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Enantioselective synthesis of N-alkylindoles
enabled by nickel-catalyzed C-C coupling

Lun Li1,3, Jiangtao Ren1,2,3, Jingjie Zhou1, Xiaomei Wu1, Zhihui Shao 1,2 ,
Xiaodong Yang 1 & Deyun Qian 1

Enantioenriched N-alkylindole compounds, in which nitrogen is bound to a
stereogenic sp3 carbon, are an important entity of targetmolecules in thefields
of biological, medicinal, and organic chemistry. Despite considerable efforts
aimed at inventing methods for stereoselective indole functionalization,
straightforward access to a diverse range of chiral N-alkylindoles in an inter-
molecular catalytic fashion from readily available indole substrates remains an
ongoing challenge. In sharp contrast to existing C–N bond-forming strategies,
here, we describe a modular nickel-catalyzed C–C coupling protocol that
couples a broad array of N-indolyl-substituted alkenes with aryl/alkenyl/alky-
nyl bromides to produce chiral N-alkylindole adducts in single regioisomeric
form, in up to 91% yield and 97% ee. The process is amenable to proceed under
mild conditions and exhibit broad scope and high functional group compat-
ibility. Utility is highlighted through late-stage functionalization of natural
products and drug molecules, preparation of chiral building blocks.

Enantioenriched indole derivatives are of great interest in pharma-
ceutical science and organic chemistry1–4. Particularly, the indole core
is one of the most frequent N-heterocyclic fragment featured in FDA-
approveddrugs5. Therefore, differentmethodshavebeendesigned for
the construction of chiral indole scaffolds6–9. The most typical func-
tionalizations of indoles take place at the C3 positions, due to their
innate nucleophilicity10,11. In contrast, the development of techniques
involving a stereocenter adjacent to the nitrogen, an essential struc-
tural motif imbedded in many biologically active molecules
(Fig. 1A)12–16, remains a great challenge, presumably owing to the
attenuated nucleophilicity of the nitrogen atom (Fig. 1B). To this end, a
few powerful C-N bond-forming approaches have been developed to
access chiral N-alkylindoles (Fig. 1B). However, these transformations
often rely on the enantioselective intramolecular addition of pre-
functionalized indole substrates17–19, or intermolecular N-alkylation
(mostly N-allylation) of indoles with C3-blocking substituents20–25 or
electron-withdrawing groups26–33. Moreover, indirect methods using
indole precursors such as indolines or aryl hydrazines were also
developed to obtain high regio- and enantioselectivity34–36. Recently,

the Vilotijevic and Buchwald groups demonstrated elegant works
using N-modificated strategy to engage N-silyl indoles and N-(ben-
zoyloxy)indoles in C-N bond-forming reactions, respectively37,38.
Despite these remarkable advances, a general, modular and selective
synthesis of enantioenriched N-alkylindoles is in crucial demand, par-
ticularly if the substrates and catalysts are readily available39,40.

New strategic bond-forming reactions would offer a com-
plementary protocol to existing C-N bond-forming process and an
opportunity to explore currently inaccessible chemical space. In this
regard, the enantioselective coupling of an α-N-alkyl metal species or
anα-N-alkyl radical species represents a straightforward strategy to the
synthesis of chiral alkylindoles (Fig. 1C)41,42. However, forging a C–C
bond asymmetrically at the position α to the indole nitrogen remains
elusive43–45. Recently, the Melchiorre43 and Davidson44 groups inde-
pendently reported impressive works using photoredox chemistry to
engage indole-derived α-N-alkyl radical intermediates in N-alkylindole
synthesis, despite limited substrate scope and enantioselectivity
(Fig. 1C, right). Moreover, in the the case, a leaving group (-CO2H or
DHP) is necessary for the generation of an α-N-alkyl radical. In contrast,
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there have been no reports on generation and coupling of indole-
derived α-N-alkyl metal species. The enantioselective Ni-catalyzed
reductive coupling of olefins with electrophiles represents an attrac-
tive utilization of in-situ generated alkyl-Ni species46–52. We wondered
whether this reductive coupling strategy could be harness to access
chiral N-alkylindoles. However, catalytic enantioselective reductive
coupling of N-alkenyl indoles faces several challenges. First, current
asymmetric reductive coupling is largely limited to the use of liner
alkyl–Ni intermediates46–58. Catalytic enantioselective coupling of
branched alkyl–Ni intermediates generated from hydronickellation of
olefins remains elusive59–63. Moreover, modulation of the site-
selectivity pattern across differently substituted N-alkenyl indoles is
unknown. In addition, the propensity of N-alkenyl polymerization and
reduction is possible64–67.

