computational resources, even if an auto-
matic reaction pathfinder is applied. However, only one minute is
required for inferring 2000 TS structures using an NVIDIA Titan RTX
graphic card and the ensemblemethod. Although 90MLmodels were
used for ensemble predictions, inferences can be performed in par-
allel. Therefore, the computational expense of ensemble inferences is
manageable. To reduce the computational costs of quantum chemical
refinement, instead of simulating all generated TS structures, 117
representative TS structures were selected via clustering and then
used for saddle point calculations as initial geometries (see “Normal
mode sampling and clustering” for the details of the NMS and clus-
tering procedures). Among these 117 calculations, 24 calculations
successfully converged.

Figure 5 presents the relative energies (∣ETS,opt − ETS,ref∣) of the
24 successfully converged TS structures relative to the reference
structures. Among the 24 structures, four conformations can be
observed. The energy deviations among structures with the same
conformations are >0.05 kcalmol−1. The energies of each conforma-
tion and corresponding structures are presented in the same color.
The conformation with the lowest energy (red box) is the same as that
of the reference TS. The conformations in the blue and pink boxes
share most structural characteristics, except for the direction of the
–OH group. In contrast, the conformation in the green box has a
completely different structure, even though its energy is close to those
of the other two conformations. By utilizing ensemble inferences with
NMS, four different TS structures can be obtained within a reasonable
number of quantum chemical calculations.

To validate the TS structures, IRC calculations were performed on
the four conformations shown in Fig. 5. It is confirmed that the

Reaction index: 3929

Predicted TS

Reaction index: 11391

Predicted TS
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Reactant Product
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.: 105.5 kcal mol-1

.
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.: 105.2 kcal mol-1

.
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.
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.
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Fig. 4 | Molecular structures and activation barriers for extreme cases. Reac-
tant, product, and transition states having a themost positive and bmost-negative
energy errors among the inferred structures that yielded correct reactant and
product structures through intrinsic reaction coordinate calculations. A positive
(or negative) error indicates that the obtained transition state structure is ener-
getically less (ormore) favorable than the corresponding reference transition state.
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reference reactant and product were obtained from IRC calculations
using the structures shown in green, blue, and pink boxes as initial
geometries. In contrast, the structure in the yellow box, which has the
same conformation as the reference TS, does not yield the correct
product structure. Instead of the reference product, this IRC calcula-
tion yields a conformation consisting of three molecules (C2H5, H2O,
and C2OH3). Interestingly, the same products are generated through
IRC validation of the reference TS structure. Because the reference TS
structures were generated using the single-ended growing string
method followed by refinement using saddle point optimization, the
obtained TSs can be transformed into the TSs of unwanted reactions
during saddle point optimization. Although one of the obtained TSs is
not a correct TS for the target reaction, this result confirms that the
proposed method can generate reliable TS structures, even with off-
equilibrium reactant and product structures. Additionally, the effec-
tiveness of the proposed approach for tacklingmultiple reaction paths
has also been confirmed.

The IRC validations of the obtained TS conformations reveal that
the large energy errors of the originally predicted TS structures may
not be actual errors of the model, but of the reference database. To
evaluate data errors in the TS database systematically, a large number
of IRC calculations are required, which is not viable with available
computational resources. Despite some potential faults in the refer-
ence structures, the proposedMLmodel was trained stably and can be
applied to exploring multiple reaction paths, which is a challenging
problem in many contexts of chemistry.

Discussion
In this study, an ML model for the fast and accurate prediction of TS
structures was proposed and validated using general organic chemical
reactions. To achieve high accuracy with the satisfaction of various
necessary invariances, the ML model utilizes PSI layers designed to
handle any size of molecules and any type of element. These layers do
not rely on anyprior knowledge regarding chemical reaction types, but
on reactant and product structures, so the proposed model can be
extended to all types of chemical reactions without modifications.

Despite a lack of reliable TSdata, the proposedMLmodel exhibits high
accuracy for general organic reactions. In particular, for atomic pairs
that undergo bond formation or breakage during reactions, the pro-
posed model significantly outperforms existing models. Additionally,
when the inferred TS structures are used as inputs for quantum che-
mical saddle point optimizations, a high convergence ratio is achieved,
which demonstrates that the proposed ML method can serve as an
attractive solution for initializing a starting structure for saddle point
optimization.

