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Multi-omics analysis identifies osteosarcoma
subtypes with distinct prognosis indicating
stratified treatment

Yafei Jiang1,5, Jinzeng Wang2,5, Mengxiong Sun1,5, Dongqing Zuo1,
Hongsheng Wang1, Jiakang Shen1, Wenyan Jiang3, Haoran Mu1, Xiaojun Ma1,
Fei Yin1, Jun Lin4, ChongrenWang1, Shuting Yu2, Lu Jiang2, Gang Lv2, Feng Liu 2,
Linghang Xue1, Kai Tian1, Gangyang Wang1, Zifei Zhou1, Yu Lv1, Zhuoying Wang1,
Tao Zhang1, Jing Xu1, Liu Yang2, Kewen Zhao3, Wei Sun1, Yujie Tang3,
Zhengdong Cai 1 , Shengyue Wang 2 & Yingqi Hua 1

Osteosarcoma (OS) is a primary malignant bone tumor that most commonly
affects children, adolescents, and young adults. Here, we comprehensively
analyze genomic, epigenomic and transcriptomic data from 121 OS patients.
Somatic mutations are diverse within the cohort, and only TP53 is significantly
mutated. Throughunsupervised integrative clustering of themulti-omics data,
we classify OS into four subtypes with distinct molecular features and clinical
prognosis: (1) Immune activated (S-IA), (2) Immune suppressed (S-IS), (3)
Homologous recombination deficiency dominant (S-HRD), and (4)MYC driven
(S-MD).MYC amplification with HR proficiency tumors is identified with a high
oxidative phosphorylation signature resulting in resistance to neoadjuvant
chemotherapy. Potential therapeutic targets are identified for each subtype,
including platinum-based chemotherapy, immune checkpoint inhibitors, anti-
VEGFR, anti-MYC and PARPi-based synthetic lethal strategies. Our compre-
hensive integrated characterization provides a valuable resource that deepens
our understanding of the disease, and may guide future clinical strategies for
the precision treatment of OS.

Cancers of bone and joints rank as the third leading cause of
cancer death among children, adolescents and young adults1. As
the most frequent bone neoplasia, osteosarcoma (OS) accounts
for approximately 35% of primary malignant bone tumors2.
Neoadjuvant chemotherapy and advances in surgical techniques
have led to a dramatic improvement in overall survival rates to
nearly 70%3. However, further progress in 5-year survival has been

appreciably unchanged over the past four decades and ther-
apeutic approaches are urgently needed4.

Previous pioneering studies over the past decade have expanded
our understanding of the molecular basis of OS. As previously repor-
ted, the most frequently mutated genes in OS were TP53 and RB15–9.
Multiple regions of somatic copy number alterations have been
uncovered, including amplification of MYC, CCNE, and AKT, as well as
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deletion of TP53, RB1 and PTEN10–12. However, those studies mainly
focused on just single or two omics techniques, providing limited
knowledge of the integrated biological underpinnings of this disease.
Comprehensively integrated diverse omics data in conjunction with
clinical information are therefore urgently needed.

Here, we present a large cohort of 121 OS patients from Shanghai
General Hospital (SGH-OS cohort), using hybrid-capture DNA
sequencing, array-based DNA copy number analysis, DNAmethylation
profiling and mRNA sequencing. Through integrating multi-omics
data, we obtained a comprehensive genomic, epigenomic and tran-
scriptomic landscape of OS and uncovered four distinct molecular
subtypes with varied oncogenic factors. We explored the diversity of
clinical outcomes and the targeted intervention of each subtype. Our
study provides insight into the biology of this disease, and potential
avenues for future precision medicine approaches within OS.

Results
Clinical and molecular features of the SGH-OS cohort
The SGH-OS cohort contains themolecular and clinical data of total 121
primary OS patients with mostly Enneking IIB and III stage (Supple-
mentary Fig. 1A). All samples were re-reviewed and confirmed by two
pathological experts individually based on the World Health Organi-
zation (WHO) classification system (2020) (Supplementary Fig. 1B).
Specifically, 102 patients with surgically resected tumor species and
matched white blood cells were profiled by whole-exome sequencing
(WES). The transcriptomes of 96 patients were characterized by RNA
sequencing (RNA-seq). DNA methylation and copy number profiles
were generated from 114 patients using an Illumina Infinium EPIC
BeadChip array (850K). In addition, copy number alterations in 50
patients were further validated by the Affymetrix OncoScan micro-
array. The initial diagnosis age was between 6 to 67 years old, and 63
patients (52.1%) were pediatric or adolescent (under 18 years old,
Supplementary Fig. 1C). Of those, 58 (47.9%) were female and 63
(52.1%) were male. The median follow-up was 34.9 months and the
overall survival rate was explored (Supplementary Fig. 1D). Among all
121 participants, 61 patients (50.4%) had distant metastatic events, 35
patients (28.9%) suffered local recurrence, and 43 patients (35.5%) had
died by the last follow-up. The influence of age, sex, tumor position,
Enneking stage and pathological type on clinical prognosis was ana-
lyzed (Supplementary Fig. 1E–I). Other basic clinical information of the
SGH-OS cohort is available in Supplementary Data 1.

Mutational landscape of OS patients
A total of 107 tumors and 105 matched white blood cell samples from
102 OS patients were subjected to WES. Overall, we defined a diverse
range of cancer genes mutated in OS. The tumor versus white blood
cell comparison identified 6,381 mutated genes (Supplementary
Fig. 2A–D, Supplementary Data 2). The median number of non-silent
variants per sample was 33 (Supplementary Fig. 2E), which was rela-
tively lower than that in pan-cancer published in TCGA (Supplemen-
tary Fig. 2F). The median tumor mutational burden (TMB) of SGH-OS
was 1.4 permegabase (Mb), and therewereno significant differences in
overall TMB between adolescent, young adult and elderly OS (Sup-
plementary Fig. 2G).

Among cancer-related signaling pathways with potential ther-
apeutic targets, the RAS, NOTCH, WNT, Hippo, PI3K, andMYC pathways
were predominantly affected (Supplementary Fig. 3A). In addition, the
SGH-OS cohort showed relatively lower frequencies of mutations in
TP53, RB1, ATRX, MDM2 and CCNE1 than those previously reported13,
while the prevalence rates of CHD3, GNAS, CIC and H3F3A mutations
were slightly higher in our cohort (Supplementary Fig. 3B). In parti-
cular, TP53 (12 tumors, 11.2%) was identified as a significantly mutated
gene (SMG) determined by MutSigCV algorithms (q value < 0.01),
which was consistent with previous studies (Supplementary Fig. 3C,
Supplementary Data 3).

The clinical features and mutation profile of genes related to
genome maintenance, oncogene/tumor suppressor gene (Oncogene/
TSG), cell cycle, epigenetic and transcriptional regulation are shown in
Fig. 1A, B and Supplementary Data 2. We compared themutated genes
(>3 cases) in the SGH-OS cohort with 3 curated cancer driver gene
datasets14–16. This yielded 22 somatic mutated genes (Supplementary
Fig. 3D, Supplementary Data 4), which may be potential oncogenic
drivers in OS. In addition, we discovered several other mutations of
KMT2B (2.8%) and RARA (1.9%) in Chinese OS patients. We further
analyzed the germline mutations of the SGH-OS cohort (Supplemen-
tary Data 5). There were no significant differences in overall germline
mutation load between adolescent, young adult and elderly OS (Sup-
plementary Fig. 2H). Functional enrichment analysis revealed that
germline mutated genes were primarily enriched in metabolism-
related KEGG pathways (Supplementary Fig. 2I).

