
Article https://doi.org/10.1038/s41467-022-34774-9

Compact artificial neuron based on
anti-ferroelectric transistor

Rongrong Cao 1,4, Xumeng Zhang 2,4, Sen Liu 1,4, Jikai Lu3, YongzhouWang1,
Hao Jiang2, Yang Yang3, Yize Sun3, Wei Wei3, Jianlu Wang2, Hui Xu1,
Qingjiang Li 1 & Qi Liu 2

Neuromorphicmachines are intriguing for building energy-efficient intelligent
systems, where spiking neurons are pivotal components. Recently,memristive
neurons with promising bio-plausibility have been developed, but with limited
reliability, bulky capacitors or additional reset circuits. Here, we propose an
anti-ferroelectric field-effect transistor neuron based on the inherent polar-
ization and depolarization of Hf0.2Zr0.8O2 anti-ferroelectric film to meet these
challenges. The intrinsic accumulated polarization/spontaneous depolariza-
tion of Hf0.2Zr0.8O2 films implements the integration/leaky behavior of neu-
rons, avoiding external capacitors and reset circuits. Moreover, the anti-
ferroelectric neuron exhibits low energy consumption (37 fJ/spike), high
endurance (>1012), high uniformity and high stability. We further construct a
two-layer fully ferroelectric spiking neural networks that combines anti-
ferroelectric neurons and ferroelectric synapses, achieving 96.8% recognition
accuracy on the Modified National Institute of Standards and Technology
dataset. This work opens the way to emulate neurons with anti-ferroelectric
materials and provides a promising approach to building high-efficient neu-
romorphic hardware.

In the past few decades, neuromorphic computing, mimicking the
human brain’s architecture and operation with electronic devices, has
attracted great interest due to its high biomimetic and high-energy
efficiency1–3. Artificial neurons are the core components of neuro-
morphic computing implementation, emulating biological neurons
functions of potential accumulation and firing4,5. For the hardware
implementation of neurons, hardware overhead, energy efficiency,
and reliability are the critical evaluation criteria5,6. Yet, current hard-
ware demonstrations of neurons struggle to satisfy these key metrics
simultaneously.

Generally, the complementary metal-oxide-semiconductor
(CMOS) circuit is the most mature and stable scheme for emulating
biological neurons. Nevertheless, due to the lack of intrinsic biological
resemblance and the complexity of circuits, CMOS neurons face many

challenges in density or energy efficiency7–9. Recently, various emer-
ging devices have been extensively explored to emulate biological
neurons benefiting from their biological resemblance and scalability.
Memristive neurons have trigged the most interest among them,
including redox memristors10–13, Mott memristors14–19, phase-change
memristors (PCM)20–22, magnetic random access memory (MRAM)23,24,
etc. These neurons utilize the gradual switching of conductance to
mimicmembrane potential evolution, successfully emulating essential
biological neuron functions with low hardware cost. However, high
electroforming voltage and limited reproducibility due to temporal
and spatial variations are still open questions25,26. In addition, capaci-
tors are usually needed to realize the integration in memristive neu-
rons, which limits their practical applications in large-scale
neuromorphic computing systems10,17,27. In the very recent research,
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novel ferroelectric polarization-based neurons are proposed and
experimentally demonstrated28–32. They utilize gradual polarization to
mimic the integrationprocessof biological neuronswithout additional
capacitors33. Moreover, polarization is the intrinsic property of ferro-
electricmaterials, which is recognized to be reproducible, reliable, and
energy-efficient29,34. These features are promising to implement neu-
rons. However, ferroelectric devices are nonvolatile, and thus need a
feedback path28–30 or a special design of ferroelectric layer31,32 to
achieve spontaneous reset after firing. The feedback path will increase
the hardware cost and energy consumption of neuron implementa-
tion. In addition, it will increase the complexity of the operation, as
each new input must wait for the completion of the previous reset
process, especially in a system with a rate coding scheme. Thus,
demonstrating an ideal electronic device that processes advanced and
balanced neuronal performance without additional capacitors and
reset feedback path deserves more attention.