To demonstrate the potential usage of the proposed model for
searchingmultiple reaction paths, an autonomous reaction pathfinder
was implemented and tested on a polyatomic reaction. By performing
ML inference on the off-equilibrium conformations of reactants and
products, and further refinement through saddle point calculations,
various chemically meaningful TS structures were identified. This
automated TS finder has huge potential to leverage ML applications
for chemical reactions because it can be directly utilized for not only
chemical applications (e.g., design of synthetic routes and catalysts),
but also various ML applications related to chemical reactions (e.g.,
active learning). Although off-equilibrium conformations are utilized
to predict TS structures, they are still sampled from well-optimized
and aligned structures, which are obtained from quantum chemical
calculations. This process is not trivial, particularly for bimolecular and
trimolecular reactions, because the initial relative pose of molecules is
a critical factor in determining reaction profiles. Therefore, to develop
a more rigorous and realistic strategy for TS structure prediction,
combinations of various ML approaches presented in this work (e.g.,
TTA and ensemble), as well as high-end quantum chemical calculation
methods for configuration sampling are required.

Methods
Data preparation and quantum chemical validation
In this study, two publicly available reaction databases were used. The
first was released by Grambow et al28. This database consists of density
functional theory (DFT) resultswith twodifferent options, namely B97-
D3/def2-mSVP and ωB97X-D3/def2-TZVP. Here, ωB97X-D3/def2-TZVP
results (11961 reactions)were adoptedbasedon their reliable accuracy.
To extract atomic positions and molecular properties from DFT
results, the ard_gsm package provided by the authors of the database
was utilized (www.github.com/cgrambow/ard_gsm). The database was
split randomly into training, validation, and test sets with an 80-10-10
ratio. The second database contains 53 SN2 reactions and was released
by the author of TSNet25. This database includes five validation and 48
training data. The same splitting result is adopted.

Random sampling is the simplest method for splitting a database
into train, validation, and test subsets. However, in a reactiondatabase,
random sampling may lead to the same structures being included in
both the training and test sets because reactions sharing a reactant or
product are treated as different reactions in a reaction database. To
avoid duplicates of structures, in some ML applications for chemical
reactions, reactant-based scaffold splitting, which assigns reactants
having the same scaffold to the same subset, is employed35,36. Sup-
plementary Table 1 summarizes the accuracy of ensemble predictions
trained using Grambow’s database with two different sampling meth-
ods. The results indicate that the proposed model provides reliable
accuracy, regardless of the splitting method. Therefore, only random
sampling was used for further quantum chemical validations.

Saddle point optimization and IRC calculations were performed
on the test reactions in the first database using the same DFT func-
tional (ωB97X-D3) and basis set (def2-TZVP). Saddle point optimiza-
tions were performed with a finite difference Davidson method
implemented in QChem, whereas the Pysisyphus programwas utilized
for IRC calculations37. The Pysisyphus program provides various
methods for exploring PESs based on the results (mainly gradients and
Hessian) of a quantum chemical package. To execute IRC calculations
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Fig. 5 | Relative energies derived through transition state (TS) exploration. TS
exploration was performed for the reaction presented in Fig. 4a using quantum
chemical saddle point optimization and the proposed machine learning approach
with off-equilibrium samplings of reactants and products. The relative energies of
24TS structures from the exploration are plotted, in descending orderwith respect
to the energy of the reference TS structure (ETS,opt − ETS,ref). The energies with the
same color share the same conformation. The representative structures are pre-
sented in boxes of the same color.
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using Pysisphus, the Psi4 package was employed because it is seam-
lessly coupled with Pysisyphus and supports bothωB97X-D3 and def2-
TZVP38. For both Pysisphus and the Psi4 package, default options were
employed. The saddle point calculations using the QChem package
were performed with the same options used to derive the original
database results. The maximum number of SCF cycles and optimiza-
tion operations were both 100. The tolerances for the gradients, dis-
placement, and energy of optimization were 10−4, 4 × 10−4, and
3.3 × 10−7 in atomic units, respectively.

