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Abstract representations emerge naturally
in neural networks trained to perform
multiple tasks

W. Jeffrey Johnston 1,2 & Stefano Fusi 1,2

Humans and other animals demonstrate a remarkable ability to generalize
knowledge across distinct contexts and objects during natural behavior. We
posit that this ability to generalize arises from a specific representational
geometry, that we call abstract and that is referred to as disentangled in
machine learning. These abstract representations have been observed in
recent neurophysiological studies. However, it is unknown how they emerge.
Here, using feedforward neural networks, we demonstrate that the learning of
multiple tasks causes abstract representations to emerge, using both super-
vised and reinforcement learning.We show that these abstract representations
enable few-sample learning and reliable generalization on novel tasks. We
conclude that abstract representations of sensory and cognitive variables may
emerge from the multiple behaviors that animals exhibit in the natural world,
and, as a consequence, could be pervasive in high-level brain regions. We also
make several specific predictions about which variables will be represented
abstractly.

The ability to generalize existing knowledge to novel stimuli or situa-
tions is essential to complex, rapid, and accurate behavior. As an
example, when shopping for produce, humans make many different
decisions about whether or not different pieces of produce are ripe—
and, consequently, whether to purchase them. The knowledge we use
in the store is often learned from experience with that fruit at home—
thus, generalizing across distinct contexts. Further, the knowledge
that we apply to a fruit that we buy for the first time might be derived
from similar fruits—generalizing, for instance, from an apple to a pear.
The determinations themselves are oftenmulti-dimensional andmulti-
sensory: both firmness and appearance are important for deciding
whether an avocado is the right level of ripeness. Yet, at the end of this
complex process, we make a binary decision about each piece of fruit:
we add it to our cart, or do not—and get feedback later about whether
that was the right decision. This produce shopping example is not
unique. Humans and other animals exhibit an impressive ability to
generalize across contexts and between different objects in many
situations.

The representational geometry of sensory and cognitive variables
in a population of neurons provides insight into the computations that
the representation may and may not facilitate1–3. We hypothesize that
the ability to generalize described above is tied to this representational
geometry. For instance, neural representations of sensory and cogni-
tive variables are often nonlinearly mixed together. As a result, these
representations have high-embedding dimension4–6. While this kind of
nonlinear dimensionality expansion allows flexible learning of new
behaviors5 and provides metabolically efficient and reliable
representations7, the resulting representation often does not permit
generalization across contexts or stimuli5,8. Alternatively, factorized, or
even linear, representations of the relevant sensory or cognitive vari-
ables (i.e., representations that have no nonlinearmixing) often permit
this generalization. Recent experimental work has shown that this kind
of factorized—and approximately linear—representation exists at the
apex of the primate ventral visual stream, for faces in inferotemporal
cortex9–11. Further, experimental work in the hippocampus and pre-
frontal cortex has shown that representations of the sensory and
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cognitive features related to a complex cognitive task, also support
generalization8. We refer to representations of task-relevant sensory
and cognitive variables that support generalization—like in these
examples and others12–16—as abstract representations.

In the machine learning literature, abstract representations are
often referred to as factorized17 or disentangled10,17–20 representations
of interpretable stimulus features. Deep learning has been used to
produce abstract representations primarily in the form of unsu-
pervised generative models18,21,22 (but see ref. 23). In this context,
abstract representations are desirable because they allow potentially
novel examples of existing stimulus classes to be produced by linear
interpolation in the abstract representation space (for example,
starting at a known exemplar and changing its orientation by moving
linearly along a dimension in the abstract representation space that is
known to correspond to orientation)18.

Here, we ask how abstract representations—like those observed in
higher brain regions8,9—can be constructed from the nonlinear and
high-dimensional representations observed in early sensory
areas6,24–28. To study this, we begin by mirroring these high-
dimensional and nonlinear representations in a learned model of
continuous latent variables; then, we show that training feedforward
neural networkmodels to performmultiple distinct classification tasks
on these latent variables induces abstract representations in a wide
variety of conditions.

Experimental work on animals performing more than a couple of
distinct behavioral tasks remains nearly nonexistent29. However,
modeling work using recurrent neural networks has shown that the
networks often develop representations that can be reused across
distinct, but related tasks30–32—though the abstractness of these
reusable representations was not measured. Thus, the behavioral
constraint of multi-tasking may encourage the learning of abstract
representations of stimulus features that are relevant tomultiple tasks.
To investigate this hypothesis, we train feedforward neural network
models to perform multiple distinct tasks on a common stimulus
space. Previous work inmachine learning has shown that similarmulti-

tasking networks can achieve lower loss from the same number of
samples than networks trained independently on each task33 (and see
ref. 34), and that they can quickly learn novel, but related, tasks that are
introduced after training35. Both of these properties are hallmarks of
abstract representations—however, to our knowledge, the repre-
sentational geometry developed by these multi-tasking networks has
not been characterized.

We begin by introducing themulti-taskingmodel and show that it
produces fully abstract representations that are surprisingly robust to
heterogeneity and context dependence in the learned tasks. These
representations also emerge in the more realistic case in which only a
fraction of tasks are closely related to the latent variables, and the
remaining larger fraction is not. Next, we characterize how the level of
abstraction depends on nonlinear curvature in the classification task
boundaries and on different types of inputs, including images.We also
show that the multi-tasking model learns similarly abstract repre-
sentations when trained using reinforcement learning. Finally, we use
this framework to make several predictions for how neural repre-
sentations in the brain will be shaped by behavioral demands. Overall,
our work shows that abstract representations—similar to those
observed in the brain8–10,15—reliably emerge from learning tomulti-task
inmulti-dimensional environments. Together, our results indicate that
abstract representations in the brainmay be a consequenceof – aswell
as a boon to36—complex behavior.

Results
Abstract representations allow knowledge to be generalized
across contexts
The knowledge of latent structure that is present in the sensory world
can enable generalization. For example, the appearance of different
kinds of berries can be described by two continuous latent variables:
color and shape. As an example, berries that have a similar shape are
likely to also have similar texture when eaten, regardless of their color
(Fig. 1a, left); further, berries that are red may taste more similar to
each other, despite differences in shape, than they do to berries that

Fig. 1 | The abstraction metrics and input representations. a Two example
classification tasks. (left) A classification learned between red and blue berries of
one shape should generalize to other shapes. (right) A classification between red
berries of twodifferent shapes shouldgeneralize to blueberries of different shapes.
b Examples of linear, abstract (left), and nonlinear, non-abstract (right)

representations of the four example berries. c Schematic of the input model.
d Schematic of the multi-tasking model. e Schematic of our two abstraction
metrics, the classifier generalization metric (left) and the regression generalization
metric (right).
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are blue (Fig. 1a, right). Learning and taking advantage of this structure
in the sensoryworld is important for animals that need to quickly react
to novel stimuli using information from previously experienced
stimuli.

We refer to neural representations that reflect this latent structure
as abstract. In the example above, one form of an abstract repre-
sentation of these latent variables is a linear representation of them in
neural population activity, such a representation would have a low-
dimensional, rectangular structure in neural population space (Fig. 1b,
left); a non-abstract representation of these latent variables would
have a higher-dimensional distorted structure, such as one created by
neurons that each respondonly to particular conjunctions of color and
shape (Fig. 1b, right). The abstract representation has the desirable
quality that, if we learned a neural readout that classifies blue berries
from red berries using berries with only one shape (e.g., the two bot-
tom berries in Fig. 1b, left), then we would not need to modify this
classifier to apply it to berries of a different shape (e.g., the two top
berries in Fig. 1b, left); while the same classification can be learned for
the non-abstract representation, it will not generalize (compare the
two berries to the left and to the right in Fig. 1b, right).

Here, we study how abstract representations like the ones in our
example emerge for stimuli described byD continuous latent variables
in a feedforward neural network. The latent variables themselves are
already abstract. So, we begin by constructing a nonlinear and non-
abstract representation of the latent variables to use asour input going
forward (Fig. 1c), which we refer to as the standard input. Then, we
introduce the multi-tasking model, which receives these non-abstract
representations of the latent variables as input (Fig. 1d, left) and is then
trained to perform P random binary classification tasks on the latent
variables (Fig. 1d, right). Finally, after the multi-tasking model is fully
trained, we quantify the level of abstraction developed in its repre-
sentation layer using two abstraction metrics (Fig. 1e).

The first abstraction metric is referred to as the classifier gen-
eralization metric, and is nearly identical to the cross-category gen-
eralization performance used in previous work8. For the classifier
generalization metric, we begin by selecting a novel categorization
task on the latent variables (Fig. 1e, top left). Then, we train a linear
classifier to perform that task using samples from the multi-tasking
model representation layer that are taken from only one half of the
latent variable space (Fig. 1e, bottom left, train). Then, we test this
trained classifier on samples from the other half of the latent variable
space (Fig. 1e, bottom left, test). If the classifier generalization per-
formance is greater than chance, then this indicates that the repre-
sentations developed in the multi-tasking model are at least partially
abstract, because a category learned in one part of latent variable
space successfully generalizes to another part of latent variable space.
High classifier generalization performance has been observed for
sensory and cognitive features in neural data recorded from the hip-
pocampus and prefrontal cortex8.

