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Genomic disparities between cancers in
adolescent and young adults and in older
adults

Xiaojing Wang 1,2,3 , Anne-Marie Langevin3,4, Peter J. Houghton1,3,5 &
Siyuan Zheng 1,2,3

Cancers cause significant mortality and morbidity in adolescents and young
adults (AYAs), but their biological underpinnings are incompletely under-
stood. Here, we analyze clinical and genomic disparities between AYAs and
older adults (OAs) in more than 100,000 cancer patients. We find significant
differences in clinical presentation between AYAs and OAs, including sex,
metastasis rates, race and ethnicity, and cancer histology. In most cancer
types, AYA tumors show lower mutation burden and less genome instability.
Accordingly, most cancer genes show less mutations and copy number
changes in AYAs, including the noncoding TERT promoter mutations. How-
ever, CTNNB1 and BRAF mutations are consistently overrepresented in AYAs
across multiple cancer types. AYA tumors also exhibit more driver gene
fusions that are frequently observed in pediatric cancers. We find that histol-
ogy is an important contributor to genetic disparities between AYAs and OAs.
Mutational signature analysis of hypermutators shows stronger endogenous
mutational processes such as MMR-deficiency but weaker exogenous pro-
cesses such as tobacco exposure in AYAs. Finally, we demonstrate a panoramic
view of clinically actionable genetic events in AYA tumors.

Cancer affects ~89,000 adolescents and young adults (AYAs, ages
15–39) annually in the US1. This incidence is about 5% of that in older
adults (OAs, ages > 39) but eight times higher than in children ages
0–14. In the last 30 years, survival rates for AYA patients have shown
little improvement while significant improvements have been made
for children and older adults2–4. For example, the 5-year survival rate
for acute lymphocytic leukemia is 60% in AYAs compared with 91% in
children.Many clinical centers groupAYApatients with either younger
children or older adults due to the lack of specialized AYA cancer
programs. AYA patients are also less enrolled in clinical trials and are
often diagnosed at advanced stages5–7.

Several studies have documented genetic and clinical differences
between AYAs and OAs. In breast cancer (BRCA), AYAs are more likely

to present with aggressive subtypes and advanced diseases8,9. In mel-
anoma, AYAs show more BRAFmutations10,11. Despite these important
findings, AYA associated genomic alterations are still poorly under-
stood. A systematic comparison of AYA and OA cancers may provide
insights in AYA cancers but is currently lacking. Resources such as The
Cancer Genome Atlas (TCGA) and International Cancer Genome Con-
sortium have been recently used to study age-associated genomic
alterations12–15. However, both resources are focused on adult cancers
and have few samples from AYAs. More importantly, cancer types
included in these studies often do not reflect common cancers
observed in AYAs.

In this study, we use cancer panel sequencing data of more than
100,000 tumors from AACR GENIE(Genomics Evidence Neoplasia

Received: 19 May 2022

Accepted: 11 November 2022

Check for updates

1Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA. 2Department of Population Health Sciences, UT Health San
Antonio, San Antonio, TX, USA. 3MD Anderson Mays Cancer Center, UT Health San Antonio, San Antonio, TX, USA. 4Department of Pediatrics, UT Health San
Antonio, San Antonio, TX, USA. 5Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA. e-mail: wangx11@uthscsa.edu;
zhengs3@uthscsa.edu

Nature Communications |         (2022) 13:7223 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2631-4708
http://orcid.org/0000-0002-2631-4708
http://orcid.org/0000-0002-2631-4708
http://orcid.org/0000-0002-2631-4708
http://orcid.org/0000-0002-2631-4708
http://orcid.org/0000-0002-1031-9424
http://orcid.org/0000-0002-1031-9424
http://orcid.org/0000-0002-1031-9424
http://orcid.org/0000-0002-1031-9424
http://orcid.org/0000-0002-1031-9424
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34959-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34959-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34959-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34959-2&domain=pdf
mailto:wangx11@uthscsa.edu
mailto:zhengs3@uthscsa.edu


Information Exchange)16 to investigate the genetic and clinical dis-
parities between AYAs and OAs with cancer. We identify AYAs as
individuals aged 15–39 per guidelines from National Cancer Institute
and the Adolescent and Young Adult Oncology Progress Review
Group. Patients aged >39 were considered OAs.

Results
Clinical disparities between AYAs and OAs with cancer
AYA samples (ages 15–39) account for 8.1% (n = 9140) of the GENIE
cohort (v 9.0). We excluded cases without precise age information
(including ‘<18’ and ‘unknown’) from our study. We first examined
clinical and epidemiological characteristics of cancers in AYAs using 19
cancer types that had more than 100 cases in both AYAs and OAs
(Supplementary Fig. 1). This cohort (AYA: n = 7579; OA: n = 72,491)
comprised cancer types commonly observed in AYAs including thyr-
oid cancer (THCA), BRCA, testicular germ cell tumors, soft tissue sar-
coma, melanoma, and glioma. As a biological attribute, both sexes
were represented in the cohort except in sex-associated cancer types
including BRCA, ovarian cancer, and cervical cancer (CESC). No sex
related filters were applied to ensure that the cohort reflects the clin-
ical representation of both sexes.

We found a significant increase in females in AYA THCA (69% in
AYAs vs. 49% in OAs; percentages are listed in the same order
throughout the work), renal cell carcinoma (48% vs. 27%), melanoma
(52% vs. 38%), head and neck cancer (41% vs. 25%), esophagogastric
cancer (39% vs. 28%) and colorectal cancer (49% vs. 45%) (FDR <0.05;
Fig. 1a, Supplementary Data 1), suggesting sex is an important etiolo-
gical factor in AYA cancers. No cancer type showed significantly higher
ratios of male patients in AYAs than in OAs.

Proportions of patients diagnosed with metastatic diseases dif-
fered between the two groups in eight of the 19 cancer types (Fig. 1b,
FDR <0.05). Among the eight, six showed less metastatic cases in
AYAs. Only non-small cell lung cancer (49% vs. 37%) and pancreatic
cancer (50% vs. 39%) showedhigher proportions ofmetastatic patients
in AYAs, indicating possible delays in diagnosis for these two deadly
cancer types.

We observed a significant increase in non-Hispanic Asian patients
in nine of the 19 cancer types in AYAs (Fig. 1c, FDR <0.05); on average,
the proportion of non-Hispanic Asian in AYAs was 1.8-fold higher than
in OAs. In eight cancer types, the proportions of Hispanics were higher
in AYAs (Fig. 1c, FDR <0.05). In particular, the likelihood ratio in leu-
kemia was more than five times higher for Hispanic AYAs than OAs
(FDR = 1.4e−05). The proportion of Non-Hispanic Black was generally
similar between AYAs andOAs (average likelihood ratio 1.28) except in
soft tissue sarcoma and renal cell carcinoma (Fig. 1c). In soft tissue
sarcoma, the proportion of non-Hispanic Black was 7.8% in AYAs
compared to 3.9% in OAs (FDR =0.001). In renal cell carcinoma, these
numbers were 13.5% and 3.7% (FDR = 2.7e−05). This result confirms
previous studies that reported overrepresentation of younger Black
patients in renal cell carcinoma17,18. In 13 cancer types, the proportions
of non-Hispanic White were lower in AYAs than in OAs (average like-
lihood ratio 0.82). This is expected because of the increase in other
ethnic groups. Details including the proportions of each ethnic group
in every cancer type is summarized in Supplementary Data 1. These
results demonstrate a distinct fabric of patient ethnicity in AYA
patients.

We next compared histological subtypes between AYAs and OAs.
In the GENIE dataset, the 19 cancer types were further divided into
371 subtypes. Some of these subtypes were redundant because con-
tributing institutes use inconsistent nomenclature to describe the
same entities, e.g., glioblastoma and glioblastoma multiforme. With
this caveat, we found 105 differentially distributed histological sub-
types (FDR <0.05), 67 of which were overrepresented in AYAs (Fig. 1d,
Supplementary Data 1). In every cancer type we examined, at least two
histological subtypes showed differential distribution, indicating a

widespread disparity in cancer histology between AYAs and OAs. We
then compared molecular subtypes from TCGA19 in nine cancer types
where we could find at least 20 AYA samples. We observed 10 differ-
entially distributed subtypes between AYAs and OAs (FDR <0.05),
eight of which were from glioma (Supplementary Data 1). The other
two subtypes were ‘BRAF_Hotspot_mutants’ in melanoma and ‘pseu-
dohypoxia’ in pheochromocytoma and paraganglioma. Notably,
although previous studies observed more triple-negative samples in
AYA BRCA9,20, we did not find this enrichment.

