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Mapping lesion-specific response and
progression dynamics and inter-organ
variability in metastatic colorectal cancer

Jiawei Zhou1, Amber Cipriani 1,2, Yutong Liu3, Gang Fang4, Quefeng Li3 &
Yanguang Cao 1,5

Achieving systemic tumor control across metastases is vital for long-term
patient survival but remains intractable in many patients. High lesion-level
response heterogeneity persists, conferring many dissociated responses
across metastatic lesions. Most studies of metastatic disease focus on tumor
molecular and cellular features, which are crucial to elucidating the mechan-
isms underlying lesion-level variability. However, our understanding of lesion-
specific heterogeneity on the macroscopic level, such as lesion dynamics in
growth, response, and progression during treatment, remains rudimentary.
This study investigates lesion-specific response heterogeneity through ana-
lyzing 116,542 observations of 40,612 lesions in 4,308 metastatic colorectal
cancer (mCRC) patients. Despite significant differences in their response and
progression dynamics, metastatic lesions converge on four phenotypes that
vary with anatomical site. Importantly, we find that organ-level progression
sequence is closely associated with patient long-term survival, and that
patients with the first lesion progression in the liver often have worse survival.
In conclusion, our study provides insights into lesion-specific response and
progression heterogeneity in mCRC and creates impetus for metastasis-
specific therapeutics.

Metastasis is the leading cause of cancer mortality1. Unfortunately,
antitumor therapies are still designed mostly based on the biology of
primary tumors, with little consideration of metastases2,3. Achieving
systemic tumor control across metastases is critical for long-term
survival but remains intractable in many patients. Some metastases
respond highly to treatment while others do not at all, resulting in
many dissociated and heterogeneous responses within patients4–7.
Lesion-level response and progression heterogeneity are common in
many cancer types, but our understanding of such lesion-level
response heterogeneity and its relevance to prognosis remains
rudimentary.

Most investigations of metastatic heterogeneity focus on tumor
genetic mutations, clonal compositions, or transcriptomics8–10. These
molecular and cellular characterizations are critical to elucidating the
underlyingmechanisms of lesion response heterogeneity11,12. However,
it is equivalently critical to study metastatic heterogeneity on the
macroscopic level, such as distinct lesion dynamics in growth,
response, and recurrence during treatment, as well as their potential
phenotypic convergence anatomically. These phenotypes would
complement molecular and cellular analyses for a holistic view of
lesion-specific heterogeneity. The local microenvironment selects
tumor phenotypes in response to treatment, leading to heterogeneity
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across anatomically distinct lesions in terms of response and pro-
gression dynamics13,14. Characterizing their phenotypic differences
(divergence) or similarities (convergence) could yield insights into
tumor ecological features and systemic resistance. The spatiotemporal
patterns of response and progression at the lesion or organ level could
not only be informative to prognosis, but also could enrich our
knowledge of metastasis-to-metastasis interactions and the systemic
consequence of regional progression. This study sought to investigate
spatiotemporal response heterogeneity through mapping lesion-
specific response and progression dynamics in metastatic
CRC (mCRC).

Colorectal cancer (CRC) is the third leading cause of cancer-
related death15. About 20% of CRC patients have distant metastases at
diagnosis; the five-year relative survival rate is only 14% for these
patients16,17. Lesion-specific response heterogeneity is common in CRC
patients treated with either standard chemotherapy alone or in com-
bination with targeted therapy18. We, along with others, have found
that high response heterogeneity is associated with worse survival18–21.
Importantly, we also found favorable responses in liver metastases
predicted longer patient survival, compared to lesions in the lungs and
lymph nodes (LN)18. Characterizing lesion-specific response hetero-
geneity in mCRC is therefore valuable for prognosis and therapies.

In this study, to map the lesion-level response and progression
patterns in mCRC, we first apply a mathematical model to capture
tumor growth dynamics in 4,308 mCRC patients. Next, individual
lesion-specific response and progression probabilities are mapped to
predict their phenotypic divergence and convergence across anato-
mical sites. Last, we apply a machine learning approach to analyze the
progression sequence across organs and its relevance to long-term
patient survival. The spatiotemporal patterns of response and pro-
gression at the organ level could infer tumor evolution in space and
time, affording more biological hypotheses. Our study provides
insights into lesion-specific phenotypic heterogeneity in mCRC and
yields substantial implications for designing metastasis-specific
therapeutics.

Results
Data sources and structure
To evaluate metastatic response and progression dynamics in mCRC,
we collected longitudinal radiographical measurements of metastatic
lesions in colorectal cancer (CRC)patients fromProjectData Sphere. In
total, 4308 patients with 40,612 lesions from eight Phase III trials were
included. The inclusion and exclusion criteria are presented in Fig. 1a.
The distribution of lesion number across organs is shown in Fig. 1b.
The total target lesions were 19,180 with 94,174 radiographic mea-
surements by CT scan, and there were 18,594 nontarget lesions and
2838 new lesions that had records of response status, appearance
time, and anatomical site, and these lesions did not have longitudinal
radiologicalmeasurements. Additional information including patients’
demographic and clinical characteristics (e.g., age, gender, race, body
mass index [BMI], tumor type, treatment history, RECIST response,
and KRAS status), progression-free survival (PFS) and overall survival
(OS) are reported in Table 1. We also included the tumor longitudinal
measurements in a head and neck squamous cell carcinomas
(mHNSCC) trial for an external validation. The data was also from
Project Data Sphere with similar inclusion/exclusion criteria as in the
CRC data.