The second abstraction metric is referred to as the regression
generalization metric (Fig. 1e, top right). This metric has the same
structure as the classifier generalization metric, but uses a linear
regression model instead of a linear classifier. Here, we begin by
selecting a random latent variable. Then, we train a linear regression
model to decode the value of that latent variable using samples from
the multi-tasking model representation layer that are taken from only
one-half of the latent variable space (Fig. 1e, bottom right, train). As
before, we then test the trained linear regression model on samples
from the other half of latent variable space (Fig. 1e, bottom right, test).

Metrics similar to both of these are often used in the machine
learning literature18,37). The classifier generalization metric requires
that the coarse structure of the representations be abstract, but is
less sensitive to small deviations. The regression generalizationmetric
is much stricter, and is sensitive to even small deviations from a
representation that follows the underlying latent variable structure. In

some cases, we also compare these metrics of out-of-distribution
generalization to standard cross-validated performance on the whole
latent variable space. Intuitively, the standard cross-validated perfor-
manceof bothmetrics serves as a best case for their out-of-distribution
generalization performance (i.e., the case where what is learned from
only half the representation space is just as informative about the
global representation structure as what would be learned from
thewhole representation space). In a perfectly abstract representation,
the standard and out-of-distribution generalization performances
would be equal to each other.

Importantly, each of these three components of our framework
is trained in sequence to each other: The input model (Fig. 1c) is
trained first and then frozen. The inputmodel is used to generate the
training data for the multi-tasking model (Fig. 1d), which is trained
second. Then, finally, we use our abstraction metrics (Fig. 1e) to
quantify the level of abstraction present in the representation layer
of the trained multi-tasking model (and in the trained standard
input, as in Fig. 2).

The input is sparse, high-dimensional, and non-abstract
First, we develop an input model to construct non-abstract repre-
sentations of known D-dimensional latent variables, which we refer to
as the standard input. Inmost of the paper, we assume D = 5 Gaussian-
distributed latent variables, however, our results are similar for uni-
formlydistributed latent variables (and see “Asensitivity analysisof the
multi-tasking model and βVAE” in Supplementary Methods). The
standard input is a feedforward autoencoder that receives the latent
variables as inputs and is trained to satisfy two objectives: First, it must
maximize the embedding dimensionality of activity in its representa-
tion layer (Fig. 2a, right, high-d input) and, second, to reconstruct the
original stimulus using only the representation (Fig. 1a, blue arrows
toward the left). That is, we want a high-dimensional representation of
the latent variables that does not discard any information. The non-
abstract representations generated by this procedure will be used as
the input to the multi-tasking model.

After training, we visualize the response fields of units in the
standard input representation layer (Fig. 2b). The response fields are
sparse, conjunctive, and often multi-modal. We also compare the
population representation of two latent variable dimensions prior to
(Fig. 2c, left) and after Fig. 2c, right) undergoing this transformation.
This visualization illustrates that the population representation also
becomes highly disordered and tangled. In the full population, only
approximately 4% of units are active for a given stimulus—and each
individual unit is also highly sparse (Fig. 2d, left) according to a stan-
dard measure of sparseness (see “Quantifying sparseness and dimen-
sionality” in Methods). Together, all of this leads to a large
dimensionality expansion, from the D = 5-dimensional latent variables
to a representation with an embedding dimensionality of close to 200,
measured by the participation ratio38 (and see “Quantifying sparseness
and dimensionality” in Methods).

While high-embedding dimensionality and sparseness are already
hallmarks of non-abstract representations, we also directly visualize,
and then quantify, the level of abstraction in the standard input
representations using the classification and regression generalization
metrics that we developed for (and will later apply to) the repre-
sentation layer of the multi-tasking model. We show that both a clas-
sifier (Fig. 2e, left) and a linear regression (Fig. 2e, right) trainedonly on
one-half of the latent variable space (Fig. 2e, trained) achieve good
performance in that region. However, in both cases, performance
collapses when moving into the untrained region of latent variable
space (Fig. 2e, tested). This is reflected in the full classification and
regression generalization performance quantification: both classifica-
tion and regression generalization performance is significantly
decreased from generalization performance calculated on the latent
variables themselves (Fig. 2f, green relative to blue dot) and relative to
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the classification and regression performance in the trained region
(Fig. 2f, right relative to left).

The multi-tasking model learns abstract representations
To recover the abstract structure of the latent variables from the non-
abstract representations produced by the standard input, we intro-
duce themulti-taskingmodel (Figs. 1d and 3a). Themultitaskingmodel
is a multilayer feedforward neural network model that is trained to
perform P different binary classification tasks (see “The multi-tasking
model” in Methods for details). These tasks are analogous to the tasks
that animals perform in many experimental settings, as described
above. For instance, if an animal eats a berry, the animal later receives
information about whether that berry was edible or poisonous. If we
assume that the edibility of a berry is represented by one of our D
latent variables, then, in the multi-tasking model, this classification
task corresponds to the model being trained to produce one output
when the latent variable is positive and another output when the latent
variable is negative. In the full model, the category boundary for each
classification task is chosen to be a random hyperplane in the full D-

dimensional latent variable space (i.e., each task depends on multiple
latent variables). In all of our analyzes, we focus on the representations
of the stimuli that are developed in the layer preceding the task output
layer, whichwe refer to as the representation layer (but see fig. S12 and
“Abstraction emerges even in earlier layers of themulti-taskingmodel”
in Supplementary Methods for an analysis of the other layers).

We show that the multi-tasking model develops fully abstract
representations of theD latent variables when trained to perform P ≥D
classification tasks. First, we visualize how the representations devel-
oped by our model compare to the abstract latent variables. In parti-
cular, we visualize the representations in the same threeways aswe did
the standard input (Fig. 2c, e, f). First, we compare a concentric square
representation of the latent variables (Fig. 3a, left) to the same struc-
ture in the representation layer (Fig. 3b). For only a single task, the
representations in the model collapse along a single dimension, which
corresponds to the performance of that task (Fig. 3b, top). While this
representation is not abstract, it does mirror distortions in sensory
representations that are often observed when animals are overtrained
on single tasks39,40. However, when we include a second task in the
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Fig. 2 | The input model. a Schematic of the input model. Here, schematized for
D = 2 latent variables. The quantitative results are forD = 5.bThe 2D response fields
of 25 random units from the high-d input layer of the standard input. c The same
concentric square structure shown to represent the latent variables in a after being
transformed by the standard input. d (left) The per-unit sparseness (averaged
across units) for the latent variables (S =0, by definition) and standard input
(S =0.97). (right) The embedding dimensionality, as measured by participation
ratio, of the latent variables (5, by definition) and the standard input (~190).
e Visualization of the level of abstraction present in the high-d input layer of the
standard input, as measured by the classifier generalization metric (left) and
regression generalizationmetric (right). In both cases, the y-axis shows thedistance
from the learned classification hyperplane (right: regression output) for a classifier

(right: regression model) trained to decode the sign of the latent variable on the
y-axis (right: the value of the latent variable on the y-axis) only on representations
from the left part of the x-axis (trained). The position of each point on the x-axis is
the output of a linear regression for a second latent variable (trained on the whole
latent variable space). The points are colored according to their true category
(value). f The performance of a classifier (left) and regression (right) when it is
trained and tested on the same region of latent variable space (trained) or trained in
one region and tested in a non-overlapping region (tested, similar to e). Both
models are trained directly on the latent variables and on the input representations
produced by the standard input. The gray line is chance. The standard input pro-
duces representations with significantly decreased generalization performance.
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training procedure, abstract representations begin to emerge (Fig. 3b,
middle). In particular, the representation layer is dominated by a two-
dimensional abstract representation of a linear combination of two of
the latent variables. Next, we demonstrate that this abstract structure
becomes more complete as the number of tasks included in the
training is increased. For P = 10 and D = 5, the visualization suggests
that the representation has become fairly abstract (Fig. 3b, bottom).

