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Multiregional single-cell dissection of tumor
and immune cells reveals stable lock-and-key
features in liver cancer

Lichun Ma 1,2,14, Sophia Heinrich1,3,14, Limin Wang1, Friederike L. Keggenhoff4,
Subreen Khatib1, Marshonna Forgues1, Michael Kelly 5, Stephen M. Hewitt 6,
Areeba Saif7, Jonathan M. Hernandez7, Donna Mabry8, Roman Kloeckner 4,9,
Tim F. Greten 8,10, Jittiporn Chaisaingmongkol 11,12,
Mathuros Ruchirawat 11,12, Jens U. Marquardt 4,13 & Xin Wei Wang 1,10

Intratumor heterogeneity may result from the evolution of tumor cells and
their continuous interactions with the tumor microenvironment which col-
lectively drives tumorigenesis. However, an appearance of cellular and mole-
cular heterogeneity creates a challenge to define molecular features linked to
tumormalignancy. Here we performmultiregional single-cell RNA sequencing
(scRNA-seq) analysis of seven liver cancer patients (four hepatocellular carci-
noma, HCC and three intrahepatic cholangiocarcinoma, iCCA). We identify
cellular dynamics of malignant cells and their communication networks with
tumor-associated immune cells, which are validated using additional scRNA-
seq data of 25 HCC and 12 iCCA patients as a stable fingerprint embedded in a
malignant ecosystem representing features of tumor aggressiveness. We fur-
ther validate the top ligand-receptor interactionpairs (i.e., LGALS9-SLC1A5 and
SPP1-PTGER4 between tumor cells and macrophages) associated with unique
transcriptome in additional 542 HCC patients. Our study unveils stable mole-
cular networks of malignant ecosystems, which may open a path for ther-
apeutic exploration.

Multi-level analyses of human cancer tissues unveil a vast degree of
molecular heterogeneity among cells within individual tumors, a fea-
ture knownas intratumorheterogeneity (ITH)1. A varyingdegreeof ITH
can be found in most, if not all, major solid malignancies and these
features are universally associated with patient’s prognosis2. Tumor

cell evolution may be a main contributor to ITH because each tumor
cell or their-derived subclones compete with each other in an adverse
milieu of the tumor microenvironment (TME) for survival, resulting in
a complex tumor ecosystem, where tumor cells may serve as the
architect to orchestrate various cell types in the tumor cell community
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to facilitate its growth3,4. Because stromal and immune cells in the
tumor ecosystem may compete with tumor cells for space and nutri-
ents in addition topotentially activated immune surveillance to restrict
tumor growth, tumor cells may develop unique features to reprogram
the TME to evade from the competition5. Therefore, like the landscape
in nature, the survival fitness of each tumor may be dictated by a
unique tumor cell landscape shaped by the intrinsic tumor biology,
tumor evolution and the TME, which gives rise to an appearance of a
complex tumor ecosystem. Obviously, ITH represents a major barrier
for implementing effective therapeutic interventions such as systemic
therapies because of the difficulty in identifying stable molecular fea-
tures linked to malignancy due to evolution-driven moving targets4.

Overwhelming evidence indicates the remarkable heterogeneity
of solid malignancies at the phenotypic and genetic levels. For exam-
ple, somatic mutation analysis revealed that most hepatocellular car-
cinoma (HCC) cases examined show ITH at the genetic levels6.
However, recent studies of lung cancer and leukemia with the appli-
cation of single-cell technologies revealed that malignant clonal
dominance is a cell-intrinsic and heritable property and transcriptome-
based cellular state arises largely independently of genetic variation7,8.
This raises questions about the accuracy in defining tumor cell biodi-
versity at the genetic levels due to the presence of passenger muta-
tions and that transcriptomic heterogeneity may represent a good
alternative to model cancer evolution1,9. The key question remains as
how best to define biologically meaningful tumor ecosystem. Since
tumor evolution is accompanied by continuous interactions of tumor
cells and the TME, defining cellular features and its underlying mole-
cular communication networks that shape tumor biology and conse-
quently drive tumor evolution may be a key to improve molecular
understanding of tumor ecosystems and to develop effective ther-
apeutic approaches for solid tumors. Herein, we postulated that each
tumor ecosystem may represent the success in enriching a unique
combination of tumor-stromal interaction networks that promote
tumor evolution under selective pressure. Defining the interactions of
tumor and immune/stromal cells may, thus, represent unique finger-
prints stable for its tumor biology, a feature analogous to the lock-and-
key model that describes the enzyme-substrate interaction proposed
by Emil Fischer over 127 years ago10.

Cells are the smallest structural and functional unit of a tumor
lesion. Therefore, tumor biology should be studied at the single-cell
level11,12. Single-cell-based transcriptomic analysis has been increas-
ingly used to study tumor and immune cell compositions in normal
and diseased tissues such as liver cancer to better capture the tumor
ecosystem13,14. As the incidence and mortality of HCC and intrahepatic
cholangiocarcinoma (iCCA), the two main histological types of liver
cancer, are still on the rise at the global level15, several recent studies
have exploitedHCC and iCCAecosystemsby single-cell transcriptomic
analysis16–20. These studies mainly relied on tumor biopsies obtained
from a single region within the tumor to generate tumor cell compo-
sition, which have revealed vast ITH. It is unclear whether sampling
bias influences the observed tumor ecosystem and the associated ITH
within each tumor and consequently data interpretation, or if the
tumor composition is relatively stable with a secured communication
network of tumor and the TME that supports tumor malignancy.

In this study, we aim to determine the spatial distribution of
tumor cells and TME by performing a multiregional single-cell RNA
sequencing (scRNA-seq) analysis of HCC and iCCA from seven liver
cancer patients and validate the results in single-cell data from an
additional 37HCC and iCCA patients. We find that while ITH is evident,
variations of the tumor cell composition and the corresponding
communication networks of tumor cells and the TME are smaller
within each tumor than between tumors regardless of tumor size and
corresponding distance among sampling tissues. We identify a fin-
gerprint consisting of LGALS9-SLC1A5, SPP1-PTGER4 as tumor and
macrophage-derived ligand–receptor interaction pairs, linked to

tumor aggressiveness. We independently validate the stability of the
expression patterns and prognostic value of the LGALS9-SLC1A5 and
SPP1-PTGER4 pairs using both bulk transcriptome profiles of 542 HCC
samples from three independent cohorts and multiplexed fluores-
cence in situ hybridization-based profiles of 258 HCC samples from
two cohorts. Our multiregional single-cell dissection of tumor and
immune cells reveals a stable tumor-macrophage interaction network
linked to ITH and HCC prognosis, which may provide the basis for
further functional exploration including the development of rationale
therapeutics for liver cancer.

Results
Multiregional liver tumor cell transcriptome profiles
To determine the spatial distribution of tumor cells and the TMEs as
well as its stability within each tumor, we performed multiregional
single-cell transcriptomic profiling of liver tumor specimens with
varying tumor sizes from four HCC patients and three iCCA patients
who underwent surgical resection (Supplementary Table 1). Specifi-
cally, we prepared single cells from five separate regions for each
tumor, i.e., three tumor cores (T1, T2, and T3), one tumor border (B)
and an adjacent normal tissue (N), followed by droplet-based 5’ scRNA-
seq of these samples (Fig. 1a). We removed one sample (T3 from case
3C) due to single-cell library failure and thus a total of 34 samples were
included in this study.We identifiedmalignant andnon-malignant cells
by using the samemethod applied successfully in our previous studies
and further used adjacent normal liver tissues as a control (Supple-
mentary Fig. 1)17,20. Samples with >10 malignant cells detected were
used for the analysis of malignant cells. With this criterion, six patients
in our cohort had detectable malignant cells (Supplementary Fig. 1a).
We then determined the similarity of tumor cell composition among
multiple regions for each tumor from the six patients. t-distributed
stochastic neighbor embedding (t-SNE) analysis revealed that malig-
nant cells formed patient-specific clusters regardless of tumor regions
(Fig. 1b and c), suggesting a much smaller interregional heterogeneity
than intertumoral heterogeneity. This was also evident from hier-
archical clustering analysis ofmultiple regions, where tumor cells from
the same patient tended clustering together in the hierarchical tree
(Fig. 1d). This was consistent with our previous bulk transcriptome
study of HCC21. In contrast to patient-specific patterns of malignant
cells, epithelial cells from adjacent normal tissues of different cases
were mixed and separated from malignant cells (Supplementary
Fig. 2), indicating shared non-malignant epithelial cell states among
patients, which further served as a control to define malignant cells.