To further address the potential driving mutational processes of
OS, we applied non-negative matrix factorization (NMF)17 and identi-
fied four predominant signatures similar to COSMIC18 1, 3, 4 and
15 signatures (Supplementary Fig. 3E). Among those, defects in DNA
double-strand break (DNA-DSB) repair by homologous recombination
(HR) not only enable cancer cells to accumulate genomic alterations
that contribute to their aggressive phenotype, but may also serve as a
vulnerable drug target, offering the possibility of personalized
therapies19–21.

CNA analysis reveals clinical implications for OS patients
A total of 116 OS samples from 114 patients were employed for somatic
copy number alteration (SCNA) analysis based on the Illumina Infinium
EPIC BeadChip (850K) array (Fig. 2A). GISTIC 2.0 analysis of recurrent
CNAs revealed 39 significantly amplified and 53 deleted regions (q
value <0.25). The frequent copy number gainswith potential biological
implications were in chromosomes 1q, 4q, 6p, 8q, 12q, 14q, and 19q,
and the losses were in chromosomes 5p, 9p, 13q, and 17p. Recurring
amplifications included MYC (8q24.13, 52%), RUNX2 (6p21.1, 37%),
PDGFRA (4q12, 35%), CCNE1 (19q12, 26%) and MDM2 (12q15, 26%)
(Fig. 2B, Supplementary Data 6). Recurrent deletions included the key
tumor suppressors TP53 (17p13.1, 47%), RB1 (13q14.13, 42%),
CDKN2A/CDKN2B (9p21.3, 25%), and NSD1 (5q35.2, 19%) (Fig. 2C, Sup-
plementary Data 6). In addition, CNAs in 50 patients were validated
using a high-resolution OncoScan array with the same DNA specimen
in parallel to the EPIC 850K array and similar patterns of SCNAs were
displayed using these two different approaches (Supplemen-
tary Fig. 4A).

To determine the consequences of CNAs on mRNA abundance,
we explored the cis and trans effects between CNAs and mRNA
abundance (Fig. 2D). A total of 17,242 CNA-mRNA pairs were analyzed
with 2,522 in cis displaying significant correlation (FDR <0.01, median
Spearman’s r =0.40) (Fig. 2E, Supplementary Data 7), Interestingly,
therewas no broad cis-regulatory effects of CNAonmRNAs, functional
enrichment analysis revealed that these genes weremainly enriched in
cell cycle regulation, DNA replication, translation regulation and his-
tone modification (Fig. 2F), suggesting that those biological processes
may largely be regulated by aberrant CNAs. We also noted the most
prominent CNAs with trans effects on chromosomes 1q, 2p, 8q, 11p,
19q and 21p. Among them, 8q, containing the MYC oncogene, was the
predominantly amplified region, which indicated that MYC amplifica-
tion had both cis- and trans-regulatory effects on its targets during the
carcinogenesis of OS.

Deletion of the cell cycle regulator CDKN2A/CDKN2B was asso-
ciated with poor clinical prognosis in patients in our cohort (Supple-
mentaryFig. 4B). As decreasedCDKN2A/CDKN2B levels further result in
elevated CDK4/cyclin D activity, these patients may benefit from CDK4
inhibitors22. Another significant deletion peak at 5q35.2 containing
NSD1 merits further exploration. As an H3K36 di-methyltransferase,
NSD1, which was lost in 22 out of 116 cases, is implicated as a tumor
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suppressor gene mutated frequently in a variety of carcinomas, and
associated with global DNA hypomethylation23–26. We detected the
expression level of NSD1 in an individual tissue microarray containing
49 OS cases and NSD1 deletion patients in the SGH-OS cohort by

immunohistochemistry. The results confirmed that the expression
level of NSD1 in OS was positively correlated with H3K36me2 mod-
ification. In addition, the expression levels of NSD1 and
H3K36me2 signals were undetectable in NSD1 deletion patients
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Fig. 1 | Genomic landscape of OS. Genetic profile of SGH cohort patients. Each
column corresponds to one sample (128 samples are displayed with 9 replicates).
A Clinical information of age, sex, position, metastasis, recurrence, pathological
classification, ALP (high: >120 U/ml) and clinical Enneking stages. Genetic infor-
mation included TMB, HRD score (high: >42), ploidy and tumor purity. B Somatic

mutated genes that were associated with genome maintenance, oncogene/tumor
suppressor gene (Oncogene/TSG), cell cycle, epigenetic and transcriptional reg-
ulation; C Cancer-related genes located in significant CNA peaks identified by
GISTIC 2.0 with q value <0.25. The number and percentage of mutations and CNAs
for each of the genes are shown on the right.
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(Supplementary Fig. 4C). Therefore, we reasoned that the epigenetic
changes induced by NSD1 deletion might be involved in OS
oncogenesis.

Patient subtyping by different molecular dimensions
We explored the molecular subtyping using each individual omics
dataset. Unsupervised consensus clustering based on the top 10%most

variably expressed coding genes was applied to identify transcriptomic
subtypes ofOS. Basedon the “elbow”point in the relative change in area
under the consensusdistribution function (CDF) curve,we classified 101
tumors into 4 distinct clusters (Supplementary Fig. 5A–F). These four
clusters consisted of the following: (1) mRNA Cluster 1 was character-
ized by overexpression of transcription- and translation-related genes;
(2) mRNA Cluster 2 was dominated by the highest level of adaptive

Fig. 2 | Copy number alteration profiles of OS. A Heatmap of the CNAs of 116 OS
tumor samples: red and blue represent copy number gain and loss, respectively.
The x axis indicates the 116 tumor samples. B Genome-wide recurring focal
amplifications with GISTIC 2.0 FDR q values on the bottom. Peaks were annotated
with candidate driver oncogenes in red. C Genome-wide recurrent focal deletions
with GISTIC 2.0 FDR q values on the bottom. Candidate driver tumor suppressors
within deletion peaks are labeled in blue. D Correlations of CNAs to mRNA
expression with cis and trans effects. Significant positive (red) and negative (green)
correlations (see “Methods”, FDR<0.01, Spearman’s correlation) between CNAs
and mRNA are indicated in the upper panel. The X-axis and Y-axis are ordered by

chromosomal location. The blue bars in the bottom panel represent the number of
specific significant correlations, while the black bars indicate the number of com-
mon significant correlations. E Distribution of Spearman’s correlation between
CNAs and mRNA. CNAs and mRNAs were positively correlated for most (78.9%)
CNA-mRNA pairs. The median Spearman’s coefficient of significant correlations
(FDR<0.01) was 0.40. F Significantly enriched functions of genes with significant
correlations betweenCNAs andmRNA. Themedian correlation coefficient is shown
in parentheses, followed by the FDR adjusted P value. Genes in each item (bars on
the x-axis) were sorted by correlation coefficients from low to high, with blue and
yellow indicating positive and negative correlations, respectively.

Article https://doi.org/10.1038/s41467-022-34689-5

Nature Communications |         (2022) 13:7207 4



immune response and immune signaling pathway related gene
expression; (3) mRNA Cluster 3 featured activation of the transforming
growth factor-β (TGF-β) signaling pathway and the downstream PI3K/
AKT and MAPK pathways; and (4) mRNA Cluster 4 harbored the sig-
nature of genes involved inmitochondrial energy transduction andATP
synthase activity (Fig. 3A). Candidate targets identified within each
cluster indicated the potential applications of biomarker-driven preci-
sion therapies. Moreover, the transcriptomic clusters significantly dif-
fered in clinical prognosis (log rank, p =0.002, Fig. 3B).

CNAs not only serve as “drivers” for boosting tumor cell growth
but also reflect the innate biological characteristics of tumors27.