As a part of our interest in chiral alkylamine-bearing
molecules25,68, here, we show a catalytic enantioselective cou-
pling of in-situ generated α-N-alkyl nickel species with aryl/alke-
nyl/alkynyl bromides, analogous to the C(sp3)–C(sp2)/C(sp) cross-
coupling reaction, enabling a unified method toward structually
diverse chiral N-alkylindoles in high yields and ee’s (Fig. 1D). By
employing mild conditions, this modular, unified fragment cou-
pling provides practical advantages in reaction efficiency, func-
tional group compatibility, as well as substrate availability and
scope, which would be broadly useful yet mechanistically ortho-
gonal to established N-alkylation processes. In particular, appli-
cation in late-stage diversifcation of many natural products and
drugmolecules demonstrates its utility in accelerating access toN-
alkylated drug-like complexity.

Fig. 1 | Representative chiral N-alkylindole derivatives and strategies for cata-
lytic enantioselective synthesis of N-alkylindoles. A Representative biologically
active chiral N-alkylindole derivatives; B Existing C–N bond-forming methods to

access chiral N-alkylindole derivatives; C C–C bond-forming strategy to access
chiralN-alkylindole derivatives;D This work: catalytic,modular, unified coupling of
α-N-alkyl-Ni species.
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Results
Reaction discovery and investigations
By the use of 4-bromophenylacetone as the coupling partner, we firstly
examined the reaction of N-vinylindole 1a, representing a class of
nucleophiles that has previously been unexploited in asymmetric
nickel-catalyzed reactions although has been widely utilized as
monomers for the synthesis of polymeric materials64,69. Upon investi-
gating a series of reaction parameters (Table 1 and Supplementary
Tables 1–6), we discovered that running of the cross-coupling partners
at 40 °C for 20 h in the presence of NiCl2•DME, commercially available
(S,S)-diphenyl-Box ligand (L*1), a hydride source (diethoxy-methylsi-
lane), and a base (KF) provides the desired product in 36% yield and
79% enantiomeric excess (ee) as a single isomer (entry 1). Compared to
L*1, employing bis-oxazoline analogs L*2-L*4 bearing alkyl sub-
stitutents (R) almostdidnot produce3a.Moreover, the isopropylidene
bridge of L*1proved to be essential, as L*5with gem-H could not afford
the product. Inferior results were found with other chiral nitrogen-
based ligands, such as pyridine-oxazoline (Pybox) and 2,2-bis(2-oxa-
zoline) (Bi-Ox) ligands (entries 3–4). Further solvent screening indi-
cated 1,2-dimethoxyethane was superior to other solvents, producing
3a in good yield and ee under room temperature (entry 5). Interest-
ingly, the mixed solvent (DME/DCE) turned out as the best solvent to
obtain both high yield and high enantioselectivity (entries 5–7), thus
indicating the subtle interplay of reagents and solvents in this case. In
addition, use of other nickel salts, NiBr2•DME resulted in higher ee
(entry 8), while NiI2•xH2O gave the best result (entry 9).

Reaction scope
The generality of this catalytic enantioselective method is broad
(Fig. 2). Concerning the aryl bromide, the reactionproceeded smoothly
with a wide array of substrates to provide the corresponding products
in moderate to high yields with universally high enantioselectivities.
Notably, electron-deficient or electron-rich arenes were amenable
coupling partners, inwhich the substituent could beplaced at para and

meta position. A variety of functionalities such as a nitrile (2b), tri-
fluoromethyls (2c, 2p, 2r), esters (2d, 2m, 2q), halides (2f, 2 g, 2n, 2o),
ethers (2i, 2j) were all readily accommodated. Despite the ability of
nickel complex to activated aryl chlorides, our approach could tolerate
Ar-Cl groups (2f, 2o). In particular, sensitive functional groups includ-
ing easily reduced ketone (2a) and aldehyde (2e), and triflate (2k) and
boronic acid pinacol ester (2l) commonly used for cross-coupling, all
remained intact under the standard reaction conditions. Furthermore,
the pharmaceutically important heterocycle–pyridine (2r) was com-
patible as well.

