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The contribution of common and rare
genetic variants to variation in metabolic
traits in 288,137 East Asians

Young Jin Kim 1,7, Sanghoon Moon1,7, Mi Yeong Hwang 1, Sohee Han1,
Hye-Mi Jang1, JinhwaKong1,DongMunShin1, KyungheonYoon 1, SungMinKim1,
Jong-Eun Lee2, Anubha Mahajan3,4, Hyun-Young Park5, Mark I. McCarthy 3,4,
Yoon Shin Cho 6,8 & Bong-Jo Kim 1,8

Metabolic traits are heritable phenotypes widely-used in assessing the risk of
various diseases. We conduct a genome-wide association analysis (GWAS) of
nine metabolic traits (including glycemic, lipid, liver enzyme levels) in 125,872
Korean subjects genotyped with the Korea Biobank Array. Following meta-
analysis with GWAS from Biobank Japan identify 144 novel signals (MAF ≥ 1%),
of which 57.0% are replicated in UK Biobank. Additionally, we discover 66 rare
(MAF < 1%) variants, 94.4% of them co-incident to common loci, adding to
allelic series. Although rare variants have limited contribution to overall trait
variance, these lead, in carriers, substantial loss of predictive accuracy from
polygenic predictions of disease risk from common variant alone. We capture
groups with up to 16-fold variation in type 2 diabetes (T2D) prevalence by
integration of genetic risk scores of fasting plasma glucose and T2D and the
I349F rare protective variant. This study highlights the need to consider the
joint contribution of both common and rare variants on inherited risk of
metabolic traits and related diseases.

Metabolic traits available from routine biochemical tests represent
intermediate phenotypes widely-used in assessing disease risk. Gly-
cemic traits such as levels of fasting plasma glucose (FPG), 2-h glucose
after a 75-g oral glucose tolerance test, and hemoglobin A1c (HbA1c)
are used as diagnostic tests for type 2 diabetes (T2D)1; dyslipidemia, an
abnormal level of lipid (high lipoprotein cholesterol (HDL), lowdensity
lipoprotein cholesterol (LDL), triglyceride (TG), and total cholesterol
(TC)) in the blood, represents a major risk factor for coronary artery
disease and stroke2; and increased levels of liver enzymes (alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and γ-
glutamyl transferase (GGT)) reflect liver injury and disease3,4. Given the
heritable nature of these metabolic traits5–7, there is potential to use

individual genetic information as an additional tool to stratify disease
risk and provide clinical decision support8, as well as to provide
inference about disease biology.

Previous large-scale genetic association data have over-
whelmingly been derived from studies of European ancestry
individuals9. This Eurocentric bias in variant discovery has been shown
to lead to an inaccurate inference of genetic risk in individuals of non-
European ancestry10. Recently, large-scale biobanks, such as UK Bio-
bank (UKB)11,12,MillionVeteranProgram13, BioBank Japan (BBJ)14, aswell
as a number of international consortia15–17 have begun to demonstrate
the value of generating large-scale trans-ethnic genetic association
data for medically-relevant metabolic traits. This warrants efforts to
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generate GWAS data across populations that can, collectively, provide
a more diverse ancestral background, and take account of differences
in genetic architecture and allele frequencies between populations10.

Recent studies have demonstrated the clinical potential offered
by aggregating individual measures of genetic risk in the form of
polygenic risk scores (PRS) across a growing range of diseases: these
PRS can define substantial tranches of the population who differ
markedly with respect to disease prevalence and incidence8,18,19. Most
of thesePRS focus on commonvariants (typically,MAF > 1%). Although
sequencing and customized microarray-based studies are now identi-
fying a growing number of rare functional variants (typically in coding
regions)8,16,17,20–30, the contribution of rare variants to population trait
variance and the value of their inclusion within PRS remain poorly
characterized. Recent studies have reported that background poly-
genic risk contributes to the variable penetrance of rare pathogenic
mutations in genes such as LDLR, APOB, and PCSK9 for coronary artery
disease31, BRCA1 and BRCA2 for breast cancer29, and MYOC for
glaucoma32.

The Korea National Institute of Health launched the Korea Bio-
bank Array (KBA) project33 in 2014 to characterize genetic variation
influencing complex traits such as T2D and obesity in the Korean
population. The project involved analyzing cohorts of the population-
based Korean Genome and Epidemiology Study (KoGES)34 using a
customizedSNPmicroarrayof ~830Kvariants. This arraywasdesigned
to offer optimal tagging of common variants in East Asian populations,
together with large-scale evaluation of 208K functional variants (70%
of them with MAF < 1%) retrieved from 2576 sequenced Korean
subjects33.

Here, we focus on analysis of nine metabolic traits with clear
medical relevance, including twoglycemic traits (FPG andHbA1c), four
lipid traits (HDL, LDL, TG, and TC) and three liver enzymes (ALT, AST,
and GGT). We use the KBA to assess association of these traits with
both common and rare functional variants in 125,872 Korean subjects
aged 40–69 years, and extend these insights by analyses in both the
Biobank of Japan and UK Biobank. As a result, we identified over 1000
common and rare variants associatedwith ninemetabolic traits. These
large-scale analyses are further utilized to explore the contribution of
common and rare variants to variation of metabolic trait measures

from bothmechanistic and clinical perspectives. We demonstrate that
the rare variants, in carriers, lead substantial loss of predictive accu-
racy from common variants based polygenic predictions of metabolic
traits and T2D.