Multiple factors contribute to genomic disparities between
AYAs and OAs
To characterize genetic disparities between AYA and OA cancers, we
first compared the overall tumor mutation burden (TMB), a feature
closely associatedwith age.We focused on cancer types that hadmore
than 100 samples in each age group and further required each sample
sequenced by panels that cover more than 0.9Mb of exonic regions.
This led to a total of 52,919 samples (AYA, n = 5295; OA, n = 47,624)
across 16 cancer types. Previous studies suggested that panels with
lower coverages are not reliable for inferring TMB21–24. The median
TMBs in AYAs were 1.7-fold lower than in OAs.We observed significant
differences in 13 cancer types, and all showed lower TMBs in AYAs
(FDR <0.05, Wilcoxon rank sum test; Fig. 2a and Supplementary
Data 2). The three cancer types that were not significant were bone
cancer (FDR =0.39), CESC (FDR =0.06) and glioma (FDR =0.54).

Wenext comparedmutation rates of cancer genes. BecauseGENIE
gene panels are designed by numerous contributing institutions,
directly merging samples from these panels would increase sample
size at the cost of overlapping genes. To balance this tradeoff, we
adopted a single gene test strategy to maximize sample sizes for each
comparison. Briefly, for each gene, we aggregated samples from any
panel if it covers the whole exonic region of the gene. With this
approach, each comparison uses a slightly different pool of samples,
but the large sample size allows sensitive detection of differences. In
total, we curated 1029 genes and 83,482 samples from 21 panels.

We used Fisher’s exact test to compare mutation rates between
AYAs andOAs followedbymultiple hypothesis testing. The univariable
approach allowed us to use the full GENIE dataset but could not adjust
for confounders. To complement Fisher’s exact test, we used multiple
logistic regression to control for confounders.Morediscussions on the
two models were provided in Method. We constructed a backbone
model by controlling for histological subtype, metastatic status, and
patient sex based on the clinical data analysis (Fig. 1). Other potential
confounders included common clinical variables such as tumor stage
andpatient ethnicity, and cancer type specific variables suchas alcohol
consumption for liver cancer or smoking history for lung cancer. Most
of these clinical variables were not available in GENIE. Molecular vari-
ables such as TMB can also confound mutation rates, because older
patients may accumulate more mutations than younger patients due
to ageing. Furthermore, GENIE data were contributed by multiple
institutions; thus, sample site could be another confounder.

To evaluate the impact of these confounders, we calculated the
AYA effect size with and without a confounder in the backbonemodel.
Significant changes in effect size indicate a need to adjust for the
confounder in the model. We found that adding tumor stage, patient
ethnicity, and sample site to the backbone model caused little change
toAYAeffect sizes (Supplementary Fig. 2;Method). However, including
TMB led to more significant genes that showed a higher mutation rate
in AYAs (n = 30) (Supplementary Fig. 2, Supplementary Data 3). Nota-
bly, 77% (n = 23) of the genes were mutated in <5 AYA samples at an
averagemutation rate of 5% in AYAs. Estimates of AYA effects for these
genes also showed larger errormargins, a strong indication that adding
more variables to the model reduces its statistical power. On the other
hand, the TMB model excluded MSH2 in colorectal cancer as an AYA
enriched gene by attributing its higher mutation rate to TMB effect.
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Fig. 1 | Clinical disparity between AYAs and OAs. a Female fraction, (b) and
metastasis fraction betweenAYA andOA in 19 tumor types. Circle size corresponds
to AYA sample counts of the specific tumor types. Orange color indicates statisti-
cally significant differences (FDR <0.05). Cancer types were labeled for those with
significant differences (FDR <0.05). c Comparison of race and ethnicity between

AYA and OA samples. Color depth denotes the average likelihood ratio. Red, >0;
blue, <0. Superscript stars indicate the difference were statistically significant
(FDR<0.05). d Comparison of histological subtype between AYAs (blue) and OAs
(orange). Only major subtypes (≥10%) with statistically significant differences
(FDR<0.05)were include in theplot. Sourcedata areprovided as a SourceDatafile.
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This was unwanted, because MSH2 mutations cause DNA repair defi-
ciency and high TMB. More discussions on confounder adjustments,
including strengths and limitations of TMBadjustment, can be found in
Method. Detailed comparisons are provided in Supplementary Data 3.
Rawoutputs of themodelswere provided in SupplementaryData 4.We
also tested the impact of metastasis by comparing our original results

and results based on primary tumors only (Method). The two approa-
ches yielded consistent results (Supplementary Fig 3), suggesting the
original model could properly control for metastasis related effects.
For better coherence,wemainly described results from the Fisher’s test
and backbone model in the work. But we also noted results from the
TMB adjustment when appropriate.
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We identified 79 significant gene-cancer pairs using Fisher’s test
and 50 pairs using the backbone logistic model (FDR <0.05). The two
methods identified 88 pairs when taking the union, amongwhichwere
41 common pairs identified by both (Supplementary Data 3).

To understand what contributes to the genetic disparity, we
analyzed each pair for factors that explain its significance (Fig. 2b).
Among the 50 pairs identified by the logistic model, 25 were solely
explained by patient AYA status. For the rest (n = 25), one or multiple
factors in addition to the AYA status were significantly associated with
mutation rates, including histological subtype (n = 22), sex (n = 5), and
metastatic status (n = 6). For the 38 pairs that were identified only by
Fisher’s exact test, we similarly examined their significance in the
logistic model. We found that 24 could be explained by histology
(n = 21), sex (n = 3), andmetastatic status (n = 2). The remaining 14pairs
did not reach statistical significance for any of the confounders
included despite their overall significance by the Fisher’s exact test.
These genes typically had low mutation rates or were found in cancer
types with small AYA cohorts. Taken together, these results show that
the histological subtype contributes significantly to the cancer genetic
disparities between AYAs and OAs.

We use CDH1 and SMARCA4 as examples to demonstrate how
histological subtype can impact mutation rates. CDH1, a membrane
cadherin, was mutated in 19% of AYAs but only in 9% of OAs with
esophagogastric cancer. This cancer type can be divided into stomach
and non-stomach subtypes. Non-stomach cancers had few CDH1
mutations (3%). Among AYA patients, 53% had stomach cancer, of
which 31% carried a CDH1mutation. In comparison, 32% of OA patients
had stomach cancer, of which 21% carried a CDH1 mutation. Thus,
higher fraction of the stomach cancer subtype combined with its
increased mutation rate led to an overall CDH1mutation rate twice as
high in AYAs as in OAs (19% vs. 9%). In ovarian cancer, SMARCA4
mutations are a defining molecular feature of small cell ovarian
cancer25 and are observed in 92% of AYA patients diagnosed with this
subtype. The more common ovarian cancer subtype, high-grade ser-
ous ovarian cancer, rarely harbor SMARCA4mutations (<1% in both age
groups). The AYA and OA patients had drastically different repre-
sentations of the two subtypes: 8% of AYAs were diagnosed with small
cell subtype vs. 0.3% of OAs; 11% of AYAs were diagnosed with high-
grade serous subtype vs. 61% of OAs. This difference led to an overall
SMARCA4 mutation rate of 8% in AYAs and 2% in OAs with ovarian
cancer.

Cancer genes that exhibit different mutation rates between
AYAs and OAs
Because histological subtype and other clinical variables are integral to
clinical manifestation, we focused on 88 gene-cancer pairs in the fol-
lowing analyses. We divided the significant genes into recurrent if they
were found in two or more cancer types (n = 13; Fig. 2c), and non-
recurrent otherwise (n = 47; Fig. 2d).

Most recurrent genes showed a lower mutation rate in AYAs
(Fig. 2c), consistent with AYAs’ overall lower TMBs. The most fre-
quently observed gene was TP53, which showed significantly lower
mutation rates in 10 cancer types and higher rates in only two cancer
types (BRCA and glioma). Controlling for TMB additionally identified

higher TP53 mutation rate in AYA appendiceal cancer. RTK/PI3K
pathway genes including KIT, EGFR, NF1, and PIK3CA showed lower
mutation rates in AYAs, thus targeting this pathwaywill likelymake less
clinical impact to AYAs. BRAF and CTNNB1, two oncogenes frequently
mutated in childhood cancers, showed higher mutation rates in AYAs.
Interestingly, KRAS, the gene upstream to BRAF in the RAS/MAPK
pathway, showed a predominantly lower mutation rate pattern, sug-
gesting genes from the same pathways can be preferentially selected
during tumorigenesis in different age contexts.