In this work, we report a leaky integrate-and-fire (LIF) neuron
based on a CMOS-compatible anti-ferroelectric field-effect transistor
(AFeFET). The intrinsic polarization/depolarization processes of the
Hf0.2Zr0.8O2 AFeFET successfully emulate the integrate/leaky neuronal
functions without any capacitors and reset peripheral circuits. Fur-
thermore, attributing to the plentiful merits of ferroelectric materials,
AFeFET neuron exhibits many superiorities: electroforming-free, ultra-
low-energy consumption (37 fJ/spike), high endurance (>1012), small
cycle-to-cycle variation (as low as 3.93%) and device-to-device varia-
tions (7.57%). Also, we present that the temporal integration speed in
such an AFeFET neuron depends on the intensity of postsynaptic
potential, illustrating the fundamental features for performing

classification tasks. Subsequently, we demonstrate a two-layer spiking
neural network (SNN) with full-ferroelectric architecture for learning
and recognizing the Modified National Institute of Standards and
Technology (MNIST) datasets by simulation, obtaining the maximum
recognition accuracy 96.8% comparable to ideal neurons. These
results demonstrate that the proposedAFeFETneuron is a competitive
candidate for constructing neuromorphic systems.

Results
Volatile AFeFET as LIF neurons
Figure 1a shows the architecture and processing model of biological
neurons. In specific, neuronal dendrites receive input spike informa-
tion from pre-neurons and transmit it to soma. Then soma integrates
information and triggers an action potential when the membrane
potential reaches a threshold value. The axon transmits the generated
action potentials to post-neurons, and the membrane potential
depolarizes to a resting state5. The increase/decrease of membrane
potential corresponds to the opening or shutting of Na+/K+ channels,
corresponding to three stages in Fig. 1b. Here, the dynamic process of
membrane potential can be mimicked vividly by the intrinsic polar-
ization/depolarization of anti-ferroelectric (AFE) materials. Under a
silent state, AFE materials have spontaneous polarizations, but the
orientations of adjacent diploes are opposite, resulting in zero net
macroscopic remanent polarization, as shown in the inset of Fig. 1c.
However, the diploes can be aligned by the sufficient electric field, and
the phase switches fromAFE to ferroelectric (FE)35. Usually, the electric
field-induced FE phase is not stable, which will recover to AFE phase
when the electric field is released. Thus, AFE materials exhibit
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Fig. 1 | Leaky integrate-and-fire dynamic of biological neuron vs AFeFET arti-
ficial neurons. a The architecture and processing model of biological neurons.
External information is perceived by dendrites and then transmitted to the soma
for processing. When the membrane potential surpasses a threshold value, an
action potential can be generated and transmitted to post-neurons through the
axon. b The integrate-and-fire dynamics of a biological neuron. With the signal
received by dendrites and transmitted to soma, fewNa+ channels are activated, and
the membrane potential goes up gradually (stage 1). As further signal is received,
more Na+ channels are activated quickly, and a large amount of Na+ flows inside the

membrane, inducing the membrane potential goes up rapidly (stage 2). Once the
membrane potential exceeds a certain threshold, it decreases due to the inactiva-
tion of Na+ channels and the opening of K+ channels (stage 3). c The representative
double hysteresis of AFE materials. The zero net macroscopic remanent polariza-
tion indicates the volatile characteristics of AFE materials. d The typical transfer
curves of AFeFET, exhibiting counterclockwise hysteresis and volatility. The arrows
indicate the switching sequences. eThe continuous firing events ofAFeFET neuron.
After several milliseconds of free time, the AFeFET neuron can restart the LIF
process and fire again.
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volatile characteristics and representative double hysteresis (Pr ≈0 at
0MV/cm) as shown in Fig. 1c. We establish the dynamic relation
between the intrinsic volatile characteristic of AFE and integrate/leaky
neuronal functions by constructing an AFeFET, which is integrated by
an AFE capacitor (TiN/Hf0.2Zr0.8O2/TiN) and aMOSFET (see “Methods”
for the details of fabrication processes), as shown in the inset of Fig. 1d.
Figure 1d shows that the typical transfer characteristic of AFeFET
exhibits volatility,whichdiffers fromthat of nonvolatile FeFETatVg = 0
(Supplementary Fig. 1).