Model recapitulated tumor growth dynamics of individual
lesions
The tumor growth dynamics of 19,180 target lesions with 94,174
radiographical measurements were fitted using a tumor growth
model22. There are three dynamic parameters in the model: the
regression (tumor-killing) rate Kd, the fraction of non-responding (or
resistant) cells F, and the progression (or regrowth) rate Kg (Fig. 2a).
The model was optimized using a nonlinear mixed effect (NLME)
modeling approach, which allows the estimation of three dynamic
parameters at the individual level and their inter-lesion variance within
the population. Overall, the model adequately recapitulated the
longitudinal profiles of tumor radiographic measurements for each
lesion. The goodness-of-fit and model visual predictive check plots, as

Fig. 1 | Data source. a CONSORT diagram of metastatic colorectal cancer data
inclusion and exclusion criteria.b The number of all lesions (target, non-target, and
new) and target lesions across organs. GR Genitourinary and Reproductive, CNS

Central nervous system, GI Gastrointestinal tract, LN Lymph nodes. Source data are
provided as a Source Data file.
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well as representative individual fittings, show good model predictive
performance (Supplementary Fig. 1).

Population estimates and inter-lesion variances in tumor dynamic
parameters are summarized in SupplementaryTable 1. The parameters
for individual lesions significantly differed across organs (p <0.0001,
Fig. 2b). Among allmetastases, lesions in the bone exhibited the lowest
tumor shrinkage (1-F), while lesions in the genitourinary and repro-
ductive (GR) system had the fastest progression rates (Kg), and kidney
lesions showed the lowest regression rates (Kd). Among three most
abundant metastatic sites (liver, lung, and LN), lesions in the liver
showed the highest tumor shrinkage but the fastest progression rates,
suggesting the unique response feature of liver lesions.

Higher fractions of treatment-resistant cell (F) is associated with
slower rates of regression (Kd, r = −0.69, p =0.0014) and faster rates of
progression (Kg, r =0.53, p =0.03, Fig. 2c). Progression rates seemed
to be independent of regression rates (Fig. 2c). Remarkably, no sig-
nificant correlations were observed between baseline tumor burden
and all tumor dynamic parameters (Fig. 2d). Large tumor burden, on
the individual lesion level, did not necessarily confer slow regression
rates, high treatment-resistant fractions, or slow progression rates,
implying that tumor burden at baseline is not a robust prognostic
factor in mCRC23–25. Notably, metastatic lesions under antibody tar-
geted therapy (bevacizumab and/or panitumumab) plus chemother-
apy (FOLFOXor FOLFIRI), compared to standard chemotherapy alone,
showed significantly deeper response (effect size = 0.43) and lower
progression rates (effect size = 0.26), but had a moderate effect on
tumor regression rates (effect size = 0.06, Supplementary Fig. 2).

Response and progression dynamics suggest phenotypic con-
vergence on the organ level
The tumor growth model predicted the longitudinal profiles of
response and progression for each target lesion. Time to response and
progression were then derived as the duration from the start of
treatment to the time of response or progression per RECIST v1.126,
respectively. We compared our model-predicted lesion response and
progression rates with patient response status per RECIST 1.1. Com-
plete (CR) or partial responders (PR) had shorter time to response and
more extended duration before progression than patients with stable
disease (SD). (Supplementary Fig. 3).

We integrated the time to response for both target and non-target
lesions and the time to progression for all lesions, including the new
ones, into random effect Cox proportional models27. The Cox model
predicted the relative probabilities of lesion response or progression
at the organ level. We tested the covariate effects of treatment, age,
BMI, gender, race, surgical history, and line of therapy (first or second
line) in the random effect Cox proportional model. The covariate
effects were summarized in Supplementary Fig. 4a and Supplementary
Fig. 4b. Significant covariateswere included in thefinalmodel. Of note,
treatment, surgical history, and line of therapy were included as sig-
nificant covariates in the progression model, and treatment, race, and
line of therapy were included in the response model.