The non-recurrent genes were listed in Fig. 2d. Genes from the
RTK/PI3K pathway, including PTEN, PIK3R1 in glioma, and ALK,
PIK3C2G, ERBB4 in melanoma, showed lower mutation rates in AYAs,
reiterating our earlier observation on recurrent genes. Notably, epi-
genetic modifiers frequently showed more mutations in AYAs,
including H3F3A, KDM5A and IDH1/2 in glioma, EP300 in liver cancer,
SMARCA4 in ovarian cancer, and MEN1 in pancreatic cancer. In AYA
BRCA we identified more frequent FANCM, FANCD2, and BRCA1
mutations when controlling for TMB, suggesting the role of DNA
damage repair in this cancer type.

Because some genes with frequent mutations in pediatric cancers
such as BRAF and H3F3A also showed higher mutation rates in AYAs
than in OAs, we tested if their increased mutation rates were an
extension of their frequent mutations in pediatric cancer. We used
glioma as an example, because it has the most pediatric samples (age
0–18 y.o.) in GENIE. Among the five frequently mutated glioma genes
(BRAF, IDH1, TP53, IDH1, and H3F3A), BRAF and H3F3A mutation rates
continuously decreased as patient ages increased from pediatric to
AYAs and to OAs. However, TP53, ATRX and IDH1 defied this pattern,
with all three showing the highest mutation rates in AYAs. These data
suggest that genetically the AYA group is not simply an extension of
pediatric tumors.

We next used TCGAdatasets to validate our results.We required a
minimum of 50 AYAs and OAs in a TCGA cancer type. This led to 5
cancer types, THCA, BRCA, glioma (GBM/LGG), CESC, and melanoma
(SKCM). We then compared mutation rate differences between OAs
and AYAs for the differential genes we identified in GENIE. The dif-
ferences were reproduced using TCGA data (r =0.89, p = 2.8e−16;
Fig. 2e and Supplementary Fig. 4), supporting the robustness of our
results.

TERT promoter mutation in AYAs
Active telomerase is critical for maintaining cancer cell immortality.
Telomerase consists of an enzymatic subunit encoded by TERT and an
RNA template encoded by TERC. TERT expression is usually sup-
pressed in normal somatic cells. For tumors that arise from a telo-
merase incompetent cell, genetic alterations such as TERT promoter
(TERTp) mutations reactivate TERT expression, leading to active telo-
merase. Tumors may also arise from stem cells that are telomerase
competent. For these cells, TERTpmutations provide few evolutionary
advantages. We reasoned that cancers in AYAs are more likely to ori-
ginate from telomerase competent cells because of the younger
patient age, and thus, may carry less TERTp mutations. To test this
hypothesis, we examined TERTp hotspot mutations that occur at 124
and 146 base pairs upstream from its translation start site.

Fig. 2 | Mutation disparity between AYAs and OAs. a Mutations (including non-
silent substitutions and small insertions/deletions) per coding megabase (Mbs) in
AYAs and OAs. Tumor types are ordered by the median mutation rate (red line) in
AYAs. Cancer types that show statistical significance (FDR <0.05) are highlighted in
bold. Black and gray lines represent two cutoffs we used to select hypermutators
(AYA cutoff: 10.83 mutations/Mb; OA cutoff: 14.56mutations/Mb). b A summary of
clinical factors that underlie differential mutational rates per logistic regression
models. c Recurrent genes (n = 13) with different mutational rates (FDR<0.05).
Circle size represent the absolute value of mutation rates differences (AYA-OA).

Red indicates higher in AYAs, and blue indicates higher in OAs. d 47 genes with
differential mutational rates (FDR <0.05) in a specific cancer type. Genes with
higher mutational rates in AYA are in red, otherwise in blue. e Differences in
mutation rates between AYAs and OAs based on GENIE (x axis) and TCGA (y axis)
cohorts. Each dot represents one gene-cancer pair that was identified showing
different mutational rate between AYA and OA in GENIE data. f TERTp mutational
rates in AYAs (blue) and OAs (orange) in 15 tumor types. Asterisk indicates statis-
tically significant difference (FDR <0.05). Source data are provided as a Source
Data file.
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We compared TERTp mutations between AYAs and OAs in 15
cancer types using 12 panels that covered this region. In AYAs, mela-
noma had the highest TERTp mutation rate (47.9%), followed by head
and neck cancer (40.0%), glioma (22.9%) and hepatobiliary cancer
(9.1%) (Fig. 2f, Supplementary Data 5). These tumor types also exhibit
frequent TERTp mutations in OAs, suggesting cancers in AYAs adopt
similar pathways to immortality as in OAs.

Of the 15 cancer types we tested, five showed significant differ-
ences (FDR<0.05), including glioma (22.9% vs. 69.6%), THCA (7.1% vs.
53.3%) renal cell carcinoma (0.9% vs. 8.8%), head and neck cancer
(40.0% vs. 21.0%), and ovarian cancer (6.6% vs. 2.2%). This pattern
persisted when we split AYAs into a younger (aged < 30) and an older
group (aged 30–39) (Supplementary Fig. 5). Interestingly, AYA gliomas
had more mutations in ATRX (41.3% vs. 12.5%), a chromatin regulator
previously associated with Alternative Lengthening of Telomeres26

(ALT), a telomere maintenance pathway complementary to active tel-
omerase. For THCA, logistic regression model analysis suggests AYA
status (p = 3.6e−12; OR =0.07, 95% CI 0.03−1.14), metastasis (p = 1.1e
−07; OR = 2.26, 95% CI 1.68–3.07), and histological subtypes all con-
tributed to the disparity in TERTp mutations.

To understand why TERTp mutations were nearly two-fold more
frequent in AYA head and neck cancer than in OAs, we constructed a
logistic regression model considering AYA status, sex, histological
subtype, and metastatic status. We found both AYA status (p =0.01;
OR = 2.67, 95%CI 1.71–4.24) and sex (p =0.001; male, OR =0.52, 95% CI
0.36–0.71) were significantly associated with TERTp mutation.

Gene level CNA
To measure the global pattern of copy number alterations, we calcu-
lated a genomic instability (GI) score as the proportion of the genome
affected by copy number changes. GI scores were significantly differ-
ent between AYAs and OAs in nine of the 16 cancer types examined
(FDR <0.05, Wilcoxon rank sum test; Fig. 3a, Supplementary Data 6);
all but BRCA showed lower scores in AYAs (BRCAmedian 0.26 in AYAs
vs. 0.23 in OAs), suggesting AYAs generally have lower GI.

To understand what drives higher GI in AYAs with BRCA, we
comparedmolecular subtypes between AYAs andOAs using the TCGA
BRCA cohort, and we did not observe differences (Supplementary
Data 1, Basal, Her2, LumA, LumB, all FDR >0.7). Metastasis was pre-
viously associated with increased GI27. To examine its impact on GI
scores, we included metastasis in a multivariate regression model. We
found metastasis was indeed significantly associated with higher GI
score. However, metastasis could not explain the increased GI in AYA
BRCA, becauseAYAs contained lessmetastatic samples (40% vs. 49% in
OA). To further validate this, we limited the comparison to only pri-
mary tumors and still found higher GI scores in AYAs (p =0.005, Wil-
cox rank sum test, Supplementary Fig. 6a). Correlating with higher GI,
the mutation rate of TP53 was also higher in AYAs (52.6% vs. 40.4%).

We next compared gene level copy number changes between
AYAs and OAs and identified 46 significant gene-cancer pairs across 9
cancer types, including 32 amplifications and 14 deletions (Fig. 3b,
SupplementaryData 6).Most of the pairswere found in glioma (n = 18),
BRCA (n = 13) and soft tissue sarcoma (n = 6).Amplificationsweremore
frequent inAYAs (n = 21, 66%)whereasdeletionsweremore frequent in
OAs (n = 11, 79%).

The genes identified in copy number comparisons can be largely
grouped into p53, cell cycle, RTK, and epigenetic modification path-
ways, echoing our mutation analysis. For the p53 pathway, we identi-
fiedMDM2, MDM4, and RB1 in multiple cancer types. For the cell cycle
pathway, we identified CDK4, CCNE1, CCND1, CCND2, and CDKN2A/B.
Interestingly, the twomesenchymal cancer types—gliomaand sarcoma
—shared several common alterations including deletions of CDKN2A/B
and amplifications of MDM2 and CDK4. In both cancer types, these
alterations were less frequent in AYAs. RTK/PI3K pathway genes,
including EGFR, PDGFRA, and PTEN showed less copy number

alterations in AYAs. Finally, we observedmoredeletions of a chromatin
modifier, ATRX, in AYA gliomas where ATRX deletions and mutations
were mutually exclusive, suggesting this gene is haplo-insufficient.
Loss of ATRX has been associated with the telomere maintenance
pathway ALT. Interestingly, we observed increased amplification of
RTEL1, a helicase involved in telomeremaintenance in AYA BRCAs (6%
in AYAs vs. 3% in OAs).