Unsupervised hierarchical clustering analysis of CNAs yielded five
clusters with varied ploidy and HRD scores (Fig. 3C), and the potential
prognostic value of CNA subtype strategies was investigated (Fig. 3D).
CNA Cluster 1 was nearly devoid of significant CNAs, featuring lower
tumor purity and aneuploidy, corresponding to immune activation
and favorable clinical prognosis (Supplementary Fig. 5G). Similar to
CNA Cluster 1, CNA Cluster 2 consisted mainly of low purity tumors,
distinguished by more frequent 1q31.1(NR5A2, PTGS2, RGS1), 3q36.1
(BCHE), 5p14.1 (PRDM9), 11p12 (API5), and 21q11.2 (RBM11, LIPI) ampli-
fication and relatively worse clinical prognosis (Supplementary
Fig. 5H). CNA Cluster 3 exhibited chromosome 12 amplification

Fig. 3 | Single platform features and the corresponding clinical prognosis.
A Transcriptional clustering based on the top 10% most variable genes (1820)
across 101 samples. Each column represents one sample and rows indicate genes.
B Kaplan–Meier curves for overall survival based on transcriptional clusters (log-
rank test). C Copy number clustering based on SCNAs identified by GISTIC 2.0 in
116 samples. Each column represents one sample, and rows indicate CNA peaks.

D Kaplan–Meier curves for overall survival based on CNA clusters (log-rank test).
EDNAmethylation clustering based on the top 8000variablymethylatedCpG sites
in 116 samples. Each column represents one sample and rows indicate CpG sites.
F Kaplan–Meier curves for overall survival based on DNAmethylation clusters (log-
rank test). Asterisks define significance levels (*p <0.05; **p <0.01; ***p <0.001;
****p <0.0001).
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(including the MDM2 and CDK4 loci) in a manner largely cooccurring
with CDKN2A deletion (Supplementary Fig. 5I). As CDKN2A deletion
activates CDK4/CDK6, leading to higher RB phosphorylation and driv-
ing cell cycle progression28, CDK4/6 inhibitors may be a therapeutic
option for CNA Cluster 3 patients. CNA Cluster 4 and Cluster 5
exhibited the highest burden of CNAs and the worst clinical prognosis,
featuring deletion of TP53 and BRCA2. This suggested DNA main-
tenance defects in those patients whomay respond to DNA-damaging
agents.

Unsupervised clustering of OS using the top 8000 most variable
CpG loci that were hypermethylated in at least 5% of tumors identified
4 clusters. Tumor purity, ploidy and HRD score differed significantly
across different DNA methylation subgroups (Kruskal–Wallis test,
p <0.001) (Fig. 3E). The overall survival between each cluster was
analyzed (Fig. 3F). Of particular interest was methylation Cluster 1
patients, with more young patients having the best clinical prognosis,
while elderly patients with OS were more enriched in methylation
Cluster 4, with poor survival. Correlations between DNA methylation
and gene expression were explored (Supplementary Data 8). Eight
representative frequently hypermethylated genes are shown in Sup-
plementary Fig. 5K. These genes displayed reducedmRNA expression,
which was negatively correlated with promoter hypermethylation.

Integrative multi-omics analysis stratifies clinically relevant OS
subtypes
The acquisition of cancer hallmarks requires molecular alterations not
only at the transcriptome level but also at multiple other levels,
including the genome and epigenome29,30. To determine multi-omics
data in OS subtyping, iCluster, a joint multivariate regression
algorithm31,32, was applied to reconcile and cluster these disparate data
frommultiple platforms simultaneously. This unsupervised integrative
clustering ultimately defined four distinct subtypes within 91 patients
(Fig. 4A and Supplementary Fig. 6A).

The majority of the single platform clusters concentrated pre-
ferentially in one of the four integrated iClusters with p <0.01, lending
confidence that the integrative subtyping strategies captured themain
features of each platform (Fig. 4A). Consistent with Fig. 4A, single
sample GSEA further demonstrated distinctmolecular features among
the four subtypes (Supplementary Fig. 6B). Subtype specific somatic
mutations and copy number changes were also explored (Supple-
mentary Fig. 6C, D, Supplementary Data 9). Based on the molecular
characteristics described below, we designated these four clusters as
immune-activated subtype (S-IA, iCluster1), immune-suppressed sub-
type (S-IS, iCluster2), HRD dominant subtype (S-HRD, iCluster3) and
MYC driven subtype (S-MD, iCluster4).

iCluster1 (n = 25) was characterized by the lowest tumor purity,
proliferation activities and high immune responses (Fig. 4A, Supple-
mentary Fig. 6B). DNAmethylation Cluster 1 and CNA Cluster 1–2 with
favorable prognosis were mainly enriched in this subtype. The
iCluster1 subtype exhibited low frequencies of MYC, CCNE1 amplifica-
tion and CDKN2A deletion. iCluster1 tumors also had specific changes
in mRNA expression, including overexpression of BANK1 (Supple-
mentary Fig. 7A), a crucial regulator acting as a tumor suppressor
involved in both B-cell mediated humoral immunity and cellular
immunity33,34. In addition, the expression levels of the core osteogenic
transcription factor RUNX2 were significantly different among differ-
ent subtypes, with the lowest expression in S-IA, suggesting that
immune-activated OS has relatively lower osteogenic activity. (Sup-
plementary Fig. 7B).

iCluster2 (n = 22) had relatively higher tumor purity and aneu-
ploidy than iCluster1. GSEA revealed the activation of adipogenesis-
and fatty acid metabolism-related pathways in iCluster1 compared to
iCluster2 (Supplementary Data 10 and Supplementary Fig. 7C). This
corresponded to the focal amplification of the 7q21.12 locus in iClus-
ter1, which encodes the fatty acid scavenger receptor CD36

(Supplementary Fig. 6D). In addition, cell cycle-related pathways,
including E2F targets and the G2/M checkpoint, were downregulated
in iCluster1 (Supplementary Fig. 7D).

iCluster 3–4 was more likely driven by proliferative signaling
including the cell cycle, MYC, mTOR and Hedgehog pathways, indi-
cating the high proliferative potential of these two subtypes (Supple-
mentary Fig. 6B). iCluster3 (n = 23) was characterized by the highest
tumor purity and genomic instability. Tumors in this subtype con-
tained most of those in DNA methylation Cluster 2 and CNA Cluster 5
with the lowest immune responses. This subtype was also associated
with NSD1 deletion and overexpression of proliferative genes, such as
CCL28, HUNK, ZFHX4, GRHL3 and CHAF1B (Supplementary Fig. 7A).

iCluster 4 (n = 21) was identified as themost malignant subtype,
with a 5-year survival rate lower than 40%.Methylation Cluster 4 was
heavily enriched in this subtype. The prominent features of this
subtype were MYC amplification, mTOR signaling pathway activa-
tion, and low immune responses. GSEA demonstrated the activation
of MYC targets in iCluster4 compared with others (Supplemen-
tary Fig. 7E).

We further tested the clinical relevance of the integrative sub-
typing, and the results indicated that the four subtypes significantly
differed in clinical prognosis (log rank, p =0.03, Fig. 4B). After strati-
fying patients according to Enneking stage, integrative subtypes were
still strongly correlated with patient prognosis in Enneking stage IIB
patients (Supplementary Fig. 7F), supporting the superior prognostic
power ofmolecular featureswithin our integratedmolecular subtypes.

MYC amplification with HR proficiency was associated with
OXPHOS activation and poor prognosis
We identified that patients in S-MD subtype displayed the lowest
tumor necrosis rate corresponding to the worst clinical prognosis
(Fig. 5A). More importantly, the expression level of MYC in S-MD was
significantly higher than that in S-HRD (Student’s t test, p <0.05,
Fig. 5B). These findings were further validated, indicating thatMYCwas
mainly expressed in the nucleus of tumor cells compared with stromal
cells (Fig. 5C). The difference betweenMYC expression could partially
be attributed to Hunk overexpression in S-HRD, which is inhibitory to
MYC expression (Supplementary Fig. 7A)35. We speculated that the
malignant biological behavior caused by MYC overexpression was the
leading cause for the poor prognosis of S-MD.