The volatility of AFeFET emulates the self-recovery of biological
neurons, which helps avoid external peripheral reset circuits. Fur-
thermore, the AFeFET device is electroforming-free, which saves an
additional high-voltage forming circuit. In order to investigate the LIF
function of AFeFET, continuous gate pulses (100 μs width, 100μs
interval, 1.5 V amplitude) representing postsynaptic potentials are
applied to the gate of the AFeFET. The corresponding drain current
(Id) representing the membrane potential demonstrates replicable
LIF behavior under gate pulse trains (Fig. 1e). The Id increases under
the excitatory spike trains and the neuron fires when Id reaches a
threshold (1μA). After firing, Id decreases spontaneously in a milli-
second of free time eventually, which means the AFeFET neuron
recovers and gets prepared for the next firing. These merits make
AFeFET suitable for emulating the integration and recovery process
of neurons.

Device characteristics and mechanism of the AFeFET
In this work, the volatile characteristics of the AFeFET neuron are
dominated by the composition of zirconium in HfxZr1-xO2 film.
The HfxZr1-xO2 exhibits paraelectric-FE-AFE transition with increasing
the concentration of zirconium element (0–100%) (Supplementary
Fig. 2). Actually, HfO2 and ZrO2 exhibit very similar physical and che-
mical properties, such as crystal phases, lattice parameters except the
dielectric properties. The pure HfO2 shows linear dielectric char-
acteristics under electric field due to the centrosymmetric monoclinic
structure36. The FE properties occur with the increasing zirconium
content in doped HfO2, which is induced by the existence of a non-
centrosymmetric o-phase structure. The hafnium-rich ferroelectric
HfxZr1-xO2 oxides exhibit nonvolatility37–39, thus generally serve as
memory materials. With further increasing the zirconium content, the
volatile AFE properties occur in zirconium-rich HfxZr1-xO2 oxides. The
polarization of AFE can be triggered by an electric field and increases
under a higher electric field. But it can still revert to the initial state as
the applied electric field is removed (Supplementary Fig. 3). Usually,
the polarization of AFE can be ascribed to the phase transition from
AFE to FE phase under the influence of electric field. The electric field-
induced phase transition is always accompanied by a large-volume
change40. When the electric field is released, the induced FE phase will
recover to the AFE phase due to the strains resulting from volume
expansion38,41,42. As a result, the zirconium-rich HfxZr1-xO2 oxides
exhibit intrinsic volatility. This is the charm of AFE materials used for
constructing artificial neurons.

Figure 2a, b shows the plane structure and the detailed cross-
sectional image of the AFeFET neuron. According to these images, the
structure of the AFeFET neuron can be observed clearly, in which an
AFE capacitor (yellow square) integrates on the gate of a conventional
MOSFET. The energy-dispersive X-ray spectroscopy (EDS) mapping
and line scan EDSwere performed to further identify the elements and
structure of AFeFET (Fig. 2c, d). The thickness of TiN/HfxZr1-xO2/TiN is
40 nm/10 nm/40 nm, and the interfaces of all layers are clean and flat.
In addition, the Hf, Zr, Ti, N, W elements distribute uniform and are
free of inter-diffused. Then we focus on investigating the character-
istics of AFE layer due to its dominant role in neuronal behavior. The
composition of AFE layer is controlled by alternate deposition (one
cycle HfO2 and four cycles ZrO2), and is confirmed (hafnium:zirconium
≈1:4) by the peak areas and the relative sensitivity factors in X-ray

photoelectron spectroscopy (XPS) results (Supplementary Fig. 4). The
high-resolution transmission electron microscopy (HRTEM) image for
the details of the AFE films is presented in Fig. 2e. The polycrystalline
nature and the lattice fringes of different crystals can be observed
clearly. Figure 2f, g depicts the crystal structure and corresponding
fast Fourier transform (FFT) image of the white square area in Fig. 2e.
The relative angle and distance between two lattice planes and dif-
fraction spots indicate the existence of [0-10]-oriented AFE tetragonal
P42/nmc phase. In addition, the arrangement of zirconium atoms
(green dots) is very regular, and the relative angle and lattice constants
are measured directly as 55.6°, 3.49Å, and 3.2 Å, respectively. These
zirconium atoms parameters match the atomic model of [0-10]-
oriented plane of tetragonal P42/nmc phase exactly in Supplementary
Fig. 5. These results confirm the existenceof t-phase inAFEfilms,which
is the foundation of the AFeFET neuron.