With these covariate effects, we could more accurately estimate
organ-intrinsic response and progression characteristics. The hazard
ratios for the response and progression across organs are shown in
Fig. 3a and Fig. 3b.With abdominal lesions as the reference, metastatic

Table 1 | Demographic information of colorectal cancer patients

Variable Variable

Age, years (mean, sd) 60.2 (10.8) Metastatic organ number (n, %)

Gender (n, %) 1 553 (12.8)

Male 2538 (58.9) 2 1159 (26.9)

Female 1770 (41.1) 3 1146 (26.6)

Self-Reported Race (n, %) ≥4 1450 (33.7)

White/Caucasian 3883 (90.1) Metastatic lesion number per patient (median, IQR) 9 (6, 12)

Black/African American 104 (2.4) Number of radiographic measurements per target lesion (median, IQR) 4 (3, 6)

Asian 142 (3.3) KRAS status (n, %)

Other 179 (4.2) Wild-Type 795 (18.4)

Body Mass Index, kg/m2 (mean, sd) 26.2 (5.1) Mutant 593 (13.8)

Tumor Type (n, %) Unknown 2920 (67.8)

Colon 2581 (59.9) Response (n, %)

Rectal 1359 (31.5) Complete Response 118 (2.7)

Unspecified 368 (8.5) Partial Response 1473 (34.2)

Prior Surgery (n, %) Progressive Disease 781 (18.1)

Yes 2993 (69.5) Stable Disease 1806 (41.9)

Primary tumor resected 2663 (61.2) Not Evaluable 130 (3)

Liver metastases resected 261 (6.05)a Treatmentb (n, %)

Lung metastases resected 27 (0.6)a Bevacizumab plus chemotherapy 376 (8.7)

LN metastases resected 206 (4.8)a Bevacizumab plus FOLFOX 630 (14.6)

No 1315 (30.5) FOLFIRI alone 1303 (30.2)

Prior Radiation (n, %)c FOLFOX alone 762 (17.7)

Yes 445 (10.3) Panitumumab plus Bevacizumab plus chemotherapy 372 (8.6)

No 3345 (77.6) Panitumumab plus FOLFOX 441 (10.2)

Unknown 518 (12.1) Panitumumab plus FOLFIRI 424 (9.8)

Progression free survival, days (median, IQR) 247 (241.5) Overall survival, days (median, IQR) 443 (410.3)
aStudy NCT00272051 and NCT00305188 did not provide the location of the resected metastases and were not included in the liver/lung/lymph nodes metastases resected patient number
calculations.
bFOLFOX is the combination of folinic acid, fluorouracil and oxaliplatin. FOLFIRI is the combination of folinic acid, fluorouracil and irinotecan. Sd standard deviation, LN lymph nodes, IQR
Interquartile range.
cRadiation was applied to rectal cancer and some colon cancer with lung metastases.
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lesions in the liver were most likely to respond to treatments, whereas
lesions in the brain/central nervous system (CNS) were least likely
(Fig. 3a). Lesions in the gastrointestinal (GI) system, skin, and bone
were significantly less likely to respond than abdominal lesions.
Lesions in the spleen, lung, and peritoneum showed comparable
responses. The probability of progression also differed greatly across
anatomical sites (Fig. 3b). The metastatic lesions with the highest
likelihood of progression were those in the brain/CNS, GR system, and
liver, while lesions in the GI system, and regional and distal LNs were
least likely.

We then integrated organ-specific response and progression
probabilities to investigate their potential phenotypic convergence

across anatomical sites. As in Fig. 3c, an anatomical chart of organ-
specific response and progression probabilities was created based on
their relative hazards in the Cox model. Four types of phenotypic
features emerge in CRC-metastatic organs defined by their associated
lesions’ likelihood of response and progression. Notably, bone and
brain lesions had low response and high progression probabilities
(low-high phenotype), while liver lesions hadhigh probabilities of both
response and progression (high-high phenotype). Patients with these
metastases, particularly those with low-high phenotype, had much
worse survival outcomes than those with other phenotypes (OS med-
ian 378 days vs. 561 days, p < 0.0001, Supplementary Fig. 5a). On the
other side,metastatic lesions in the lung and LN showed high response

Fig. 2 | Tumor response dynamics were recapitulated bymodeling. a Schematic
plot of tumor growth model. b Box plots of model parameters Kd, F and Kg across
organs. Significance was calculated using Kruskal-Wallis tests. The box extends
from the 25th to 75th percentiles and the line in themiddle is plotted as themedian.
The whiskers are drawn down to the 10th percentile and up to the 90th percentile.
Points below and above the whiskers represent individual lesions. c The

correlations between model parameters. d The correlations between model para-
meters and tumor baseline volume. The size of the dots represents lesion number
(reported in b). The dashed lines with gray area are the linear regression with 95%
confidence interval. The correlation coefficients and p-values were calculated using
two-tailed Pearson correlation tests. Source data are provided as a Source Data file.
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Fig. 3 | Organ-level tumor response and progression probabilities suggest
phenotypic convergence. a, b Data are presented as the hazard ratio estimates
with 95% confidence interval by organs on lesion response and progression in
colorectal cancer patients. c,d are the anatomical charts of organ-specific response
and progression hazard ratios in metastatic colorectal cancer (mCRC) and meta-
static head and neck squamous cell carcinomas (mHNSCC). e, fData are presented

as the hazard ratio estimates with 95% confidence interval in response and pro-
gression by organs stratified on treatments inmCRC. P-values in a, b, e, and fwere
calculated by two-sided likelihood ratio tests. TAR+Chemo, antibody targeted
therapies (bevacizumab or panitumumab) plus chemotherapy; Chemo Alone,
chemotherapy alone. Source data are provided as a Source Data file.
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and lowprogressionprobabilities (high-lowphenotypes). Patientswho
have metastases in high-low phenotype organs only tend to have a
better prognosis than patients with other phenotypic metastases do
(OSmedian 770 days vs. 524 days, p < 0.0001, Supplementary Fig. 5b).