Model architecture and training
Linear interpolated geometries are frequently used for TS search algo-
rithms because of their reliable structures and low costs13,39. The pro-
posed model predicts the interatomic distances of the true TS from the
reactant, product, and linearly interpolated structures. These three
structures are featurized as sequences of atomic pair sets. Paired fea-
tures are constructed by concatenating one distance with two atomic
features. For atomic and distance features, the entity embedding of
atomic numbers and a Gaussian kernel are employed, respectively. For
the centers of Gaussian functions, points on an equidistant grid are
used. The information regarding this grid is presented in Supplementary
Table 2. Each structure includes a set of pair features (fij) and reactions
are featurized as a sequence of structure feature sets whose dimensions
are (Natom × ðNatom + 1Þ

2 , 3, Nf ), where Natom and Nf are the number of atoms
and feature size for thepairs, respectively. For convenience, in Fig. 1, two
atomic indices (i, j) are introduced. However, only one index is used for
atomic pairs in the actual implementation. The pair features satisfy the
translational and rotational invariances because neither atomic numbers
nor distances are changed by translation or rotation.

The number of atoms participating in a reaction is not fixed and
the order of atoms is not chemically meaningful, whereas the size of
the second dimension is always fixed and the order is not inter-
changeable. Therefore, operationsmust be flexible in terms of the size
and order of the first dimension. To preserve the nature of a data
structure, a novel layer called a PSI layer is introduced.

Initially, the PSI layer updates pair features by reflecting other
pairs in the same structure. This procedure utilizes a transformer
encoder, which is a permutation-invariant and size-extensive opera-
tion. This first update is not affected by the pair features of other
structures. Subsequently, atomic features are updated again to reflect
the information from other structures. Because this second update
proceeds only on atomic pairs sharing the same index, the permuta-
tion invariance and size extensivity of the first dimension is still pre-
served. For the second update, a bidirectional GRU is used. Because a
GRU layer must update the features of the same atomic pairs in three
structures, atom mapping information is required to implement PSI
layers. In this work, the atom mapping information contained in the
databases was utilized. To apply PSI layers to data that do not have
atom mapping information, such data must be obtained preliminary
using various atom mapping methods 40,41.

Figure 1b illustrates the two updates of the PSI layer using dif-
ferent colors. The yellow operation operates only on pair features in
the same structure, whereas the following blue operation updates pair
features by reflecting pairs with the same index, but in other struc-
tures. By stacking multiple PSI layers, the effects of all atomic pairs of
reactant, product, and linearly interpolated structures can participate
in determining each of the final atomic pair features. In the proposed
model, two PSI layers are stacked and the initial feature size of atomic
pair features (128) is changed to 512 after the two stacked PSI layers
because each bidirectional GRU doubles the feature size.

To compute reaction properties from updated atomic pair fea-
tures, two readout layers are used. The first of these readout layers,
which is represented by the purple box in Fig. 1a, is applied to compute
the ratios of interatomic distances between the TS structure and lin-
early interpolated structure. The second readout layer computes the

contribution of each atom to the total energy, vibrational entropy, and
rotational entropy, which are denoted as Ei, S(vib, i), and S(rot, i),
respectively. The atomic features for the second layer are computed
through the following equation:

f atomi =
X

j

f pairij , ð1Þ

where f atomi and f pairij are the atomic and pair features, respectively.
Because the model only computes f pairij when i ≥ j, the omitted pair
features are recovered using symmetric approximation as f pairij = f pairji .
The predicted values from the second readout layers are utilized for
multi-label learning, which is frequently used to improve the quality of
ML inferences by deriving desired information from related
information42,43. However, in this study, additional labels reduced the
accuracy of the ML model (see Supplementary Table 3 in the support-
ing information.) A detailed description of the loss function design is
provided in “Loss function”.

All data and codes to train models are described in “Data avail-
ability“ and “Code availability”, respectively. The hyperparameters
used to train the model are summarized in Supplementary Table 2.