Considering thatMYC amplification is one of the most important
genetic features in OS leading to a relatively poor prognosis (Supple-
mentary Fig. 7G), we compared the transcriptomic profiles between
tumors with or without MYC amplification. This revealed that
epithelial-mesenchymal transition, JAK/STAT3 and TGF-β signaling
pathways were upregulated in MYC-amplified OS (Fig. 5D). These
findings further supported the crucial roles ofMYC amplification in the
malignant phenotype of OS.

By dividing MYC amplification OS patients into two groups
according to the HRD score, we observed that the clinical prognosis of
MYC amplification with HR proficiency was significantly worse than
that with HR deficiency (Supplementary Fig. 7H). GSEA indicated that
MYC-amplified OS with HR proficiency exhibited significant OXPHOS
activation compared to that with HR deficiency (Fig. 5E, F). These
findings revealed that mitochondria‐related OXPHOS was positively
associated with unfavorable prognosis, which may be associated with
CDDP chemoresistance.

Immune landscape of OS
With the rapid advancement in genomics, the treatment of OS, parti-
cularly for relapsed and metastatic patients, has evolved away from
conventional chemotherapy toward immune-based strategies36–41.
Accordingly, we characterized the immune microenvironment in OS.

As shown in Supplementary Fig. 6B, the immune responses were
higher in iCluster 1–2 than in iCluster 3–4. iCluster 1–2 were high in the
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interferon alpha, interferon gamma, inflammation, CTLA-4, IL-17 sig-
naling pathways and others related to the immune response. To fur-
ther investigate the immunemicroenvironment ofOS,we explored the
gene expression levels of 72 curated immune surface markers that
encompass different immune cell populations in each subtype42–44. In
line with Supplementary Fig. 6B, iCluster 1-2 exhibited higher expres-
sion of the immunemarkers corresponding to immune reactions than

iCluster 3–4 (Fig. 6A). Consistent with these finding, the immune and
stromal scores were relatively higher in iCluster 1–2 (Fig. 6B).

We next estimated the relative percentage of 22 types of tumor‐
infiltrating immune cells (TIICs) using the Cell-type Identification by
Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algo-
rithm as previously reported45 (Supplementary Fig. 8A, Supple-
mentary Data 11). Significant differences in CD8+ T cells, type 2

Fig. 4 | Integrative subtypeswith distinctmolecular features andvariedclinical
prognosis. A Integrative clustering of 91 patients. Top, left to right: immune-
activated subtype (S-IA, iCluster1), immune-suppressed subtype (S-IS, iCluster2),
HRD dominant subtype (S-HRD, iCluster3) and MYC driven subtype (S-MD, iClus-
ter4). Single platform clustering results: DNA methylation cluster, mRNA cluster

and CNA cluster. Basic clinical features: age, gender and Enneking stage. Genetic
changes: tumor purity, ploidy, HRD score, somatic mutations and CNAs. Bottom,
Heatmaps organized by integrative clustering for copy number, DNA methylation,
and mRNA expression. B Kaplan–Meier curves for overall survival based on inte-
grative subtypes (log-rank test).
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macrophages, naive CD4 T cells and resting memory CD4 T cells
between iCluster 1-2 and iCluster 3–4 were observed
(Kruskal–Wallis test, p < 0.05, Supplementary Fig. 8B). Immunohis-
tochemistry further confirmed that immune-related markers,
including CD4, CD8, IDO1, FOXP3 and PD-L1, were expressed at
relatively higher levels in iCluster 1-2 (Fig. 6C). Moreover, we noted
significant depletion of gamma delta T cells and augmentation of
monocytes in iCluster1 compared with iCluster2 (Wilcoxon rank
sum test, p < 0.05, Supplementary Fig. 8B), indicating a transfor-
mation of the immune state from activation to suppression.

The T-cell receptor (TCR), reflected by the most variable
complementarity-determining region 3 (CDR3) region, has a critical
role in antigen recognition46,47. To investigate tumor-reactive T-cell
clones, we characterized the repertoire of tumor-infiltrating T cells
inferred by TRUST47. Strikingly, although iCluster 1–2 both displayed
stronger immune responses, we unexpectedly found that the number
of CDR3 calls in iCluster1 was significantly higher than that in iCluster2
(Wilcoxon rank sum test, p < 0.05, Fig. 6D). Collectively, these results
indicated that tumors in iCluster1 were immune-activated (S-IA), while
those in iCluster2 were immune suppressive or exhausted (S-IS).

To further characterize the intratumoral immune states, we
inferred the immune subtypes defined previously for each OS
patient48. The immune categories varied largely across different
iClusters (Fig. 6E). iCluster1 was rich in immune subtype C3 (Inflam-
matory), which was defined by a low level of cell proliferation and the
best prognosis. C2 (IFN-γ dominant), with a high cell proliferation rate
and the highest M1, was enriched more in iCluster2. In addition,
iCluster2 had less C3 (inflammatory) and more C6 (TGF-β dominant),
together resulting in worse outcomes than iCluster1. iCluster3 and
iCluster4 were primarily dominated by C4 (lymphocyte depleted),
further indicating that these two subtypes belong to cold tumors, and
these findings were concordant with the clinical prognosis of each
subtype (Figs. 4B and 6E).

Subtype specific targeted therapy strategies
HRD status provides significant improvement over clinical variables in
identifying tumors with an increased likelihood of response to
platinum-based neoadjuvant therapy. By comparing the HRD score of
OSwithpan-cancerdata published inTCGAcohort49, we found that the
HRDscoreofOS ranked secondonly followingovariancancer (Fig. 7A),
suggesting PARP targeting therapy may be a promising strategy in OS.
Moreover, as described above, nearly 80% of patients in iCluster3 were
HRDpositive. These patientsmay bemore sensitive to platinum-based
neoadjuvant chemotherapy, which could be the main reason for the
difference in clinical prognosis between iCluster3 and iCluster4.
Genomic CNAs and somatic mutations involved in the HR pathway are
labeled (Fig. 7B).

As PARP inhibitors are valuable options for patients with recur-
rent ovarian cancer in different stages50–52, we reasoned that HRD-
positive OS may also benefit from PARP inhibitors. Two primary OS
cell cultures fromPDXs, SA4103 (HRD score: 73, BRCA2: C8318A) and
SA4061 (HRD score: 38), were treated with cisplatin or olaparib for
72 h. Cell proliferation was estimated using a CellTiter-Glo lumines-
cent cell viability assay. The results demonstrated that either cis-
platin or olaparib induced a more potent anti-proliferative response
in the HRD-positive OS cell line SA4103 than in the HRD-negative OS
cell line SA4061 or the OS cell line 143B (Fig. 7C). Subsequently, we
tested the combinatory effects of cisplatinwitholaparib on inhibiting
the viability of HRD-positive OS cells and detected a synergistic
inhibitory effect (combination index < 1) between cisplatin and ola-
parib (Fig. 7D).

We confirmed the synthetic lethal effect of cisplatin plus olaparib
in vivo using a BRCA2 mutant OS PDX model, with genetic character-
istics of the HRD-positive subtype (SA4078, HRD score: 70, BRCA2:
C8318A). Our results revealed that the combination of olaparib and
cisplatin led to significantly more shrinkage of flank tumors compared
with either single agent (Fig. 7E, F). Furthermore, we measured the
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induction of cisplatin and olaparib on cell proliferation and the DNA
damage pathway in vivo. The results indicated that olaparib alone or in
combination with cisplatin significantly inhibited the proliferation of
tumor and induced significant DNA damage (Fig. 7G). There was a
slight reduction in mouse body weight during treatment, suggesting
that the toxicity of the combination regimen was tolerable (Fig. 7H).

Collectively, these data demonstrate that PARP inhibition increases
lethality induced by cisplatin both in vitro and in vivo.