Interestingly, most metastatic lesions with high progression
probabilities tend to occur in organs known to have immunosup-
pressive microenvironments, such as the liver, bone, and brain/
CNS28–31. To show the anatomical pattern of lesion response and pro-
gression is beyond tumor biology and is more closely related to tissue
microenvironments, we performed a validation analysis in a biologi-
cally distinct cancer type, head and neck squamous cell carcinomas
(mHNSCC), to see whether a similar anatomical chart exists (Fig. 3d). A
total of 393 patients with 1892 lesions were analyzed, including eleven
metastatic organs (Supplementary Fig. 6a, b). Patients’ demographics
are reported in Supplementary Table 2. We built random effect Cox
proportional models to estimate hazard ratios across organs in
mHNSCC, as we did in mCRC. Treatment, age, radiation history, and
body surface area (BSA)were included as covariates in the progression
model. Treatment and race were considered as covariates for the
response model. The organ-specific hazard ratios for lesion progres-
sion and response were shown in Supplementary Fig. 6c, d. In
mHNSCC, metastases in the liver, and brain also showed high pro-
gression potential, in line with what we observed in mCRC. Metastatic
lesions in the LNs exhibit a high-lowphenotype, consistentwithmCRC.
Similar anatomical charts across cancer types suggest that organ-
intrinsic microenvironmental factors, such as the local physical and
immunological components, could be key modulators to the
mechanisms underlying the probabilities of tumor response and pro-
gression. However, further investigations are warranted.

In mCRC, treatment effects on organ-specific responses were also
investigated. For simplicity, treatments were divided into two groups,
chemotherapy alone and in combination with antibody targeted
therapy. The combined antibody targeted therapies are either pani-
tumumabor bevacizumab, or both. Surprisingly, combinationwith the
antibody targeted therapies did not significantly influence organ-
specific response probabilities (Fig. 3e), suggesting limited direct
cytotoxic effects of antibody-based targeted therapies. Notably, the
primary therapeutic benefit of antibody targeted therapies was to
decrease lesion progression (Fig. 3f). Progression hazards significantly
decreased in most metastatic organs except for the skin, brain/CNS,
spleen, and kidney. Taken together, antibody-targeted therapies
showed effect primarily on decreasing lesion progression and had
limited influence on the lesion response probability. Interestingly,
cytotoxic chemotherapies did not seem to influence lesion progres-
sion patterns, and high-progression organs in Fig. 3c also had
remained to have high progression probability during cytotoxic che-
motherapies (Fig. 3f), reiterating a critical role for local tissue envir-
onments in long-term tumor control.

Progression sequence across organs predicts patient survival
Webuilt a k-means unsupervised clusteringmodel32 to cluster patients
basedon their organ-level lesionprogression sequence and investigate
their relevance to patient survival. Elbow sum of square33 (Supple-
mentary Fig. 7a) and Silhouette score34 (Supplementary Fig. 7b) were
calculated to determine the optimal k in the final classification. Akaike
information criterion (AIC) and Bayesian information criterion (BIC)35

were also applied to find optimal k (Supplementary Fig. 7e). K = 4, 5,
and 6 showed similar performance in the model evaluation metrics.
The patient survival profiles were also compared using concordance,
and the select k = 5 showed the finest separation of patient survival,
resulting in distinct features of progression for each group. Five
groups of patients were thus identified with distinct patterns of organ-
specific progression sequences and were stratified by progressive
organ number and first-progressive organ: Mono-Organ (n = 1425),
Hetero-Organ (n = 801), Lung-First (n = 577), Liver-First (n = 1194), and

the Other-First (n = 888) groups. The clinical demographics and base-
line information of each group are summarized in Supplementary
Table 3.

Organ-level progression sequence is significantly correlated
with long-term patient survival (p < 0.0001, Fig. 4b). As expected,
patients with multiple organ progression had worse survival than
patients with only one organ progression (OS median Hetero-Organ
385 days vs. Mono-Organ 653 days). Remarkably, despite compar-
able number of baseline metastases, patients whose first progres-
sion was in the liver had a much worse prognosis than those whose
first progression was in lungs or other sites (OS median Liver-First
450 days vs. Lung-First 679 days vs. Other-First 581 days, Fig. 4b and
Supplementary Fig. 8). This is consistent with earlier observations
(Fig. 3c) that lesions in the lung had high-low phenotype that is often
associated with good patient prognosis. Patients with tumor pro-
gression first in the liver had faster subsequent progression than
patients whose progression occurred in lungs or other sites, sug-
gesting that progressive lesions in the liver may have high systemic
consequences (p < 0.0001, Fig. 4c). It also aligns with our previous
finding that the response of liver lesions to treatments strongly
predicted patient survival18.