Metrics
Molecular MAE and molecular MAPE are defined as follows:

ðMolcularMAEÞ= 1
M

XM

t

2
Natom,tðNatom,t � 1Þ

X

i < j

Idt,true
ij � dt,pred

ij j, ð2Þ

ðMolcularMAPEÞ= 1
M

XM

t

2
Natom,tðNatom,t � 1Þ

X

i < j

jdt,true
ij � dt,pred

ij j
dt,true
ij

, ð3Þ

where dt,true
ij and dt,pred

ij are the interatomic distances between the ith
and jth atoms in the geometries for a t-indexed reaction.M and Natom,t

are thenumberof reactions in adatabase andnumber of atoms in the t-
indexed reaction, respectively. The distance error used for TSNet is
defined in Equation 4 in ref. 25.

Loss function
During training, the weighted sum of three losses is minimized. The first
loss, L1, is the molecular MAE of the predicted TS interatomic distances.
This term directly guides the model to predict the target interatomic
distances. The second loss, L2, includes the errors of reaction properties
from the second readout layers. As described in “Model Architecture
and Training”, the second readout layer predicts the atomic contribu-
tions of three properties of reactant, product, and TS structures. By
summing these atomic contributions, the properties of each structure,
namely E( =∑i Ei), Svib( =∑i S(vib, i)), and Srot( =∑i S(rot, i)), can be derived
and the L2 is defined as the sum of the MAE in E, Svib, and Srot for both
reactants and products. For training using the SN2 database, L2 consisted
of only the energy term because reference entropy values are not
available in this database. The final loss, L3, represents the constraints of
the Euclidean distance matrix whose elements are the squares of
interatomic distances. In addition to the hollow and symmetric condi-
tions, a Euclidean distance matrix should satisfy the eigenvalue condi-
tion, which is non-trivial to implement. The 3D Euclidean distance
matrices can have at most 5 nonzero eigenvalues and the sum of
eigenvalues should be zero44. To implement these conditions, L3 is
defined as follows:

L3 =
Xminð5,NatomÞ

i= 1

ei +
XNatom

i = minð5,NatomÞ
jeij, ð4Þ
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where ei is ith eigenvalue in descending order of magnitude. The first
and second terms guide the sum of the first five eigenvalues and the
remaining eigenvalues to zero. By penalizing a distance matrix that
cannot realize 3D atomic positions, the results of the proposed model
are guided to satisfy the Euclidean constraint.

The total training loss, L, is defined as

L= cL1 + c
0ðL2 + L3Þ: ð5Þ

L2 and L3 are designed to improve the quality of predictions by
imposing Hammond’s postulate and the Euclidean constraint. Unfor-
tunately, the training results when c0 is zero are better than those for
cases where c0 is one, meaning a model trained on a single label yields
better performance than one trained on multiple labels. The accura-
cies of ensemble and single-model predictions based on training with
all combinations of c and c0 are summarized in Supplementary Tables 3
and Supplementary data 4.

Nonlinear optimization and ensembles
An ML model such as TSNet directly outputs atomic positions
satisfying invariance conditions25. However, in some studies, includ-
ing this study, to preserve the constraints of atomic positions, ML
models predict structure-dependent quantities (e.g., a distance
matrix24 or Coulomb matrix45), and atomic positions are recon-
structed through a subsequent nonlinear optimization. In this study,
similar to the TSGen model, a distance matrix was used as an opti-
mization target. In TSGen, nonlinear optimization is a component of
ML inference, whereas, in this study, nonlinear optimization was
performed after the completion of ML inference. Therefore, the
results of multiple ML models can be used in a single nonlinear
optimization together. From the initial atomic positions, X, the
nonlinear optimization finds optimal positions, X*, to minimize the
differences relative to the ML predictions as follows:

X* = argmin
X

X

k

XNatom

i,j

wijjdk
ij � jXi � Xjj2j, ð6Þ

where dk
ij and wij are the predicted interatomic distance from the kth

model in the ensemble and the weight factor, respectively. To increase
the contribution from short interatomic distances, weight factors are
defined in a Gaussian form, e�αd2

ij . By testing many α values on the
validation results, an optimal value of α(=0.2Å−2) was obtained and
used for the test set.