In order to demonstrate the dynamic of AFeFET neuron, the
mechanism is shown in Fig. 2h, which is related to the transformation
between AFE and FE domains. At stage 1, several input pulses as
postsynaptic signals are applied to the gate of AFeFET neuron, and the
electric field-induced FE orthorhombic phase (o-phase) domains
nucleate, which transform from AFE tetragonal phase (t-phase)
domains under the gate pulse stimuli. The polarized charges accu-
mulate in the AFE layer and modulate the channel resistance of MOS-
FET, resulting in the Id begins stepping up gradually. This process is
just as the small portion of Na+ channels opening. With further
applying gate pulses, it comes to stage 2, at which the electric field-
induced FE o-phase domains grow and expand. As a result, more
attracted electrons accumulate in the channel of AFeFET, and the Id
increases greatly, correspondingmoreNa+ channels opening. Once the
Id surpasses the threshold, the AFeFET neuron would fire. After firing,
the electric field-induced FE o-phase domains transform back to AFE
t-phase domains due to the release of gate pulse. Consequently, the
attracted electrons discharge and the channel of AFeFET switches off,
indicating the AFeFET neuron returns to resting potential (stage 3).
This process corresponds to the opening of K+ channels in biological
neurons. Then, theAFeFETneuronfires againunder another gate pulse
stimuli. This repeatable and stable electric field-induced phase transi-
tion accounts for the intrinsic neuronal resemblance of AFeFET. The
atomic-scale phase transition between t-phase and o-phase under the
influence of electric field has been observed clearly by Lombardo et al.
via in situ HRTEM42.

To present the gradual electric field-induced phase transition of
AFE t-phase, we investigate the tendencies of Id under continuous gate
pulses. Figure 2i shows the tendencies of Id under different gate pulse
amplitude, while the gate pulse interval and width are fixed to 100μs,
respectively. Under the first 20 continuous gate pulse stimuli, an
obvious integration process of Id can be observed. This resulted from
the gradual formation of electric field-induced o-phase, which induces
the electrons accumulation in the channel of AFeFET. The gate pulses
with larger amplitude result inmore o-phase e domains formation and
quicker growth of Id. With further gate pulse stimuli, the reversible
domains tend to reach a saturation regime. This represents the
dynamic balance between the electric field-induced phase transition
and the recovery of the AFE t-phase, and the Id does not increase
anymore. Compared between stimuli with different amplitudes, it is
clearly that the higher pulse amplitudewill lead to faster growth speed
and a larger saturation value of Id, which is because that more AFE
t-phase domains can be switched to FE o-phase domains. Noting that a
similar tendency of Id can be observed under different gate pulse
intervals and widths, as illustrated in Supplementary Fig. 6. Input sti-
muli pulses with shorter pulse intervals or wider widths induce faster
integration speed and larger saturation value of Id. In all cases, the Id
increases gradually and then tends to saturate corresponds to the
gradual electric field-induced phase transition and saturation pro-
cessesofAFE t-phase. In addition, the tendencies of Id also illustrate the
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intrinsic plasticity of neurons43, demonstrating that the AFeFET has
highpotentiality for hardware implementation of artificial LIF neurons.

Neuronal characteristics of the AFeFET
To investigate the strength-modulated integration process of AFeFET
neurons, we apply gate pulse stimuli with different amplitudes and
widths to implement LIF neuron functions, as shown in Fig. 3a, b. As the
input pulse intensity (amplitude/width) increasing, the AFeFET neuron
needs fewer input spikes to reach the threshold (1μA), which indicates
a higher firing rate under stronger stimuli strength. This is because
more electric field-induced o-phases are formed under stronger pulse
intensity, resulting in faster charge integration speed.Correspondingly,
a higher Id of the AFeFET neuron needs longer time to leak (Supple-
mentary Fig. 7), which could be clarified as adaptive recovery. To fur-
ther study how the leaky behavior influences the integration process,
we measure the Id under gate pulse stimuli with different intervals
(50–600μs), as shown in Fig. 3c. As the interval increasing, more input
pulses are needed to integrate the Id to reach the threshold value. This
is because that more charges are released during the free interval time,
and more input pulses are required to compensate for that. It is worth
noting that, when the interval time is wider enough, the Id cannot reach
the threshold anyway. This feature represents the filtering capability of
the neuron for weaker input signals, which is important in biological
systems and neuromorphic systems44. To further evaluate the stability
of the AFeFET neuron, we extract the statistical data of input spike