We also visualized these results more directly using an approach
similar to the classification and regression generalization metrics (and
used above for the standard input, Fig. 2e). For each of themodels, we
train a linear classifier (regression) to decode the sign (the value) of
one latent variable using samples drawn from only one half of latent

variable space (Fig. 3c, classification is left, regression is right, trained).
Then, we visualize the output of that learned decoder as wemove into
the held out half of latent variable space (Fig. 3c, tested and compare
with Fig. 2e). For one and two trained tasks (Fig. 3c, top and middle),
the learned decoder performs poorly in both the trained and tested
regions, because the network is highly specialized for the one (or two)
tasks that it was trained to perform. However, for P = 10 trained tasks
(Fig. 3c, bottom), the learned decoder performs well in both regions,
indicating the emergence of fully abstract representations. Finally, we
also visualize the projection of the representation layer from each of
multi-tasking models onto one of the task outputs (Fig. 3d). We see
that for one and two tasks (Fig. 3d, top and middle), the task output
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value is strongly separated and bimodal. These representations sug-
gest that themulti-taskingmodel is discardingmost information about
the latent variables except that which is necessary to solve the tasks—
and also illustrates why we would have poor performance when
attempting to learn a novel task using the representation (Fig. 3c, top
and middle). However, for P = 10 tasks, the task outputs are less
separated and appear more continuous. This suggests that the multi-
tasking model develops more information about the latent variables
that could underlie both novel task learning and abstract representa-
tions (Fig. 3c, bottom).

Next, we quantify how the level of abstraction developed in the
representation layer depends on the number of classification tasks
used to train the model (Fig. 3c). For each number of classification
tasks,we train 10multi-taskingmodels to characterize how themetrics
depend on random initial conditions. As the number of classification
tasksP exceeds thenumber of latent variablesD, both the classification
and regression generalizationmetrics saturate to near their maximum
possible values (classifier generalization metric: exceeds 90% correct
with 8 tasks; regression generalization metric: exceeds r2 = 0.8 with 9
tasks; Fig. 3c, right of the gray line). Saturation of the classifier gen-
eralization metric indicates that the broad organization of the latent
variables is perfectly preserved; while saturation of the regression
generalization metric indicates that even the magnitude information
that the multi-tasking model did not receive supervised information
about is preserved and represented in a fully abstract format. Impor-
tantly, both the training and testing set split and the classification
boundary for the classifier generalizationmetric are randomly selected
—they are not the same as classification tasks used in training.

The multi-tasking model also reduces the number of samples
required to both learn and generalize novel tasks. For a multi-tasking
model trained to perform P = 10 tasks with D = 5 latent variables, we
show how the performance of a novel classification task depends on
the number of samples. We compare this performance to a lower
bound (Fig. 3f, dark gray), from when the task is learned from the
standard input representation; as well as an upper bound (Fig. 3f, light
gray), from when the task is learned directly from the latent variables.
The performance of the multi-tasking model nearly saturates this
upper bound (Fig. 3f, left). Next, we perform a similar novel task ana-
lysis, but where the novel task is learned from one half of the stimulus
space and is tested in the other half – just like our generalization
analysis above (and schematized in Fig. 1c, top).We compare the same
lower and upper bound as before and show that, again, the multi-
tasking model representation nearly saturates the upper bound
(Fig. 3d, right). Thus, not only does the multi-tasking model produce
representations with good generalization properties, it also produces
representations that lend themselves to the rapid (i.e., few sample)
learning of novel tasks.

Next, we test how robust these abstract representations are to
increases in the embedding dimensionality of the input, to changes to
the classification tasks themselves, and to a different input type. First,

we show that this finding is almost unchanged given standard input
models that produce higher-dimensional input (fig. S10 and see “The
effect of increased input dimensionality on abstraction” in Supple-
mentary Methods). Then, we show that our finding holds for three
manipulations to the task structure. First, we show that unbalanced
tasks (e.g., amore or less stringent criteria for judging the ripeness of a
fruit—so either many more of the fruit are considered ripe than spoilt
or vice versa; fig. S2a, top left; see “Unbalanced task partitions” in
Methods formoredetails) have a negligible effect on the emergenceof
abstract representations (classifier generalizationmetric: exceeds 90%
correct with 9 tasks, regression generalization metric: exceeds r2 = 0.8
with 9 tasks; fig. S2b). Second, we show that contextual tasks (e.g.,
determining the ripeness of different fruits that occupy only a fraction
of latent variable space; fig. S2a, top right; see “Contextual task parti-
tions” in Methods for more details) produce only a moderate increase
in the number of tasks required to learn abstract representations
(classifier generalization metric: exceeds 90% correct with 14 tasks,
regression generalization metric: exceeds r2 = 0.8 with 14 tasks;
fig. S2b). Third, we show that using training examples with information
from only a single task (e.g., getting only a single data point on each
trip to the store; fig. S2a, bottom, see “Partial information task parti-
tions” in Methods for more details) also only moderately increase the
number of tasks necessary to produce abstract representations (clas-
sifier generalization metric: exceeds 90% correct with 11 tasks,
regression generalization metric: exceeds r2 = 0.8 with 14
tasks; fig. S2b).

Thus, the multi-tasking model reliably produces abstract repre-
sentations even given substantial heterogeneity in the amount of
information per stimulus example and the form of that information
relative to the latent variables. In the case of contextual tasks, the
latent variable information provided by the tasks is necessarily partial.
To develop abstract representation even in this case, themulti-tasking
model must combine information from multiple different contextual
tasks. Further, these results are also robust to variation in architecture:
Changing the width, depth, and several other parameters of the multi-
tasking model have only minor effects on classification and regression
generalization performance (fig. S7 and see “A sensitivity analysis of
the multi-tasking model and βVAE” in Supplementary Methods). The
result is also robust to L1 and L2 regularization of the activity in the
representation layer, which also increases the sparseness of that
activity (fig. S9 and see “The effect of activity regularization on
abstraction” in Supplementary Methods for more detail).

Finally, we ask whether the multi-tasking model can produce
abstract representations from a different kind of input, chosen to
mimic the structure of a population of highly local Gaussian receptive
fields (RF), which are thought to be used to encode many kinds of
stimuli across early sensory systems24–28. Here, we construct a repre-
sentation of a D = 5 latent variables using randomly positioned Gaus-
sian receptive fields (fig. S4a, left, and see “Abstract structure can be
learned from early sensory-like representations” in Supplementary

Fig. 3 | The emergence of abstraction from classification task learning.
a Schematic of the multi-tasking model. It receives a high-dimensional input
representation of D latent variables (here, from the standard input, as shown in
Fig. 1e, left) and learns to performPbinary classifications on the latent variables.We
study the representations that this induces in the layer prior to the output: the
representation layer. b Visualization of the concentric square structure as trans-
formed in the representation layer of amulti-taskingmodel trained to performone
(top), two (middle), and ten (bottom) tasks. The visualizationprocedure is the same
as Fig. 2c. c The same as b, but for visualizations based on classifier (left) and
regression (right) generalization. The classifier (regression)model is learned on the
left side of the plot, and generalized to the right side of the plot. The output of the
model is given on the y axis and each point is colored according to the true latent
variable category (i.e., sign) or value. The visualization procedure is the same as
Fig. 2e. The visualization shows that generalization performance increases with the

number of tasks P (increasing from top to bottom). d The activation along the
output dimension for a single task learned by the multi-tasking model for the two
different output categories (purple and red). The distribution of activity is bimodal
for multi-tasking models trained with one or two tasks, but becomes less so for
more tasks. e The classifier (left) and regression (right) metrics applied to model
representations with different numbers of tasks. f The standard (left) and gen-
eralization (right) performance of a classifier trained to perform a novel task with
limited samples using the representations from amulti-tasking model trained with
P = 10 tasks as input. The lower (dark gray) and upper (light gray) bounds are the
standard or generalization performance of a classifier trained on the input repre-
sentations (lower) and directly on the latent variables (upper). Note that the multi-
tasking model performance is close to that of training directly on the latent vari-
ables in all cases.
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Methods). These inputs have a highly curved geometry in population
space (fig. S4a, right). Then, we show that the multi-tasking model
recovers fully abstract representations from this highly local input
(fig. S4c). Later, we explore two additional input types.

Understanding the learning dynamics that produce abstract
representations
The multi-tasking model is trained to simultaneously produce output
for P different random tasks. Importantly, the standard input used in
this section already has high classification performance for random
hyperplane tasks on the latent variables (Fig. 2f, left), due to its high-
embedding dimensionality4. So, one possibility is that the repre-
sentation layer in the multi-tasking model would retain the same, non-
abstract structure. However, our results in the previous section and
experimentswithmulti-taskingmodels that are trainedwith layers that
all have the same width as the input (see “The effect of constant layer
widths on abstraction” in Supplementary Methods and fig. S11) show
that this is not the case. Instead, the multi-tasking model develops
robustly abstract representations (Fig. 3e, f).