Next, we performed k-means unsupervised clustering in the
Hetero-Organ group to further investigate progression patterns in
patients with extensive metastases progression. Four groups of
patients were optimally clustered (Supplementary Fig. 7c, d, f), and
onedistinctive feature among these clusterswas theprogressionorder
of liver lesions (Supplementary Fig. 9a). Despite similar baseline
metastases, patients with first or second progression occurring in the
liver hadworse survival than those with early progression occurring in
other organs (Supplementary Fig. 9b), but two groups showed no
significant difference in subsequent time to progression (Supple-
mentary Fig. 9c). This observation further underlines the importance
and systemic consequence of liver lesions to tumor response and
resistance.

Targeted antibody therapies minimally influence lesion pro-
gression sequence
We compared the progression sequence in patients under different
treatments (chemotherapy alone vs. combination with antibody tar-
geted therapy). In patients with Liver-First, Lung-First or Other-First
progression patterns, antibody targeted therapies significantly
improved patient overall survival (p < 0.0001, Fig. 5a). However, nei-
ther the proportion of patients with each progression cluster (Fig. 5b)
nor the sequence of progression across metastatic organs were sig-
nificantly changed by antibody targeted therapies (Fig. 5c–e). Tumor
progression in the GR and pancreas occurred slightly earlier in anti-
body targeted therapy, which did not seem to translate meaningful
difference in patient survival. Despite similar sequences, patients
under antibody targeted therapies had significantly slower first and
second progression, even without significant difference in the third or
later progression (Fig. 5f, g). The average time to progression were
much longer in combination therapy compared to chemother-
apy alone.

In patients with the Hetero-Organ pattern, antibody targeted
therapies did not meaningfully improve overall survival (Supplemen-
tary Fig. 10a) compared to chemotherapy alone, and the proportions
of patients in each subcluster were similar between the two treatment
groups (Supplementary Fig. 10b). Patients’ progression patterns and
lesion time to progression were largely comparable, especially for
those who had early liver lesion progression (Supplementary
Fig. 10c–h). Similarly, antibody targeted therapies did not influence
lesion progression sequence. Overall, the primary therapeutic benefit
of antibody targeted therapies was to delay progression in patients
with few (< 4) metastatic organs, but not in those with broad
metastases.
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Machine learning model predicts lesion progression sequence
In order to predict patient progression sequence at the time of diag-
nosis, we built a gradient boosting model using patient baseline
characteristics and metastases profiles36. The model parameters are in
Supplementary Table 4. The area under the receiver operating char-
acteristic (ROC) curve of the testing data was 0.91, which indicated fair
performance (Supplementary Fig. 11a). The model could predict
Mono-Organ and Hetero-Organ groups better than Lung-First, Liver-
First, and Other-First groups with higher area under the ROC curve.
This indicates that more follow-up information about tumor early
response is imperative to predict the progression sequences of the
latter three groups (Supplementary Fig. 11b).

Discussion
Metastasis is responsible for the majority of cancer-related mortal-
ity. Unfortunately, systemic tumor control across metastases
remains intractable in many patients. This study investigated inter-
lesion heterogeneity by analyzing response dynamics of 40,612
lesions to multiple types of treatment in 4308 mCRC patients.
Without molecular characterizations of metastases, we focused on
the phenotypic features associated with lesion response and pro-
gression dynamics as well as the anatomical distributions of these
features. Our analyses yielded several intriguing findings. First,
metastases differed considerably in their response to treatment,
with the tumor shrinkage fraction positively correlating with
regression rate and negatively correlating with progression rate.
Second, metastatic lesions within the same organ exhibited

congruent response and progression dynamics, converging upon
four organ-level phenotypes. Metastatic lesions in the liver exhib-
ited high response and high progression probabilities (high-high
phenotype), while lesions in the bone and brain/CNS had low
response and high progression probabilities (low-high phenotype).
These phenotypes appear to be determined by tumor local micro-
environments and go beyond tumor biology, as we found a similar
pattern in a biologically distinct tumor type, mHNSCC. Third, we
found that organ-level progression sequence was closely associated
with patient survival, and patients with the first progression in the
liver had worse survival outcomes compared to patients with first
progression in other organs.