While tumor cells from multiple regions of each individual case
were clustered together (Fig. 1c), we observed noticeable differences
in tumor histology among different regions of each tumor, regardless
of a difference in tumor size among these tumors (Fig. 1e and Sup-
plementary Fig. 3). To quantitively determine the heterogeneity of
tumor cells, we calculated intraregional heterogeneity as the dis-
tribution of pair-wise correlation of malignant cells within a specific
region while interregional heterogeneity as the correlation of malig-
nant cells among multiple regions within a patient. We used inter-
tumoral heterogeneity among different patients as a reference.
Noticeably, while some regional differences within each tumor were
noted, correlations among intraregional and interregional tumor
biopsieswithin eachpatientweremuchgreater than that of intertumor
among different patients (Fig. 1f). We also evaluated the inferred
chromosomal copy number variations (CNVs) and found considerable
distinct patterns among patients while much smaller differences
among multiple tumor regions within each case (Supplementary
Fig. 4a). To determine the impact of tumor size on tumor hetero-
geneity, we calculated its correlation with tumor heterogeneity among
different regions and found no relationship in these samples (Sup-
plementary Fig. 4b–d). These results indicate thatwhile tumor size and
histology may vary among patients, there was a much smaller

Article https://doi.org/10.1038/s41467-022-35291-5

Nature Communications |         (2022) 13:7533 2



0 1

b

f

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Correlation

1C 3C 1H 2H 3H 4H

Intertumor
Interregion

B
T1
T2
T3

In
tra

re
gi

on

a

Computational analysis

T1
T2 T3

B

N

Normal liver

Tumor border

Tumor core

Tissue processing scRNA-seqHCC/iCCA

1C

3C
1H

2H

3H

4H

t-SNE 1

t-S
N

E 
2

d

1C
T3

1C
B

1C
T1

3C
B

3C
T1

3C
T2

1H
T2

1H
T1

1H
T3

4H
B

4H
T2

4H
T1

4H
T3

2H
T2

2H
T3

3H
T2

3H
T3

Case

e

MRI Border

T1 T2

Correlation
coefficient

N.D.
N.D.

N.D.
N.D. N.D.

N.D.N.D.

c

1C

3C
1H

2H

3H

4H

t-SNE 1

t-S
N

E 
2

BT1 T2 T3

Fig. 1 | Multiregional single-cell transcriptome profiling of liver cancer.
a Workflow of multiregional tissue collection, processing, scRNA-seq, and data
analysis. B, tumor border; T1, T2, and T3, three tumor cores; N, adjacent normal
tissue. scRNA-seq, single-cell RNA sequencing. The figure was generated using
BioRender. b, c t-SNE plot of malignant cells colored by cases (b) or tumor regions
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named according to the histological subtypes and tumor regions. e Representative

magnetic resonance imaging (MRI) of case 4H and histopathology of tumors from
border, T1 and T2 of this case. Scale bars, 50 μm. Multiregional imaging pictures
from all 7 cases are included as supplementary Figure 3. f The distribution of pair-
wise correlations of malignant cells within each tumor region (intraregion), across
regions within each individual case (interregion) and across cases (intertumor).
Pearson’s correlation coefficient was applied. N.D., not detectable. Solid and
dashed gray lines indicate the mean and standard deviation of all intraregional
correlation values. Source data are provided as a Source data file.
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difference in tumor cell transcriptomic activity within a patient than
between patients. This observation is consistent with a recent report
regarding HCC regional transcriptomic heterogeneity22.

Dynamics of transcriptomic heterogeneity of malignant and
non-malignant cells
To evaluate the landscape of cellular dynamics of malignant cells from
different regions linked to their transcriptomic heterogeneity, we
performed trajectory analysis using RNA velocity23,24, which deter-
mines cellular dynamics including developmental lineages and differ-
entiation states based on splicing kinetics of tumor cell transcriptome.
We found cellular trajectories of malignant cells again appear similar
among different tumor regions within each tumor while heterogeneity
in expressions of different stemness genes is noted. For example, the
malignant cells from case 1C (7.5 cm in tumor size) followed a similar
trajectory regardless of the tumor region sampled (Fig. 2a). When
ranking tumor cells of 1C along their latent time estimated using RNA
velocitywith the expression of cell stemness relatedmarker genes (i.e.,
EPCAM, KRT19, ICAM1)16 and a tumor progression related gene (i.e.,
SPP1)20, we found a similar gene expression pattern among sampling
regions while varying expression among individual cells (Fig. 2b).
Similar results were found in other cases (Supplementary Fig. 5). In
addition, we performed fluorescence-activated cell sorting (FACS)
analysis of EPCAM+ cells or GPC3+ cells for three HCC samples with
available cryopreserved single-cell suspension, because the two mar-
kerswere knownelevated in tumor cells. The proportionof EPCAM+or
GPC3+ cells was relatively stable in the tumor core regions while dif-
ferences were noted when compared to the tumor border regions,
suggesting that the proportion of those cells may vary among tumor
regions (Supplementary Fig. 6). We also confirmed that SPP1 expres-
sion is elevated in tumor cells but its expression is heterogeneous
(Supplementary Fig. 7), which is consistent with previous
publications21.

We also determined the spatial landscape of non-malignant cells
of HCC and iCCA by dimensional reduction using a manifold learning
method of uniformmanifold approximation and projection (UMAP)25.
In contrast to the patient-specific patterns in malignant cells, non-
malignant cells were mainly grouped based on their cell lineage, i.e.,
T cells, B cells, tumor-associated macrophages (TAMs), cancer-
associated fibroblasts (CAFs), tumor-associated endothelial cells
(TECs), hepatocytes and cholangiocytes, which were determined
using lineage-specific marker genes (Fig. 3a, b). We observed similar
cellular patterns of the TMEs among multiple tumor regions or
among patients while a small difference was noted (Fig. 3c, d). When
each cell type was analyzed separately, we found a high correlation of
T cells from different sampling regions within each case, suggesting
that the T-cell transcriptomic profiles appear stable among different
sampling regions (Fig. 3e). We further evaluated the presence of CD3+
T cells using immunohistochemistry analysis, where relatively similar
CD3+ T-cell numbers between tumor cores and tumor borders within
each case than among cases was revealed with available paraffin
blocks (Supplementary Fig. 8). In contrast, we found the correlation
of CAFs, TECs, TAMs and B cells varied among different regions with
some cases showing a high correlation while others showing a low
correlation (Supplementary Fig. 9a). However, variations of immune/
stromal cell types among different sampling regions were not corre-
lated with tumor size, similar to the features of tumor cells (Supple-
mentary Fig. 9b).

Based on the overall features of all cells in the TME, we observed
immune activation in 3C and 3H while immune suppression in 4H and
1H (Supplementary Fig. 9c). For the rest of the cases, lack of the
immune activities was observed (Supplementary Fig. 9c). Since T-cell
profiles appeared most stable, we further determined T-cell subtypes
and their composition in each tumor region. We identified 21 subsets
and defined them based on the top differentially expressed genes

(Supplementary Fig. 10a and b). We observed similarity of the T-cell
state composition in some tumor regions within each case while var-
iations among others (Supplementary Fig. 10c). For example, 4H had
themost stable T-cell subset composition among all the tumor regions,
which is consistent with the highest correlation of T-cell transcriptomic
profiles in this case (Fig. 3e and Supplementary Fig. 10c). In contrast,
similarity of T-cell states was found in only two of the biopsied regions
in the case of 1C. Thus, T-cell states appeared very dynamic although
the difference within a patient seems smaller than between patients.
Taken together, transcriptomic heterogeneity of malignant cells and
immune/stromal cells appears smaller among sampling regions within
each tumor lesion than among tumors from different patients while
cellular heterogeneity within each tumor is noted. These results are
consistent with recent publications in HCC, non-small-cell lung cancer
and renal cell carcinoma using single-cell technologies22,26,27.

Multiregional tumor-immune communication networks
Given the noticeable histological and transcriptomic heterogeneity of
a tumor lesion described above and elsewhere, it is imperative to
identify stable molecular features linked to tumor biology. As tumor
progression is a dynamic process involving continuous interactions of
tumor cells and stromal/immune cells, tumor cells may profoundly
influence various cell types within the tumor ecosystem to promote
their own survival and the dissemination of malignancy4. Meanwhile,
the TMEs including tumor-associated matrix suppress tumor growth
by effective immune surveillance but may also be educated by tumor
to support tumor progression28–30. We hypothesized that each tumor
ecosystem may contain specific molecular communication networks
between tumor cellular activities and the immune cell landscape
unique to each patient, as these featuresmay haveminimum sampling
bias. To identify the communication networks, we searched for
ligand–receptor interactions of malignant cells and the TME within
each patient using CellPhoneDB31,32 (see “Methods”). We identified
patient-specific interaction networks that are consistently well-
conserved among different tumor regions from each individual
patient (Fig. 4a, b, Supplementary Figs. 11–13), regardless of the
direction of the interactions (i.e., tumor-to-TME, ligands from malig-
nant cells and receptors from non-malignant cells; TME-to-tumor,
ligands from non-malignant cells and receptors from malignant cells).
These results indicate that the molecular communication networks
appear relatively stable regardless of sampling locations, which likely
reflects the intrinsic tumor biology of each tumor. Noticeably, the
interactions are more stable in HCC than iCCA (Fig. 4c). We also
determined the interactions between tumor cells and T-cell subsets,
where relatively stable interactions were observed within each case
(Supplementary Fig. 12b, c). In contrast to the consistency among
different tumor regions within a specific patient, the ligand–receptor
interaction pairs varied across patients, showing cell-to-cell commu-
nication networks unique to each patient (Fig. 4a and d). To determine
whether patient-specific ligand–receptor interaction networks were
mainly contributed by tumors or by TME, we developed a strategy by
performing random shuffle of either tumor or TME (Fig. 4e). Not sur-
prisingly, we found that the strength of the network interaction dete-
riorates faster for tumor random shuffle than TME random shuffle
(Fig. 4f), suggesting the uniqueness is mainly controlled by malignant
cells. Taken together, these results indicate that each tumor may
contain relatively stable but unique communication networks between
tumor and the TME, where malignant cells mainly contribute to the
patient-specific patterns.