For ensemble predictions, multiple interatomic distance matrices
are required prior to nonlinear optimization. Therefore, the computa-
tional costs of inferences are linearly dependent on the size of the
ensemble, so the proper selection of an ensemble is important. Sets of
models that were obtained from training using different seeds, hyper-
parameters, and training epochs were utilized. Six different combina-
tions of hyperparameters (c and c0 in Equation (5)) are used. For each
hyperparameter combination, three independent training runs with
different random seeds were performed. During each training run, the
model parameters in the epoch yielding the top five molecular MAPE
values for the validation dataset were saved and used for the ensemble.
Ensemble predictions attempt to mitigate the variance of single-model
predictions. However, the participation of low-accuracy models in an
ensemble may reduce overall ensemble accuracy. The performances of
all individual models are summarized in Supplementary Data 4 and
Supplementary Table 3 summarizes the prediction accuracies of many
different ensembles. For quantum chemical validation, ensemble pre-
dictions from 90 trained models were used and one can see that only
the ensemble containing models trained using the optimal hyperpara-
meter set (c= 2000 and c0 =0) outperforms the ensemble with 90
models.

Normal mode sampling and clustering
For each reactant and product, 2000 geometries were sampled using
NMS46. The atomic structures of the sampled reactant and product
structures were rotated and shifted to minimize the root-mean-squared
deviation between pairs of structures. From the obtained 2000 sets of
reactant and product structures, TS structures were predicted based on
the proposed ensemble inferences. To avoid generating duplicate TS
structures, the 117 representative structures were selected using the
affinity propagation clustering method implemented in scikit-learn47,48.
The features used for clustering were interatomic distances.

Data availability
The inference results of the QM9 database from TSNet, TSGen, and
Ensemble approaches are provided in Supplementary Data 1–3,
respectively. All input reaction data for train and inference are already
publicly available.

Code availability
The implementation and training of the proposed model were per-
formed using PyTorch Lightning, which provides a high-level interface
for PyTorch and is freely available at https://github.com/Lightning-AI/
lightning. The implemented model and scripts for training and infer-
encehavebeenuploaded athttps://gitlab.com/sunghwan.choi/learnts.

References
1. Dewyer, A. L., Argüelles, A. J. & Zimmerman, P. M. Methods for

exploring reaction space in molecular systems. Wiley Interdiscip.
Rev. Comput. Mol. Sci. 8, 1–20 (2018).

2. Wang, H. F. & Liu, Z. P. Comprehensive mechanism and structure-
sensitivity of ethanol oxidation on platinum: new transition-state
searching method for resolving the complex reaction network. J.
Am. Chem. Soc. 130, 10996–11004 (2008).

3. Melville, J., Hargis, C., Davenport, M. T., Hamilton, R. S. & Ess, D. H.
Machine learning analysis of dynamic-dependent bond formation in
trajectories with consecutive transition states. J. Phys. Org. Chem.
35, e4405 (2022).

4. Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. Wiley
Interdiscip. Rev. Comput. Mol. Sci. 1, 826–843 (2011).

5. Yang, Z. & Houk, K. N. The dynamics of chemical reactions: ato-
mistic visualizations of organic reactions, andhomage tovan ’t Hoff.
Chem. A Eur. J. 24, 3916–3924 (2018).

6. Zeng, J., Cao, L., Xu, M., Zhu, T. & Zhang, J. Z. H. Complex reaction
processes in combustion unraveled by neural network-based
molecular dynamics simulation. Nat. Commun. 11, 1–9
(2020).

7. Wang, L.-P. et al. Discovering chemistry with an ab initio nanor-
eactor. Nat. Chem. 6, 1044–1048 (2014).

8. Pieri, E. et al. The non-adiabatic nanoreactor: towards the automated
discovery of photochemistry. Chem. Sci. 12, 7294–7307 (2021).

9. Truhlar, D. G., Hase, W. L. & Hynes, J. T. Current status of transition-
state theory. J. Phys. Chem. 87, 2664–2682 (1983).

10. Garcia-Meseguer, R. & Carpenter, B. K. Re-evaluating the transition
state for reactions in solution. Eur. J. Org. Chem. 2019,
254–266 (2019).

11. Osborn, D. L. Reaction mechanisms on multiwell potential energy
surfaces in combustion (and atmospheric) chemistry. Annu. Rev.
Phys. Chem. 68, 233–260 (2017).