More than half of the amplified genes overrepresented in AYAs
(12/21) were identified in BRCA. Amongst the 12 genes, eight were
located at chromosome 17q12~24, including ERBB2, CDK12, HOXB13,
SPOP, PPM1D, CD79B, BRIP1 and PRKAR1A. These genes are located in
two amplicons, one encompassing ERBB2 and CDK12 (17q12) and the
other encompassing the remaining genes. The first amplicon co-
occurred with TP53 mutations, whereas the second co-occurred with
GATA3 mutations (Fig. 3c). Both TP53 and GATA3 mutations were
enriched in AYAs. Interestingly, the two groups of events were
mutually exclusive, and TP53 mutant AYA samples showed higher GI
scores than GATA3 mutant AYA tumors (p =0.0001, Wilcox rank sum
test, Supplementary Fig. 6b). GATA3 is a transcription factor that reg-
ulates tissue development and immune responses28,29. These data
implicate two distinct regulatory programs underlying AYA BRCA.

Gene fusions comparison between AYA and OA
Twenty-one assays in GENIE can detect gene fusions. To minimize
technical batch effects due to design differences, we limited our ana-
lysis to 9564 fusions called by the MSK-IMPACT468 panel.

We first examined differences in recurrent fusions, which were
defined as being detected in more than 1% of a cancer cohort. At FDR
0.05, we identified six differential fusion-cancer pairs (Fig. 3d, Sup-
plementary Data 7), five of which were more frequent in AYAs,
including WT1-EWSR1 (9.2% vs. 0.4%) and EWSR1-ATF1 (2.9% vs. 0.6%)
in soft tissue sarcoma, EML4-ALK (16.4% vs. 1.5%) in non-small cell lung
cancer, RET-NCOA4 (8.2% vs. 0%) in THCA, andDNAJB1-PRKACA (16.3%
vs. 0%) in hepatobiliary cancer. To evaluate the transcriptional con-
sequences of these fusions, we compared expression level of the
oncogenes involved in the fusion between fusion-positive and fusion-
negative tumors using TCGA data. The results show that the onco-
genes were highly expressed in fusion-positive tumors (Supplemen-
tary Fig. 7). The only fusion with a higher prevalence in OAs was
intragenic fusions of EGFR in glioma. EGFR amplifications and muta-
tions were also more frequent in OA gliomas. Fusions between EWSR1
and partner genes often define pathological subtypes of sarcoma, and
thus, their higher incidences in AYAs reflect the higher incidences of
the corresponding subtypes. Specifically, EWSR1-WT1 fusion is a
defining molecular feature of desmoplastic small round cell tumor,
and EWSR1-ATF1 defines clear cell sarcoma. Both sarcoma subtypes
showed a higher incidence in AYAs. Similarly, the DNAJB1-PRKACA
fusion was observed in more than 90% of fibrolamellar liver
carcinoma30, which accounted for 22.5% of liver cancers in AYAs but
only 0.1% in OAs.

The EML4-ALK fusion was found in 10 AYAs with non-small cell
lung cancer. This fusion was previously associated with female and
non-smokers31. In our study, eight of the 10 AYA cases were female and
nine were diagnosed with metastatic disease. Nevertheless, the
increased frequency of EML4-ALK fusions in AYAs suggest ALK inhi-
bitors may be clinically important for this group. RET fusions were
previously associated with radiation in THCA32. Consistently, we found
mostRET-NCOA4 fusions in post-treatmentmetastaticpapillary THCA.
We did not find any RET-NCOA4 fusions in the OA thyroid
tumors (n = 412).

Since only a few recurrent fusions were found due to their rarity,
we expanded our analysis to fusion partner genes. We limited our
analysis to genes with a minimum occurrence of 2% in each cancer
cohort. We identified 16 gene-cancer pairs at FDR threshold 0.05
(Fig. 3e, Supplementary Data 7), and eight were from the recurrent
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Fig. 3 | CNVs and fusions in AYAs. a Genomic instability (GI) scores in AYAs and
OAs. Cancer types are ordered bymedian GI score (red line) in AYAs. Cancer types
in bold font are statistically significant (FDR<0.05). b 46 gene level CNAs (left,
amplification; right, deletion) that showed statistically different frequencies
(FDR<0.05) betweenAYAsandOAs. Circle size represents differences in alteration
rate (AYA-OA). Red indicates the CNV is more common in AYAs, and blue indicates

otherwise. c Two amplicons in AYA breast cancer and their co-occurrence with
TP53 and GATA3 mutations. d–e Comparison of gene fusions (d) and fusion
involved genes (e) between AYAs and OAs. Circle size corresponds to AYA sample
counts of the specific tumor types. Circles filled with orange color indicate sta-
tistically significant differences (FDR <0.05). The colors of circle border represent
tumor types. Source data are provided as a Source Data file.
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fusions aforementioned. Among the eight pairs, four were more fre-
quent in AYAs.

These four gene-cancer pairs were EWSR1 (26.3% vs. 13.0%) and
FLI1 inbone cancer (23.2% vs. 9.6%),BRAF in glioma (3.6% vs. 0.4%), and
TEF3 in renal cell carcinoma (8.5% vs. 1.7%). Again, the increased pre-
sence of these fusion genes can be explained by enrichment of fusion-
driven cancer subtypes in AYAs. For instance, fusions involving EWSR1
and FLI1 drive Ewing sarcoma, which makes up 36.9% of bone cancers
in AYAs compared to 12.3% in OAs. The BRAF fusions were largely
attributable to pediatric pilocytic astrocytoma. TEF3 fusions were a
marker of translocation renal cell carcinoma, a subtype observed in
7.4% of AYA renal cell carcinomas but only in 1.3% of OAs. Notably
these cancer types are commonly observed in children; thus, fusion-
targeting strategies developed for childhood cancers can benefit a
substantial proportion of AYA patients.

The histological subtype does not always explain fusion enrich-
ment. With borderline significance (FDR =0.06), FGFR2 fusions were
more prevalent in AYA hepatobiliary cancer (12.2% vs. 4.6%). Eighty-
four percent of the FGFR2 fusions were found in the intrahepatic
cholangiocarcinoma, a subtype that made up 37% of OAs and 31% of
AYAs. Within the subtype, 27% of AYAs harbored a FGFR2 fusion
compared to only 11% of OAs.

Four genes showed a higher fusion rate in OAs included NAB2
(0.4% vs. 4.2%) and STAT6 (0.4% vs. 2.9%) in soft tissue sarcoma and
FGFR3 (0.4% vs. 3.1%) and TACC3 (0 vs. 3.0%) in glioma. These fusions
generally occur at low frequencies (Fig. 3e).

Hypermutated samples in AYAs and implications for
immunotherapy
Immunotherapies including immune checkpoint blockade (ICB) can
induce durable tumor regression in some patients. To examine how
ICB may benefit AYA patients, we compared the overall survival of
patients who have received immune-checkpoint inhibitors (ICI) using
the MSK immunotherapy cohort (n = 1647)33. Across pan-cancer, AYA
showed worse overall survival (p =0.026; HR = 1.328, 95% CI:
1.032–1.708) (Fig. 4a). A multivariate analysis controlling for cancer
type, metastatic status, sex confirmed the association between worse
survival and AYAs with borderline significance (p =0.090; HR = 1.251,
95%CI: 0.965–1.622). This patternwas corroboratedwhenwe repeated
the analysis in individual cancer types; though most cancer types did
not reach statistical significance except renal cell carcinoma
(p =0.0077), they showed the trend toward worse survival in
AYAs (Fig. 4b).

The worse responses to ICIs by AYAs can be partly explained by
their lower tumor mutation load (TMB). We reasoned that AYA
patients with higher TMBmay respond better. To provide an overview
of such cases, we examined hypermutators in AYAs. The hypermutator
phenotype has been studied extensively in adult and childhood
cancers34,35 but not in AYAs. To identify hypermutators, we calculated
mutation density, i.e., the number of coding nonsynonymous muta-
tions per Mb, for 6540 AYAs and 65,431 OAs. Tumors with outlier
mutation density in each age group were considered hypermutators
(Methods; cutoff AYA, 10.83 mut/Mb; OA, 14.56 mut/Mb). We identi-
fied 340 hypermutators in AYAs (5.2%) and 5632 hypermutators inOAs
(8.6%).Wedidnot observe significant differences in the proportions of
hypermutators between AYAs and OAs except in non-small cell lung
cancer (Supplementary Data 8, 1.8% in AYAs vs. 11.7% in OAs), mela-
noma (20.9% vs. 36.4%) and colorectal cancer (16.9% vs. 10.2%).