Discussion
In recent years, genomic analysis of OS has expanded our knowledge
of this genetically complex malignancy53. However, no breakthrough
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has been made in improving the overall survival of OS54. One major
obstacle is the heterogeneity of OS, meaning that a single therapy
could not be successful for all patients. In this study, we characterized
an integrated analysis of somatic mutations, copy number alterations,
DNAmethylation andmRNAexpressionprofiles of 121OSpatients, and
this multi-platform dataset provided the most comprehensive atlas of
OS genomic, epigenomic and transcriptomic abnormalities to date.

We demonstrated that the mutation spectrum of OS was largely
caused by defective DNA repair. Growing evidence indicates that HRD
status remains a strong predictor of clinical benefit from PARP inhi-
bitors, which further expands the application prospects of PARPi for
OS. Consistent with previous results10, we confirmed that CNAs rather
than somatic mutations may be the dominant mechanism in OS
oncogenesis and development. Of those, MYC amplification was the
most prominently altered focal CNA. Previous studies demonstrated
that the MYC oncogene appears to play a role in immunogenicity by
creating an environment of immune privilege for the tumors them-
selves, andMYC-targeted therapy induced tumor cell immunogenicity
in stimulating host immunity55. This may be an important reason for
the failure of previous immunotherapy clinical trials for OS. Other
significant CNAs involved in several potentially actionable genes, such
as CCNE1, PDGFRA, MDM2, CDK4 and CDKN2A/B, need further
exploration to determine their therapeutic potential.

Both platform-specific and integrative clustering were carried out
to identify the molecular subtypes of OS. We adopted the integration
ofmulti-omics information to achievemorecomprehensive subtyping.
Surprisingly, we uncovered 4 robust subtypes corresponding to varied
clinical prognosis anddistinctmolecular features.Of note, not onlydid
the genomic features match the clinical prognosis, but there was a
strong concordance in subtype assignments between clustering based
on individual platforms and iCluster. We also demonstrated the
potential therapeutic targets contributing to OS pathogenesis, and
offered corresponding therapeutic strategies.

iCluster 1-2 were characterized by elevated immune-related sig-
naling pathways. Notably, the VEGFA signaling pathway was activated
in these two subgroups. The main challenge in immune therapy was
using immune checkpoint inhibitors (ICIs) to noninflamed tumors, and
overcoming drug resistance driven by the immune-suppressive
microenvironment. VEGF results in immune suppression by directly
suppressing antigen-presenting cells (APCs) aswell as immuneeffector
cells or by augmenting the effects of regulatory T cells (Treg) and
tumor-associated macrophages (TAMs). These suppressive immune
cells can also drive angiogenesis, creating a vicious cycle of impaired
immune activation56. The combination of ICIs and anti-VEGF therapy
has entered the clinic, indicating the potential benefit from this drug
combination strategy for iCluster 1–2 patients.

Higher immune infiltration within the tumor is typically asso-
ciated with a better clinical prognosis57, however, we found different
clinical prognosis between iCluster1 and iCluster2. Through dissection
of intratumoral TCR clones and immune state, iCluster1 (immune-
activated) was further distinguished from iCluster2 (immune-sup-
pressed). This indicates that iCluster2 patients may benefit most from
ICIs or combination strategies of ICIs and ani-VEGF therapy.

Conversely, iCluster 3–4 possessed low immune signatures but
higher proliferative activities. Of those, iCluster3 was predominantly
composed of HRD-positive patients (84.2%, HRD score > 42), with the
highest tumor purity and genomic instability. This suggests that
patients in iCluster3 may be preferentially considered for DNA-
damaging chemotherapy. In fact, patients with high HRD scores were
apt to have a favorable prognosis in platinum-based neoadjuvant
chemotherapy58, which was verified in our results.

For the most lethal subtype, iCluster4 was characterized by MYC
amplification and overexpression. MYC amplification has been asso-
ciatedwith different types of solid tumors, such as neuroblastoma and
medulloblastoma59–61, whileMYCoverexpressionwas adefining feature
of the most aggressive medulloblastoma subtype62,63. Our study high-
lights the significant roles of MYC in iCluster4 during OS progression.
Direct or indirect anti-MYC agents might be the optimized solution for
this subtype, including BET inhibitors, mTOR inhibitors and AURORA
kinase inhibitors.

In summary, we provide a genomic, epigenomic and tran-
scriptomic landscape and uncover four distinct molecular subtypes of
OS by integrated analytic approaches. Our findings provide important
insights into the biology of OS, and can potentially facilitate the
development of therapeutic options for this deadly disease.

Methods
OS patient sample collection
This study was approved by the Institutional Research Ethics Com-
mittee of Shanghai General Hospital, and all participants involved in
this study provided written informed consent. Surgical tumor tissues
and blood samples from a cohort of 121 OS patients were initially
enrolled in the SGH-OS cohort. All patients underwent MAP (metho-
trexate, doxorubicin, and cisplatin) neoadjuvant chemotherapy and
curative resection from February 2011 to August 2019 at Shanghai
General Hospital. Tissue samples were collected within 30min post
operation and snap-frozen in liquid nitrogen. Blood samples were
collected the day before surgery. Tumors were graded according to
the Enneking staging system, and histological diagnoses were estab-
lished according to the 2020 WHO criteria by two independent
pathologists. Overall survivalwasdefined as the time fromdiagnosis to
death. Follow-up of a total of 121 patients was completed onDecember
31, 2019.

Generation of the OS PDX model
Fresh tumor specimens were obtained following surgical resection at
Shanghai GeneralHospital. Approximately 100mgof tissuewasplaced
in a 15ml polypropylene tube with serum-free DMEM and transferred
to the laboratory onwet ice. After washing and cutting, 3–5mm tumor
fragments were implanted into the flanks of NSG mice. Mice were
randomized into DMSO or treatment groups when tumors reached
approximately 100 mm3. The tumor size and body weight of the mice
weremeasured 2 timesperweek, and the tumor volumewascalculated
as length × width2 × 0.5 mm3. All procedures for consideration of
animal welfare were reviewed and approved by the ethical committee
of the Shanghai General Hospital Animal Care and Use Committee.

Fig. 7 | Synthetic lethality of olaparib plus cisplatin in HRD-positive OS in vitro
and in vivo. A Distribution of HRD scores within and across 34 cancer types. The
SGH-OS cohort is labeled (orange, n = 107). B Schematic model of the HR and the
genomic alterations in the key elements.CDose response curves and IC50values of
HRD-positive (SA4103), HRD-negative (SA4061) and conventional OS cell lines after
48h of exposure to the cisplatin and PARP inhibitor olaparib. ****p <0.0001. Data
are shown asmean ± SD. n = 3 independent experiments. P values are derived from
two-sided t test. D Synthetic lethality of olaparib plus cisplatin in the SA4103 cell
line. Data are shown as mean ± SD. n = 3 independent experiments. The statistical

analysis wasmade by ANOVAwith Tukey’s multiple comparisons test. Tumor gross
specimen (E) and tumor growth curves (F) in a patient-graft xenograft model
treated with olaparib and cisplatin individually or in combination. (n = 5 mice per
group). Data are represented as the mean± SD, P values are derived from two-way
ANOVA. *p <0.05; **p <0.01; ***p <0.001. G H&E and immunohistochemical ana-
lysis of proliferation (PCNA) and DNA damage (γH2AX) in xenografts. The scale bar
represents 50μM. n = 5 independent experiments. H Body weight changes of
xenografts treated with olaparib and cisplatin individually or in combination. Data
are shown as the mean ± SD. P values are derived from two-way ANOVA.
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DNA/RNA extraction, quantification and qualification
Genomic DNA from tumor and matched white blood cell samples was
isolated using a DNeasy Blood & Tissue Kit (Cat# 69506, QIAGEN,
GmBH, Germany) according to the manufacturer’s protocol. DNA was
quantified by a Qubit DNA Assay Kit and a Qubit 2.0 Fluorometer (Life
Technologies) and the integrity was assessed by 1% agarose gel elec-
trophoresis. A total of 101 tumor sampleswere used forRNAextraction
with TRIzol reagent (Invitrogen). RNA degradation and contamination
were monitored on 1% agarose gels; RNA concentration wasmeasured
using a Qubit RNA Assay Kit and a Qubit 2.0 Fluorometer (Life Tech-
nologies); RNA integrity was assessed using the RNA NanoDrop 8000
Assay Kit and the Agilent 2100 Bioanalyzer system (Agilent Technol-
ogies). Samples that passed quality control were sent for genomic
characterization.