The tumor-immune communication networks are associated
with patient outcomes
To determine if patient-specific tumor-immune interaction networks
are biologically important and are associated with tumor aggressive-
ness, we extended our search for ligand–receptor interactions in
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additional 46 tumor samples from 25 HCC and 12 iCCA patients
described recently20. We included samples with > 15 detectable malig-
nant cells per tumor for determining interactions ofmalignant cells and
non-malignant cells. We further filtered the identified ligand–receptor
pairs by using those found in the multiregional analysis (Fig. 4a,
see “Methods”), which were selected using stringent criteria and
demonstrated stable communication programs acrossmultiple regions
within each patient. We found two main clusters with different inter-
action networks based on a hierarchical relationship of the

ligand–receptor interaction activities (Fig. 5a). Noticeably, patients
from the two clusters have significantly different overall survival, sug-
gesting that the tumor-immune interaction networks are biologically
distinct between the two clusters linked to tumor biology (Fig. 5b).
Because this cohort contains both HCC and iCCA patients, we also
analyzed HCC patients separately to avoid potential tumor type bias.
We found a consistent trend of survival difference between the two
clusters (Fig. 5c). We did not analyze iCCA patients separately as they
were all in Cluster 1. To determine the key interactions of each cluster,
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we evaluated the difference between the proportions of each
ligand–receptor interaction in the two clusters. Noticeably, the
ligand–receptor interaction networks are polarized between the two
clusters (Fig. 5d). For example, the LGALS9-SLC1A5 and SPP1-PTGER4
pairs, mainly contributed by the communication of malignant cells and
TAMs, were among the top interaction pairs from Cluster 1. To confirm
the ligand–receptor pairs identified by CellPhoneDB, we further
applied CellChat33 to determine cellular interactions. We found >85%
consistency of the ligand–receptor interactions (i.e., SPP1-PTGER4 and

LGALS9-SLC1A5) between tumor cells and TAMs using the two meth-
ods, suggesting that the identified pairs are stable (Supplementary
Fig. 14a). In addition, we evaluated the impact of the number of
malignant cells on ligand–receptor pair identification by randomly
samplingmalignant cells. We applied this strategy to five cases with the
highest number of malignant cells and found no linear relationship
between the number of cells and the accuracy of ligand–receptor
interaction determination (Supplementary Fig. 14b). However, we did
notice a slight drop of its accuracy when the number of malignant cells

Fig. 4 | Communication of malignant cells and non-malignant cells.
a Ligand–receptor interactions of malignant cells and non-malignant cells in six
cases with viable malignant cells. Each column indicates a ligand–receptor pair,
with the first and the second gene representing a ligand and a receptor, respec-
tively. Each row represents a non-malignant cell type that interacts with malignant
cells. The direction of an interaction is indicated by colored dot. Purple, malignant
cells provide ligands and interact with receptors from non-malignant cells in the
TME; green, non-malignant cells in the TME provide ligands and interact with
receptors from malignant cells. The size of each dot represents the proportion of
tumor regions within each case in identifying a specific interaction pair, with 1
indicating occurrence in all tumor regions and 0 indicating occurrence in none of
the tumor regions. b Illustration of ligand–receptor interactions of tumor and the
TME. Purple dots, ligands from tumor; green dots, ligands from TME. c Stacked bar
plot of the percentage of ligand–receptor pairs in each individual case found in

certain proportion of tumor regions. One means that a pair was found in all tumor
regions within a case while zero means that a pair was found in none of the tumor
regions. d Similarity of ligand–receptor interactions among multiple regions of
different cases. Zero indicates no overlap of ligand–receptor interactions while 1
means a full overlapof ligand–receptor interactions between samples. e Illustration
of switching TME and switching tumor. Switching TME indicates that tumor cells
from one case are combined with TMEs from other cases to form distinct tumor
ecosystems. Switching tumor indicates that TME from one case are combined with
tumors from other cases to form distinct tumor ecosystems. f The proportion of
matched ligand–receptor interactions from switching tumor or TME with the ori-
ginal search of using paired tumor and TME from the same case. Student’s t-test
(two-sided) was applied with p value provided. b and e were generated using
BioRender.

TTR_NGFR
TIMP1_FGFR2
TIMP1_FGFR2
TIMP1_FGFR2
LGALS9_LRP1
MDK_LRP1
LGALS9_LRP1
NAMPT_P2RY6
EFNA1_EPHA2
EFNA1_EPHA2
C5_C5AR1
CXCL2_DPP4
EPO_EFNB2
MDK_LRP1
MDK_SORL1
GRN_SORT1
CCL4_SLC7A1
LGALS9_SLC1A5
MDK_LRP1
LGALS9_LRP1
MDK_SORL1
TNFSF12_TNFRSF12A
TNFSF12_TNFRSF12A
TNFSF12_TNFRSF12A
SPP1_PTGER4
SPP1_CD44
LGALS9_CD44
SPP1_CD44
LGALS9_CD47
CXCL8_ACKR1
CXCL1_ACKR1
LGALS9_CD44
CXCL12_CXCR4
PDGFB_LRP1

C
42

H
65

C
60

H
74

C
26

B
C

39
C

46
F

H
70

C
66

C
29

H
49

F2 C
25

C
56

H
08

H
73

B
H

30
H

75
H

58
F1 H
72

H
34

B
H

38
H

23
H

37
H

63

Interaction
B cells
CAFs
TAMs

T cells
TECs

Tumor-TME
TME-Tumor

Cluster
Cluster 1
Cluster 2

iCCA
HCC

Tumor type Cell type

N/A

p =0.0050

25

50

75

100

0 6 12 18 24 30
Months

O
ve

ra
ll 

su
rv

iv
al

 (%
)

p = 0.068
0 6 12 18 24 30

Months

Cluster 1

Cluster 2

Cluster 1

Cluster 2

a b

0

25

50

75

100

O
ve

ra
ll 

su
rv

iv
al

 (%
)

−60%
−40%
−20%

0%
20%
40%
60%

LG
AL

S9
_S

LC
1A

5 
(T

AM
s)

SP
P1

_P
TG

ER
4 

(T
AM

s)
M

D
K_

SO
R

L1
 (T

AM
s)

M
D

K_
LR

P1
 (T

AM
s)

LG
AL

S9
_C

D
44

 (T
 c

el
ls

)
C

C
L4

_S
LC

7A
1 

(T
AM

s)
SP

P1
_C

D
44

 (B
 c

el
ls

)
C

XC
L1

_A
C

KR
1 

(T
EC

s)
LG

AL
S9

_C
D

44
 (T

AM
s)

C
XC

L8
_A

C
KR

1 
(T

EC
s)

G
R

N
_S

O
R

T1
 (T

AM
s)

LG
AL

S9
_L

R
P1

 (C
AF

s)
M

D
K_

SO
R

L1
 (T

 c
el

ls
)

C
XC

L1
2_

C
XC

R
4 

(T
 c

el
ls

)
PD

G
FB

_L
R

P1
 (T

EC
s)

TN
FS

F1
2_

TN
FR

SF
12

A 
(T

AM
s)

SP
P1

_C
D

44
 (C

AF
s)

LG
AL

S9
_C

D
47

 (T
EC

s)
TN

FS
F1

2_
TN

FR
SF

12
A 

(T
EC

s)
LG

AL
S9

_L
R

P1
 (T

EC
s)

EF
N

A1
_E

PH
A2

 (C
AF

s)
EP

O
_E

FN
B2

 (T
EC

s)
M

D
K_

LR
P1

 (T
EC

s)
N

AM
PT

_P
2R

Y6
 (T

AM
s)

TN
FS

F1
2_

TN
FR

SF
12

A 
(C

AF
s)

TI
M

P1
_F

G
FR

2 
(C

AF
s)

LG
AL

S9
_L

R
P1

 (T
AM

s)
EF

N
A1

_E
PH

A2
 (T

EC
s)

C
XC

L2
_D

PP
4 

(T
AM

s)
TI

M
P1

_F
G

FR
2 

(T
AM

s)
TI

M
P1

_F
G

FR
2 

(T
EC

s)
C

5_
C

5A
R

1 
(T

AM
s)

M
D

K_
LR

P1
 (C

AF
s)

TT
R

_N
G

FR
 (C

AF
s)

D
iff

er
en

ce
 b

et
w

ee
n

C
lu

st
er

 1
 a

nd
 C

lu
st

er
 2

d
Cluster 1

Cluster 2

Tumor-TME
TME-Tumor

c

Fig. 5 | Communication of malignant cells and non-malignant cells are asso-
ciated with patient outcome. a Hierarchical clustering of the ligand–receptor
interaction patterns of malignant cells and non-malignant cells. Each row indicates
a ligand–receptor pair, with the first and the second gene representing a ligand and
a receptor, respectively. Each column represents a tumor sample. The direction of
an interaction is indicated by color. Purple, malignant cells provide ligands and
interact with receptors from non-malignant cells in the TME; green, non-malignant
cells in the TME provide ligands and interact with receptors from malignant cells.
Distinct non-malignant cell types that interact withmalignant cells are indicated by
colors. Clusters were determined based on the hierarchical relationship.

b, cOverall survival of all patients (b) orHCCpatients (c) fromCluster 1 andCluster
2 in (a). Log-rank test was preformed to show the statistical difference of the two
groups. d The difference between the proportions of each ligand–receptor inter-
action in Cluster 1 and Cluster 2. Red, pairs enriched in Cluster 1; Blue, pairs enri-
ched in Cluster 2. The direction of each interaction pair is indicated by color.
Purple, malignant cells provide ligands and interact with receptors from non-
malignant cells in the TME; green, non-malignant cells in the TME provide ligands
and interact with receptors frommalignant cells. The non-malignant cell types that
interact with malignant cells are indicated in parentheses.