numbers for firing as a function of input amplitudes, as shown in
Fig. 3d. The firing event needs fewer input spikes and tends to bemore
stable as the stimuli intensity increasing. This phenomenon exhibits
that the AFeFET neuron performs high-precision computation under
enough stimuli intensity, which is favorable for performing high-
precision tasks. A similar relationship between input spike numbers for
firing and pulse widths (or intervals) is observed, as shown in Fig. 3e, f,
respectively. To directly present the stability of the AFeFET neuron, we
calculate the standard deviation (σ) of integration pulse number under
each stimuli condition and label themout in Fig. 3d–f. Furthermore, the
cycle-to-cycle variation is calculated by dividing standard deviation (σ)
by mean value (μ). The lowest variation (3.93%) between cycles is
obtained under 1.7 V gate pulse amplitude, 50-μs interval, and 100μs
width. It should be noted that optimizing the gate pulse parameters
may further enhance the uniformity between cycles. These results
demonstrate that the AFeFET neurons can successfully emulate the
strength-modulated spike frequency characteristics of biological neu-
rons with high stability, making the AFeFET neurons firstcapable of
carrying out the classification tasks11,45.

To further access the compatibility of the AFeFET neuron for
implementing unsupervised learning, we investigated the lateral inhi-
bitory property. During the accumulation of AFeFET neuron mem-
brane potential, the excitability will be inhibited immediately when the
AFeFET neuron receives inhibitory stimuli from adjacent neurons, as
shown in Supplementary Fig. 8a, b. Moreover, the AFeFET neuron
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needs more excitatory inputs for the next firing under stronger lateral
inhibition intensity (Supplementary Fig. 8c). This behavior is similar to
the suppressive phenomenon in biological neurons between each
other, which is valuable for performing competitive learning tasks.

For artificial neurons, low-energy consumption, high endurance,
and high reliability are critical merits. To investigate the energy con-
sumption of the AFeFET neuron, we performed a systematic analysis
under different input pulse parameters and threshold values, as shown
in Fig. 3g (extracted from Supplementary Fig. 9). The lowest energy
consumption of 37 fJ/per spike can be obtained under the 50 nA
threshold, 1μs pulse width, and 1-μs pulse interval. Furthermore, the
energy consumption decreases remarkably as the threshold and pulse-
width (interval) decrease. Thus, it is reasonable to infer that the energy
consumption can be further reduced by decreasing the threshold and
pulse width (interval). Moreover, the AFeFET neurons demonstrate
considerable repeatability. Supplementary Fig. 10a shows 5 × 105 stable

firing cycles of theAFeFETneuronwithout any significant deterioration.
In order to speed up themeasurement, the AFEMIM structure, which is
the endurance bottleneck of AFeFET, ismeasured for higher endurance
(1012 cycles) (Supplementary Fig. 10b). Based on the endurance mea-
surements above, it is reasonable to believe the AFeFET neuron could
support more than 1012

firing events (Fig. 3h). Figure 3i shows the his-
togramsof input spike numbers forfiring,which are collected from 100
firing activities of each AFeFET neuron. The required pulse number for
firing is concentrated nearby 12, and the device-to-device variation is
calculated to be as low as 7.57%. This variation is extracted from 500
firing activities in five AFeFET neurons. As we claimed before, the uni-
formity could be further enhanced by optimizing the gate pulse para-
meters. These results indicate that the AFeFET neuron has high
uniformity and great potential in large-scale applications.

The basic integration and fire functionality of the proposed neu-
ron can be achieved by only one AFeFET, while the examination of
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b different gate pulse widths (fixed 1.7 V amplitude, fixed 100μs interval,
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50–600μs interval, fixed 100 μs width). When the input pulse intensity is not
enough, the AFeFET neuron cannot fire. Statistical data of input pulse numbers of
AFeFET neuron firing as a function of d amplitudes, e widths, f intervals. The firing
event needs fewer input spikes and tends to bemore stable as the stimuli intensity
increasing. Each data point is collected from 50 firing activities. g The energy