Next, we sought to survey the influence of the N-vinylindole var-
iants that could be used in the catalytic hydroarylation event.
Delightfully, a diverse array of functional groups were suitable at dif-
ferent positions on the benzene ring of the indole, including a
6-methoxy (3s), 6-fluoro (3t), 6-cyano (3u), and 5-methyl (3v) sub-
stituent. It is worth noting that alkyl group at the C3-position of the
indole scaffold was accommodated, delivering the corresponding
product 3w in moderate yield but with excellent enantioselectivity,
which is difficult to obtain employing previous CuH catalysis38. In
addition, carbazole-derived substrate afforded the desired N-alkylated
product in moderate yield and enantioselectivity (3x). Gratifyingly, a
diverse set of more sterically hindered (Z)-N-alkenyl indoles were also
successfully transformed utilizing thismethod, and the corresponding
N-alkylindoles were readily prepared in useful yields with good levels
of enantioselectivity (3y-3dd). However, (E)-N-alkenyl indoles per-
formed lower reactivity and slightly lower enantioselectivity than their
Z isomers (e.g., 3y: 19%, 84% ee vs. 41%, 87% ee). The isomerization of
Z-N-alkenyl substrate to its E isomer was observed during the reaction
process, and over 40% of the E/Zmixture could be recovered after the
reaction (Supplementary Method 1.6). Of note, the C–C bond-forming
event occurs regioselectively at the carbon α to the nitrogen of
indoles, even in the presence of other directing groups such as amide
(3z-3bb), ester (3cc), and aryl (3dd). Especially, this modular reaction
could be applied to prepare important serotonin reuptake inhibitor

Table 1 | Summary of the effects of crucial reaction parametersa

Entry Variant Yield (%) ee (%)b

1 L* = L*1 36 79

2 L* = L*2, L*3, L*4, or L*5 trace n.d.

3 L* = L*6 34 16

4 L* = L*7 62 58

5 L* = L*1, DME as solvent, rt 80 81

6 L* = L*1, DCE as solvent, rt 16 88

7 L* = L*1, DME/DCE (3:1) as solvent, rt 82 86

8 NiBr2•DME as Ni-Cat. vs. entry 7 78 88

9 NiI2•xH2O as Ni-Cat. vs. entry 7 81 (77)c 92
aSee theSI for experimental details; all reactionswere carried out in 0.2mmol scalewith respect to 1a; corrected 1HNMRyields usingCH2Br2 as an internal standardwere reported. bTheenantiomeric
excesses (ee’s) were determined by HPLC analysis. cIsolated yield is shown in the parenthesis. L* chiral ligand; DME 1,2-dimethoxyethane; DCE 1,2-dichloroethane, rt room temperature; h hour; n.d.
not detected.
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derivatives with good efficiency and enantioselectivities (3z-3bb,
81–92% ee’s).

In addition to aryl bromides, vinyl bromides were incorpo-
rated as well in this reaction, leading to structually diverse chiral N-
allyl indoles 4a-4f in 35–60% yields with 73–95% ee values.
Remarkably, this modular alkenylation complements previously
established metal-catalyzed indole N-allylations in that di- and
trisubstituted allylic products bearing aryl and alkyl groups are
readily accessed27,29,31,70,71.

Besides the C(sp2) bromides, this catalytic C-C bond-forming
reactionwas also viable forC(sp) bromides–bromoalkynes 5.While the
above standard conditions with ligand L*1 resulted in poor enantio-
control for the C(sp3)-C(sp) coupling (e.g., 6a: 28% yield, 55% ee),
delightfully, the reaction selectivity could be significantly improved by
further optimization efforts (see Supplementary Table 7). As shown in
Fig. 3, the treatment of bromoalkynes 5 and N-alkenylindoles 1 with
10mol% NiI2 as the catalyst, 15mol% L*8 as the ligand at 0 °C could