To gain a mechanistic understanding of hypermutators in AYAs,
we assigned theirmutations toCOSMICcancer signatures (version 2.0)
using deconstructSigs36. In total, we identified a dominant signature
(signature score > 0.4) in 92% of hypermutator AYAs (n = 314, Fig. 4c).
Applying the same criterion identified a dominant signature in 93% of
OA hypermutators (n = 5229). These signatures reflected various
molecular defects and mutagen exposures, including DNA mismatch

repair deficiency (MMR, n = 170), ultraviolet exposure (UV, n = 38),
POLE mutation (n = 19), APOBEC (n = 25), smoking/tobacco (n = 23),
temozolomide (TMZ) exposure (TMZ, n = 27) and BRCA1/2 muta-
tions (n = 12).

We found signatures caused by genetic defects were more fre-
quent in AYAs than in OAs (Fig. 4d, Supplementary Data 8), including
signatures caused by BRCA1/2 mutations (3.8% vs. 1.8%), MMR defi-
ciency (54.1% vs. 36.9%), and POLE/D mutations (6.1% vs. 2.7%). In
contrast, signatures associated with environmental factors were more
frequent in OAs, including the APOBEC signature (8.0% vs. 15.5%),
smoking/tobacco (7.3% vs. 18.1%) and UV exposure (12.1% vs. 21.0%).
The higher proportion of tumors with the TMZ signature (8.6% vs.
4.1%) in AYAs was due to glioma. Temozolomide is a standard che-
motherapy agent in the treatment of gliomas, and younger patients
typically have better tolerance for TMZ and thus receive higher
overall doses.

Some signatures exhibited cancer preferences in AYAs (Fig. 4c).
Most of the AYA tumors (84%) carrying the UV signature were mela-
nomas, suggesting excessive sun exposure is a major risk for AYAs.
Interestingly, AYA tumors with the smoking/tobacco signature,
another mutagen-related signature, were not predominantly found in
lung cancer. Instead, we observed the signature in diverse cancer
types, suggesting exposure to tobacco may exert widespread muta-
genic effects inAYAs. AYA tumorswith the POLE signatureweremainly
colorectal (63%) and endometrial cancers (26%). More than half of the
tumors (52%) carrying the APOBEC signature were BRCAs. The TMZ
signature was mainly found in gliomas, consistent with the fact that
TMZ was part of standard of care for gliomas. Compared to other
glioma hypermutators, those carrying the TMZ signature were more
likely to be recurrent, likely due to prolonged use of the chemo-
agent37.

The MMR deficiency signature accounted for 54% of all AYA
hypermutators andwasobserved in 21 cancer types. These tumors also
exhibited more indels compared to other hypermutators (median
indel rate 6.08 vs. 0.85, p < 2.2e−16,Wilcoxon rank sum test). Themost
frequent cancer type that carried this signature was colorectal cancer
(n = 89), followed by glioma (n = 34), mature B-cell cancer (n = 9),
endometrial cancer (n = 6), and BRCA (n = 5). The finding of the MMR
signature in 34 gliomas, mostly glioblastoma (n = 21), was surprising
becausemicrosatellite instability (MSI) is rare in glioma. However, in a
recent study, Touat et al. showed that MSI related short insertion/
deletion (INDELs) can be detected by single cell analysis but would be
missed by bulk sample analysis38. Thus, high depth panel sequencing
data can provide sufficient coverage to detect even subclonal INDELs.
The indel-to-snv ratios were lower inMMR gliomas than in other MMR
tumors (p = 4.3e−6,Wilcoxon rank sum test), but still higher than those
in gliomas exhibiting the TMZ signature (p = 9.4e−3, Fig. 4e).

Not all hypermutators respond to ICB despite high TMBs. To
associate AYA hypermutator signatures with responses to ICB, we
mapped the hypermutators to the MSK immunotherapy cohort
(n = 1647). We identified 15 AYA hypermutators who received PD-L1 or
PD1/PD-L1 combinatorial therapy, of which 10 were alive at the time of
last follow-up. Seven of the 10 cases where patients were surviving
exhibited theMMRsignature. In contrast, onlyoneof thefive deceased
carried theMMRsignature, and this patient showed the longest overall
survival compared with others. Though we did not have response data
and the cohort size was small, these observations suggest that the
MMR signature may predict better responses to ICB in AYAs. Thus,
given the diversity of cancer lineages where the MMR signature was
identified, our data suggest it may be beneficial to expand MSI testing
for AYAs in cancer types in which this test is not routinely offered.

Clinical actionability in AYAs
Finally, we sought to provide a panoramic view of actionable
mutations in AYAs. We annotated each mutation with confidence
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tiers of actionability according to OncoKB39, a manually curated
database for actionable alterations and targeting drugs (Fig. 5).
This mapping suggested that 11.8% (1079 of 9140) of tumors in
AYAs harbored a level 1 or 2 alteration, 2.3% (n = 213) harbored a
level 3A alteration, and 23.5% harbored a level 3B alteration
(n = 2147). Per OncoKB definition, level 1 alterations are those that

can be targeted with an FDA-approved drug; level 2 are standard
care biomarkers that can predict response to an FDA-approved
drug; level 3A are alterations that are likely targetable by an
investigational drug, and level 3B are alterations that are targe-
table by an approved or investigational drug from a different
cancer type.
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Specifically, we observed at least one level 1/2 actionable altera-
tion in 50.0% of non-small cell lung cancer, 43.7% of melanoma, 41.4%
of gastrointestinal stromal cancer, 37.0% of BRCA, and 25.4% of THCA,
among other cancer types that showed a lower proportion of samples
with such actionable alterations. The actionable alterations also dif-
fered across cancer types. In non-small cell lung cancer, 46.5% of level
1/2 actional alterations were EGFRmutations, followed by ALK fusions
(31.5%) and ROS1 fusions (8.7%); in melanoma were BRAF V600 muta-
tion (98.8%%); in gastrointestinal stromal were KIT mutations (88.9%)
and PDGFRA mutations (11.1%); in BRCA were ERBB2 amplification
(44.4%) and PIK3CAmutations (43.7%); in THCAwereRETmutations or
fusions (83.9%) and NTRK fusions (16.1%).

Melanoma had the highest proportion of patients with level 3A
alterations (17.4%). Glioma had the highest proportions of patients
with level 3B alterations (70.6%), most of which (75.0%) were IDH R132
mutations that can be targeted with Ivosidenib, a drug approved for
treating acute myeloid leukemia and cholangiocarcinoma. In contrast,
tumor types such as germ cell tumor, CESC, renal cell carcinoma and
head and neck cancer harbored no actionable alterations.

Discussion
The genomic landscape of AYA cancers is understudied, in part
because AYA cases are poorly represented in either adult or pediatric

cancer projects. Meanwhile, cancer incidences are rising among young
adults including AYAs. Studies associating age with cancer genomics
have been largely focused on comparing early- and late-onset
tumors12–15. However, these comparisons miss the AYA group, leaving
a knowledge gap.

In this work, we systematically investigate the clinical and geno-
mic disparities between AYA and OA cancers. We found substantial
differences in clinical presentation between the two age groups,
including patient sex, ethnicity, metastatic status, overall survival, and
disease histological subtypes. AYA cancers generally show lower
mutational load and GI. In accordance, most cancer genes show less
mutations and copy number alterations in AYAs. However, we did
observe exceptions such as higher GI in AYA BRCAs. Further, analyses
show clinical factors including histological subtypes and tumor
metastatic status can affect the genomic disparity. We further show
that AYA cancers generally harbor more fusions but less TERTp
mutations. Analyses of hypermutators suggest AYAs are more sus-
ceptible to endogenous mutagenic processes such as DNA mismatch
repair deficiency. In comparison, exogenous processes such asUV and
tobacco exposure exert greater impact onOAs, suggesting differential
etiology for AYA and OA cancers.