To understand why this occurs, we show that the training process
increases the strength of the representation of an approximately
minðP,DÞ-dimensional component of the activity in the representation
layer of the multi-tasking model. In particular, for a simplified multi-
tasking model with a linear output layer, the loss for a particular
sample x has the form,

LðxÞ= 1
2

XP
i

signðAxÞ �WrðxÞ½ �2i ð1Þ

where W are the weights connecting the representation layer to the
task outputs, r(x) is the activity corresponding to stimulus x in the
representation layer, and A is a P ×Dmatrix of randomly selected task
vectors (i.e., the vectors that define the binary classification hyper-
plane). This loss is minimized by making r(x) a linear transform of
sign(Ax). In backpropagation, this is achieved by increasing the
strength of a component of r(x) that has the same dimensionality as
sign(Ax) (see “The dimensionality of representations in the multi-
tasking model” in Methods). So, we show that,

dimðEX signðAxÞ signðAxÞT Þ≈dimðEX AxxTAT Þ ð2Þ

= minðP,DÞ ð3Þ

and the approximation becomes closer as D becomes larger (and,
indeed, we see less abstract representations for lower D, see “The
dependence of learned abstract representations on latent variable
dimensionality” in SupplementaryMethods for more discussion). This
means that, given application of backpropagation, the representation
layer will tend to be dominated by a minðP,DÞ-dimensional repre-
sentation of the latent variables. Since this representationmust also be
able to satisfy the P tasks, it will at least have high classifier general-
ization performance andmayevenhave high regression generalization
performance (see “Four possibilities for representations in the multi-
tasking model” in Supplementary Methods for more discussion of
alternative representations).While themulti-taskingmodel used in the
rest of the paper has a sigmoid output nonlinearity, the intuition
developed in this simplified case still applies.

Abstract representations only emerge when task-relevant
Abstract representations for the latent variables do not emerge when
the multi-tasking model is trained to perform random, highly non-
linear tasks. This follows what would be expected in the natural world:
latent variables are learned as a way to solvemultiple related tasks and
to generalize knowledge fromone task to another, rather than for their

own sake. Then, we show that abstract representations are recovered
when the multi-tasking model learns a combination of latent variable-
aligned and unaligned tasks.

First, we construct grid classification tasks, in which the latent
variable space is divided into grid chambers, where each chamber
has a roughly equal probability of being sampled (Fig. 4a, red lines).
Then, we randomly assign each of the grid chambers to one of two
categories (Fig. 4a, coloring; see “Grid classification tasks” in Meth-
ods for more details). In this case, there is nothing in the design of
the multi-tasking model that privileges a representation of the
original latent variables, since they are no longer useful for learning
to perform the multiple grid classification tasks. Consequently, the
multi-tasking model does not recover a representation of the
original latent variables (Fig. 4b, c).

Tomake this intuition about the grid tasksmore explicit, we show
that—in contrast to the latent variable-aligned tasks that we have been
using so far—the outcomes from a particular grid task are likely to be
only weakly correlated with the outcomes from a different, randomly
chosen grid task (Fig. 4d). Thus, rather than having a D-dimensional
structure for P >>D tasks, the grid tasks will have a roughly P-dimen-
sional structure for P tasks. As expected, the multi-tasking model fails
to learn a strongly abstract representation of the original latent vari-
ables, and the representation becomes less abstract as the grid tasks
become higher-dimensional (i.e., when the grid has more chambers;
Fig. 4c, middle and right, blue and purple lines).

Next, we examine the representations learned by the multi-
tasking model when it must perform a mixture of latent variable-
aligned and grid classification tasks (Fig. 4e). This situation is also
chosen to mimic the natural world, as a set of latent variables may be
relevant to some behaviors (the latent variable-aligned classification
tasks), but an animal may need to perform additional behaviors on the
same set of stimuli that do not follow the latent variable structure (the
grid classification tasks, Fig. 4e, right). Here, we train the multi-tasking
model to perform a fixed number of latent variable-aligned tasks,
which are sufficient to develop an abstract structure in isolation (here,
15 tasks). However, at the same time, themodel is also being trained to
perform various numbers of grid tasks (Fig. 4f, x axis).While increasing
the number of grid tasks doesmoderately decrease the abstractness of
the developed representation (visualization: Fig. 4f; quantification:
Fig. 4g), the multi-tasking model retains strongly abstract repre-
sentations even while performing more than 45 grid tasks—3 times as
many as the number of latent variable-aligned tasks.

Intuitively, this occurs because the latent variable-aligned tasks
are correlated with each other and follow the structure of the
D-dimensional latent variable space, while each of the grid tasks has
low correlation with any other grid task (Fig. 4d). Thus, a shared
representation structure is developed to solve all the latent variable-
aligned tasks essentially at once, while a smaller nonlinear component
is added on to solve each of the grid tasks relatively independently.
Interestingly, the combination of abstract structure with nonlinear
distortion developed by the multi-tasking model here has also been
observed in the brain and other kinds of feedforward neural networks
(though learning tasks analogous to our grid tasks was not necessary
for it to emerge)8. We believe that this compromise between strict
abstractness (which allows for generalization) and nonlineardistortion
(which allows for flexible learning of random tasks4,5) is fundamental to
the neural code.

The multi-tasking model learns abstract representations from
other kinds of nonlinear inputs
To understand the constraints on the multi-tasking model’s ability to
learn abstract representations from non-abstract input, we introduce
both a new input model (Fig. 5a–c) and a new kind of nonlinear task
(Fig. 5a, d, e). We control the length scale of correlations in both the
input model and the tasks. Then, we quantify the classification and
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regression generalization performance as we vary both length scales
simultaneously (Fig. 5f, g).

For the input model, we use random Gaussian processes with
radial basis function kernels of different length scales. To illustrate this
approach, we begin with a D = 1 normally distributed latent variable

(Fig. 5a, left), then generate random Gaussian process functions that
map this variable to a scalar output (three functions in Fig. 5a, center).
The scalar outputs of many random Gaussian process functions are
then used as input to the multi-tasking model (Fig. 5a, right; and
see “Random Gaussian process inputs” in Methods for more details).
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P tasks
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multi-tasking model (mixed tasks)

abstraction metrics (mixed tasks)
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Fig. 4 | Abstract representations emerge for heterogeneous tasks, and in spite
of high-dimensional grid tasks. a Schematic of the multi-tasking model with grid
tasks. They are defined by the grid size, grid, the number of regions along each
dimension (top: grid = 2; bottom: grid = 3), and the number of latent variables, D.
There are gridD total grid chambers, which are randomly assigned to category 1
(red) or category 2 (blue). Some grid tasks are aligned with the latent variables by
chance (as in top left), but this fraction is small for evenmoderateD.bVisualization
of the representation layer of amulti-taskingmodel trained only on grid tasks, with
P = 15. c Quantification of the abstraction developed by a grid task multi-tasking
model. (left) Classifier generalization performance. (right) Regression general-
ization performance. d The alignment (cosine similarity) between between

randomlychosen tasks for latent variable-aligned classification tasks,n = 2 andD = 5
grid tasks, and n = 3 and D = 5 grid tasks. e Schematic of the multi-tasking model
with a mixture of grid and linear tasks. f Same as b, but for a multi-tasking model
trained with a mixture of: P = 15 latent variable-aligned classification tasks and a
variable number of grid tasks (x axis). g Same as c, but for a multi-tasking model
trainedwith P = 15 latent variable-aligned classification tasks and a variable number
of grid tasks. While the multi-tasking model trained only with grid tasks does not
develop abstract representations, the multi-tasking model trained with a combi-
nation of grid and linear tasks does – even when the number of grid tasks out-
numbers the number of linear tasks.
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Where we show results from these random Gaussian process inputs,
we use D = 5 rather than the D = 1 used in the example.

The length scale of the random Gaussian process kernel controls
how far two points need to be from each other in latent variable space
before they become uncorrelated in representation space. As a result,
the length also controls how nonlinear and non-abstract the resulting
input representation of the latent variables is (Fig. 5b). In particular, a
low length scale (e.g., <1) means that the input representation is both
relatively high-dimensional (Fig. 5c, left) and non-abstract (Fig. 5f, g,
gaussian process input). Alternatively, a high length scale (e.g., >4)
produces low-dimensional (Fig. 5c, right) and abstract representations
(Fig. 5f, g, gaussian process input). We show that the multi-tasking
model achieves high classifier generalization performance for all ran-
domGaussian process input length scales that we investigated (Fig. 5f,
multi-tasking model, top row). We also show that the multi-tasking
model achieves moderate regression generalization performance for
many different length scales as well, though regression generalization
performance remains at chance for the shortest length scales that we
investigated (Fig. 5g, multi-tasking model, top row).

The random Gaussian process input differs from our previous
input type in that, for low-length scales, a linear decoder cannot

reliably learn random categorical partitions (as is the case for the
standard input, see Fig. 1f). The random Gaussian process repre-
sentations also have significantly lower participation ratios than those
produced by the standard input. We can see that the randomGaussian
process input tends to fold back on itself for low length scales (Fig. 5a).
This increased folding may explain the lower embedding dimension-
ality of the randomGaussian process relative to the standard input; we
also believe that it would increase the complexity of the transforma-
tion required to produce abstract representations, which may explain
the lower regression generalization performance for the random
Gaussian process inputs.