12. Van de Vijver, R. & Zádor, J. KinBot: automated stationary point
search on potential energy surfaces.Comput. Phys. Commun. 248,
106947 (2020).

13. Halgren, T. A. & Lipscomb, W. N. The synchronous-transit method
for determining reaction pathways and locating molecular transi-
tion states. Chem. Phys. Lett. 49, 225–232 (1977).

14. Durant, J. L. Evaluation of transition state properties by density
functional theory. Chem. Phys. Lett. 256, 595–602 (1996).

Article https://doi.org/10.1038/s41467-023-36823-3

Nature Communications |         (2023) 14:1168 9

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://gitlab.com/sunghwan.choi/learnts


15. Schlegel, H. B. Geometry optimization. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 1, 790–809 (2011).

16. Lynch, B. J. & Truhlar, D. G. How well can hybrid density functional
methods predict transition state geometries and barrier heights? J.
Phys. Chem. A 105, 2936–2941 (2001).

17. von Lilienfeld, O. A., Müller, K. R. & Tkatchenko, A. Exploring che-
mical compound space with quantum-based machine learning.
Nat. Rev. Chem. 4, 347–358 (2020).

18. Park, S., Han,H., Kim,H.&Choi, S.Machine learning applications for
chemical reactions. Chem. Asian J. 17, e202200203
(2022).

19. Goh, G. B., Hodas, N. O. & Vishnu, A. Deep learning for computa-
tional chemistry. J. Comput. Chem. 38, 1291–1307 (2017).

20. Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatch-
enko, A. Quantum-chemical insights from deep tensor neural net-
works. Nat. Commun. 8, 6–13 (2017).

21. Lewis-Atwell, T., Townsend, P. A. &Grayson,M. N.Machine learning
activation energies of chemical reactions. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 12, e1593 (2021).

22. Choi, S., Kim, Y., Kim, J. W., Kim, Z. & Kim, W. Y. Feasibility of acti-
vation energy prediction of gas-phase reactions by machine
learning. Chem. Eur. J. 24, 12354–12358 (2018).

23. Farrar, E. H. E. & Grayson, M. N. Machine learning and semi-
empirical calculations: a synergistic approach to rapid, accurate,
and mechanism-based reaction barrier prediction. Chem. Sci. 13,
7594–7603 (2022).

24. Pattanaik, L., Ingraham, J. B., Grambow, C. A. & Green, W. H. Gen-
erating transition states of isomerization reactions with deep
learning. Phys. Chem. Chem. Phys. 22, 23618–23626 (2020).

25. Jackson, R., Zhang, W. & Pearson, J. TSNet: predicting transition
state structures with tensor field networks and transfer learning.
Chem. Sci. 12, 10022–10040 (2021).

26. Thomas, N., Kohlhoff, K. Tensor field networks: rotation- and
translation-equivariant neural networks for 3D point clouds. In:
https://arxiv.org/abs/1802.08219 (2018).

27. Chen, S. et al. Automated construction and optimization combined
with machine learning to generate Pt(II) methane C-H activation
transition states. Top. Catal. 65, 312–324 (2022).

28. Grambow, C. A., Pattanaik, L. & Green, W. H. Reactants, products,
and transition states of elementary chemical reactions based on
quantum chemistry. Sci. Data 7, 1–8 (2020).

29. Kim, I., Kim, Y., Kim, S. Learning loss for test-time augmentation.
Adv. Neural Inf. Process. Syst. (NeurIPS). https://arxiv.org/pdf/
2010.11422.pdf. (2020).

30. Moshkov, N., Mathe, B., Kertesz-Farkas, A., Hollandi, R. &Horvath, P.
Test-time augmentation for deep learning-based cell segmentation
on microscopy images. Sci. Rep. 10, 1–7 (2020).

31. Yang, Z. & Gao, W. Applications of machine learning in alloy cata-
lysts: rational selection and futuredevelopment of descriptors.Adv.
Sci. 9, 1–22 (2022).