We foundpatterns both consistent and inconsistentwith previous
reports. For instance, we confirmed the increased mutation rates of

Fig. 4 | Hypermutators inAYAs. aKaplan–Meier curves showing overall survival of
patients who received immune checkpoint inhibitors (AYA, n = 114; OA, n = 1533;
p =0.026, log-rank test). b The forest plot shows the Hazard Ratios (HRs) of AYA
status on overall survival in ICI cohorts as a whole and in individual cancer types.
The error bars represent the 95% confidence interval. P values on the right side of
the plot are derived from two-sided log-rank test. c Hypermutators in AYAs. From
top to bottom are TMB, mutational signatures, indel/snv ratio, metastasis status
(orange, metastasis; yellow, primary; gray, unknown), mutation status of DNA
mismatch repair genes and POLE/POLD genes, and tumor types. For POLE/POLD
mutations, red indicates driver mutations, pink represent other nonsynonymous

mutations. For MMR genes (MSH2, MSH6, MSH3, PMS2, MLH1 and MLH3), red
represents truncating mutations and pink represents all other nonsynonymous
mutations. d Relative strength of the seven hypermutator-associated mutational
signatures in AYAs and OAs. e Indel/snv ratios between glioma with the TMZ sig-
nature (AYA, n = 19; OA, n = 94), glioma with the MMR signature (AYA, n = 34; OA,
n = 40) and other cancer types with theMMR signature (AYA, n = 136; OA, n = 1891).
Statistical differences were assessed using two-sided Wilcoxon rank sum test.
Centerwhite dot represents themedian; the thick blackbar in the center represents
the upper and lower quartiles; whiskers represent the 1.5 interquartile range. Violin
width represents data density. Source data are provided as a Source Data file.

Fig. 5 | Landscape of clinical actionability in AYAs. Tumor types are shown in
descending orderbasedon the overall frequency of level 1/2 actionable alterations.
Actionability was obtained from OncoKB. For each sample, the highest level of

actionability of any variant is considered if multiple actional mutations are iden-
tified. Only tumor typeswithmore than 80 AYA samples were included in this plot.
Source data are provided as a Source Data file.
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BRAF in AYA melanoma reported by Wilmott et al.40. Previous studies
also suggested more triple-negative subtype in AYA BRCA; however,
wedidnot observe this differenceusing theTCGAdata. Further, earlier
studies suggested AYA cancers are more often diagnosed at advanced
stages.Weonly found this pattern in non-small cell lung andpancreatic
cancer. Among other six cancer types in which metastatic diseases
were differentially diagnosed, AYA patients presented with less meta-
static diseases, suggesting improvement in early diagnosis in AYAs.

The high mutation rates of epigenetic regulators such as H3F3A,
KDM5A, and EP300 suggest a unique etiologic aspect of AYA cancers
that remains poorly understood. In addition tomutations in epigenetic
regulators, we alsoobserved genomic variants that could contribute to
epigenetic changes are more common in AYAs. An example is SDH
genes mutation. SDHA mutation rate was higher in glioma and gas-
trointestinal stromal tumor (GIST) AYAs. We also identified higher
ratio of the pseudohypoxia subtype, which enriched for SDHA/SDHB
mutations in TCGA paraganglioma and pheochromocytoma AYAs.
Previous studies found elevated hypermethylation in SDH-deficient
GISTs compared with SDH wildtype GISTs. A similar proportion of
changes were found in SDH-deficient paraganglioma and pheochro-
mocytoma, as well as IDH-mutant glioma41. Further study shows these
DNA methylation changes disrupted the boundary between enhancer
and oncogene, strongly upregulated expression of some targetable
oncogenes42. Those observations and studies suggest targeting con-
sequent aberrant pathways as treatment strategies in epigenetic
altered AYA tumors.

In June 2020, The Food and Drug Administration (FDA) approved
pembrolizumab, a programmed death 1 (PD-1) blocking antibody, for
treating refractory cancers with a TMB >10 mutations per megabase.
Therefore, we investigated hypermutators in AYAs. Interestingly,
glioma is the second cancer type, following colorectal cancer, with
most MMR cases. Although hypermutant adult brain tumors were
considered ‘immunologically cold’ and were unresponsive to ICI38,43.
Positive caseswere reported in gliomawithMMR-deficiency44. A recent
study suggests the PDL1 inhibition is effective in childhood cancers
with germline MMR gene mutation45. Together, these results indicate
that AYA gliomas with MMR-deficiency signature but not TMZ sig-
nature could potentially benefit from PD-1 based immunotherapy.

One challenge with AYA and OA genetic comparisons was to
control for confounding factors. Such factors can arise from clinical
and molecular characteristics that affect tumor mutation profiles. For
instance,mutations inmetastatic tumorsmaybe affectedby treatment
and the evolutionary pressure imposed on tumor cells during seeding.
Commonmutation causingmechanisms, such as ageing, smoking, and
UV exposure can also affect gene mutation rate. In our model, we
controlled for cancer histology, metastatic status, and patient sex
because of the differences exhibited between AYAs and OAs. We also
tested clinical and molecular variables including tumor stage, TMB,
patient race and ethnicity, and contributing sites. However, more
should be tested when such data are made available. Importantly,
some variables are relevant to one cancer type but not others. Such
variables should be accounted in cancer type specific models.

Despite the advantage to control for confounders by multi-
variable regression models, univariable models are useful and neces-
sary because determining the most relevant, or an exhaustive list of
confounders is difficult, especially in a pan-cancer context. Further-
more, adding a variable to the multivariable model can reduce its
statistical power for detecting AYA effect. Univariable models use the
full GENIE dataset, thus providing a conservative, reliable method to
detect genomic disparities between AYAs and OAs. From a clinical
perspective, overrepresentation of a mutation in AYAs can inform
basket trials and molecular diagnosis regardless of other clinical and
molecular parameters.

An area to further our understanding of the differences between
AYAs andOAs is germlinemutations, whichwedid not comparedue to

data availability. Germline mutations may disproportionately affect
younger cancer patients. For instance, approximately half of AYA
women with BRCA under the age of 30 harbor a deleterious germline
mutation in BRCA1, BRCA2, or TP5346. Germline TP53 mutations cause
Li-Fraumeni syndrome (LFS), and ERBB2 amplification is enriched in
LFS-associated BRCA47–49. Interestingly, we also observed enriched
ERBB2 amplification in AYAs, although it is unclear if this enrichment is
associated with LFS. Nevertheless, the concurrent enrichment of TP53
mutations and ERBB2 amplification in AYAs indicate functional coop-
eration between the oncogenic alterations in driving AYA BRCA.

In summary, we analyzed genomic features of pan-AYA cancers
using panel sequencing data. Future efforts to understand the coop-
eration between germline mutations and somatic mutations in AYA
cancer will facilitate a hybrid approach combining genetic counseling
and multimodal treatments to reduce the mortality and morbidity
caused by cancer in AYAs.

Methods
Data sources
Somatic mutations and clinical data were downloaded from the AACR
GENIE project via Synapse (release 9). This study was performed in
strict accordance with the recommendations of data access guideline
of AACR project GENIE datasets. In total, this release included panel
sequencing data from 112,935 samples. We used ‘AGE_AT_SEQ_RE-
PORT’ to determine AYA (15–39 years old) and OA groups (>39 years
old), assuming the timeof clinical sequencing is close to age at the time
of diagnosis becauseof the fast turnaround for clinical sequencing.We
removed samples with unknown ages (‘Unknown’, n = 6215) and
pediatric samples (‘<18’, n = 3785), which are mostly gliomas.

We used the MSK-IMPACT cohort to examine differences in
overall survival after immune checkpoint inhibitor therapy between
AYA and OA groups. Among the 1661 patients who were treated with
Immune checkpoint inhibitor (ICI), 114 were AYAs and 1533 were OAs.
We used TCGA data to compare molecular subtypes. TCGA molecular
subtype data and clinical data were downloaded from PanCanAtlas
(https://gdc.cancer.gov/about-data/publications/).

Clinical and demographic feature comparison
Only cancer types with >100 samples in both AYA and OA groups were
retained for clinical and demographic feature comparisons. This filter
resulted in 7579 AYA cases and 72,491 OA cases across 19 cancer types.
We compared sex, self-reported race and ethnicity (non-Hispanic
White, non-Hispanic Black, Hispanic, non-Hispanic Asian), sample type
(primary or metastatic) and histologic subtypes using Fisher’s exact
test, followedbyBenjamini–Hochbergmethod formultiplehypothesis
testing.

TERTp mutation
We extracted 6553 TERTp mutations from the MAF file (data_muta-
tions_extended.txt from GENIE v9.0). Then we limited our analyses to
two hotspot promoter mutations at positions 1295250 and 1295228
(n = 5522). Those mutations were called from 12 assays. For TERTp
mutation comparison, we only used samples from these 12 panels
(AYA, n = 4650; OA, n = 49,597). For each cancer type, we required at
least 50 samples in both AYA/OA groups and more than 5 mutant
samples in each group. These sample-size prerequisites left us with 15
cancer types to analyze.

GI score comparison
We calculated GI score using DNA copy-number segmentation data
(file ‘genie_data_cna_hg19.seg’). Specifically, for each sample, we con-
sidered segments to be amplified or deleted if their copy number
values were >0.2 in the corresponding direction. GI scores were cal-
culated as the ratio of the total length of these segments over the
total length of all segments. In total, we calculated GI score for
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53,325 samples and compared AYAs and OAs in 16 cancer types where
each group had ≥50 samples.