The multi-tasking model learns abstract structure from tasks
with nonlinear curvature
While we have shown that the multi-tasking model learns abstract
structure from several different manipulations of linear tasks
(fig. S2a, b) and fails to learn abstract structure from highly
nonlinear tasks, for which the latent variables themselves are no
longer relevant (Fig. 4a, b), these two examples represent rela-
tively extreme cases. Here, we show that the multi-tasking model
still produces abstract representations in many cases in between
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Fig. 5 | The multi-tasking model learns abstract structure from both random
Gaussian process inputs and output tasks. a (left) Schematic of the creation of a
random Gaussian process input for one latent variable dimension (D = 1). Random
Gaussian processes with a length scale = 1 are learned for the single latent variable
shown on the left. Then, the responses produced by these random Gaussian pro-
cesses are used as input to the multi-tasking model. The full random Gaussian
process input has 500 random Gaussian process dimensions and D = 5 latent vari-
ables. (right) Schematic of the creation of two random Gaussian process tasks for
the D = 1-dimensional latent variable shown on the left, showing both two example
binary classification tasks and the random Gaussian process that is thresholded at
zero to create each task. b Visualization of the input structure for randomGaussian

process inputs of different length scales. c The embedding dimensionality (parti-
cipation ratio) of the randomGaussianprocess for different length scales. Note that
it is always less than the dimensionality of 200 achieved by the standard input.
d Examples of random Gaussian process tasks for a variety of length scales. The
multi-tasking model is trained to perform these tasks, as schematized in a. e The
embedding dimensionality (participation ratio) of the binary output patterns
required by task collections of different length scales. f Classifier generalization
performance of a multi-tasking model trained to perform P = 15 classification tasks
with D = 5-dimensional latent variables, shown for different conjunctions of task
length scale (changing along the y axis) and input length scale (changing along the x
axis). g Regression generalization performance shown as in f.
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these two extremes, when it is trained on tasks with different
levels of nonlinear curvature (Fig. 5f, g). To produce these tasks,
we generate random Gaussian processes with radial basis func-
tion kernels of a particular length scale (Fig. 5a, right), then use
them to produce two distinct categories by binarizing their out-
put (where outputs >0 are in one category and ≤0 are the other;
Fig. 5a, right, and see “Random Gaussian process tasks” in
Methods for more details).

Following this procedure, we produce tasks with a variety of
length scales (Fig. 5d, length scale increases from left to right). Similar
to the random Gaussian process input, tasks with lower length scales
will have more curved boundaries and multiple distinct category
regions, similar to the grid tasks (Fig. 5d, left); tasks with higher length
scales will tend to have less curved boundaries—and large length scales
(e.g., >10) will approximate the linear tasks from before. We quantify
the nonlinearity of these tasks by computing how the embedding
dimensionality of the required output depends on task length scale for
P = 15 classification tasks onD = 2 latent variables (Fig. 5e). As discussed
above, the nonlinear grid tasks have an output dimensionality that
approaches the number of tasks, while the linear tasksused above have
an output dimensionality that is only slightly higher than the number
of latent variables. We show that the random Gaussian process tasks
have a required output dimensionality that lies between these
extremes, and that decreases with increased length scale (Fig. 5e). Our
theory suggests that the multi-tasking model will learn abstract
representations for moderate levels of curvature.

We show that a multi-tasking model trained to perform P = 15
classification tasks produces representations with above-chance clas-
sifier generalization performance for all task length scales that we
investigated (Fig. 5f, multi-tasking model, middle columns). Further,
the multi-tasking model produces representations with above-chance
regression generalization performance for many different task length
scales aswell (Fig. 5g, multi-taskingmodel, middle columns), though it
is less consistent than classifier generalization performance. Thus, the
multi-tasking model produces partially abstract representations even
from highly curved and sometimes multi-region task boundaries, and
produces fully abstract representations for curved task boundaries. So,
while the multi-tasking model does not produce abstract representa-
tions in the extreme case of the highly nonlinear grid tasks, it does
produce abstract representations for many intermediate task struc-
tures (shown both here and above).

Finally, instead of training the multi-tasking model using random
Gaussian process tasks, we explored whether or not the network
representations could be used to efficiently learn and generalize on
novel random Gaussian process tasks instead of the linear tasks that we
have been using to quantify abstraction so far. We found that, across
several different length scales, both the sample efficiency and general-
ization performance on the novel, curved task were close that of
learning directly from the latent variables (fig. S13 and see “Novel ran-
dom Gaussian process task learning” in Supplementary Methods for
more detail; this mirrors the efficiency and generalization performance
of learning a novel linear classification task, Fig. 3f). Thus, the abstrac-
tion representations learned by the multi-tasking model facilitate effi-
cient learning and generalization even when the novel task is not linear.

The multi-tasking model produces abstract representations
from image inputs
Given the previous results showing that the multi-tasking model pro-
duces only partially abstract representations from highly tangled inputs
(i.e., the low length scale random Gaussian process inputs explored in
Fig. 5), we next asked whether the multi-tasking model would produce
fully (i.e., high classification and regression generalization performance)
or partially (i.e., only high classifier generalization performance) abstract
representations of the image inputs often used to study disentangling in
the machine learning literature (e.g.,41): A chair image dataset that

includes 3D rotations42 and a simple 2D shape dataset43 (Fig. 6a). First,
we pre-process the images using a deep network trained to perform
object recognition (see “Pre-processing using a pre-trained network” in
Methods). These networks have been shown to develop representations
that resemble those found in brain regions like the inferotemporal
cortex (ITC)44, at the apex of the primate ventral visual stream. Then, we
use a two-layer network to learn several distinct classification tasks
which partition the space of the latent variables that describe the images
(Fig. 6b, the same kinds of tasks as in Fig. 3 and see “The image datasets”
in Methods for more details).

The images in both datasets are described by three continuous
parameters and one categorical variable. The chair images have con-
tinuous horizontal position, vertical position, and azimuthal rotation
variables, along with the categorical chair type variable. The 2D shape
images are described by continuous horizontal position, vertical
position, and scale variables, along with the categorical shape type
variable. For both datasets, the tasks learned by the model depend
only on the continuous variables, not on the categorical variables.

In both datasets, the pixel-level images (Fig. 6c, e, top) and the
representations produced by the pre-trained network alone (Fig. 6c, e,
bottom) are non-abstract. However, the representations produced by
the multi-tasking model are abstract, and show strong classifier gen-
eralization performance and moderately high regression general-
ization performance (Fig. 6d, f). Thus, the multi-tasking model can
produce fully abstract representations fromrepresentations of objects
similar to those observed in the brain.

We also explore several other kinds of generalization using these
image inputs. First, we train the multi-tasking model using only a
subset of the different chairs (shapes) and then perform the general-
ization analysis in the usual way, but using only the chairs (shapes) that
were held out (fig. S8 and see Zero-shot categorical generalization for
image inputs in Supplementary Methods for more detail). Here, we
find fully abstract representations for the shape representations and
partially abstract representations for the chairs (fig. S8b). Next, we
perform a similar analysis, but train our abstraction metric models
using chairs (shapes) that were used during multi-tasking model
training and test them on the held out chairs (shapes; fig. S8c). Here,
we find the same result as above: fully abstract representations for the
shapes and partially abstract representations for the chairs (fig. S8d).

Finally, we also use the image setting to investigate one important
property of abstract representations that is not captured by the stan-
dard multi-tasking model: compositionality of representations. In
machine learning, abstract representations are desirable primarily
because they allow representations to be composed toproduceoutput
representations with predictable features41. To investigate this in our
setting, we train a multi-tasking model on the shape image dataset,
where the multi-tasking model must perform binary tasks as before,
but is also taskedwith reconstructing the original image input from the
representation layer as well (see “Themulti-taskingmodel can be used
as an abstract, generative model” in Supplementary Methods for the
details of the model). Then, we learn a vector representation of shape
scale from two of the three shapes included in the dataset (fig. S5d).
Next, we take the representation for the third shape at a starting scale
and use the learned vector to produce shape examples with increased
and decreased scale (fig. S5e). Thus, not only does the representation
of scale generalize across the different shapes, but this property can be
used to generate images with a desired scale in a compositional way.

The multi-tasking model learns abstract representations using
reinforcement learning
In all of the previous cases, we have used supervised learning to train
the multi-tasking model. While this is widely used in machine learning
and has been shown to produce representations that resemble those
found in the brain in many cases44–46, the information used to train
the network during supervised training is qualitatively different from
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the information that would be received by a behaving organism per-
forming multiple tasks. Here, we confirm that the multi-tasking model
still produces abstract representations when trained using reinforce-
ment learning.

We use a modified version of the deep deterministic policy gra-
dient (DDPG)47 reinforcement learning framework to train our net-
works. In this setup, there are twonetworks: an actor-network, which is
trained to take a stimulus and produce the action (or set of actions)
that will maximize reward (Fig. 7a, actor) – this is directly analogous to
the full multi-tasking model as previously described. In reinforcement
learning, the actor cannot be trained directly from the gradient
between the produced and correct actions. So, instead, a second
network, referred to as the critic, is created, which is trained to predict
the reward outcome from an observation and a potential action
(Fig. 7a, critics). The critic network is trained to accurately predict the
reward that results from a stimulus-action pair. Then, the actor net-
work is trained to produce actions that lead to predicted reward
(see “The reinforcement learning multi-tasking model” in Methods for
more details). Here, we create a critic network for eachof the tasks that
the reinforcement learning multi-tasking model is trained to perform.