Article https://doi.org/10.1038/s41467-022-35291-5

Nature Communications |         (2022) 13:7533 7



is less than 20 (i.e., an average accuracy of 80.04% with 20 malignant
cells and 71% with 10 malignant cells (Supplementary Fig. 14b).

To further validate whether the specific ligand–receptor interac-
tion networkswere associatedwith overall survival ofHCCpatients,we
applied the ligand–receptor pairs found from the single-cell analysis to
bulk transcriptomic data of 542 patients from three HCC cohorts (i.e.,
LCI cohort, TCGA HCC cohort, TIGER-LC HCC cohort). Different from
directly evaluating cell-cell communications using single-cell data, we
developed a strategy by calculating the mean of the ligand and
receptor in a specific interaction pair and then determining the
occurrence of this pair using the median expression across patients to
mimic ligand–receptor interactions among tumor and TME
(see “Methods”). We applied this strategy to all the identified
ligand–receptor pairs to generate the interaction map of each patient,
based on which hierarchical clustering was then performed. We found
that patients could be grouped into two main clusters with distinct
interaction patterns in the LCI cohort (Fig. 6a) as well as in the TCGA
HCC and TIGER-LC HCC cohorts (Supplementary Fig. 15a). To evaluate
the consistency of the communication patterns among the three
cohorts, we calculated the proportion of each ligand–receptor pair in
Cluster 1 for all three cohorts. We found high concordance among
three different cohorts with pairs to be assigned to Cluster 1 or Cluster
2, especially for tumor-TAM-derived pairs in Cluster 1, i.e., LGALS9-
SLC1A5 and SPP1-PTGER4 pairs (Fig. 6b). Remarkably, patients from
the two clusters had a consistently different overall survival in tumor
tissues but not in adjacent non-tumor tissues from all three cohorts
(Fig. 6c), suggesting that the survival related ligand–receptor interac-
tion activities are imbedded within a tumor lesion. Consistently, when
patients from each cohort were divided into three clusters based on
the hierarchical relationship, we found a significant trend linking
interaction networks to the overall survival of patients, further indi-
cating that the interaction network is a stable feature of HCC aggres-
siveness (Supplementary Fig. 15b). Collectively, these results imply
that the landscape of each tumor ecosystem may contain a unique
combination of tumor-immune/stromal interaction pairs from a suc-
cessful tumor evolution, which is analogous to lock-and-key feature of
the enzyme-substrate interaction. These interactions can be exploited
as a classifier of tumor aggressiveness.

Validation of key ligand–receptor pairs by multiplex in situ
hybridization in HCC
To further validate the robustness of the ligand–receptor interactions
linked to HCC prognosis, we evaluated the top two pairs, i.e., LGALS9-
SLC1A5 and SPP1-PTGER4, representing the tumor-TAM communica-
tions for proof-of-principle analysis (Fig. 7a), as validation of all sig-
nificant pairs would be technical challenging. We determined their
expression patterns in tissue microarrays consisting of paraffin blocks
of both TIGER-LC cohort (HCC, n = 68) and LCI cohort (HCC, n = 190)
using the RNAscope multiplex fluorescent in situ hybridization assay
(Fig. 7b). We found a significant correlation of the expression levels of
all four target genes in both cohorts between transcriptome-based
analysis and RNAscope-based analysis, indicating a good quality of the
RNAscope assay of the target genes (Fig. 7c and Supplementary
Fig. 16a). Based on the RNAscope signal and the resolved spatial con-
text of each gene, we then determined whether the pair associated
genes were more likely to be colocalized than by chance. This was
implemented by calculating the Bhattacharyya coefficient (BC) of each
tumor, which could measure the amount of overlap of two spatially
distributed genes. Specifically, we partitioned each tumor into tiles
and calculated the probability of each gene in each tile to calculate the
BC for each tumor, with one representing a fully spatial overlap of two
genes and zero indicating no overlap (Fig. 7d). In addition, we mea-
sured the proportion of the filled tiles (FTs) for each tumor to indicate
the spatial preference of the pair-related genes in certain tumor loca-
tions (Fig. 7d).We found a high colocalization of the pair-related genes

for both pairs with high BC values, suggesting the co-dependence of
the pair-related two genes (Fig. 7e and Supplementary Fig. 16b).
Moreover, the pair-related genes were colocalized in certain tumor
regions rather than the whole tumor space (Fig. 7f and Supplementary
Fig. 16c). Consistent with single-cell and bulk transcriptome data,
patients with high expression of both pairs had a significant worse
overall survival than those of the low expression groups in both HCC
cohorts (Fig. 7g and Supplementary Fig. 16d). Therefore, the co-
occurrence of the two ligand–receptor pairs (LGALS9-SLC1A5 and
SPP1-PTGER4)was stable and the elevated expressionswere associated
with poor patient outcome in HCC.

While evidence for physical interactions of LGALS9-SLC1A5 or
SPP1-PTGER4 as the ligand and receptor pairs has been described in
the curated database of CellPhoneDB31, the expression patterns of
each gene among different cells as well as the functional consequence
of these interactions between tumor cells and TAMs have not been
determined. We found that SPP1 and SLC1A5 were more abundantly
expressed in malignant cells while PTGER4 and LGALS9 were more
abundantly expressed in non-malignant cells (Supplementary Fig. 17a).
In addition, the expression of these genes was also significantly higher
in tumors with the two pairs than those without the two pairs (Sup-
plementary Fig. 17b). To explore thebiological features associatedwith
this unique tumor-macrophage link, we compared single-cell tran-
scriptomic profiles of TAMs from tumors with or without the presence
of LGALS9-SLC1A5 and SPP1-PTGER4, and found 4 main subtypes of
TAMs, i.e., c1 (proliferative), c2 (inflammatory), c3 (restorative), and c4
(CLEC9A+WDFY4+) (Fig. 7h). We found that c1 and c4 TAMs were
enriched in tumors with the pairs while c2 and c3 TAMs were enriched
in tumorswithout the pairs (Fig. 7i).We also searched for differentially
expressed genes in TAMs or tumor cells from the cases with or without
the specific pairs as the biological surrogates of the unique tumor-
macrophage link (Fig. 7j and k). TAMs from tumors with the pairs had
unique transcriptome profiles with enriched genes involving in oxi-
dative phosphorylation while tumor cells from cases with the pairs
showed unique transcriptome profiles with genes enriched in inter-
feron response pathways (Supplementary Data 1). Consistently, both
TAM- and tumor cell-derived surrogate signatures could significantly
discriminate Cluster-1 HCC from Cluster-2 HCC in all three cohorts
evaluated, indicating the biological importance of the surrogate sig-
natures (Supplementary Fig. 17c, d). In addition, there was a significant
correlation between the expression of the two ligand–receptor pair-
related four genes and their functional surrogate genes (Supplemen-
tary Fig. 17e–g). Collectively, these results indicate the presence of a
unique and stable tumor-macrophage signaling activity representing
unique signatures downstream of the specific ligand–receptor inter-
actions linked to HCC aggressiveness.

Discussion
Because of tumor evolution and the consequent ITH, cancer research
has been confronted for decades by the dilemma as how best to
effectively define key drivers and functional biomarkers representing
the hallmarks of cancer as the basis for implementing early diagnosis
and precision intervention4. The approaches by the TCGA and ICGC
consortia to provide big data analytics especially integrative genomics
are exciting and enable a rich data source for driver discovery. These
initiatives also promote the idea of targeting tumors based on drivers
unique to certainmolecular subtypes as the central themeof precision
oncology34. While this strategy led to initial success in targeting mel-
anomawith BRAFmutations or lung cancerwith EGFRmutations,most
tumors eventually relapse and the overall prognosis of those patients
remains poor35,36. This is especially challenging for liver cancer
research in which a complex etiology-related hepatocarcinogenesis
results in a vast heterogeneous cancer genome without dominant
driver mutations but plenty of passenger mutations that do not pro-
vide any phenotypic consequences37. Tumor evolution may be the

Article https://doi.org/10.1038/s41467-022-35291-5

Nature Communications |         (2022) 13:7533 8



CCL4_SLC7A1
SPP1_CD44
SPP1_PTGER4
LGALS9_SLC1A5
LGALS9_CD44
LGALS9_CD47
CXCL1_ACKR1
CXCL8_ACKR1
CXCL12_CXCR4
TIMP1_FGFR2
TTR_NGFR
C5_C5AR1
CXCL2_DPP4
NAMPT_P2RY6
EFNA1_EPHA2
EPO_EFNB2
MDK_LRP1
MDK_SORL1
GRN_SORT1
TNFSF12_TNFRSF12A
LGALS9_LRP1
PDGFB_LRP1

Interaction Both Tumor-TME TME-Tumor
Cluster Cluster 1 Cluster 2

p=0.01
0

25

50

75

100

0 24 48 72 96
Months

O
ve

ra
ll 

su
rv

iv
al

 (%
)

LCI (HCC, n = 239)

p=0.009

0 24 48 72 96
Months

TCGA (HCC, n = 247)

p=0.001

0 12 24
Months

TIGER-LC (HCC, n = 56)