Single gene test strategy for mutation rate comparison
To compare somatic mutations between AYAs and OAs that were
sequenced with different gene panels, we adopted a ‘single gene test’
strategy. We note that some panels only cover hotspot regions of
certain genes. These would create problems when being analyzed
together with other panels that cover the whole exonic regions of the
gene. To ensure fair comparison, we removed these “hotspot” panels
from our analysis. We further removed all panels from Wake Forest
because of their incomplete coverage information in this release. In
total, we curated 1029 genes and 21 panels, including 6657 AYA sam-
ples and 67,767OA samples. For a gene-cancer pair to be considered in
the comparison, the cancer typemust have at least 20 samples in both
age groups and more than 5 mutants in either AYAs or OAs. The rela-
tively lenient cohort size requirement was to ensure the inclusion of
more genes. Only non-synonymous coding mutations and indels were
considered.

Mutation rates were also compared between AYAs and OAs using
multivariable logistic regression analysis (AYA status as one variable)
adjusting for patient sex, histological subtype and metastatic status.
For histological subtype, we only consider major subtypes with more
than 15 samples. The rest were grouped as ‘others’. In the model all
covariates were used as fixed effects and the outcome variable was the
mutation status of the examined gene in a cancer type.

Univariable vs. multivariable models
We used both univariable and multivariable regression models to
compare AYAs and OAs in this study. The univariable Fisher’s test
identified 79 genes, and the multivariable regression model identified
50, 41 overlappedbetween the two lists. Todemonstrate thedifference
in statistical power of themodels,we compared the 38 genes identified
by Fisher’s test but not the logistic model, and the remaining 41 genes
that were identified by both models. The average mutation rate of
these 38 genes in AYA cohorts was 9%, compared to 15% for the 41
genes. The average number of mutants of these 38 genes in AYAs was
22, compared to 79 of the other 41 genes. The total number of AYAs
used in the analysis was 12,714 for the 38 genes, compared to 20,908
for the other 41 genes. These numbers show that the univariablemodel
is more sensitive when sample size is smaller.

Controlling for confounders
In our multivariable regression model, we controlled for confounders
including cancer histology, metastatic/primary status, and sex. How-
ever, other clinical and molecular variables may also confound the
analysis. These variables include common clinical features such as
cancer stage/grade and patient race and ethnicity, disease specific
parameters such as alcohol consumption in liver cancer, andmolecular
parameters suchas tumormutational burden (TMB). In addition,GENIE
data are contributed by different institutions; therefore, sample site
can be another confounder. Belowwedescribe howwedetermined the
impact of a confounder. Briefly, for each confounder, we constructed a
model with and without it, and then we compared the AYA effect size
between the two models. The GENIE provided basic clinical informa-
tion for tumor samples (age, ethnicity, anddiagnosis), butmany clinical
parameters such as cancer stage/grade, smoking history, alcohol con-
sumption, were not available. We thus could not test them. Some of
these can be inferred with mutational signature analysis, but we rea-
soned that the uncertainties associated with the inferences could
negatively affect model credibility.

Tumor stage. We used the recently published MSK_MET dataset50 to
test the effect of including tumor stage inmultivariable logisticmodel.
MSK_MET consists of 28,789 samples in total, most of which are

metastatic samples. Though the dataset has more clinical annotations,
tumor stage and grade were still not included. However, based on the
clinical information provided and conventional staging criteria, we
classified tumor stages as follows:

(1) tumors without metastasis were classified as ‘Stage I’ (n = 2806)
(2) tumors with metastasis to regional or distant lymph nodes were

classified as ‘Stage II/III’ (n = 641).
(3) tumors with metastasis to other organs as ‘Stage IV’ (n = 24,572).

Next, we used this dataset to associate tumor stage with AYA
genomic disparities. We built two logistic regression models,

1. mutation status ~ aya status + histological subtypes +metastasis/
primary + sex

2. mutation status ~ aya status + histological subtypes + tumor
stage + sex

Note that in the second model where tumor stage was included,
the “metastasis/primary” variable was removed because the two were
dependent.

With model 1, we detected 10 gene-cancer pairs that were sig-
nificantly associated with AYA status (FDR<0.05, Supplementary
Data 9). With model 2, we detected 9, all among the 10 detected in
model 1 (Supplementary Data 9). The only exception was CARD11 in
BRCA, which wasmarginally significant inmodel 2 (FDR =0.08). These
results show high consistency between the twomodels, likely because
the variable metastasis/primary in the original model largely retains
the variability of tumor stage.

Tumor mutational load (TMB). To explore the impact of TMB on the
model, we built a second model including TMB as a variable (mutatio-
n~AYA+histology + sex +metastasis +TMB) and compared its output
with the original model (mutation ~AYA+histology+ sex +metastasis).
For brevity, we call them the TMB model and the original model. We
applied the two models to 1025 genes from 16 assays across
81,025 samples. These 16 assays have larger panels thus their TMB esti-
mation is more accurate. With the initial model, we identified 50 sig-
nificant genes (FDR<0.05). With the second model, we identified
75 significant genes (FDR<0.05), 40 of which overlapped with the 50
genes identified in the initial model.

In Supplementary Fig. 2a, we plot the effect size of the AYA vari-
able from the two models for the significant genes. The two sets of
effect sizes were highly correlated (rho =0.96, p < 2.2e−16. Gray line is
y = x), suggesting the two models give highly similar results. However,
most of the significant genes reported solely by the TMB model gen-
erally show positive effect size. This observation suggests the TMB
model is more sensitive at detecting AYA enriched mutations.

Specifically, 30 of the 35 unique genes identified in the TMB
model showed higher mutation rates in AYAs compared with OAs.
However, we noticed 23 of the 30AYA enriched genesweremutated at
very low frequencies (on average, 5%; see also Supplementary Data 3),
in no more than 5 AYA tumors. Their AYA effect sizes showed much
higher standard error compared with other genes (0.7 vs. 0.3), likely
due to the small sample size used for the estimation. Given these
observations, we were not convinced these 23 genes were robust
because mutation status change of a single case can drastically influ-
ence the gene’s overall effect size. In the original model, we also
identified genes (n = 3) that were mutated in no more than 5 AYA
tumors, but all of them showed lower mutation rates in AYAs than in
OAs. The other 7 genes with higher mutation rates from the TMB
model appear credible. They included FANCM, FANCD2, and BRCA1 in
BRCA, TP53 in Appendiceal Cancer, BRAF in melanoma, GLI3 in non-
small cell lung cancer, and SDHA in GIST. Several of them (SDHA,
FANCM, TP53, BRAF) were barely missed by the original model, with
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FDR at 0.06, 0.07, 0.07, and 0.051. The identification of FANCM,
FANCD2, and BRCA1 in BRCA reiterates the role of DNA repair defi-
ciency in AYA BRCA.

Ten genes identified by the initial model were no longer sig-
nificant in the TMB model. Six of the ten genes showed a lower
mutation rate in AYA tumors, all found in melanoma (Supplementary
Data 3). This observationmakes sense because among all cancer types
analyzed, melanoma shows the most pronounced difference in TMB
between AYAs and OAs, and thus, accounting for TMB generated a
noticeable impact on the results in this cancer type. We note that TMB
differences in melanoma between AYAs and OAs are likely mainly
drivenbyUVexposure but less soby age. This explainswhy accounting
for TMB generated less impacts on other cancer types.

Analysis of the other four genes detected by the original model
but not the TMB model provides further insight into TMB adjustment
in the model. These four genes all showed higher mutation rates in
AYAs, including PTCH1 in embryonal tumor,KDM5A in glioma,MSH2 in
colorectal cancer andWT1 in leukemia.MSH2 is a DNA repair gene; its
mutation causes MSI and high TMB in colorectal cancer. We think
exclusion of MSH2 by the TMB model is unfounded, because MSH2
mutations are the cause rather than consequence of high TMB. Both
PTCH1 and WT1 are essential for early development, and both were
previously associatedwith younger patient age51,52. These data support
the validity of their higher mutation rates in AYAs.

In summary, these results show the value and limitation of
including TMB in themodelling. On the one hand, adjusting for TMB
can indeed remove effects associated with overall higher TMB in
OAs such as in melanoma. On the other hand, it can make the model
overly sensitive toward genes with relatively higher mutation rates
in AYAs even when their mutation rates are low. It also does not
differentiate closely associated gene effects and TMB effects such
as MSH2 and MSI.