While the reinforcement learning multi-tasking model learns the
tasks less reliably than the supervised multi-tasking model (Fig. 7b, c),
it still produces fully abstract representations for around ten trained
tasks (D = 5, Fig. 7d). Interestingly, while some tasks are not success-
fully learned during the allotted training time, the learned tasks tran-
sition from near-chance performance to near-perfect performance
within just a few training epochs (Fig. 7b). This suggests that additional
hyperparameter tuning could potentially improve task learning con-
sistency and push the representations to be even more strongly
abstract with fewer trained tasks. However, such extensive tuning is
out of the current scope of this work.

Discussion
We demonstrate that requiring a feedforward neural network to per-
form multiple tasks reliably produces abstract representations. Our
results center on artificial neural networks; however, we argue that
abstract representations in biological neural systems could be pro-
duced through the same mechanism, as behaving organisms often
need tomulti-task in the same way as we havemodeled here. We show
that the learning of these abstract representations is remarkably
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Fig. 6 | Themulti-taskingmodel produces abstract representations from image
inputs. a Examples from the 2D shape dataset43 (top) and chair image dataset42

(bottom). The 2D shapes dataset is from: Matthey, L., Higgins, I., Hassabis, D. &
Lerchner, A. dsprites: Disentanglement testing sprites dataset. https://github.com/
deepmind/dsprites-dataset/(2017). b Schematic of modified model. The multi-
taskingmodel nowbeginswith a networkedpre-trainedon the ImageNet challenge,
followed by a few additional layers of processing before learning binary tasks as

before (see “Pre-processing using a pre-trained network” in Methods). c The clas-
sifier (left) and regression (right) generalization performance when applied to the
shape image pixels (top) or ImageNet representations (bottom). d The classifier
(left) and regression (right) generalization performance of the multi-tasking model
on the shape images. e The same as c but for the chair images. f The same as d but
for the chair images.
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reliable. They are learned even for heterogeneous classification tasks,
stimuli with partial information, in spite of being required to learn
additional non-latent variable-aligned tasks, and for a variety of tan-
gled, high-dimensional, and image inputs. Finally, we show that the
multi-tasking model develops abstract representations even when
trained with reinforcement rather than supervised learning. Overall,
thiswork provides insight into how the abstract neural representations
characterized in experimental datamay emerge: Through themultiple
constraints and complexity induced by naturalistic behavior.

Representations in the brain are often observed to be sparse26.
Here, while the standard input and RF input (fig. S4) that we explore
are highly sparse, the abstract representations that the multi-tasking
model develops are not necessarily sparse. Indeed, when we char-
acterize the sparseness of representations in the multi-tasking model,
we find that they are substantially less sparse than the inputs (fig. S9a,
c, left). To explore this apparent inconsistency,we apply regularization
to the activity in the representation layer of themulti-taskingmodel. In
models trained with weak L1 and L2 regularization, we find only a small
decrease in the classification and regression generalization perfor-
mance (fig. S9b, d) along with a striking increase in the average

sparseness across the population (though it remains less sparse than
the input, fig. S9a, c). Thus, sparseness and abstract representations
can coexist in the multi-tasking model. Further, the representation of
facial features in the brain is thought to share this property: In the
whole population of inferotemporal cortex neurons, face selectivity is
relatively rare – and so the representation is sparse48 (though face cells
are also concentrated in particular anatomical subdivisions of the
inferotemporal cortex49). However, within face-responsive neurons,
the code is almost linear in facial features9 and is abstract11,20. We can
view this as two hierarchical codes. The outer code is a sparse repre-
sentation of object identity (e.g., face or hand). The inner code is a
dense, abstract code for the features of that object (e.g., a happy or sad
expression). This may be a general strategy for object representations
in the primate brain50. Further, this particular kind of sparse repre-
sentation has been explored in machine learning51–53 and is thought to
be essential for flexible and intelligent behavior54.

While we find fully abstract representations for the standard input
(Fig. 3), receptive field inputs (fig. S4), and image inputs (Fig. 6), we do
not find fully abstract representations for low length scale random
Gaussian process inputs (Fig. 5f, g). The low length scale random
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Fig. 7 | The multi-tasking model produces abstract representations when
trained with reinforcement learning. a Schematic of the reinforcement learning
multi-tasking model, using the deep deterministic policy gradient approach. b The
performance of the network ondifferent tasks over the course of training. Note the
sharp transitions between near-chance performance (avg reward =0) and near-

perfect performance (avg reward = 1). c The fraction of tasks learned such that
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Gaussian process input differs from all other input types in one
important way: Both linear decoders and regressions perform rela-
tively poorly even when trained and tested on the whole stimulus
space (Fig. 5d). Thus, this initial linear separability may be a pre-
requisite for the multi-tasking model to produce abstract representa-
tions. Further, it suggests that a crucial step may be an initial
dimensionality expansion, that produces this separability, before the
dimensionality of the representation is collapsed again into anabstract
form. Future work will investigate incorporating this into the multi-
tasking model through regularization of the first layer.

We train our models to perform different binary classifications of
latent variables as a proxy for different behaviors. This is, of course, a
highly simplified approach. While feedforward binary classification
most closely matches rapid object recognition or, for example, go or
no-go decisions, it does not provide an accurate model of behaviors
that unfold over longer timescales. While most the experimental work
that shows abstract representations in the brain8–10,12 and othermodels
that produce abstract representations in machine learning
systems18,21,22 have taken a static view of neural activity, network
dynamics could play a role in establishing and sustaining abstract
representations. Interestingly, recent work has shown that neural
networks trained to predict the result of a chosen action develop low-
dimensional, potentially abstract representations of the latent space
underlying the observations55. This formof prediction couldbe viewed
as a multi-tasking problem similar to the one we studied here—and
could indicate that abstract representations may emerge naturally
from predicting the sensory consequences of our actions, without
explicit feedback.

In addition to apotential role for dynamicprediction inproducing
abstract representations, there is growing literature on the ability of
network dynamics to implement abstract operations. In particular,
recent work has shown that training recurrent neural networks to
perform multiple dynamic tasks leads to shared implementations of
common task operations (such as storing information across a delay
period)30–32. As a result, novel tasks can be quickly acquired through
the combination of these learned abstract operations31. This is an
important form of abstraction that differs from the abstract repre-
sentations we have studied here. We believe that the two forms can
work in tandem: Abstract representations (in our sense) may be
important for the abstract operations to be robust to irrelevant
changes in context. However, our work suggests that these abstract
representationsmayemerge naturally fromthemulti-task training that
these networks already undergo. We believe that further work can
fruitfully combine these two lines of research.

Our method of quantifying abstractness in both artificial and
biological neural networks has an important difference from some
previously used methods10. In particular, an influential model for
creating disentangled representations in machine learning, the β var-
iational autoencoder (βVAE, and see “Comparing the multi-tasking
model with the unsupervised βVAE” in Supplementary Methods),
attempts to isolate the representation of single latent variables to
single units in the network18. Directly applied to neural data, this leads
to the prediction that single neurons should represent single latent
variables in abstract representations10. These single-neuron repre-
sentations of single latent variables lead to distinctmodules within the
neural population, one module for each latent variable. This kind of
representation would also be abstract under our metrics, and can be
viewed as a special case in which the axes of neural population space
are alignedwith the latent variables. Our abstractionmetrics, however,
do not require this alignment. They depend on the geometry of the
representations at thepopulation level and this geometry is unaffected
by whether single neuron activity corresponds to a single latent vari-
able, or to a linear mixture (i.e., a weighted sum) of all the latent
variables. Given the extensive linear and nonlinear mixing observed
already in the brain4,8,9,56, we believe that this flexibility is an advantage

of our framework for detecting and quantifying the abstractness of
neural representations. Further, we believe that searching for abstract
representations using techniques that are invariant to linear mixing
will reveal abstract representations where they may not have been
detected previously—in particular, a representation can provide per-
fect generalization performance without having any neurons that
encode only a single latent variable, and thus such a representation
would not be characterized as abstract by many machine learning
abstraction or disentanglement metrics.

For experimental data, our findings predict that an animal trained
to perform multiple distinct tasks on the same set of inputs will
develop abstract representations of the latent variable dimensions that
are used in the tasks. In particular, if the tasks only rely on three
dimensions from a five-dimensional input, then we expect strong
abstract representations of those three dimensions (as in fig. S2c, d),
but not of the other two. We expect all of the dimensions to still be
represented in neural activity, however,—we justdonot expect themto
be represented abstractly. Once this abstract representation is estab-
lished through training on multiple tasks, if a new task is introduced
that is alignedwith these learned latent variables,we expect the animal
to be able to learn and generalize that task more quickly than a task
that relies on either the other latent variables or is totally unaligned
with the latent variables (as the grid tasks above). That is, we expect
animals to be able to take advantage of the generalization properties
provided by abstract representations that we have focused on
throughout this work, as suggested by previous experimental work in
humans36.