This study quantified the degree of inter-lesion heterogeneity by
modeling tumor regression and progression dynamics. By assuming
first-order regression of drug-sensitive cancer cells (log-kill hypoth-
esis), the empirical model adequately recapitulated the longitudinal
size measurements on the lesion level. The first-order regression
implies that drug-sensitive cancer cellsmay have only one rate-limiting
step on the path to cell death37. Large tumors are often expected to
have tumor regression potentially deviating from strict first-order
kinetics because of their non-uniform drug distributions inside the
tumor or only the surface tumor cells being actively proliferating and
sensitive to treatments38–40. Our analyses did not find evidence to
support these speculations. Baseline tumor burden did not correlate
with tumor regression rates, restating the first-order regression. In
contrast, tissue microenvironment matters more than the lesion size
to tumor response to treatments. Despite large sizes, metastatic

Fig. 4 | Patient progression sequence association with patient survival.
a Patients were clustered into five groups based on their lesion progression
sequence. The column labels are the progression sequence. Color of the heatmap
represents the log10 scale of patient number (all plus one to avoid zero values).
b Kaplan-Meier curves of clustered patients overall survival. c Box plots of the first
lesion progression time (1st), time between first and second progression (2nd-1st),
time between second and third progression (3rd-2nd), time between third and

fourth progression (4th-3rd), and the average progression time in Lung-First
(n = 577), Other-First (n = 639), and Liver-First (n = 930). The box extends from the
25th to 75th percentiles and the line in the middle is plotted as the median. The
whiskers are drawn down to the 10th percentile and up to the 90th percentile.
Points belowand above thewhiskers represent individual lesions. P-values in cwere
calculated by two-sided Dunn’s multiple comparisons. Source data are provided as
a Source Data file.
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lesions in the liver had relatively higher regression rates than lesions at
other organ sites.

Tumor progression rates showed much higher variation during
treatment than their associated regression rates and accounted the
majorityof intrapatientheterogeneity. Lesionprogression time, i.e., lead
time to progression, was more closely determined by the progression

rates rather than the response rate. This finding was in line with Stein
et al., who reported that tumor progression rate was a stronger pre-
dictor of patient survival41. If validated prospectively, the progression
rates would offer more appropriate efficacy endpoints in clinical trials
than the current ones that focus on the early tumor response and
shrinkage, such as overall response rate and best of response.
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Antibody therapies significantly increased tumor shrinkage frac-
tion and showed lesion progression but did not considerably affect
tumor-shrinking rates. These observations indicate that the ther-
apeutic benefit of combined antibody therapies is primarily from
tumor regrowth suppression rather than direct tumor killing effect. In
renal cell carcinomas, bevacizumab significantly reduced tumor
regrowth rate, which could become more apparent after progression,
in line with our observations in mCRC42.

Metastatic lesions with a lower fraction of non-responding tumor
cells (F ) also had a slower lesion progression rate. The small fraction of
non-responding (resistant) tumor cells prior to treatment implies their
low fitness compared to responding (sensitive) populations, which led
to low tumor regrowth rates after progression. Interestingly, meta-
static lesions in the liver appear to behave differently; they had higher
probability to respond, but also faster lesion progression rates than
lesions in the LN and lungs, suggesting unique ecological properties of
liver lesions. Our analyses highlight the importance of tissue micro-
environments to metastatic phenotypes. Metastatic lesions with
higher responses were typically found in the liver, spleen, LN, and
lungs. These organs are known to have discontinuous or fenestrated
endothelial membranes, which may lead to higher drug exposure,
potentially conferring high treatment responses43,44. In contrast, the
organs bearing poorly-responding lesions are usually those with con-
tinuous endothelial membranes and thus more limited drug distribu-
tion, such as the muscle and brain/CNS45–48. Some organs that bear
poorly respondingmetastatic lesions, such as kidney andmuscle, have
relatively dense tissue matrices. Dense tissue matrix could restrict the
growth rate of metastatic lesions49,50 and also render them less
responsive to cytotoxic chemotherapy probably due to limited drug
distribution51,52.

On the other hand, organ-specific progression probabilities seem
to closely relate to organ microenvironments. Metastatic lesions with
higher progression potentials were often found in the liver, bone, and
brain/CNS, which either are immune-privileged or tolerogenic
organs13,14,28–31. Interestingly, high lesion progression in these organs
also occurred during cytotoxic chemotherapies even though such
therapies are usually not considered to involve the immune function
for therapeutic effect (Fig. 3f). Higher containment effect of tumor
progression in immunocompetent organs implies the critical role
anticancer immunity plays in long-term tumor control. Patients with
highly progressive lesions, such as lesions in the liver and bones, had
muchworse survival outcomes and thesepatients likely requiredmore
effective and targeted therapeutics.

Tumor progression is a serious impediment to cancer treatment,
but organ-level progression patterns remain poorly characterized. We
found that early tumor progression in the liver, compared to early
progression in other sites, predicts worse patient survival and more
rapid subsequent progression. The liver’s anatomical location, which
may serve as a trafficking hub for CRC cells to spread to other organs,
possibly underlies this finding53. Bymodeling large autopsy data sets in
mCRC, Newton et al. highlighted that liver metastases could serve as
tumor spreaders54, and that there are multidirectional paths of tumor
spread during progression54,55. Although we did not estimate transit
probabilities from site to site, we speculate it is likely that early pro-
gression in liver metastases could expand systemic peripheral toler-
ance and promote more frequent and rapid progression in other

organs. Our population-level analysis supports this speculation and
shows that liver metastases were often associated with a more pro-
nounced tumor spread in the body.