Cluster 1

Cluster 2

Cluster 1

Cluster 2

Cluster 1

Cluster 2

a b

c

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

_
_

0.0

0.2

0.4
0.5
0.6

0.8

1.0

Pr
op

or
tio

n 
in

 C
lu

st
er

 1

HCC cohort LCI TCGA TIGER-LC

LG
AL

S9
_S

LC
1A

5
SP

P1
_P

TG
ER

4
SP

P1
_C

D
44

LG
AL

S9
_C

D
47

C
C

L4
_S

LC
7A

1
LG

AL
S9

_C
D

44
C

XC
L1

_A
C

KR
1

C
XC

L8
_A

C
KR

1
TI

M
P1

_F
G

FR
2

G
R

N
_S

O
R

T1
EP

O
_E

FN
B2

LG
AL

S9
_L

R
P1

TN
FS

F1
2_

TN
FR

SF
12

A
C

XC
L1

2_
C

XC
R

4
N

AM
PT

_P
2R

Y6
EF

N
A1

_E
PH

A2
C

5_
C

5A
R

1
M

D
K_

LR
P1

C
XC

L2
_D

PP
4

M
D

K_
SO

R
L1

PD
G

FB
_L

R
P1

TT
R

_N
G

FR

0

25

50

75

100

O
ve

ra
ll 

su
rv

iv
al

 (%
)

0

25

50

75

100

O
ve

ra
ll 

su
rv

iv
al

 (%
)

Interaction Both Tumor-TME TME-Tumor

p=0.62
0

25

50

75

100

0 24 48 72 96
Months

LCI (non-tumor, n = 229)

p=0.45
0

25

50

75

100

0 24 48 72 96
Months

TCGA (non-tumor, n = 48)

p=0.56
0

25

50

75

100

0 24
Months

TIGER-LC (non-tumor, n = 53)

O
ve

ra
ll 

su
rv

iva
l (

%
)

O
ve

ra
ll 

su
rv

iva
l (

%
)

O
ve

ra
ll 

su
rv

iva
l (

%
)

12

Cluster 1

Cluster 2

Cluster 1

Cluster 2
Cluster 1 Cluster 2

Fig. 6 | Validation of the tumor and TME interaction patterns for patient
stratification using bulk transcriptomic data. a Hierarchical clustering of
ligand–receptor interaction activities in LCI cohort. Each column represents a
tumor sample. Each row represents a pair. The direction of each interaction pair is
indicated by color. Purple, tumor provides ligands and interacts with receptors
from the TME; green, TME provides ligands and interacts with receptors from
tumor; light purple, both directions (pairs were identified in both directions from
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each pair in Cluster 1 of three HCC cohorts. Error bar, mean ± standard error of the
mean. c Overall survival of patients from Cluster 1 and Cluster 2 in three HCC
cohorts and the corresponding non-tumor cohorts. Cluster 1 and Cluster 2 were
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main reason for therapeutic failure and consequent poor patient
outcomes. Recent advances in single-cell technologies have provided
an unprecedented sensitivity to better define a tumor ecosystem12. An
important question remains as to what key features represent intrinsic
tumor biology and its evolution for each tumor lesion and how much
sampling bias contributes to the observed ITH.

The success in establishing a tumor colony should satisfy two
parallelly evolving processes, i.e., an acquisition of molecular
alterations in somatic cells and an appropriate ‘molding’ of tumor
cell landscape known as the TME to support the survival and fitness
of somatically altered cells. Therefore, a perfect fit between tumor
cells and their TME may reflect a timestamp for a successful tumor
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evolution and should be unique to each solid tumor lesion. This is
analogous to the lock-and-key model to explain the enzyme-
substrate interaction in efficiently achieving a biological process. In
this study, we attempted to find evidence of a lock-and-key feature in
HCC by incorporating spatial single-cell analysis to examine whether
sampling bias may contribute to the appearance of ITH and to search
for molecular fingerprints of tumor-stromal interactions unique to
tumor biology of each liver tumor lesion. We found that some dif-
ferences in the tumor cell composition and non-malignant cells in the
TME could be observed among biopsies from different sampling
regions. However, molecular features representing the specific
ligand–receptor interactions among tumor cells and non-malignant
cells appeared stable among various cohorts from patients with
different ethnicities and etiologies. Specifically, we identified two
ligand–receptor pairs, i.e., LGALS9-SLC1A5 and SPP1-PTGER4 that
may represent a fingerprint of functional interactions between tumor
cells and TAMs. We found that SLC1A5 and SPP1 are mainly produced
by tumor cells while LGALS9 and PTGER4 are mainly expressed in
TAMs. It should be noted that SPP1 is also expressed in TAMs, but the
expression is much lower than tumor cells. In addition, SPP1 encodes
osteopontin (OPN), a cytokine known to promote HCC metastasis21.
It is known that OPN exists several different isoforms. However, it is
difficult to determine the status of OPN isoforms using 10x genomics
single-cell data. This would be an interesting subject of future stu-
dies. SLC1A5 encodes a neutral amino acid transporter38. In contrast,
PTGER4 encodes one of four receptors for prostaglandin E2, which
may be involved in T-cell factor signaling. PTGER4-expressing mac-
rophages have been shown to promote intestinal epithelial barrier
regeneration upon inflammation39. LGALS9 encodes an S-type lectin
involved in cell adhesion, immune escape, angiogenesis and tumor
metastasis40. While physical interactions among LGALS9-SLC1A5 and
SPP1-PTGER4 pairs have been described in the curated database of
CellPhoneDB32, a functional consequence of these interactions
between tumor cells and TAM has not been determined. We found a
significant correlation between differentially expressed genes in
tumor cells and TAMs defined by the presence of the fingerprint pairs
and the ligand–receptor expressions themselves, suggesting that the
activities of these genesmay represent a functional interaction of the
unique tumor-macrophage network. Moreover, we found that tumor
cells with the fingerprint pairs had a unique transcriptome enriching
with interferon response pathways, while tumor cells without the
fingerprint pairs enriched cellular signaling involving coagulation. In
contrast, TAMs with the fingerprint pairs were much more pro-
liferative and enriched genes were involved in oxidative phosphor-
ylation. It is interesting to note that among the identified TAMs, we
found a cluster of CLEC9A+WDFY4+ cells. While CLEC9A is a marker
for type 1 dendritic cells, it is also expressed in other cell types
including macrophages. We further validated the presence of the
fingerprint pairs to be associated with overall survival in two inde-
pendent cohorts of 258 HCC patients using an in situ hybridization

approach. Our results suggest that the transcriptome-based single-
cell analysis is a robust tool to define each tumor lesion reflecting its
tumor biology. The identification of the unique ligand–receptor fin-
gerprint pairs may help provide the rationale for implementing
biopsy-based single-cell analysis for biological understanding of
tumors in questions for clinical decision making, which should be
evaluated further in clinical trials.

HCC and iCCA are two histological subtypes of liver cancer. Bulk
transcriptomic profiling of primary HCC and iCCA indicates both dis-
tinct and shared molecular features41. In the clustering analysis of
ligand–receptor activities using our single-cell cohort, we found
Cluster 1 comprised both HCC and iCCA while Cluster 2 was mainly
composed of HCC (Fig. 5a), indicating some HCC shared
ligand–receptor communication features with iCCA while others did
not. Genomic studies of liver cancer demonstrated trunk and branch
mutations along with distinct genetic clones among different regions
of a liver tumor. However, we found transcriptomic profiles of malig-
nant cells are similar among different sampling locations of a tumor
lesion for most of the cases in our single-cell cohort. A recent single-
cell study of lung tumor evolution using both scRNA-seq and single-
cell DNA sequencing (scDNA-seq) demonstrated that the clones
determined by scDNA-seq are largely independent from clones with
similar cellular states derived from transcriptomic landscape deter-
mined by scRNA-seq7. These results indicate that genomic alterations
may be independent of transcriptomic profiles. This is anticipated as
most genomic alterations used for clonality analysis have no functional
consequence as most of them are passengers1. Consistently, many
recent studies including this study have now shown evidence sup-
porting the idea that cellular states defined by scRNA-seq may be
better in representing tumor cell clonality and evolution20.

One limitation of this study is that single-cell data were based on a
small cohort, especially for iCCA samples, as well as limited long-
itudinal biopsies for monitoring identified fingerprint during tumor
evolution. Another limitation is that the validation of the LGALS9-
SLC1A5 and SPP1-PTGER4 interactions is not at the protein level. It’s
very challenging to target different proteins with multiple antibodies
on the same slide usingmulti-channel chromogenic detection. For this
reason, our effort was mainly relying on the use of RNAscope analysis
as a proof-of-principle experiment even though this approach has its
limitation and therefore needs to reach interpretation with caution. In
addition, the functional consequences of the LGALS9-SLC1A5 and
SPP1-PTGER4 interactions have not been tested experimentally using
both in vitro and in vivo HCC models. However, we validated the sta-
bility of the identified interaction networks using bulk transcriptomic
data of an additional 542 HCC patients, a necessary step to strengthen
their pathophysiological relevance. There is an urgent need in identi-
fying appropriate preclinical models used to explore functional rele-
vance of research biopsy-based observations, a call for ensuring rigor
and reproducibility of the follow-up functional studies42. Moreover, it
is worth to determine the changes of the communication networks

Fig. 7 | Validation of two interaction pairs between tumor and TAM using
RNAscope assay. a Illustration of ligand–receptor interaction pairs between tumor
cell and TAM (generated using BioRender). b A representative image of RNAscope
multiplex fluorescent in situ hybridization of four genes of an HCC sample from a
total of 258 samples analyzed. (c) Correlation of RNAscope signal and bulk tran-
scriptome gene expression in TIGER-LC cohort. Pearson’s correlation coefficient
(two-sided) was calculated. Dashed line: p = −log10(0.05). d Evaluation of the
colocalization of two spatially distributed genes. BC, Bhattacharyya coefficient: 1, a
full colocalization; 0, no colocalization. FTs, filled tiles. e The distribution of BCs of
LGALS9 and SLC1A5 (top) as well as SPP1 and PTGER4 (bottom) in HCC samples
from the TIGER-LC cohort. Dashed line: mean value. f The distribution of the pro-
portion of filled tiles of LGALS9 and SLC1A5 (top) as well as SPP1 and PTGER4
(bottom) in HCC samples from the TIGER-LC cohort. Ten-times of randomization
was used to generate random spread of markers on tissue sections as a reference.