A recent study in which human participants learned to perform
two tasks while in a functional magnetic resonance (fMRI) scanner
provides some evidence for our predictions15. The representations of a
high-dimensional stimulus with two task-relevant dimensions (one
which was relevant in each of two contexts) were studied in both the
fMRI imaging data and in neural networks thatwere trained to perform
the two tasks (the setup in this work is similar to certainmanipulations
in our study, particularly to the partial information case shown in
fig. S2a, b). They find that the representations developed by a neural
network that develops rich representations (similar to abstract repre-
sentations in our parlance) are more similar to the representations in
the fMRI data than neural networks that develop high-dimensional,
non-abstract representations. This provides evidence for our central
prediction: That abstract representations emerge through multiple-
task learning. However, the conditions explored in the human and
neural network experiments in the studyweremore limited than those
explored here. In particular, only two tasks were performed, the sti-
mulus encoding was less nonlinear than in our studies, and the tasks
were always chosen to be orthogonal. Thus, further work will be
necessary to determine the limits of our finding in real brains.

Several additional predictions can be made from our results with
the grid tasks, which showed that learning many random, relatively
uncorrelated tasks both does not lead to the development of abstract
representations alone, but also does not interfere with abstract
representations that are learned from a subset of tasks that are aligned
with the latent variables. First, if an animal is trained to perform a task
analogous to the grid task, then we do not expect it to show abstract
representations of the underlying latent variables – this would indicate
that latent variables are not inferred when they do not support a
specificbehavior. Second,wepredict that ananimal trained toperform
some tasks that are aligned to the latent variables as well as several
(potentially more) non-aligned grid task analogs will still develop
abstract representations. Both of these predictions can be tested
directly through neurophysiological experiments as well as indirectly
through behavioral experiments in humans (due to the putative
behavioral consequences of abstract representations36).

Overall, our work indicates that abstract representations in the
brain –which are thought to be important for generalizing knowledge
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across contexts – emerge naturally from learning to perform multiple
categorizations of the same stimuli. This insight helps to explain pre-
vious observations of abstract representations in tasks designed with
multiple contexts (such as ref. 8), as well as makes predictions of
conditions in which abstract representations should appear more
generally.

Methods
Abstraction metrics
Both of our abstraction methods quantify how well a representation
that is learned in one part of the latent variable space (e.g., a particular
context) generalizes to another part of the latent variable space (e.g., a
different context). To make this concrete, in both metrics, we train a
decoding model on representations from only one—randomly chosen
—half of the latent variable space and test that decoding model on
representations from the non-overlapping half of the latent
variable space.

The classifier generalization metric. First, we select a random
balanced division of the latent variable space. One of these halves is
used for training, the other is used for testing. Then, we select a second
random balanced division of the latent variable space that is ortho-
gonal to the first division. One of these halves is labeled category 1 and
the other is labeled category 2. As described above, we train a linear
classifier on this categorization using 1000 training stimuli from the
training half of the space, and test the classifier’s performance on
2000 stimuli from the testing half of the space. Thus, chance is set to
0.05 and perfect generalization performance is 1.

The regression generalization metric. As above, except we train a
linear ridge regression model to read out all D latent variables using
4000 sample stimulus representations from the training half of the
space. We then test the regression model on 1000 stimulus repre-
sentations sampled from the testing half of the space. We quantify the
performance of the linear regression with its r2 value:

r2 = 1�MSEðX ,X̂ Þ
VarðX Þ ð4Þ

where X is the true value of the latent variables and X̂ is the prediction
from the linear regression. Because theMSE is unbounded, the r2 value
can be arbitrarily negative. However, chance performance is r2 = 0,
which would be the performance of the linear regression always pre-
dicted the mean of X, and r2 = 1 indicates a perfect match between the
true and predicted value.

Non-abstract input generation
In the main text, we use two methods for generating non-abstract
inputs from a D-dimensional latent variable. We have also performed
our analysis using several othermethods, which we also describe here.

Participation ratio-maximized representations. We train a symmetric
autoencoder (layers: 100, 200 units) to maximize the participation
ratio38 in its 500 unit representation layer. The participation ratio is a
measureof embeddingdimensionality that is roughly equivalent to the
number of principal components that it would take to capture 80% of
the total variance. The autoencoder ensures that information cannot
be completely lost, while the participation ratio regularization ensures
that the representation will have a high-embedding dimension and,
therefore, be non-abstract. The performance of our generalization
metrics on this input representation is shown in Fig. 1f.

Random Gaussian process inputs. To generate the random Gaussian
process inputs, we proceed through each input dimension separately.
For each dimension, we sample a single D-dimensional function from

the prior of a Gaussian process with a radial basis function kernel of
length scale l. Then, the full input is simply the vector of all of these
input dimensions.

We use the implementation of Gaussian processes provided in
scikit-learn57. In particular, we initialize a Gaussian process with the
above kernel, then take a sample scalar output from the Gaussian
process prior distribution for a selection of 500 random points. Then,
we freeze this function in place by fitting the Gaussian process to
reproduce this output sample from the same set of input points.

Quantifying sparseness and dimensionality
Throughout the paper, we use a standard per-unit measure of
sparseness26,58–60,

S= 1� E½rðxÞ�2X
E½rðxÞ2�X

ð5Þ

where r(x) is the response of a particular unit to input x. We have
neglected the usual normalization by 1−1/n where n is the number of
stimuli because we sample thousands of stimuli. The measure ranges
from 0 to 1 and is close to 1 when the unit primarily responds to one
stimulus or a few stimuli; if all the stimuli have similar firing, then the
measure is close to zero.

We also use the participation ratio38 to quantify the embedding
dimensionality of neural representations, which can alsobe viewed as a
measure of sparseness across the population for rectified linear units.
The participation ratio is defined as follows,

PR=
ðPN

i λiÞ
2

PN
i λ2i

ð6Þ

where λi are the eigenvalues of the population response acrossN units.
The participation ratio is 1 if there is only one non-zero eigenvalue and
N if allN eigenvalues are the samemagnitude. In intermediate regimes,
it can be viewed roughly as the number of dimensions necessary to
explain 80% of the population variance38.

The multi-tasking model
We primarily study the ability of the multi-tasking model to produce
abstract representations according to our classification and regression
generalization metrics. The multi-tasking model is a feedforward
neural network. For Figs. 3 and 4 it has the following parameters:

layer widths 250, 150, 100, 50

representation width 50

batch size 100

training examples 10000

epochs 200

For fig. S4, everything is kept the same except the number of
layers is increased:

layerwidths∣ 500, 250, 50

The increased number of layers improves performance in the RF
case. However, for the standard input (and the images, as described
below), the results are similar with only three layers (see A sensitivity
analysis of the multi-tasking model and βVAE in Supplementary
Methods).

Full task partitions. In all cases, the models are trained to perform
multiple tasks—specifically, binary classification tasks—on the latent
variables. In the simplest case (i.e., Fig. 3e), the task vector can be
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written as,

TðxÞ= signAx ð7Þ

whereA is aP ×Dmatrixwith randomly chosen elements andx is theD-
dimensional stimulus.

Unbalanced task partitions. For unbalanced partitions, the task vec-
tor has the following simple modification,

TðxÞ= sign Ax +b
� � ð8Þ

where b is a P-length vector and bi ∼N ð0,σoffsetÞ. Notice that this
decreases the average mutual information provided by each element
of T(x) about x.

Contextual task partitions. We chose this manipulation to match the
contextual nature of natural behavior. As motivation, we only get
information about how something tastes for the subset of stimuli that
we can eat. Here, we formalize this kind of distinction by choosing P
classification tasks that each only provide information during training
in half of the latent variable space.

We can write each element i of the contextual task vector as fol-
lows,

TiðxÞ=
sign Aix +bi

� �
Cix>0

nan Cix≤0

(
ð9Þ

where nan values are ignored during training and C is a P ×D
random matrix. Thus, each of the classification tasks influences
training only within half of the latent variable space. This further
reduces the average information provided about x by each indivi-
dual partition.

Partial information task partitions. For contextual task partitions, the
contextual information acts on particular tasks. For our partial infor-
mationmanipulation, we take a similar structure, but it instead acts on
specific training examples. The intuitive motivation for this manip-
ulation is to mirror another form of contextual behavior: At a given
moment (i.e., sampled training example) an animal is only performing
a subset of all possible tasks P. Thus, for a training example from that
moment, only a subset of tasks should provide information for
training.