32. Wang, P., Jin, Z., Li, P. & Yu, G. Design principles of hydrogen-
evolution-suppressing single-atom catalysts for aqueous electro-
synthesis. Chem. Catalysis 2, 1277–1287 (2022).

33. Townsend, P. A., Farrar, E. H. E. & Grayson, M. N. Eliminating tran-
sition state calculations for faster and more accurate reactivity
prediction in sulfa-michael additions relevant to human health and
the environment. ACS Omega 7, 26945–26951 (2022).

34. Smith, J. S., Isayev, O. & Roitberg, A. E. Data descriptor: ANI-1, a data
set of 20 million calculated off-equilibrium conformations for
organic molecules. Sci. Data 4, 1–8 (2017).

35. Heid, E. & Green, W. H. Machine learning of reaction properties via
learned representations of the condensed graph of reaction. J.
Chem. Inf. Model. 62, 2101–2110 (2021).

36. Spiekermann, K. A., Pattanaik, L. & Green, W. H. Fast predictions of
reaction barrier heights: toward coupled-cluster accuracy. J. Phys.
Chem. A 126, 3976–3986 (2022).

37. Steinmetzer, J., Kupfer, S. & Gräfe, S. pysisyphus: exploring potential
energy surfaces in ground and excited states. Int. J. Quantum Chem.
121, 1–18 (2021).

38. Smith, D. G. A. et al. Psi4 1.4: Open-source software for high-
throughput quantum chemistry. J. Chem. Phys. 152, 184108
(2020).

39. Peng, C. & Schlegel, H. B. Combining ST and QN methods to find
transition states. Israel J. Chem. 33, 449–454 (1993).

40. Mann, M. et al. Atom mapping with constraint programming.
Algorithms Mol. Biol. 9, 23 (2014).

41. Jaworski, W. et al. Automatic mapping of atoms across both simple
and complex chemical reactions. Nat. Commun. 10, 1434 (2019).

42. Bratholm, L. A. et al. A community-powered search of machine
learning strategy space to find NMR property prediction models.
PloS One 16, 0253612 (2021).

43. Zhang, Y. & Yang, Q. A survey on multi-task learning. IEEE Trans.
Knowl. Data Eng. 4347, 1–20 (2021).

44. Gower, J. C. Properties of Euclidean and non-Euclidean distance
matrices. Linear Algebra Appl. 67, 81–97 (1985).

45. Makoś, M. Z., Verma, N., Larson, E. C., Freindorf, M. & Kraka, E.
Generative adversarial networks for transition state geometry pre-
diction. J. Chem. Phys. 155, 024116 (2021).

46. Paranjothy, M., Sun, R., Zhuang, Y. & Hase, W. L. Direct chemical
dynamics simulations: coupling of classical and quasiclassical tra-
jectories with electronic structure theory. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 3, 296–316 (2013).

47. Pedregosa, F. et al. Scikit-learn: machine learning in python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

48. Frey, B. J. & Dueck, D. Clustering by passing messages between
data points. Science 315, 972–976 (2007).

Acknowledgements
The author thanks Y. Kim for the helpful discussion. This work was
conducted with computing resource support from KISTI [KSC-2020-
CRE-0117].

Author contributions
S. Choi designed the overall study, performed numerical experiments,
and wrote the manuscript.

Competing interests
The author declares no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36823-3.

Correspondence and requests for materials should be addressed to
Sunghwan Choi.

Peer review information Nature Communications thanks Hyunwook
Jung, Lagnajit Pattanaik, and Jason Pearson for their contribution to the
peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-36823-3

Nature Communications |         (2023) 14:1168 10

https://arxiv.org/abs/1802.08219
https://arxiv.org/pdf/2010.11422.pdf
https://arxiv.org/pdf/2010.11422.pdf
https://doi.org/10.1038/s41467-023-36823-3
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36823-3

Nature Communications |         (2023) 14:1168 11

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Prediction of transition state structures of gas-phase chemical reactions via machine learning
	Results
	Prediction accuracy
	Quantum chemical validation
	Exploring multiple reaction paths

	Discussion
	Methods
	Data preparation and quantum chemical validation
	Model architecture and training
	Metrics
	Loss function
	Nonlinear optimization and ensembles
	Normal mode sampling and clustering

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