consumption dependence on pulse parameters and threshold values of AFeFET
neurons. The energy consumption decreases remarkably as the threshold and
pulse-width (interval) decrease. The experimental lowest energy consumption is
37 fJ per spike and can be further reduced as decreasing pulse parameters
(threshold). h The AFeFET neuron can fire more than 1012 cycles stably without
significant deterioration. The results are extracted from polarization-voltage (PV)
hysteresis loops @0V forward field, 1.5 V forward field, 1.5 V backward field,
respectively. i Statistical data of input pulse numbers for AFeFETneuronfiring.Data
are collected from 100 firing activities for each AFeFET neuron.
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current threshold, the generation of output spike, and controllable
refractory period need additional circuits as shown in Supplementary
Fig. 11. The detail of this circuit design is described in the supporting
information. For clearly presenting the comprehensive merits of our
AFeFET neuron, a benchmark comparison with other typical neurons
based on emerging devices is summarized in Table 1. Considering the
energy consumption, endurance, and hardware overhead, which are
the critical evaluation criteria of the artificial neurons, the AFeFET
neuron exhibits attractive performances.

Network-level performance of AFeFET neuron
We have demonstrated that the AFeFET neurons can provide better
energy efficiency and higher uniformity compared to the other neu-
rons based on emerging devices. It is also essential to evaluate the
network-level performance using the AFeFET neuron for the hardware
implementation of SNNs. Subsequently, we construct a two-layer SNN
(784 × 400 × 10) for classifying MNIST datasets, as shown in Fig. 4a. In
this network,weadopt a time-to-first-spike codingmethod, inwhich all
input neurons fire exactly one spike per stimulus, but the firing order
carries information. A larger input corresponds to an earlier spike of
the neuron. In the output layer, the first fired neuron determines the
class of stimulus. As soon as one of the output neurons fires, the net-
work assigns the corresponding category to the input, and the infer-
ence process stop. Thus, such a coding scheme is muchmore suitable
for hardware implementation. The right panel of Fig. 4a presents the
proposed hardware implementation of the network based on ferro-
electric field-effect transistor (FeFET) synapses and AFeFET neurons.
During inference, the input signal is applied to the drains of FeFET
synapses (BLs), pulse-width modulators (PWMs) collect current on
source lines (SLs) and convert to pulses with fixed amplitude and
various widths. The outputs of PWMs serve as postsynaptic potentials
and be applied to the gates of AFeFET neurons for performing the
integration process. Then, we train such a network to learn MNIST
datasets for illustrating the feasibility. During training, we adopt a
supervised temporal backpropagation algorithm proposed by
Kheradpisheh46. Figure 4b shows the training results with the AFeFET
neurons under 1μA threshold, achieving ~95% recognition accuracy.

These results demonstrate that our AFeFET neurons have great
potential to be used for fabricating SNNs chips.

During training, the threshold value determines the number of
integrated inputs (the number of membrane states) and thus affects
the network performance. Then, the relation between the threshold
value and network performance is further investigated as shown in
Fig. 4c. It should be noted that the recognition accuracy is related to
the threshold, with the highest 96.8% accuracy under the 2μA
threshold, which is nearly identical to ideal IF neurons. The pulse
number for firing is equivalent to the number of the membrane
potential during training. When increasing the threshold, the number
of potential membranes increases, corresponding to the increasing
precision of the membrane potential. Thus, with increasing the
threshold, the recognition accuracy increases. Nonetheless, the infer-
ence time increases with increasing the threshold value because more
integration number is required to trigger neuron firing at higher
threshold cases. Thus, there should be a trade-off between recognition
accuracy and inference time, and an appropriate threshold value
should be selected to balance the network performance in practical
applications. Fortunately, the network can still achieve high accuracy
(>86%) even at a threshold value low to 62.5 nA, which is favorable for
applications that need faster inference time but not rigorous accuracy.
As we claimed before, the threshold also affects the energy con-
sumption of the neuron, which is the key parameter for SNNs chip
applications.We extract the spike number and energy consumption of
theneurons in the systemwithdifferent training thresholds to evaluate
this feature, as shown in Fig. 4d. When the threshold is higher than
0.125μA, the spike number in the hidden layer (2nd layer) decreases
with increasing the threshold. This is because the hidden neurons with
a higher thresholdare hard tofire.On the contrary,weobserve that the
total energy consumption of neurons decreases as the threshold
decreases. When the threshold reduces to 62.5 nA, the spike number
abruptly decreases to be less than 100. This is because under a low
threshold value, thewinner neuron in the output layer fires earlier, and
the network could finish the inference process faster. In that case, only
a minority of neurons in the hidden layers fire, and thus the total
neurons consume less energy. These results demonstrate that