Mathematically, we can write this partial information structure as
follows. For each training example x, the task vector is given by,

TiðxÞ=
sign Aix+bi

� �
p≥M

nan p<M

�
ð10Þ

where p is a uniformly distributed random variable on 0, 1½ �, which is
sampled uniquely for each training example x and M is a parameter
also on 0, 1½ � that sets the fraction of missing information. That is,
M =0.9 means that, for each training example, 90% of tasks will not
provide information.

While results are qualitatively similar for many values ofM, in the
main text we use a stricter version of this formalization: For each
training sample, one task is randomly selected to provide information,
and the targets for all other tasks are set to nan.

Grid classification tasks. The grid tasks explicitly break the latent
variable structure. Each dimension is broken into n parts with roughly
equal probability of occurring (see schematic in Fig. 4a). Thus, there
are nD unique grid compartments, each of which is a D-dimensional
volume in latent variable space, and each compartment has a roughly

equal probability of being sampled. Then, to define classification tasks
on this space,we randomly assign each compartment to oneof the two
categories – there is no enforced spatial dependence.

Random Gaussian process tasks. To generate a random Gaussian
process task indexed by i, we sample a single D-dimensional function
from the prior of a Gaussian process with a radial basis function kernel
of length scale l, which we denote as GPl

i . Then, to determine the
category of a particular sample x, we evaluate the function on that
category,

TiðxÞ= sign GPlðxÞ
� � ð11Þ

We use the implementation of Gaussian processes provided in
scikit-learn57. In particular, we initialize a Gaussian process with the
above kernel, then take a sample scalar output from the Gaussian
process prior distribution for a selection of 500 random points. Then,
we freeze this function in place by fitting the Gaussian process to
reproduce this output sample from the same set of input points.

The dimensionality of representations in the multi-tasking model.
First, we consider a deep network trained to perform P balanced
classification tasks on a set of D latent variables X ∼N ð0,IDÞ. We
focus on the activity in the layer just prior to readout, which we refer
to as the representation layer and denote as r(x) for a particular
x∈ X. This representation layer is connected to the P output units by
a linear transformW. In our full multi-taskingmodel, we then apply a
sigmoid nonlinearity to the output layer. To simplify our calculation,
we leave that out here. The network is trained to minimize error,
according to a loss function which can be written for a particular
sample x as:

LðxÞ= 1
2

XP
i

sign ðAxÞ �WrðxÞ½ �2i ð12Þ

where A is a P ×D matrix of randomly selected partitions (and it is
assumed to be full rank) and the sum is over the P tasks. To gain an
intuition for how r(x) will change during training, we write the update
rule for r(x) (to be achieved indirectly by changing preceding weights,
though we ignore the side effects that would arise from these weight
changes),

rðxÞs + 1 = rðxÞs � μ
∂L

∂rðxÞ ð13Þ

= rðxÞs +μWTsign ðAxÞ � μWTWrðxÞ ð14Þ
Thus, we can see that, over training, r(x) will bemade to lookmore like
a linear transform of the target function, sign(Ax). Next, to link this to
abstract representations, wefirst observe thatAx produces an abstract
representation of the latent variables. Then, we show that sign(Ax) has
approximately the same dimensionality as Ax. In particular, the cov-
ariance matrix M = EX signðAxxTAT Þ

h i
has the elements,

Mij = 1�
2
π

arccosAiAj ð15Þ

where Ai is the ith row of A and when xi are random variables with an
equal probability of being positive or negative (both the Gaussian and
uniform distributions we use here have this property). To find the
dimensionality of sign(Ax) we need to find the dimensionality of M.
First, the distribution of dot products between random vectors is
centered on 0 and the variance scales as 1/D, where D is the dimen-
sionality of the latent variables as usual. Thus, we can Taylor expand
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the elements of the covariance matrix around AiAj =0, which yields

Mij ≈
2
π
AiAj ð16Þ

We identify this as a scalar multiplication of the covariance matrix for
the linear, abstract target EX ½AxxTAT �. Further, we know that the rank
of this matrix is minðP,DÞ. So, this implies that the matrix M also has
rank approximately minðP,DÞ. Deviations from this approximation will
produce additional non-zero eigenvalues, however, they are expected
to be small.

Importantly, while a high dimensional r(x) can solve P classifica-
tion tasks in a non-abstract way (for example, notice that the classifi-
cation accuracy of the standard inputand RF inputs below have very
high classification accuracy for random tasks yet much lower gen-
eralization performance, Fig. 1f, left and fig. S4b, left), an r(x) with
dimensionality minðP,DÞ will be constrained to solve the tasks in at
least partially abstract way (see “Four possibilities for representations
in the multi-tasking model” in Supplementary Methods).

Pre-processing using a pre-trained network
When applying the multi-tasking model to image inputs, we used a
deepneural network trained on the ImageNet classification task to pre-
process them into a feature vector. Then, we used this representation
as input to themulti-taskingmodel. The pre-trained network is not fine
tuned, or trained, during the training of the multi-tasking model.

The parameters of themodel used here are the same as themulti-
tasking model except:

layerwidths∣ 250, 50

and only 300 of the unique chair types were used in the training
dataset.

The network we used is available here: https://tfhub.dev/google/
efficientnet/b0/feature-vector/1.

The image datasets
We used two standard image datasets from the machine learning lit-
erature. In both cases, we considered a subset of the total number of
features, explained below.

The 2D shapes dataset. This dataset consists of white 2D shapes on a
black background43. The features are horizontal and vertical position,
2D rotation, scale, and shape type. We do not train tasks on either the
rotation or shape type variables. We exclude rotation due to its peri-
odicity and shape type because it is a categorical variable. All values of
both variables are still included in the training dataset, they are simply
not used in the classification tasks.

The 3D chair dataset. This dataset consists of images of different
styles of chairs on a white background42. The original features are
azimuthal rotation, pitch, and chair style. We augment these features
to include horizontal and vertical position by translating the image
using coordinates sampled from a normal distribution and truncated
when the chair portion of the image begins to wrap around the edges.
We exclude pitch, a subset of azimuthal rotations, and chair styles
from task training. We exclude pitch because it has only two values in
the dataset and chair style because it is a categorical variable. Both are
still included in the training data. We exclude a subset of azimuthal
rotations to break the periodicity of the variable, which allows us to
treat azimuthal rotation as a continuous, non-periodic variable.

The reinforcement learning multi-tasking model
We adapt the DDPG47 to train themulti-taskingmodel. In particular, we
train a single-actor network, which is tasked with taking in a stimulus

and producing an action. The action is the categorization of that sti-
mulus on each of the P trained tasks. To provide supervision to this
actor network, we train independent critic networks for each task,
which take in the stimulus and the action produced by the actor and
attempt to predict the reward that will be received from that pair.
These critic networks are trained with respect to the actual reward
received, and the predicted reward from the critic is used to train the
actor network. Otherwise, we follow the standard DDPG approach as
described in ref. 47.

The correct action for a categorization task was 1 for one cate-
gory and −1 for the other category. An action was rewarded if the
network produced positive activity greater than the reward/pun-
ishment threshold for the former and negative activity greater than
that threshold for the latter. If the activity was greater than that
threshold but with the wrong sign, then the network received a
punishment (i.e., a negative reward). Otherwise, no reward or pun-
ishment was received.

The parameters of the reinforcement learning multi-tasking
model are:

Actor layer widths 250, 150, 50

Representation width 50

Critic stimulus layer widths 10, 5

Critic action layer widths 1

Critic shared layer widths 5

Batch size 200

Training epochs 50119

Initial batches 20000

Reward/punishment threshold ±0.33

The βVAE
The βVAE is an autoencoder designed to produce abstract (or, as
referred to in the machine learning literature, disentangled) repre-
sentations of the latent variables underlying a particular dataset18.
The βVAE is totally unsupervised, while the multi-tasking model
receives the supervisory task signals. Abstract representations are
encouraged through tuning of the hyperparameter β, which con-
trols the strength of regularization in the representation layer,
which penalizes the distribution of representation layer activity for
being different from the standard normal distribution. In fig. S3, the
βVAE is trained with the same parameters as given in section M6—
the layers are replicated in reverse for the backwards pass through
the autoencoder. For fig. S4, the parameters are as described in
section M6. In both cases, instead of fitting models across different
numbers of partitions, we fit the models with different values cho-
sen for β.

For fig. S5, parameters for the βVAE are as described in section
S4.1. We also explored numerous other architectures for the βVAE in
that figure, but never obtained qualitatively or quantitatively better
results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The large-scale simulation data generated in this study have been
deposited in the Figshare database and at the following link: https://
doi.org/10.6084/m9.figshare.21761348.v1. More detail about how to
use these data to generate the figures is provided in this github
repository: https://github.com/wj2/disentangled.
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Code availability
All of our code for this project is written in Python, making extensive
use of TensorFlow61 and the broader python scientific computing
environment (including numpy62, scipy, matplotlib, and scikit-learn57).
The code is available in the follow repository: https://github.com/wj2/
disentangled. The version of the code used to generate these figures is
here: https://doi.org/10.5281/zenodo.7465963.
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