DNA/RNA sequencing
WES. WES libraries were prepared and captured using the SureSelect
Human All Exon V6 kit (Agilent Technologies) following the manu-
facturer’s instructions. A total of 100 ng of each DNA sample based on
Qubit quantification was fragmented into 250~300bp fragments on a
Bioruptor Plus sonication system (Diagenode, Lie’ge, Belgium).
Sheared DNA was used to perform end repair, A-tailing and adapter
ligation with an Agilent SureSelectXT Library Prep Kit (Agilent Tech-
nologies, Santa Clara, CA, USA) according to the manufacturer’s pro-
tocol. Then, 750 ng of prepared DNA in a volume of 3.4ml was
captured using Agilent SureSelect Human All Exon V6 (Agilent Tech-
nologies) probes, followed by amplification of the captured library
with indexing primers. Quality control was performed using anAgilent
2100 Bioanalyzer (Agilent Technologies) with a DNA chip. After
quantification with a Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA,
USA), the libraries were sequenced on an IlluminaNova 6000platform
(Illumina Inc., San Diego, CA, USA).

RNA sequencing. RNA library preparation was performed as descri-
bed in the Illumina TruSeq Stranded Total RNA LT sample preparation
kit with RiboZero Gold (Illumina Inc., San Diego, CA, USA). Libraries
were prepared on an Agilent Bravo Automated Liquid Handling Sys-
tem. Quality control was performed at every step, and the libraries
were quantified using a TapeStation system. The mRNA was frag-
mented to an average insert size of 200–400bp at 94 °C for 4min. The
cleaved RNA fragments were copied into first-strand cDNA using
reverse transcriptase (Invitrogen, Carlsbad, CA, USA) and random
primers. The first-strand cDNA was converted into double-stranded
DNA in the presence of dUTP. The incorporation of dUTP in second-
strand cDNA synthesis quenches the second strand during amplifica-
tion, thus improving the strand specificity of the library. These cDNA
fragments were subjected to the addition of a single ‘A’ base and
subsequent ligation of the adapter. The products were purified and
enriched via PCR to generate the final library. Quality control was
performed at every step, and the libraries were quantified using a
TapeStation system. Indexed RNA-seq libraries were then sequenced
using the Illumina Nova 6000 platform (Illumina Inc., San
Diego, CA, USA).

Copy number array
Sample DNA was digested by the restriction enzymes NspI, and
adapters were ligated to the fragment DNA to perform PCR amplifi-
cation. Amplified DNA was labeled and further fragmented using an
Affymetrix OncoScan array kit and reagent kit bundle, (Cat# 901835,
Affymetrix, Santa Clara, CA, US) following the manufacturer’s
instructions to obtain biotin-labeled DNA. Hybridization buffers were
prepared, and array hybridization was performed at 49 °C in a Hybri-
dization Oven (Cat# 00-0331-220V, Affymetrix, Santa Clara, CA, US).
After 16 h of hybridization, arrays were washed in a Fluidics Station
(Cat# 00-0079, Affymetrix, Santa Clara, CA, US) according to the

manufacturer’s instructions. Arrays were scanned by a GeneChip®
Scanner 3000 (Cat# 00-00212, Affymetrix, Santa Clara, CA, US) and
Command Console Software 3.1 (Affymetrix, Santa Clara, CA, US) with
default settings.

DNA methylation array
Genomic DNA (gDNA, ≥500ng) was bisulfite converted using a Zymo
EZ DNAMethylation-Gold kit (Zymo Research,Irvine, CA) according to
the manufacturer’s instructions. The amount of bisulfite-converted
DNA as well as the completeness of bisulfite conversion for each
sample were assessed using a panel of MethyLight-based quality con-
trol assays. Bisulfite-converted DNAs were whole-genome amplified,
enzymatically fragmented, and then hybridized overnight to Infinium
EPIC BeadChip arrays (Illumina, San Diego, CA) following the manu-
facturer’s protocol. The Infinium EPIC array is a genome-wide DNA
methylation technique that quantitatively detects over 850,000
(850K) CpG sites at single nucleotide resolution. Adenine and thymine
nucleotides are labeled red, while cytosine nucleotides are labeled
green. Arrayswere scannedusing the Illumina iScan system toproduce
IDAT files.

WES data analysis
Data processing. The exome sequencing reads after quality control
were aligned to the UCSC hg19 reference sequence with Burrows-
Wheeler Aligner (bwa mem, v0.7.17). PCR duplicates were removed by
Picard (v2.18.11), and the BAM files were then indexed by Samtools
(v1.9). Base quality score recalibration was performed by the Base-
Recalibrator and ApplyBQSR tools from the Genome Analysis Toolkit
(GATK, v4.0.7.0) according to GATK best practices64.

Mutation calling and filtering. Somatic variants including single
nucleotide variants (SNVs) and small indels were detected using
Mutect2 in GATK on processed exome data of tumor and matched
non-tumor normal samples. Annotation of variants was carried out by
Annovar (v2019/04) on the Refseq gene model65. Variants in the non-
coding regions (upstream, downstream, intergenic, intronic, ncRNA,
UTR5, UTR3, etc.) were excluded from the analyses. Germline variants
were filtered by using the 1000 Genomes, Exome Aggregation Con-
sortium, NHLBL Exome Sequencing Project (ESP6500) and Genome
Aggregation Database (gnomAD). A more stringent downstream filter
was applied to obtain high quality somatic variants with the following
criteria: a minimum of 8X coverage; Variant Allele Fraction (VAF) ≥ 4%
and at least 4 variant supporting reads in the tumor sample, and
VAF < 1% in the non-tumor sample; strand bias ≤ 0.95.

Germline variant calling was carried out by using Haploty-
perCaller from GATK. Annotation of germline mutations was per-
formed by Annovar (v2019/04) on the Refseq genemodel and variants
in the non-coding regions were then removed. Pathogenic or likely
pathogenic germline variants determined by InterVar66 were used for
further analysis. KEGGenrichment analysis of germlinemutationgenes
was performed by using the database for annotation, visualization and
integrated discovery (DAVID) (https://david.ncifcrf.gov/).

Significantly mutated gene identification. The filtered somatic
mutations above, including SNVs and indels were further used to
identify significantly mutated genes by MutSigCV (v1.4) with default
parameters67. A false discovery rate (FDR) q value ≤ 0.01 was used as
the threshold to determine significantly mutated genes (SMGs).

Mutation signature analysis. Somatic mutations are the consequence
of multiple mutational processes, including the intrinsic slight infide-
lity of the DNA replication machinery, exogenous or endogenous
mutagen exposures, enzymatic modification of DNA and defective
DNA repair. Different mutational processes generate unique combi-
nations of tri-nucleotide mutational contexts, termed “Mutational
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Signatures”. In this study, the 96mutational contexts from107 samples
were jointly extracted based on six base substitutions (C > A, C >G,
C > T, T > A, T >C, and T >G) within 16 possible combinations of
neighboring bases for each substitution using maftools (v2.4.10)68. A
non-negativematrix factorization (NMF) approach17 was implemented
to infer the number of mutational signatures given the 96 by 107
mutation matrix. Four signatures were determined based on the
cophenetic metric and then compared with the thirty mutational sig-
natures in COSMIC (v3) using cosine similarity to identify themutation
signatures in the SGH-OS cohort.