yield the corresponding chiral N-propargyl indoles 6 in mostly good
yields (25–89%) and high levels of enantioselectivity (ee values of
80–97%). A variety of N-alkenyl indoles substituted at the 4-position
(6b), 5-position (6c-6g), 6-position (6h-6j), and 7-position (6k, 6l) each
underwent efficient hydroalkynylation to provide the corresponding
products with uniformly high enantioselectivities. Of note, alkyl group
at the C3-position of the indole scaffold was demonstrated being tol-
erated again (6m). With regard to medicinal chemistry applications,
the generation of product 6g demonstrates tolerance of a pinacol
boronate subunit under the conditions of catalytic enantioselective
alkynylation. Additionally, more sterically hindered cis-β-substituted
N-alkenyl indoles also successfully underwent C(sp3)-C(sp) bond-
formation to deliever compounds 6o and 6p, respectively, as single
regioisomers with reasonable yields and good enantioselectivities.
Similar to the C(sp3)-C(sp2) coupling, the reaction reactivity and ste-
reoselectivity was influenced by the Z and E configuration of N-alkenyl
indoles (e.g., 6o).

Fig. 2 | Scope of enantioselective synthesis of N-benzyl and N-allylic indoles
enabled by Ni-catalyzed C(sp3)-C(sp2) coupling reactions. Conditions: aAll reac-
tions were carried out with NiI2•xH2O (10mol%), ligand L*1 (15mol%), 1

(0.40mmol), 2 (0.80mmol), (OEt)2MeSiH (0.48mmol), KF (0.60mmol) and DME/
DCE (3:1, 2.0mL) at room temperature for 20 h; bDME as solvent, (OEt)2MeSiH
(0.72mmol), KF (0.88mmol), 48h.
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Beyond the TIPS-substituted ethynyl bromide 5a, TBS- and 3°
alkyl-substituted ethynyl bromides 5b-5c proved to be viable coupling
partners in this system, affording the desired indole adducts (6q-6r) in
47–74% yields with excellent enantioselectivities. However, ethynyl
bromides with less steric hindered alkyl and aryl substitutents deliv-
ered inferior results (e.g., R3 = n-Bu: no reaction; R3 = Ph: 26% yield, 50%
ee). In addition, it should be noted that the current L*8-ligated nickel
catalysis could be expanded to enable the synthesis of chiral N-benzyl
and N-allylic indoles in high enantioselectivities (e.g., 3a’ and 4e’).

Synthetic applications
More importantly, the present method could be applied in late-stage
diversification of complex drug molecules and natural products72. As
depicted in Fig. 4, aryl bromides derived from complexe bioactive
molecules canagliflozin derivative, an antidiabetic drug (7a), indo-
methacin, a nonsteroidal anti-inflammatory drug (7b), and vitamin E, an
antioxidant (7c), coupled with N-vinylindole 1a in good yields and ste-
reoselectivities, thus revealing the appeal that our approachmight have
for lead generation protocols in drug discovery. Furthermore, aryl

bromides orN-alkenyl indoles bearingmultiple stereocenters originated
from vitamin E (7c), D-galactopyanose (7d), and citronellal (7e) were all
viable substrates, affording potentially valuable N-alkyl adducts in syn-
thetically useful yields and high diastereoselectivity. To further show-
case the robustness and synthetic utility of the method, the catalytic
enantioselective synthesis of N-benzyl indole 7a on a gram scale was
carried out with similar efficiency (Supplementary Method 1.7).

Notably, the alkynyl group on the chiral N-propargyl indoles
prodvided a useful and versatile handle for derivatizations (Fig. 5). For
eaxmple, desilylation of 6a provided the enantioenriched terminal
alkyne 8, which subsequently underwent the Sonogashira coupling to
afford the aryl-substituted alkynye product 9. Terminal alkyne 8
underwent a click reaction to give chiral triazole 10. Reduction of 8
with Lindlar Pd and H2 afforded chiral N-allylic indole 11, while
reduction of 6awith DIBAL-H produced chiral vinylsilyl compound 12.

Mechanistic studies
To gain insight into themechanism and origin of selectivity, a series of
experiments well conducted. Generally, the reductive coupling

Fig. 3 | Scope of enantioselective synthesis of N-propargyl indoles enabled by
Ni-catalyzed C(sp3)-C(sp) coupling reactions. Conditions: a All reactions were
carried out with NiI2 (10mol%), ligand L*8 (15mol%), 1 (0.10mmol), 5 (0.25mmol),
(OEt)2MeSiH (0.30mmol), KF (0.30mmol) and DME (0.25mL) at 0 °C for 36h; b