Race and ethnicity. We also constructed a second model by including
race and ethnicity in the model (white_nonHispanic, Black_-
nonHispanic, Asian_nonHispanic and others, the reference was White_
nonHispanic because of the largest sample size). This model identified
44 significant genes, 41 of which overlapped with the 50 genes identi-
fied in the initial model. The other three showed borderline significance
in the initialmodel (FDR0.05–0.08, Supplementary Data 3). Similarly, 9
genes that identified in initial mode but not in the second model also
showed borderline significance in the second model (FDR 0.05–0.09).

We compared the effect size of the AYA status variable estimated
from the two logisticmodels (Supplementary Fig. 2b). Again, theywere
nearly perfectly aligned on the diagonal line (rho = 1, p < 2.2e−16),
indicating that race and ethnicity has a marginal impact on model
performance.

Site. Since GENIE project involved multiple cancer center or institu-
tions, to evaluate the effect of contributing sites, we constructed a
second model by including sites (the reference sites were chosen
based on the one with largest sample size for the testing gene-cancer
pair). In the original logistic model, we identified 50 significant genes
(FDR <0.05). With the second model, we identified 58 significant
genes, 50 of which were previously identified in the initial model
(Supplementary Data 3). The 8 genes identified in the second model
showed borderline significance in the initial model (FDR, 0.05–0.09).

We also compared the effect size of theAYA status estimated from
the two logistic regression models. The two estimates were nearly
perfectly aligned on y = x line (rho = 1, p < 2.2e−16; Supplementary
Fig. 2c), suggesting site is not a significant confounder.

Metastasis. Metastatic tumors accounted for more than 40% of
the GENIE cohort. Because metastatic tumors can have distinct

mutational profiles from primary tumors and in some cancer types
AYAs and OAs showed different proportions of metastatic sam-
ples, tumor metastatic status could confound the comparison
between AYAs and OAs. One approach to mitigate this confound-
ing effect was to use primary tumors only, but doing so would lose
more than 40% of the GENIE sample size. This loss can particularly
affect AYAs in the analysis as they only accounted for ~10% of the
total cohort size. In our multivariable regression model, we have
controlled for tumor metastatic status. To test if our model can
properly adjust for metastasis effect, we constructed a model
using primary tumors only. We found the AYA effect size was
highly similar between the second model and our original model
(rho = 0.90, p < 2.2e−16; Supplementary Fig. 3), even though the
two models were applied to two different datasets (full GENIE vs.
primaries only). Two genes showed relatively large variation in
AYA effect size, KEAP1 in ‘cancer of unknown primary’ and WT1 in
leukemia. For KEAP1, the tumors from the two datasets were likely
incomparable because of the ambiguous cancer histology. For
WT1, the sample sizes were three times different (total, 417 vs. 135;
AYA, 56 vs. 23). Themutation rate in AYAs was 21% based on the full
GENIE dataset but was only 4% based on primary tumors. We
therefore concluded that the original model could control for the
metastasis effect.

Gene level CNA comparison
We used file ‘data_CNA.txt’ fromGENIE v9.0. It contains 934 gene level
copy number changes from 81,414 samples. Like GISTIC, gene level
copy number values were discretized into −2 (deep deletion), −1
(shallow deletion), 0 (neural), 1 (gain), and 2 (amplification). We used
−2 for deletions and 2 for amplifications. For each gene, we excluded
samples with NA in the file. Similar to mutation analysis, only cancer
types that have ≥ 20 samples in either group were considered. Fur-
ther, only genes with more than 5 deletion/amplification events in
either group were included in the comparison. Fisher’s exact test and
multivariable logistic regression model were used to identify differ-
ential CNAs between AYAs and OAs.

Fusion
Fusions were downloaded from the file ‘data_fusion.txt’ from GENIE
v9.0. We obtained 25,421 unique fusions derived from 21 assays and
17,529 samples. MSK-IMPACT468 panel called the most fusions
(n = 9564, from 7388 samples), followed by DFCI-ONCOPANEL-3.1
(n = 4241). To avoid technical batch effects due to design differences,
we only used data from the MSK-IMPACT468 panel.

For fusion frequency comparison, the minimum sample size for
AYAs or OAs in each cancer type is 20 cases. We focused on recurrent
fusions (frequency >1% in a cancer type) and recurrent fusion genes
(frequency >2% in a cancer type) since most fusions are only found in
single cases.

We used TCGA data to evaluate transcriptional consequences of
fusions enriched in AYA samples. We detected five fusions that were
enriched in AYAs. Among them, three were detected in TCGA53,
including RET-NCOA4 in THCA, DNAJB1-PRKACA in LIHC, and EML4-
ALK in LUAD. Level3 gene level normalizedRSEMexpressionmatrix for
each cancer type were downloaded from FIREHOSE.

TMB calculation and comparison
For similar reasons mentioned in mutation analysis, we removed
hotspot assays and assays from Wake Forest. We further excluded
panels with <0.9 Mb coverage because smaller panels are not as
reliable as bigger panels in estimating tumor mutation load (TMB).
A total of 16 assays passed these filters. They comprised 6540 AYA
samples and 65,431 OA samples. TMB was calculated as the total
number of nonsynonymous mutations divided by the length of the
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total exonic target region captured by the assay. Information
about assay capture regions was obtained from the file
genomic_information.txt.

Mutational signatures
Most panel sequencing samples do not have enough somatic muta-
tions for deconvolution of mutational signature. We instead focused
on hypermutators. To identify these samples, we examined the overall
TMB distributions in AYAs and OAs to determine a TMB threshold.
Using the following formula: median (TMB) + 2*IQR(TMB), where IQR
is interquartile range, we identified 340 (cutoff 10.83 non-synonymous
mutations/Mb) hypermutators in AYAs and 5632 (cutoff 14.56 non-
synonymous mutations/Mb) hypermutators in OAs.

We used deconstructSigs36 to determine theweights of previously
reported hypermutation related mutational signatures in COSMIC
(version 2, March 2015), including 13 major signatures: APOBEC (Sig-
natures 2 and 13); Smoking/tobacco chewing (Signature 4 and 29),
BRCA1/2 (Signature 3); MMR (Signatures 6, 15, 20, 21 and 26); UV
(Signature 7); POLE (Signature 10) and TMZ (Signature 11). A signature
was considered dominant in a sample if >40% of observed mutations
were attributable to that signature.

For each sample, we also identified somatic mutations in POLE/
POLDandmutations inMMRpathway genes and calculated the ratio of
indels-to-SNVs. POLE/POLD driver mutations were defined according
to a previous study34 (downloaded from https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC5849393/bin/NIHMS947874-supplement-
Table_S3.xlsx). MMR pathway genes including MSH2, MSH6, MSH3,
PMS2, MLH1 and MLH3.

Clinical assessment and matching to clinical trials
To assess clinical actionability of mutations, we annotated mutations,
copy number alterations, and rearrangements (fusions) using OncoKB
(http://oncokb.org). Mutations were classified in a tumor type-specific
manner according to the level of evidence that the mutation is a pre-
dictive biomarker of drug response. Briefly, mutations were classified
as level 1 if they are FDA-approved biomarkers, level 2 if they predict
response to standard-of-care therapies, or level 3 if they predict
response to investigational agents in clinical trials. Levels 2 and 3 were
subdivided according to whether the evidence exists for the pertinent
tumor type (2A, 3A) or a different tumor type (2B, 3B). Level 4 muta-
tions were those with compelling biological evidence supporting them
as a marker of response to a drug. We did not include ‘TMB-High’ as a
predictive biomarker in this study.

Statistical analysis
All statistical analyses were carried out using R v4.2.0. We used Fisher’s
exact test to compare clinical and molecular features between AYAs
and OAs. Multiple testing correction was done using the
Benjamini–Hochberg method. FDR 0.05 was used to report significant
results. Multivariable logistic regression models were constructed in
mutation and copy number comparisons. In these models, AYA status
was one variable. Other variables included patient sex, histological
subtype, and metastatic status (primary or metastatic). Survival ana-
lysis was performed using log-rank test and Kaplan–Meier curve was
used for visualization. Hazard ratios were determined using Cox pro-
portional hazards model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Genomic and clinical data were downloaded from the AACR GENIE
project via Synapse (release 9, https://www.synapse.org/#!Synapse:
syn7222066/wiki/410924). This study was performed in strict

accordance with the recommendations of data access guideline of
AACR project GENIE datasets. TCGA genomic data (mc3), molecular
subtype data and clinical data were downloaded from PanCanAtlas
(https://gdc.cancer.gov/about-data/publications/). MSK-IMPACT
immune checkpoint inhibitor therapy cohort was downloaded from
https://www.nature.com/articles/s41588-018-0312-8#Sec733. The pro-
cessed data generated in this study are provided in the Supplementary
Information/Source Data file. The remaining data are available within
the Article, Supplementary Information or Source Data file. Source
data are provided with this paper.
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