The primary therapeutic benefit of antibody-targeted therapies
was to delay tumor progression and systemic relapses, without clear
preferential effect on any organ-specificmetastases. As such, antibody
therapies did not seem to affect lesion progression sequences, and the
fraction of patients with the first progression in the liver were largely
comparable to chemotherapy alone. Unfortunately, in patients with
multiple progressive metastases (> 4 progressive organs), the ther-
apeutic benefit of antibody therapies is minimal, and more effective
treatments remain sorely needed for advanced patients with extensive
metastases.

Our study has limitations. First, the size of metastases was mea-
sured by radiological CT scans, but lesions in the bone are generally
hard to assess, which could result in quantification bias and variability.
Second, we also should note that patients in our dataset were from
randomized control trials, who sometimes have different demo-
graphic characteristicswith real-world patients. The average age of the
patients in our dataset was 60.2, younger than the average age of
diagnosis in real world patients15. Third, we pooled patients from
multiple trials and these patients had very discrete surgical and
treatment histories. Even though we controlled our analysis by con-
sidering these factors as covariates, direct trial-to-trial comparisons
should be prevented. Machine learning has therefore identified dis-
tinct patterns for tumor progression, but future validation of these
findings will be through acquisition and study of further independent
datasets.

In conclusion, we quantified lesion response and progression
heterogeneity by modeling the longitudinal size measurement of
metastatic lesions. This study provided a broad characterization of
phenotypic heterogeneity across metastatic lesions in mCRC, which
could complement conventional molecular and cellular analyses to
and promote a more comprehensive view of lesion-specific response
heterogeneity and yield substantial implications for metastasis-
targeting therapies.

Methods
Data
Multiple mCRC studies with longitudinal measurements of individual
metastatic tumor information were included for the analyses. All
datasets are accessible in ProjectData Sphere, anopen-access platform
that aggregates cancer clinical trial data from biopharmaceutical
companies, academic medical centers, and government organiza-
tions(https://www.projectdatasphere.org/). Patients under one of the
following conditions were excluded: (1) no target lesion longitudinal
measurements; (2) baseline tumor size measured more than 12 weeks
before the treatment. Patients’ demographics and survival information
were collected if applicable. The size and anatomical site about target/
non-target lesion and occurring time and anatomical sites of new
lesions were all recorded and analyzed if any. Data from a Phase III
study on panitumumab plus chemotherapy for mHNSCC were also
collected from Project Data Sphere and were analyzed with same
workflow for validation purpose. Data were processed in in R-4.1.0 and
RStudio 2022.07.1 dplyr package. The clinical trials information was
provided in Supplementary Data 1.

Fig. 5 | Targeted therapy decreases average time to progression but has mini-
mal effect on progression sequence. a Lung-First, Other-First and Liver-First
patients overall survival stratified by treatments.b Lung-First, Other-First and Liver-
First patient proportions by treatments. c–e are patient progression sequences
stratified by treatments. f–h are the box plots of the first lesion progression time
(1st), time between first and second progression (2nd-1st), time between second
and third progression (3rd-2nd), time between third and fourth progression (4th-
3rd), and the average progression time by treatments of the groups in c–e.N = 307/

n = 440/n = 335 patients from TAR+Chemo and n = 270/n = 490/n = 304 patients
from Chemo Alone were included in f–h. The box extends from the 25th to 75th
percentiles and the line in the middle is plotted as the median. The whiskers are
drawn down to the 10th percentile and up to the 90th percentile. Points below and
above the whiskers represent individual lesions. P-values in f–h were calculated by
two-sided Kruskal-Wallis tests. TAR+Chemo, antibody-targeted therapies (bev-
acizumab or panitumumab) plus chemotherapy; Chemo Alone Chemotherapy
alone. Source data are provided as a Source Data file.
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All study protocols were approved by institutional review boards
at each participating center, including the clinical trial review boards
from Amgen Inc., Pfizer Inc., Sanofi Inc., and AstraZeneca Inc. All
patients have been provided written informed consent before study-
related procedures were performed. All data sharing plans have been
approved by the data sponsors.

Lesion-specific tumor growth dynamics
The longest diameter was converted to volume assuming the ellip-
soidal shape of tumor (1) and the ratio of the tumor long versus short
axis as 1.3156. An empirical tumor growth model (2) was used to reca-
pitulate lesion-specific tumor growth dynamics.

V =
ðlong axisÞ× ðshortaxisÞ2

2
ð1Þ

V =V0 � ½F � eKg�t + 1� Fð Þ � e�Kd�t � ð2Þ

V is the tumor volume, V0 is the tumor baseline volume, t is the
time. The model has three parameters for estimation: F is the fraction
of non-responding tumor cells, with 1-F as the responsedepth;Kg is the
progression rate and Kd is the regression rate. We fitted the model for
all target lesions simultaneously using the Non-Linear Mixed Effect
(NLME) method in Monolix2020R1 Lixoft. Stochastic approximation
expectation-maximization (SAEM) algorithm57 was applied to search
global optimum in the estimation. M3 method58 was applied for
quantifying size below the quantification of limit (< 200mm3)59. In the
NLME method, the model parameters are described in (3)-(5).

lnðKgjÞ= lnðθKg Þ+ηKgj ð3Þ

lnðKdjÞ= ln θKd

� �
+ηKdj ð4Þ

logitðFjÞ= logit θF
� �

+ηFj ð5Þ

where θ is the population typical value, and η is the random effect with
a log-normal and logit-normal distribution describing the difference
between individuals and population average for each lesion j.
Proportional error model was assumed. The initial values of Kg, Kd
and F were 0.01 day−1, 0.01 day−1, and 0.1 (unitless).