Table 1 | Comparison of various hardware implementations of spiking neurons

Mechanism Variation# Structure Endurance Energy/spike Hardware Self-reset Driven capability

Redox 9.63%–31.4%10,48–51 SiOxNy:Ag
10 >106 >60pJ* 1 C + 1 T + 1ED √ x

Ag/SiO2
11 >108 ~500 nJ* 1 C + 2 T + 1ED √ x

Ag/HfO2
13 —— 18 pJ 1 C + 1 T + 1ED √ x

Mott 6.31%–11.9%17,52–54 NbO2
13 —— ~52 pJ 1 C + 1 T + 1ED √ x

NbOx
14 >1012 ~3 pJ* 1 T + 1ED √ x

GaTa4Se8
18 —— ~10 uJ* 1 T + 1ED √ x

Phase-change 6.82%–12.5%20,55 GST20 3 × 109 >50pJ 19 T + 1ED x √

GST22 —— 10pJ* >1C + 7 T + 1ED x √

Magnetic 3%–10%56–58 MTJ23 —— ~7 fJ (simulation) >4 T + 2ED x √

STT-MRAM24 —— —— >21 T + 1ED x √

Ferroelectric 1%– 4.03%32,59,60 FeFET30 —— ~360pJ (simulation) 3 C + 9 T + 1ED x √

FeFET29 —— 1–10pJ 1 C + 6 T + 1ED x √

Leaky-FeFET32 —— ~420pJ* 2 T + 1ED √ x

Anti-ferroelectric <3.93%** AFeFET >1012 37 fJ 8 T + 1ED √ √
#The variation results are rarely reported in literature. In this table, the variation data are obtained from devices with the same mechanism category.
*The energy consumption per spike is calculated approximately from the I–t and V–t curves in these reference papers, respectively.
**With further optimizing the stimuli pulse parameters.
√ has this property.
x has no such property.
To unify the benchmark of hardware overhead, all the circuit components in these reference papers are equivalent to three categories: capacitor (C), emerging device (ED) and transistor (T). In chip
manufacturing, the area of a resistor is equivalent to that of a transistor. 1 latch is composed of four transistors. 1 XORgate is composed of ten transistors. An integrated operational amplifier usually
consists of more than 20 transistors.
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decreasing the threshold supports fast inference speed and could
greatly decrease the energy consumption of hardware neurons. In
addition, device variation is another important parameter in practical
applications. Figure 4e presents the inference accuracy under various
device variations after training under the 1μA threshold. As the red
dots are shown, the inference accuracy only decreases 1% even the
variation increases to ±16.7%, illustrating nearly no network perfor-
mance degradation. These results further demonstrate that the pro-
posed AFeFET neuron is suitable for performing SNNs tasks and has
great potential for the hardware implementation of SNNs chips.

Discussion
SNNs, inspired by the human brain, are powerful platforms for
enabling low-power event-driven neuromorphic hardware. In SNNs,
spiking neurons are the key units that enable spikes, which exchange
information through connected plastic synapses. With rich physical
dynamics, memristive devices are considered promising devices to
emulate spiking neurons. However, the high-energy consumption or
limited reliability hinders the applications of memristive neurons in
neuromorphic computing.

In this work, we demonstrated a leaky integrate-and-fire neuron
based on an AFeFET. The dynamic relationship between the intrinsic
polarization/depolarization process of the Hf0.2Zr0.8O2 AFeFET and
integrate/leaky neuronal functions are successfully built. The AFeFET
neuron features CMOS-compatible, tunable firing frequency, ultra-low
hardware cost (no capacitance and additional reset circuit), ultra-low-
energy consumption (37 fJ/spike), high endurance (>1012), and high
uniformity among different cycles and devices, showing advanced
overall performances comparedwith emerging devices-based neurons
in literature. To verify the feasibility of the neuron, we constructed a

two-layer SNN combined with FeFET synapses, achieving high recog-
nition accuracy (96.8%), low-energy consumption, and high robust-
ness on MNIST datasets. These results demonstrate that the AFeFET
neuron is a promising candidate for constructing high-efficient SNN
systems and may promote the industrial landing of neuromorphic
machines based on anti-ferroelectric materials.