Gray line, proportion determinedbasedon the ratioof true signal and each random
spread; gold line, mean derived from ten gray lines. Dashed line: mean value. Stu-
dent’s t-test (two-sided) was applied. g Overall survival of HCC patients with low
expression and high expression of LGALS9 and SLC1A5 as well as SPP1 and PTGER4
from the TIGER-LC cohort. Tumor samples with expression of the four marker
genes in between were grouped into others. Log-rank test and a trend test among
the groupswerepreformed.h t-SNEplot of TAMs from samples with orwithout the
two pairs (i.e., LGALS9 and SLC1A5, SPP1 and PTGER4) in Fig. 5a. i The composition
of each TAM cluster. j Differentially expressed genes of TAMs from the samples
with or without the twopairs (i.e., LGALS9 and SLC1A5, SPP1 and PTGER4) in Fig. 5a.
k Differentially expressed genes of malignant cells from the samples with or
without the two pairs (i.e., LGALS9 and SLC1A5, SPP1 and PTGER4) in Fig. 5a. Wil-
coxon test with multiple test adjustment was applied in (j) and (k).
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between tumor and TME during tumor evolution in response to ther-
apy and this knowledge may help understand the mechanism of
therapeutic resistance. We continue to enroll HCC and iCCA patients
with on-treatment longitudinal biopsies at the NIH Clinical Center as a
part of the NCI-CLARITY study to address this question in the future.

Liver cancer remains one of the most difficult to treat solid
malignancies with a 5-year survival rate of less than 18% in the U.S. for
many decades43. In the single-cell studies of different cancer types
including liver cancer, the phenomenon of extensive tumor hetero-
geneity has been noticed, which creates a major barrier for effective
cancer interventions. Sampling bias could be an issue when one uses a
single biopsy to determine tumor biology and response to treatment.
Thus, in clinical practice, it is important to identify features that are
relatively stable and can be used to assess molecular features of a
tumorduring the courseof clinical intervention to avoid samplingbias.
Our study indicates that a unique tumor-macrophage link via
ligand–receptor interactions from LGALS9-SLC1A5 and/or SPP1-
PTGER4 signaling pairs appears a stable molecular feature to define
ITH linked to overall survival of patients with HCC. This is consistent
with the notion that tumor cells continuously communicate with the
tumor microenvironment, defining the molecular map underlining
tumor biodiversity may be a key to improve our understanding of
tumor heterogeneity and further identifying novel therapeutic targets.
We suggest that the identified feature may reflect a successful tumor
evolution unique to each tumor. Exploiting methods to disrupt these
interactions could constitute a viable therapeutic strategy to target
HCC and stop tumor evolution, thereby improving treatment efficacy.

Methods
Human sample collection
A total of seven primary liver cancer patients treated at the University
Medical Center in Mainz and the NIH Clinical Center in Bethesda, have
been enrolled prospectively into this study. Among them, three
patientswerediagnosedwith iCCA and fourwerediagnosedwithHCC.
Tumor size for eachpatient can be found in Supplementary Table 1. All
patients received surgical resection. A total of five samples from the
tumor core, tumor border, and adjacent non-tumor tissue were col-
lected for each patient. Specifically, we collected three samples from
the tumor core that were not adjacent, one sample from the tumor
border, and one sample from the adjacent non-tumor tissue that was
not locally close to the tumor. Each sample wasmeasured about 5mm
diameter in size before single-cell library preparation. Sample collec-
tion was performed with written informed consent from patients. We
removed one sample (T3) from patient 3C due to single-cell library
failure and thus a total of 34 samples were included in this study. This
study was approved by the ethics committee of the University Medical
Center in Mainz and the National Institutes of Health.

Single-cell suspension preparation
Resected samples were collected in RPMI 1640 media and were
immediately processed to keep ischemic time to a minimum. Samples
were minced in petri dishes on ice and transferred into gentleMACS C
Tubes. Enzymes of theMiltenyi tumor dissociation kit had been added
before according to the kit user guide. The tube was placed into the
MACSDissociator formechanical dissociation. The tubewas incubated
for 30min at 37 °C under continuous shaking. Next, the cell suspen-
sion was filtered through a nylon mesh and cells were counted to
determine number of cells and viability. The samples were then cen-
trifuged at 300 × g, 4 °C for 5min and re-suspended in freezing media
for cryopreservation in liquid nitrogen. Samples fromMainz, Germany,
were shipped cryopreserved to the NIH.

Single-cell library preparation and droplet-based scRNA-seq
Cryopreserved samples were thawed and prepared according to the
Single Cell 5’ Reagent Kits User Guide. Specifically, the samples were

washed and re-suspended in PBS + 0.04% BSA. Cell viability was
determined. The cDNAs were obtained after the GEM (Gel Bead-in-
emulsion) generation and barcoding, followed by GEM RT (reverse
transcription) reaction. Purified cDNA was amplified for 14 cycles. A
clean up using SPRIselect beads was performed. cDNA libraries were
prepared with 10x Genomics Single Cell 5’ library & gel bead kit v1.1.
cDNA concentration was determined by Bioanalyzer. Libraries were
then pooled and normalized to a final loading concentration. The
samples were loaded in the lanes according to the 10x Genomics 5’
User Guide andwere then sequenced using Illumina NovaSeq platform
at Frederick National Laboratory for Cancer Research Sequencing
Facility, with sequencing parameters of 28 bp (Read1), 8 bp (Index1),
and 98 bp (Read2). The targeted sequencing depth for each sample is
50,000 reads/cell. Base calling was carried out with Real-TimeAnalysis
software (version 3.4.4) on Illumina sequencing systems. Demulti-
plexingwas thenperformedby using bcl2fastq (version 2.20), with one
mismatch allowed in the barcodes. The standard 10x Genomics Cell-
Ranger (version 3.1.0) pipeline was used to extract FASTQ files and to
perform data processing including alignment, tagging, gene, and
transcript counting. Sequenced reads were aligned to human refer-
ence sequence (refdata-cellranger-GRCh38-3.0.0) provided by the 10x
Genomics.

scRNA-seq data pre-processing
We integrated single-cell profiles from different samples by per-
forming read depth normalization for all the 34 samples using cell-
ranger aggr pipeline from the Cell Ranger (version 3.1.0), which
equalized the average read depth per cell between samples based on
the confidently mapped reads. R Seurat package (version 3.1.2) was
applied for the pre-processing of the aggregated data. We kept genes
that were expressed in at least three cells and removed cells with less
than 500 genes detected. A total of 112,506 cells passed this initial
quality control, with an average of 1067 genes and 3359 unique UMIs
detected per cell. We then normalized the total counts in each indi-
vidual cell to 10,000, followed by log transformation to generate the
normalized data.

Separation of malignant cells and non-malignant cells
To separate malignant cells and non-malignant cells, we inferred
large-scale chromosomal copy-number variations (CNVs) based on
single-cell transcriptome profiles as described in previous published
single-cell studies17,20,44,45. Briefly, this method infers CNVs by taking
the average expression of a set of genomically adjacent genes along
each chromosome to eliminate gene-specific patterns and yield CNV
profiles, with the assumption of aberrant karyotypes in malignant
cells. Because adjacent non-tumor tissues are available in this study,
we used cells derived from those samples as a reference during CNV
inference in order to reduce background noise. From the inferred
CNVs, gains on chromosomes 1q and 8q of malignant cells were
observed (Supplementary Fig. 1a), consistent with the CNV profiles
generated from genome sequencing of liver cancer41. In contrast, no
obvious CNV patterns were observed in non-malignant cells (Sup-
plementary Fig. 1a). To further confirm the successful separation of
malignant cells and non-malignant cells, we evaluated the expression
of epithelial- and liver-specificmarker genes in the derivedmalignant
cells and non-malignant cells, considering the epithelial origins of
malignant cells17. We found consistency of tumor aberrant kar-
yotypes and the marker gene expression, with strikingly higher
expression of epithelial- and liver-specific genes in malignant cells,
further suggesting a confident separation of malignant cells and non-
malignant cells (Supplementary Figs. 1b and 1c). As expected, a high
number of genes was expressed inmalignant cells, with an average of
3106 genes and 16,658 UMIs detected per malignant cell. In the
downstream analysis of malignant cells, we only included the sam-
ples with >10 malignant cells detected. With this criterion, we didn’t

Article https://doi.org/10.1038/s41467-022-35291-5

Nature Communications |         (2022) 13:7533 12



detect enough malignant cells in 2C as well as the samples labeled as
N.D. (not detected) in Fig. 1f.