NiI2·xH2O instead of NiI2;
c MeCN instead of DME; d Pybox ligand (S,S)-L*17 instead

of L*8, K3PO4 instead of KF, 40 °C, 24h (see SI for details). TIPS = triisopropylsilyl;
TBS = t-butyldimethylsilyl.
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process consists of π-bond insertion into L*Ni−H species, oxidative
addition of the resulting L*Ni-alkyl intermediate, and reductive elim-
ination to formproduct and the L*Ni-H catalyst46–63. Take the reductive
coupling of N-alkenyl indoles with aryl halides as an example, com-
petition experiments were performed to compare the reactivity
between different aryl halides, indicating that (i) electron-deficent aryl
bromide is more reactive than an electron-rich one (Fig. 6a–i), and (ii)
aryl bromide is more reactive than aryl iodide (Fig. 6a–ii). In fact, a
competing reductive hydrodehalogenation event was observed when
an aryl iodidewas uesd as the electrophile (Fig. 6a–iii)73,74, suggesting it
is disadvantaged for the final product formation that oxidative addi-
tion of L*Ni complex prior to generation of L*Ni-alkyl intermediate.
Next, the reductive coupling of 1a was chosen for kinetic studies, and
the reaction progress was monitored by 19F and 1H NMR. Initial rate
experiments disclosed that the reaction was zero-order in N-alkenyl
indole, first-order in catalyst and aryl bromide, and fractional-order in
diethoxymethylsilane (Fig. 6b, see also Supplementary Method 1.9.1).
Moreover, Hammett studies were also performed to evaluate the
influence that electronic variation of the aryl electrophiles had on the
rate of hydroarylation (Fig. 6c)75,76. As a result, a variety of para-sub-
stituted aryl bromides reacted with N-vinylindole 1a at different rates,
indicating that electronic variation of the aryl electrophile had a
remarkable impact on the rate ofN-vinylindolehydroarylation. A linear
relationship was further observed through a Hammett plot. The posi-
tive slope (ρ = 0.67) suggests negative charge accumulation in the
turnover-determining transition state, which is stabilized by electron-

withdrawing substituents. Taken together, the above results reveal
that oxidative addition is most likely the turnover-limiting step.

Furthermore, a linear correlation was observed by nonlinear
effect studies on the enantiomeric composition of chiral ligandL*1 and
N-alkylindole product 3o (Fig. 7a), which is consistent with a ligated
nickel catalyst being of a monomeric nature. To identify the enantio-
determining step of theN-vinylindole hydroarylation reaction, we next
investigated linear free energy relationships (LFERs) between the
Hammett electronic parameters of various para-substituted aryl bro-
mides and the enantioselectivities of the corresponding products
(Fig. 7b)77,78. A linear correlation was observed with para-substituted
aryl bromides as enantioselectivity increased with the introduction of
electron-withdrawing groups (ρ = 1.07): 56% ee and 92% ee were
observed for 4-methoxyphenyl bromide (σ = −0.27) and4-acetylphenyl
bromide (σ =0.50), respectively, implying that the enantioselectivity
of the process is not solely under catalyst control. In addition, the
silane did essentially not affect the enantioselectivity of the reaction.
On the basis of these results, oxidative addition is most likely the
enantiodetermining step.

As shown in Fig. 8, a more complete description of the proposed
mechanism is outlined. The syn-hydrometallation of an L*Ni-H species
into an N-alkenyl indole would form alkyl-Ni(I) species (B). Subse-
quently, the selective oxidative additionbetweenaparticular isomerof
the alkyl-Ni(I) species and the bromide (2, 5) wouldultimately generate
a single alkyl-Ni(III)-R enantiomer (C), because this step would be both
the turnover-determining step and the enantio-determining step in the

Fig. 4 | Late-stage diversification of drug molecules and natural products.
Conditions: All reactions were carried out with NiI2•xH2O (10mol%), ligand L*1
(15mol%), 1a or citronellal-derived 1u (0.40mmol), drugs- or ntural products-

derived 2 (0.80mmol), (OEt)2MeSiH (0.48 or 0.72mmol), KF (0.60 or 0.88mmol)
and DME/DCE (3:1, 2.0mL) at room temperature for 20 or 48h.