Tumor mutation burden (TMB) analysis. TMB was defined as the
number of somatic mutations in the coding region and emerged as a
promising biomarker for the prediction of immunotherapy response
with checkpoint inhibitors. To reduce sampling bias and reflect the
reactive tumor state more immunogenically, synonymous base sub-
stitutions and short indels were also counted in the calculation69. To
calculate the TMB, the total number ofmutations countedwas divided
by the size of the coding sequence region (30Mb, ~180,000 exons)70.

Tumor purity, ploidy and HRD score estimation. Paired tumor-
normal exome sequencing data were used to estimate tumor purity
and ploidy by Sequenza (v3.0.0)71. TheHRD scorewas calculated as the
sum of the three scores by scarHRD (v0.1.0)72 using segments pro-
duced by Sequenza: telomeric allelic imbalance (TAI score)73, loss of
heterozygosity (LOH score)74 and large-scale state transition (LST
score)75.

RNA-seq data analysis
Data processing. RNA-seq clean reads were mapped to the human
reference sequence (UCSC hg19 assembly) with Ensembl annotation
(GRCh37.75) using STAR (v2.6.1a)76 with TranscriptomeSAM mode.
The resulting bam file was then subjected to the rsem-calculate-
expression program in RSEM (v1.2.28)77 for gene expression quantifi-
cation. The raw count for each gene was calculated by using HTSeq
(v0.9.1)78.

Unsupervised clustering of RNA-seq. Transcripts per million (TPM)
quantified by RSEMwas used to remove genes whose expression value
was quantified as zero inmore than 75% of all tumor samples (n = 101).
The 1820 most variably expressed genes were identified using the
cutoff of 0.9 quantile of standard deviation (SD) across all tumor
samples. The filtered gene quantifications were then log2 transformed
and median centered prior to subsequent analysis. Unsupervised
consensus clustering was performed by the ConsensusClusterPlus
(v1.46.0)79 R package using partitioning around medoids (PAM) with
1-Pearson correlation distance and resampling 80% of the items for
1000 repetitions. Clustering of samples and genes was implemented
separately with a maximum of k = 10 clusters. The optimal number of
clusters (k = 4) was determined based on the consensusmatrix and the
delta area of the relative change in the area under the cumulative
distribution function (CDF) curve.

Differential gene expression analysis. The DESeq2 package
(v1.28.1)80 in R was applied to identify genes that were differentially
expressed in different clusters. Genes with log2 fold change (FC) ≥ 1
and adjusted p value (P adj) < 0.05 were considered to be statistically
significant.

Gene set enrichment analysis (GSEA) and single sample GSEA
(ssGSEA). GSEA was carried out by GSEA software (v4.0.0)81 and the
Molecular Signature Database (MSigDB, v7.1) using the Hallmark82,
KEGG83, and BIOCARTA84 gene sets. The pre-ranked tool was used for
GSEA with the ranked list in descending order by the statistical sig-
nificance calculated by DESeq2. Single sample GSEA (ssGSEA) was

performed by the GSVA R package (v1.36.2)85 using the gene sets
curated from the three databases mentioned above.

Immune infiltration estimations. The Estimation of STromal and
Immune cells inMAligant Tumors using Expression data (ESTIMATE) R
package (v1.0.13)86 was used to infer the fraction of stromal and
immune cells in tumor samples. Cell-type Identification By Estimating
Relative Subsets Of RNA Transcripts (CIBERSORT) was employed to
estimate the abundance of the 22 immune cell types in each sample87.
Samples with a deconvolution p value less than 0.05 (96/101) were
further used. CDR3 sequences of the tumor-infiltrating TCR were
inferred by using TCR repertoire utilities for solid tumors (TRUST,
v3.0)88. The six immune subtypes (C1: wound healing, C2: IFN-γ
dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immuno-
logically quite, and C6: TGF-β dominant) for each sample were iden-
tified by using iAtlas (https://www.cri-iatlas.org/) to investigate the
immune microenvironment48.

Copy number analysis
Somatic copy number alteration detection. The conumee R package
(v1.8.0) was applied to calculate somatic copy number alterations
(SCNAs) with default parameters based on Illumina’s 850K methyla-
tion array (n = 116). For Affymetrix’s OncoScan array, SCNAs were
called by Chromosome Analysis Suite (ChAS, v3.3) software (Affyme-
trix, Inc.), and these SCNAswereused as the validationdataset (n = 50).
The segmented copy number profiles were used as an input for
Genetic Identification of Significant Targets in Cancer (GISTIC 2.0,
v2.0.23)89 to identify significantly amplified or deleted regions and
obtain gene-level estimates of copy number. GISTIC was run with a
0.99 confidence level and other default parameters. Aberrant regions
with FDR Q-values ≤ 0.25 were considered significant.

Unsupervised clustering of SCNA. Copy number-based clustering
was performed using the SCNA dataset based on Illumina’s 850 K
methylation array due to its large sample size (n = 116). The “Actual
Copy Change Given” for each peak of all tumor samples obtained
from GISTIC analysis (all_lesions.conf_99.txt file) was used for clus-
tering. Unsupervised hierarchical clustering was carried out in R
based on Euclidean distance using Ward’s method by the Complex-
Heatmap (v2.4.3) package90. We used hierarchical clustering for copy
number as it is more stable for copy number segment data. The
cluster assignments were generated by cutting the resulting
dendrogram.

Effects of copy number alterations (CNAs). CNAs affecting mRNA in
either “cis” (within the same aberrant locus) or “trans” (remote locus)
mode were visualized by the multiOmicsViz (v1.10.0) package in R.
Spearman correlation coefficients and associated multiple test FDR
were calculated for 17,242 mRNA-CNA pairs of 91 samples with both
mRNA abundance and CNA data. Genes with significant correlations
(FDR <0.01) were subjected to the enrichGO function in the cluster-
Profiler (v3.16.1) R package91 to identify the enriched biological pro-
cesses of Gene Ontology92,93 altered by CNAs.

DNA methylation data analysis
Data processing. The raw IDAT files (two per sample) generated by
Illumina Infinium MethylationEPIC BeadChip Array (850K) were pre-
processed by using the minfi (v1.25.1) R/Bioconductor package94. Pre-
processing steps included background correction, dye bias
normalization, calculation of beta values and corresponding p value
detection. Probes with a detection p value greater than 0.01 in a given
sample were deemed not to be statistically significantly different from
background and were thus excluded from the analyses. The following
filtering criteria were applied: (1) removal of probes designed for
sequences on X and Y chromosomes; (2) probes within promoter
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regions defined as (−1500, +1500) bp of the transcription start sites
(TSSs); and (3) probes located in CpG islands.

Unsupervised clustering analysis. To minimize the influence of
variable tumor purity levels on a clustering result, we dichotomized
the data using a beta-value of ≥ 0.3 as a threshold for positive DNA
methylation. The top 8000CpG sites (by standarddeviation) thatwere
methylated with that threshold in more than 5% of the tumors were
used for clustering analysis. Unsupervised hierarchical clustering was
performed using Ward’s method to cluster the distance matrix com-
putedwith the Jaccard index. The clusterswere assignedby cutting the
resulting dendrogram. The heatmap was generated by Complex-
Heatmap (v2.4.3) using the original beta values but ordered according
to the above clustering procedures.