Tumor heterogeneity
To evaluate tumor heterogeneity of malignant cells, we used three
independent approaches: (1) Dimensional reduction algorithm. We
first applied principal component analysis (PCA) to the top 2000most
variable genes of all malignant cells determined using standardized
means and variances.We further performed dimensional reduction on
the first 20 principal components (PCs) by employing t-distributed
stochastic neighbor embedding (t-SNE) method. Samples with more
than 10 malignant cells detected were involved in this analysis. In the
two-dimensional t-SNE space, we observed heterogeneous tumor cell
populations, with a larger tumor heterogeneity between patients than
within a patient. (2) Hierarchical clusteringmethod.We also generated
ahierarchical tree ofmalignant cells fromdifferent tumor regions of all
the cases. Here, we applied the top 2000 most variable genes as
described above and calculated the mean expression of each indivi-
dual gene in all the malignant cells of each tumor sample. Then we
constructed the hierarchical tree of all the tumor samples by using
correlation-based distance measurement and ward.D2 data agglom-
eration method. (3) Pearson’s correlation analysis. To quantitively
measure the level of intraregional (within a tumor region), inter-
regional (across multiple tumor regions within a case) and inter-
tumoral (across multiple tumors from different cases) heterogeneity,
we calculated the correlation of the malignant-cell transcriptomic
profiles based on the top 2000 most variable genes as described
above. Intraregional tumor heterogeneity was measured as the dis-
tributionof thepair-wise correlationofmalignant cellswithina specific
tumor region. Interregional tumor heterogeneity was determined as
the density distribution of the correlation coefficients of malignant
cells acrossdifferent tumor regionswithin a specific case. Intertumoral
heterogeneity was calculated as the correlation of malignant cells
among the samples from different cases. For all the three levels of
heterogeneity, Pearson’s correlation coefficient was applied, with 1
indicating a perfect positive linear correlation, −1 representing a per-
fect negative correlation and 0 standing for no linear correlation.

Cellular dynamics determined by RNA velocity method
To recover the cellular dynamics of malignant cells, we applied RNA
velocity method from the scvelo python package. RNA velocity allows
for learning of cellular lineage trajectory by considering the spliced
and unspliced events in the single cells23,24. Specifically, we used the
scv.tl.recover_dynamics function to recover the full dynamics, followed
by calculating the velocity of each gene using scv.tl.velocity function
based on the splicing kinetics. Then the collection of the velocities of
all genes were used to calculate the transition probabilities between
cells and to predict the direction and movement of a specific cell in a
future state. Finally, the velocities were projected onto a uniform
manifold approximation and projection (UMAP) embedding by using
the scv.pl.velocity_embedding_stream function for visualization. Based
on the transcriptional dynamics, the latent time underlying cellular
processes of each individual cell was recovered using scv.tl.latent_time
function. Cases withmore than 50 viablemalignant cells were used for
RNA velocity analysis since it failed to recover the full dynamics of
malignant cells if the number of cells is too small. To indicate gene
expression along cellular latent time determined by RNA velocity
analysis, we applied 10 genes (tumor stemness-related genes and
tumor evolution-related genes) including EPCAM, KRT19, ICAM1,
PROM1, LGR5, CD44, ANPEP, HNF4A, ALDH1A1, and SPP1 in our
analysis16,20. Due to varying expression of these genes in the malignant
cells of each case, we only included the genes that were expressed in at
least 20 malignant cells using the function scv.pp.filter_and_normalize
with parameters of min_shared_counts=20 and n_top_genes=2000 in
the latent time analysis.

Analysis of non-malignant cells
We first performed PCA of non-malignant cells based on the top 2000
most variable genes determined using standardized means and var-
iances. Then we applied UMAP analysis to the first 20 PCs for dimen-
sional reduction and data visualization. We determined cell lineage of
non-malignant cells based on the expression of lineage-specificmarker
genes to T cells, B cells, TAMs, CAFs, TECs, hepatocytes, and cho-
langiocytes. To ensure a pure population of T cells, we evaluated the
total expression of CD3D, CD3E, and CD3G in each individual cell
within the T-cell group, and further calculated the proportion of T cells
positive for the three marker genes in each T-cell cluster determined
using the Louvain algorithm, where the clusters with a proportion of
<80% were removed. To measure the similarity of non-malignant cells
from different tumor regions within each case, we calculated the cor-
relation of each cell type between different regions. We first selected
most variable genes of each cell type, and then applied the mean
expression of the determined most variable genes of each tumor
region within a case for correlation analysis (Fig. 3e and Supplemen-
tary Fig. 9a). In addition, for each cell type, we calculated the pair-wise
correlation of cellswithin a tumor region to represent the intraregional
heterogeneity, and then the average correlation value of each region
was applied to measure the ratio of tumor border and tumor core
(Supplementary Fig. 9b).

Immune features of the TME
We generated pseudo-bulk data based on the single-cell profiles of
each case and applied the immune signature46, cytotoxic and exhaus-
tion signatures47,48 to determine the overall immune scores of the TME
by using the average expression of the genes from each signature. In
addition, we calculated the ratio between cytotoxic and exhaustion
immune scores to reflect the overall immune microenvironment of
each case.

Communication of malignant cells and the TMEs
We resolved the communications between malignant cells and the
TMEs by identifying ligand–receptor interactions using
CellPhoneDB31,32, which predicts the significance of a ligand–receptor
pair based on the mean expression of the ligand and receptor in two
evaluated cell types while using random permutations as back-
ground signals. The original significant ligand–receptor pairs were
determined with p value <0.05 to indicate their enrichment in the
interacting pairs of cell types (Supplementary Fig. 11). We used all
cells within a case for the original search and further evaluated the
derived pairs in each tumor region. In this study, we applied more
stringent criteria of p value <0.01 and mean expression of a ligand-
receptor pair >0.5, in order to find biologically more meaningful
pairs. We also removed the ligand-receptor pairs which occurred in
the same interacting partners of all patients, given the reason that
those pairs represent the common features in all patients and may
not contribute to the patient-specific communication networks
between the tumor and the TMEs. The derived ligand-receptor pairs
were shown in Fig. 4a. Based on the ligand-receptor pairs identified in
each individual case, we calculated regional stability. Specifically, we
determined the proportion of the pairs that were found in all tumor
regions or part of the tumor regions. We also determined the inter-
actions between malignant cells and T-cell subtypes using similar
strategies. Because the number of cells varies among cell types, we
also evaluated the influence of the number of cells on the ligand-
receptor interaction search. We performed random selection of
T cells and TAMs, which represent two largest populations of non-
malignant cells in our study. We then searched for ligand-receptor
interactions based on the randomly selected cells. We repeated
the process of random selection and interaction pair search for
10 times and found that an average of 92% ligand-receptor pairs can
be matched to the original search, suggesting that the identified
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ligand-receptor pairs are very stable (Supplementary Fig. 13). To
confirm our findings of the ligand-receptor interactions (i.e., SPP1-
PTGER4 and LGALS9-SLC1A5) between tumor cells and TAMs, we
applied CellChat33 to further identify cellular communications. Since
the two interactions pairs are not listed in the CellChat database, we
manually curated the two pairs. With the derived significant inter-
action pairs, we also applied a stringent criterion with a probability
≥0.01 similar to our analysis using CellPhoneDB to identify biologi-
cally more meaningful pairs.

Interaction networks of tumor and the TMEs for patient
stratification
We used our NIH single-cell cohort to increase the power of studying
the communications of malignant cells and the TMEs in liver
cancer20. In this cohort, single-cell transcriptomes are available for a
total of 46 tumor samples from 37 HCC or iCCA patients. The tumor
samples with viable malignant cells were used for modeling. For
patients with longitudinal tumor samples available, we applied the
first sample with viable malignant cells in our analysis. We first
searched for ligand-receptor interaction pairs between tumor cells
and stromal/immune cells using CellPhoneDB31,32 and identified the
pairs based on the criteria of p value <0.01 and mean expression of
ligand-receptor pair >0.5, as used in our multiregional single-cell
analysis. We then filtered the derived interaction pairs based on
those found in the multiregional analysis, as those pairs have been
selected using stringent criteria and demonstrated stable across
multiple tumor regions. We also removed the interaction pairs that
were occurred in less than three cases or more than ten cases, the
same idea of selecting most variable genes for downstream data
analysis considering their functional importance. Hierarchical clus-
tering of the interaction network was performed using Pearson’s
correlation-based distance measurement and ward.D2 data agglom-
eration method. Two clusters of tumors were derived with different
interaction patterns and were associated with distinct patient out-
comes. In addition, we evaluated the impact of the number of
malignant cells on ligand-receptor pair identification by randomly
sampling malignant cells. We selected five cases with the highest
number of malignant cells in Fig. 5a and randomly sampled 200, 100,
50, 20, and 10malignant cells from each case for ligand-receptor pair
identification. All the non-malignant cells were used in the analyses.
We performed five times of random sampling for each setting and
further compared the identified pairs with those in Fig. 5a to deter-
mine the accuracy of ligand-receptor pair detection.