Methods
Sample fabrication
The fabrication processes of AFeFET neuron devices are as follows: (1)
After ultraviolet lithography and lift-off process, the bottom electrode
TiN (40nm) was deposited on the gate terminal of the NMOS tran-
sistor by ion beam sputtering. The NMOS transistor was fabricated by
0.18μm CMOS technology. The W/L of NMOS is 10μm/1μm and its
dielectric thickness is 4 nm. (2) Then, 10 nmHf0.2Zr0.8O2 AFE thin films
were deposited on 40nm-thick TiN bottom electrode by atomic layer
deposition (ALD) process at 280 °C substrate temperature. The
Hf[N(C2H5)CH3]4, Zr[N(C2H5)CH3]4, and H2O were used as hafnium
precursor, Zr precursor andoxygen source, respectively. The hafnium/
zirconium ratio was controlled by alternate deposition of one cycle
HfO2 and four cycles ZrO2. (3) Then after the ultraviolet lithography
process, 40 nm-thick TiN was grown by an ion beam top electrode was
released. The two-terminal metal-insulator–metal structure was inte-
grated on the gate of the NMOS transistor. (4) The fabricated device
was annealed for 30 s at 500 °C in nitrogen atmosphere to crystallize.

Measurement method
The element ratio is confirmed by X-ray photoelectron spectroscopy
(ESCALAB 250Xi). The cross-section TEM, high-resolution TEM,
energy-dispersive spectroscopy and crystal structurewere analyzedby
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transmission electron microscopy (FEI Tecnai TF-20, UK). The DC
mode is measured by Agilent B1500 semiconductor parameter analy-
zer. A B1530A fast measurement unit module was used for generating
the voltage pulse and measure the response current at the same time.
Capacitance-electric field (C-E) tests are performed with 10 kHz AC
probing frequency and 30mV amplitude by Agilent B1500.

SNN simulation method
In this work, we use time-to-first-spike time coding to encode the input
image into a sparse spike train. Each pixel of the input image is enco-
ded into a single spike whose spiking time is inversely proportional to
its pixel value. The dense input corresponds to earlier spiking time.
And each input pixel will only generate one spike, resulting in sparser
spike train than the rate coding method and significantly reducing
energy consumption in hardware implementation. We constructed a
784 × 400× 10 fully ferroelectric SNN for MNIST recognition based on
such a coding method. FeFET synapses were considered during
training, whose conductancewas between 5μS and 60μS according to
the experimental data in ref. 47. The pulsenumber (64) forfiring under
10μs pulse width is used due to the highest number counts that cor-
respond to the bits number (6 bits) of the neuron’s membrane
potentials. The 9% cycle-to-cycle variation is extracted from the sta-
tistical data of 10μs pulse width in Fig. 3e. In addition, the leaky time
constant (800μs) is extracted from the integrate-and-fire process
under 10μs pulse width (Supplementary Fig. 7b). The energy con-
sumption was calculated according to the data of 10μs pulse width in
Fig. 3g. When the neuron reaches the firing threshold, it will emit a
spike to the subsequent layer. After emitting a spike, neurons will
remain resting state until the end of the time window. In the output
layer, the first spiking neuron determines the network decision. Before
training, the synapse weights are initialized randomly. In the training
process, the target firing time of the correct output neuron is the
earliest time that all neurons fire, and the target firing time of other
neurons is set to be later than the earliest firing time. According to the
defined error function, synapses of the fired neuron before the actual
firing time will be updated. In order to update the weights of the hid-
den layer, a backpropagation algorithm is used to calculate the error of
the hidden layer46. During training, all time steps need to calculate the
error function. In the inference process, the recognition result is
obtained when the first spike is generated in the output layer, so there
is no need to perform the later time step. Fewer time stepsmean lower
recognition latency and less energy consumption. By adjusting the
neuron’s threshold, the spike generation time can be adjusted,
resulting in the adjustable recognition speed and energy consumption
with acceptable accuracy loss.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the SupplementaryMaterials. Additional data related
to this paper can be requested from the authors. Source data are
provided with this paper.

Code availability
The code of SNN simulation will be available from the corresponding
authors upon request.
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