Fig. 5 | Derivatizations of chiral N-propargyl indoles. Desilylation and alkynyl reduction of compound 6a; Sonogashira coupling, [3 + 2] cycloaddition, and hydro-
genation of compound 8. DIBAL-H = diisobutylaluminum hydride; Lindlar Pd = Pd/BaSO4; CuTc= copper(I) thiophene-2-carboxylate.
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presence of a chiral ligand (L*1, L*8). In particular, the favored enan-
tioselective transition stateTS-Cwould lead to themajor enantiomeric
product, owing to steric interations with the ligand phenyl sub-
stituents (TS-C’). Then, stereospecific reductive elimination would
afford the desired product (3, 4, 6, 7) and regenerate the active nickel
hydride species (A). Alternatively, the competitive alkyl-Ni homolysis
process was also possible53,55,62,79.

In summary, we have developed a nickel-catalyzed enantioselec-
tive, modular coupling of indole-based N-alkyl-Ni fragments with
C(sp2)/C(sp) bromides. By the use of easily accessible and stable
indole-derived alkenes as nucleophiles, this protocol enables stream-
lined preparation of enantioenriched N-alkylindole molecules under
mild conditions, with previously inaccessible functional group toler-
ance and chemical space. Application in late-stage diversification of
several complex drug molecules and natural products as well as chiral
syntheses demonstrates its potential utility in the synthesis of valuable
chiral N-alkylated bioactive compounds.

Methods
General procedure for the enantioselective synthesis of N-ben-
zyl and N-allylic indoles
To an oven-dried 8.0mL Teflon-screw cap test tube containing a
magnetic stir was charged with NiI2•xH2O (16.8mg, 10mol%) and
ligand L*1 (20.2mg, 15mol%) under an N2 atmosphere using glove-box

techniques. Subsequently, anhydrousDME (1.5mL)was added, and the
mixturewas stirred for 15min at room temperature. Next, KF (35.0mg,
0.60mmol, 1.5 equiv.), N-alkenyl indole 1 (0.40mmol, 1.0 equiv), aryl/
alkenyl bromide 2 (0.80mmol, 2.0 equiv.), DCE (0.5mL), and (OEt)2-
MeSiH (78.0uL, 0.48mmol, 1.2 equiv.) were sequentially added. Then
the tubewas sealedwith airtight electrical tapes and removed from the
glove box and stirred at room temperature for 20–48 h. After that, the
reaction mixture was diluted with saturated NH4Cl (aq., 1.0mL) and
EtOAc (5.0mL). The aqueous phase was extracted with EtOAc
(2 × 5.0mL) and the combined organic phases were concentrated. The
crude mixture was purified by flash column chromatography on silica
gel using amixtureof PE/EtOAc as eluent to obtain the desiredproduct
3, 4, 7.

General procedure for the enantioselective synthesis of N-pro-
pargyl indoles
To an oven-dried 12mL Teflon-screw cap test tube containing a mag-
netic stir was charged with NiI2 (3.1mg, 10mol%) and ligand L*8
(7.7mg, 15mol%) under a nitrogen N2 atmosphere using glove-box
techniques. Subsequently, anhydrous DME (0.25mL) was added, and
the mixture was stirred for 30min at room temperature. Next, KF
(17.4mg, 0.30mmol, 3.0 equiv), N-alkenyl indole 1 (0.10mmol, 1.0
equiv), alkynyl bromide 5 (0.25mmol, 2.5 equiv), and (OEt)2MeSiH
(43.0 µL, 0.30mmol, 3.0 equiv.) were sequentially added. Then the

Fig. 6 | Mechanistic experiments. a Competition experiments ([N] =N-indolyl); b Initial rate experiments; c Hammett study for the formation of 3 versus the corre-
sponding σ value (k = reaction rate).

Fig. 7 | Furthermechanistic experiments. aNonlinear effect study;bHammett plot for the enantiomeric ratio (er) of hydroarylation products using para-substituted aryl
bromides.
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tube was sealed with airtight electrical tapes and removed from the
glove box and stirred at 0 °C for 36 h. After that, the reaction mixture
was dilutedwith saturated NH4Cl (aq., 1.0mL) and EtOAc (5.0mL). The
aqueous phase was extracted with EtOAc (2 × 5.0mL) and the com-
bined organic phases were concentrated. The crude mixture was
purified by flash column chromatography on silica gel using a mixture
of PE/EtOAc as eluent to obtain the desired product 6.

Data availability
The data relating to the materials and methods, experimental proce-
dures, mechanism research, NMR spectra, and HPLC spectra are
available in the Supplementary Information. All other data are available
from the authors upon request.
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