Of note, the volumetric conversionwouldmake the thresholds for
response and progression different from dimensional metrics. How-
ever, our model system assumes first-order dynamics of tumor
regression and progression, and the response and progression
sequence at the organ level remains unchanged regardless of the use
of volumetric or dimension metrics.

Tumor time to response and progression
Tumor growth dynamic parameters were further taken to predict the
longitudinal profiles of response and progression for each target
lesion. The longitudinal response and progression status for each
target or non-target lesion were determined per RECIST V1.126. Target
lesion time to response (when the lesion volume decreases ≥ 20% from
baseline) and time to progression (when the lesion volume increases
≥ 30% from tumor nadir or at least 200mm3 increase from nadir) were
derived using tumor growth model with NLME-estimated parameters
on the individual lesion level. Non-target lesions responded when
partial response or complete response was firstly observed during the
treatment and progressed when progressive disease appeared in
tumor evaluation. The time to progression for new lesions were
defined as the detection time.

Cox proportional regression model
Cox proportional models were built to estimate lesion response and
progression probabilities across organs and treatments in R-4.1.0 and
RStudio 2022.07.1 coxme package. Inter-patient variability was adjus-
ted in theCoxmodels as randomeffect. The potential covariate effects
of treatment, line of therapy, age, gender, race, BMI, and surgical his-
tory were tested in mCRC patients and significant covariates (p-value
< 0.05) were selected in the final model. For mHNSCC, we tested
treatment, line of therapy, age, gender, race, BSA, and surgical/radia-
tion history as potential covariates. Lesions without progression or
response during the treatmentwere labeled as censoredby the lastday
of that patient in the trial. New lesions were considered only in the
progression hazard estimation.

Progression pattern classification and prediction
We used the k-means clustering algorithm32 to categorize all the
patients based on their organ progression sequence in Spyder (Python
3.8) in Anaconda using the SCIKIT-LEARN 1.0.2 software package.
Elbowmethod33, Silhouette score34, AIC and BIC35, were applied to find
optimal k. The Elbow method selects optimal k based on the inflexion
point of the performance curve. The Silhouettemethod is basedon the
similarity of a data-point to its own identified cluster and dissimilarity
to other clusters. The AIC and BIC provide complementary measures
that balance model complexity and predictive performance. The
optimal k was also selected to yield adequate separation of patient
survival and interpretable features of lesion progression.

Gradient Boosting algorithm36 was applied to build a progression
pattern predictivemodel in Spyder (Python 3.8) in Anaconda using the
SCIKIT-LEARN 1.0.2 software package. The research samples were
randomly divided into training and testing sets at a ratio of 4:1, with
rotation of the test dataset to implement 5-fold cross validation. The
initial value of the hyperparametersused in thismodelwasdetermined
by parameter grid search, using 5-fold cross-validation and F1-score as
a metric (Supplementary Table 4). The model outcome is the patient
progression sequence classified in k-means clustering algorithm.
Model inputs included patient clinical and demographic character-
istics, as well as the baseline metastatic profiles, including the meta-
static organs, metastatic numbers, metastatic target lesion baseline
volume. Continuous predictors were normalized and categorical pre-
dictors were transformed to dummy variables using OneHotEncoder
package softmax function. Performance index accuracy, precision,
recall rate and area ROC curves were used to evaluate model
performance.

Statistics & reproducibility
Comparisons of continuous variables were performed using the two-
tailed Mann–Whitney test or Kruskal–Wallis test. Multiple compar-
isons were adjusted by Dunn’s test. PFS (defined as the start of thera-
pies until RECIST-defined progression or death) andOS (defined as the
start of therapies until patient death) among the groups were depicted
using Kaplan–Meier curves and compared using log-rank tests. All the
statistical tests were performed in GraphPad Prism 9. No statistical
method was used to predetermine sample size. Data were included or
excluded based on pre-established criteria. No randomization was
involved in our analysis and the investigators were not blinded to
allocation during data analyses and outcome assessments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw clinical data that support the findings of this study are avail-
able in the Project Data Sphere, https://data.projectdatasphere.org/
projectdatasphere/html/access. Access can be acquired on the Project
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Data Sphere website. The processed data generated in the study are
provided in the Source Data file with this paper. Source data are pro-
vided with this paper.

Code availability
The modeling andmachine learning algorithms codes were deposited
at https://github.com/zhoujw14/Mapping-Metastasis.git.
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