To further evaluate the communication networks for patient
stratification, we analyzed bulk transcriptomic data from three HCC
cohorts including both tumor and paired non-tumor samples, i.e., LCI
cohort (tumor, n = 239; non-tumor, n = 229), TCGA HCC cohort
(tumor, n = 247, non-tumor,n = 48), and TIGER-LCHCC cohort (tumor,
n = 56; non-tumor, n = 53). As we cannot directly measure cell-cell
interactions using bulk transcriptome, we developed a strategy to
evaluate the communication networks for tumor samples. Specially,
we first calculated the mean expression of the ligand and receptor
froman interaction pair for each individual tumor sample. Then, based
on the median expression of the interaction pair across all tumor
samples in a cohort, we determined the occurrence of a pair by com-
paring the expression value in each patient with that median value.
Finally, we performed hierarchical clustering analysis of the commu-
nication networks using Pearson’s correlation-based distance mea-
surement and ward.D2 data agglomeration method. Clusters were
determined using cutree function in R dendextend package. In the
analysis of bulk transcriptome data, we used the same set of ligand-
receptor pairs as those in the analysis of single-cell data (Fig. 5a). But
the same ligand-receptor interaction pair in different pairs of inter-
acting cell types from single-cell analysis was considered as one pair in
bulk data, because cell types cannot be resolved in bulk transcriptome.

We performed the same analysis for non-tumor samples in the three
HCC cohorts as a control.

Single-molecule RNA in situ hybridization on tissuemicroarrays
of HCC
Tissue microarrays (TMAs) were constructed using 1.0 millimeter
(mm) cores from formalin fixed, paraffin embedded (FFPE) tissue for
LCI and TIGER-LC HCC cohorts41. Tissues were mounted as TMAs
with Superfrost PLUS Slides (Thermo Fisher Scientific, Cat #
5951PLUS). RNAScopeTM

fluorescent 4-plex in situ hybridization49 was
performed, by Advanced Cell Diagnostics (acdbio.com), for four
genes on 5μM TMA sections. Specially, paired double-Z oligonu-
cleotide probes were designed against target RNA for LGALS9 (Cat#
1039898-C1), PTGER4 (Cat# 406778-C2), SPP1 (Cat# 420108-C3), and
SLC1A5 (Cat# 427588-C4). The RNAscope LS Fluorescent Multiplex
Reagent Kit (Cat# 322800) (Advanced Cell Diagnostics) was used
with modified pretreatment conditions. FFPE human TMAs were
incubated with Leica BOND Epitope Retrieval Solution 2 (ER2) at
95 °C for 20min. Then RNAscope 2.5 LS Protease III was used for
15min at 40 °C. Pretreatment conditions were optimized with the
RNAscope LS 2.5 Hs-4-plex Positive Control Probe (Cat# 321808),
specific to the housekeeping genes of POLR2A, PPIB, UBC, and
HPRT1. Negative control background was evaluated using the RNA-
scope 4-plex LS Multiplex Negative Control Probe (Cat# 321838)
specific to the bacterial dapB gene. A 3D Histech Panoramic Scan
Digital Slide Scanner microscope with a 40x objective was used to
generate fluorescent images. Images were analyzed using HALO®
Image Analysis Platform (Indica Labs), where single-cell probe copies
were quantified with resolved spatial coordinates. Samples with
minimum tissues on the TMAs were excluded from downstream data
analysis.

Colocalization of genes
To evaluate the spatial colocalization of a ligand–receptor pair-related
two genes in each tumor core from the RNAscope assay, we calculated
the Bhattacharyya coefficient (BC) of each tumor, which provides a
measurement of the amount of overlap for two spatially distributed
genes. Specifically, we generated partitions of each tumor core with
tiles of 500 × 500 pixels (~70 × 70μm). Then the probability of each
gene in each tile was calculated. With the derived probabilities, we
calculated the BC as:

BCðp1,p2Þ=
Xn

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ip2i

p
ð1Þ

where p1i and p2i represent the probability of the first and the second
gene in the ith tile respectively, and n represents the total number of
tiles from the partition of the space of a tumor sample. Because
probabilities were applied for BC calculation, the derived BC value is
between 0 and 1, with 1 representing a full overlap and 0 indicating
no overlap. Samples with >1% cells positive for each of the two
markers were used for this analysis. To measure the proportion of
maker-positive tiles in a tumor sample, we randomly shuffled gene
expression of the cells and counted the total number of filled tiles in
a random situation, which was used as the denominator for
evaluating the proportion of the original resolved marker-positive
tiles. This process was repeated for 10 times for each tumor sample
as a way of evaluating the spatial preference of a ligand-receptor pair-
related two genes.

Analysis of the interaction pair-related downstream signaling
To evaluate the differences of malignant cells between tumors with
the two pairs of LGALS9-SLC1A5 and SPP1-PTGER4 and those without
the two pairs, we performed differential gene expression analysis of
malignant cells between the two groups of tumors from our NIH
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single-cell cohort (Fig. 5a). With the derived genes, we performed
gene set enrichment analysis using GSEA (version 4.0.3) to search for
enriched pathways in each group. We further selected genes that
were highly expressed in the with-pair group (gene set 1, average
log[fold-change] > 1 and adjusted p value < 0.05) and the without-
pair group (gene set 2, average log[fold-change] < −1 and adjusted p
value < 0.05). The two sets of genes were then applied for PCA of
bulk transcriptome data in LCI, TCGA HCC, and TIGER-LC HCC
cohorts to demonstrate their roles as downstream surrogates of
the two ligand-receptor interaction pairs. To further indicate
the relationship of the two pairs and the two surrogate gene sets,
we calculated the correlation between the geometric mean of
the four genes (LGALS9, SLC1A5, SPP1, and PTGER4) and the ratio
of the average gene expression of gene set 1 and gene set 2 for all
the three HCC cohorts. We did similar analyses for TAMs to
demonstrate the two interaction pairs-related downstream signaling
in these cells.

Flowcytometry
Cryopreserved single cells were washed once and re-suspended in
Stain Buffer (BD Pharmingen®, Cat. #554656). Cells were then stained
with antibodies. For EpCAM staining, cells were stained using PE-
conjugated anti-EpCAM antibody (Miltenyi Biotec, Cat.# 130-113-826)
or its isotype control (Miltenyi Biotec, Cat. #130-113-762). For
GPC3 staining, cells were stained indirectly with mouse monoclonal
anti-GPC3 antibody50 (clone YP7) or its isotype control (BD Pharmin-
gen®, Cat. #555746) together with APC-conjugated goat anti-mouse
antibody (BD Pharmingen®, Cat. #550826), respectively. Antibodies
were used at 1:100 dilution. Antibody-stained cells were washed with
the Stain Buffer and then analyzed with BD FACSCanto II cell analyzer
(Becton Dickinson).

Immunohistochemistry
Deparaffinization and rehydration were performed using xylene and
citrate buffer ph 6.0 followed by distilled aqua. Washing steps with
TBS-TX 0.03% and Trtion X-100 0.3% TBS were performed before and
after incubation with H2O2. Next, blocking was done using 2.5% horse
serum and 0.1% triton over 45min followed by avidin/biotin blocking
(Vectorlabs). Slides were then incubated with mouse anti-CD3
(monoclonal, Santa Cruz, Cat. #sc-59010, dilution 1:80) antibody
overnight at 4 degrees Celsius. Next day, several washing steps were
performed using TBS-TX, H2O2, and distilled water. Secondary anti-
bodies using anti-mouse-biotin (streptavidin HRP, Rockland/Thermos
Scientific, Cat. #N100, dilution 1:1000) were incubated for 90min at
room temperature followed by several washing steps. Streptavidin-
HRP and later DAB (Vectorlabs) were each added in a separate step
followed by washing steps. Finally, another hematoxylin staining was
performed over 20 s. To quantitively determine CD3+ cells in different
tumor regions of a patient, we counted the number of CD3+ positive
cells per selected field of view (~0.2mm). Five fields of view were
randomly selected for each tumor region. This was performed for
patient 1C, 2C, 3C, 2H, and 3H with tumor blocks available. For
SPP1 staining, Osteopontin (OSP)/ SPP1 monoclonal antibody [Clone
OSP/4589] (Rat, MyBioSource, Cat. #MBS4382252) was used at 1:100
dilution.

Histopathology
Paraffin sections were dried overnight on a heating plate at 40 °C.
Deparaffinization and rehydration were performed using xylene and
EtOH. Sections were first stained in hematoxylin for 3min and were
rinsed in water for three times. Then sections were stained in eosin for
2min, followed by several dehydration steps starting with 70% EtOH
and eventually 100% EtOH. Finally, sections were incubated in xylene
for 5min and covered with cover slides.

Plot generation
Violin plots, box plots, scatter plots, bar plots, and density plots were
generated with ggplot and geom_violin, geom_boxplot, geom_point,
geom_bar, geom_density functions in R ggplot2 package (version 3.3.5).
Heatmap was generated using Heatmap function in R Complex-
Heatmap package (version 2.2.0). Kaplan–Meier survival plots were
generated with GraphPad Prism (version 8.4.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed single-cell transcriptomic data generated in this study
have been deposited in the Gene Expression Omnibus (GEO) and are
available without restriction under accession number GSE189903.
However, the NCI raw sequencing data are considered protected
information and access to raw data is therefore restricted. The raw
sequencing data are available in the NCBI dbGaP archive under
accession number phs003117.v1.p1. Access via the NCI’s dbGaP can be
requested by qualified senior and principal investigators overseeing
the research. The NCI’s Data Access Committee reviews such requests
andwill make data available for up to 12months. The publicly available
datasets used in this study include a processed single-cell data of
GSE151530, bulk transcriptomic data of GSE14520 and GSE76297, as
well as the TCGA database (TCGA-LIHC). Source data are provided as a
Source data file. Source data are provided with this paper.

Code availability
Code is available upon request. It should be directed to and will be
fulfilled by the Lead Contact, Xin Wei Wang (xw3u@nih.gov).
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