Identification of epigenetically regulated genes. Probes that were
located in a promoter region (upstream and downstream 1500 bp
flanking regions of TSSs) and CpG islands defined by the UCSC data-
base were selected for this analysis. For genes with multiple probes,
median beta values were considered.mRNA expression data were log2
transformed (log2 (TPM+ 1)) and used to assess the gene expression
levels associatedwithDNAmethylation changes. Correlations between
DNA methylation and mRNA abundance were evaluated by Spearman
correlation. Correction for multiple testing was performed using the
Benjamini–Hochberg method. Genes were considered to be epigen-
etically regulated with FDR <0.01 and correlation coefficient ≥ 0.35.

Multi-omics data analysis
To study the subtypes formed by multiple molecular platforms of OS,
we applied iCluster for integrative clustering. The iCluster algorithm
formulates the problem of subgroup discovery as a joint multivariate
regression of multiple data types with reference to a set of common
latent variables, which represent the underlying tumor subtypes31,32.

Data processing. Three molecular platforms DNA copy number, DNA
methylation and mRNA gene expression of all available samples (91
patients) were used for integrative clustering. Data were pro-
processed using the following procedures as input to the iCluster-
Plus R package (v1.22.0)32. The segmented data of SCNA were reduced
to a set of 5,226 non-redundant regions. For DNA methylation and
mRNA gene expression data, the SD was used to select the most vari-
able 8,000 CpG sites and 1,820 genes, respectively, as described
above. The mRNA features were log2 transformed, normalized, and
scaled before being used as an input to iCluster.

Model selection. We ran tune.iClusterPlus with different numbers of
possible clusters (k = 1–5). The number of clusters equalsk + 1. For each
k, the optimal combination of clusters was determined by minimizing
the Bayesian information criterion (BIC). The optimal number of
clusters was chosen at which the percentage of explained variation
levelled off (k = 3, 4 clusters). The plotHeatmap function in the iClus-
terPlusRpackagewas used to generate a heatmap sortedby integrated
cluster assignment.

Functional experiments
Immunohistochemistry validation. Formalin-fixed and paraffin-
embedded 4 μm sections were stained for immunohistochemistry
according to standard protocols. The tissue sections were depar-
affinized with xylene and rehydrated in graded ethanol. Following
peroxidase blocking and antigen retrieval, the sectionswere incubated
with primary antibodies against CD4 (Cat #25229, 1:100), CD8 (Cat
#85336, 1:200), FOXP3 (Cat #320101, 1:200), IDO (Cat #86630, 1:400),
PCNA (Cat #13110, 1:10000), Phospho-Histone H2A.X (Cat #9718,
1:480), C-MYC (Cat #18583, 1:200), Di-Methyl-Histone H3 (Cat #2901,
1:200), NSD1 (Cat#LSC286303, 1:400) andPD-L1 (Cat #13684, 1:200) at

4 °C overnight. After washing 3 times with TBST, the sections were
developed using a DAB Kit (BD Bioscience), and then the tissues were
counterstained with hematoxylin. For tissue section imaging, blinded
evaluation was executed independently by two pathologists (Leica
Microsystems), and the proportion of immune positive cells was
calculated.

PDX-derived tumor cell isolation and purification. Xenograft tissue
was minced using sterile scalpels and dissociated for an average of
45min in HBSS, 1mg/ml collagenase (Roche), 25% BSA fraction V
(GIBCO) and 100U/mL penicillin and streptomycin. This was followed
by further dissociation using trypsin (GIBCO). Red blood cell lysis was
performed with ammonium chloride-potassium (ACK) buffer (Invi-
trogen). Cells werefiltered through a 40μm filter and resuspended in a
solution containing phosphate-buffered saline (PBS), pH 7.2, and 0.5%
bovine serum albumin (BSA). Cells were then labeled with MicroBeads
(Miltenyi Biotec) and incubated at 4 °C for 15min. After incubation, the
cell suspension was separated using a magnetic separator. After FACS
qualification, human cells were resuspended in DMEM with 10% fetal
bovine serum for other in vitro assays.

Cell viability assay. For the cell proliferation assay, primary PDCs (5 ×
103 cells in 100μl/well) were plated into 96-well plates and incubated
overnight at 37 °C. Then the cells were treated with DMSO or the
indicated concentration of olaparib, cisplatin, or the combination of
olaparib and cis-platinum for 3 days at 37 °C. After drug treatment,
50μl of CellTiter-Glo reagent (Promega,Madison, WI, USA) was added
to eachwell. Luminescencewas recordedwith anEnVisionplate reader
(Perkin Elmer, Waltham, MA).

In vivo therapeutic testing. Two PDXmodels (BRCA2mutation, HRD
score > 42; BRCA2 WT, HRD score < 42) were adopted for in vivo
synthetic lethal evaluation. Short tandem repeat (STR) analysis was
also used to confirm genotype matching between PDX passages and
the corresponding human tumor. Representative H&E and immu-
nohistochemical staining results demonstrated that PDX tumors
closely resemble the human tumors from which they were derived.
Mice were randomized into DMSO or treatment groups when tumors
reached approximately 100 mm3 (five 4 weeks NSG mice per group).
In the drug treatment groups,micewere given olaparib, cis-platinum,
or a combination of olaparib and cis-platinum at the indicated con-
centrations by p.o. three times per week. In the DMSO group, mice
were administered DMSO diluted in PBS. Themaximal tumor volume
for mouse experiments was 1500mm3, and no mice exceeded this
maximum. Mice were maintained on a 12 h light/dark cycle under a
constant temperature of 24 ± 2 °C and a relative humidity of 55 ± 5%.
All procedures were approved by the ethics committee of the
Shanghai General Hospital Animal Care and Use Committee. The
maximal tumor burden was not exceeded than that permitted by the
ethics committee.

Statistics and reproducibility
Quantification and statistical analysis methods for each of the various
data platforms and for integrated analyses are mainly described and
referenced in the respective method subsections.

Associations between and among clinical andmolecular datawere
assessed according to the nature of the data for each pair. Student’s t
test, analysis of variance (ANOVA), theWilcoxon rank sum test and the
Kruskal–Wallis test were applied to compare categorical variables
versus continuous variables. For categorical variables versus catego-
rical variables, Fisher’s exact test was used; and for continuous versus
continuous variables, Spearman correlation was used. To account for
multiple testing, the p values were adjusted to the false discovery rate
(FDR) using Benjamini–Hochberg correction. Kaplan–Meier survival
curves and log-rank tests were used to compare the overall survival

Article https://doi.org/10.1038/s41467-022-34689-5

Nature Communications |         (2022) 13:7207 14



between different clusters. All clinical and molecular statistics were
performed using R packages (v4.0.2).

For the in vitro and in vivo assays, all experiments were repeated
three times, and the data are expressed as the mean± SD. The statis-
tical significance of differences was determined by two-way ANOVA.
Statistical analysis was performed using GraphPad Prism (v8.02). All
statistical tests were two-sided unless otherwise specified. Asterisks
define significance levels (*p <0.05; **p <0.01; ***p <0.001,
****p < 0.0001).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheWESandmRNA sequencing data generated in this study have been
deposited in theGenome SequenceArchive inNationalGenomics Data
Center, China National Center for Bioinformation/Beijing Institute of
Genomics, Chinese Academy of Sciences database under accession
code (GSA: HRA003260). The DNA methylation data reported in this
paper have been deposited in the OMIX, China National Center for
Bioinformation/Beijing Institute of Genomics, Chinese Academy of
Sciences [https://ngdc.cncb.ac.cn/omix/release/OMIX002042]. The
HRD score of pan-cancer data was derived from publicly available
TCGA data [https://portal.gdc.cancer.gov/]. Data is available under
controlled access due to the conditions stipulated in the patient con-
sent process. WES, RNA-seq and DNA methylation data will be made
available for academic use only, and will be made available within
2 weeks. Access can be requested through the GSA access committee,
but any queries can be directed to Dr Yingqi Hua (yhua@shsmu.e-
du.cn). The remaining data are available within the Article, Supple-
mentary Information or SourceDatafile. Sourcedata areprovidedwith
this paper.
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