Results
Discovery of metabolic traits associated common variants in
126K Korean individuals
The study scheme is summarized in Fig. 1. A total of 134,721 KoGES
samples were genotyped with the KBA and after quality control,
125,872 of thesewere taken forward for imputation (Methods section).
A merged reference panel, combining whole genome sequencing data
from 2504 1000Genomes Phase 3 participants and 397 samples from
the Korean Reference Genome33,35 was used for imputation. Imputed
data was filtered to retain 8.3M high quality common variants (info ≥
0.8 andMAF ≥ 1%). Demographic characteristics of this “126 K” sample
set are provided in Supplementary Data 1.

Single variant association analysis (linear regression) of the nine
metabolic traits was performed using EPACTS v3.4.6, assuming an
additive mode of inheritance. A variant was considered associated if
the variant met a Bonferroni corrected threshold of P < 5.56 × 10−9 (i.e.
the standard 5 × 10−8 adjusted for nine traits): this threshold is, given
the phenotypic correlations between several of the traits, somewhat
conservative (Supplementary Data 2). For variants meeting the
threshold, a locus was defined as ‘known’ if located within 500 kb of a
signal previously associated with the respective trait, and considered
‘novel’ otherwise (Methods section). Overall, these analyses yielded
415 locimeeting genomewide significance: of these 68 loci were newly
identified (Supplementary Data 2).

Common variant meta-analysis of metabolic traits in 288K East
Asians
To boost power and seek replication, the common variant discovery
was extended by combining the Korean data with summary-level
information from a GWAS (6M variants after imputation) previously
conducted in 162,255 individuals from BioBank Japan14, resulting in
the largest GWAS for continuous metabolic traits in East Asians to
date (N = 288,127). Among East Asian groups, Korean and Japan are

UKB (n =337,475) (73 replicated, P<0.05)

Korea Biobank Array (KBA) 
n = 125,872, 8.3M variants (MAF  1%)

Stage 1

Meta-analysis  
KBA + Biobank of Japan(BBJ) 

BBJ, n=162,255, 6M variants (MAF  1%) 
(Total n = 288,127)

Stage 2

Replication

P  5.56x10-9, 415 loci (68 novel)

P  5.56x10-9, 611 loci (133 novel)

Korea Biobank Array (KBA) 
n = 125,872, 68K variants (MAF < 1%)

P  8.12x10-8, 89 variant (77 novel) 
Among 66 non-redundant variants, 

- 22 ClinVar annotated (5 pathogenic) 
- 28 monomorphic in Europeans 
- 12 MAF < 0.1% in Europeans 

- 3 Common in Europeans

Common variants 
(MAF  1%)

Rare functional variants 
(MAF < 1%)

*Protein coding altering variant, splice acceptor/donor, 
 Structural interaction

Interplay of Common and Rare

Physical proximity 
- 94.4%, rare associations were co-incident 
to GWAS loci (83.1% within 500Kb)

Independent association 
- Conditional analysis 
- 22 rare associations were diminished

Genetic risk score 
- GRS using common and rare variants 
- GRS strati ed by rare allele carriers 
- T2D prevalence by FPG-GRS**,  
- T2D prevalence strati ed by T2D-GRS,  
   FPG-GRS, and a rare allele SLC30A8 

**using FPG GWAS results of non-diabetic samples

Phenotypes: Liver enzyme (ALT, AST, and GGT), Glycemic traits (FPG and HbA1c), Lipid traits (HDL, LDL, TG, and TC)

UKBexome (n =124,560)  

                      (9 replicated, P<0.05) 
KBArep* (n =22,608) (67 replicated, P<0.05)

Replication

*additionally genotyped in 2018

Fig. 1 | Overall analysis scheme. Flow chart of the overall analysis including summarized results of common variants, rare functional variants, and interplay of common
and rare variants.
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geographically close neighbors and genetically closely related. Indeed,
KBA and BBJ showed high genetic correlations (0.765 for HbA1c–0.885
for HDL; Supplementary Data 3). The meta-analysis extended the
number of common variant loci from 415 to 611 (using P < 5.56 × 10−9;
Fig. 2 and Supplementary Figs. 1–3), with the number of associated loci
per trait ranging from 51 (ALT) to 91 (TC). Of these, 478 loci had been
previously reported, leaving 133 that were novel (Supplementary
Data 4). Conditional analysis of the set of 611 loci revealed a further 332

independent signals within these loci (also at P < 5.56 × 10−9) (Supple-
mentary Data 5 and 6) for a total of 943 signals, 144 of them were
novel. The calculated meta-analysis LD score regression intercept
showed slight inflations ranging from λ = 1.02 for AST to 1.09 for
HDL (Supplementary Data 6), suggesting an acceptable control
on population stratification considering a large number of samples
used and polygenic inheritance of the metabolic traits36,37. When cor-
recting p-values based on genomic inflation factors, the number of
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Fig. 2 | Miami plot of common and rare associations (HbA1c, LDL, and ALT).
Miami plot shows linear regression analysis results of common (upper panel) and
rare variants (lower panel). Red horizontal line indicates −log10(5.56e-9) and

−log10(7.61e-8) for upper and lower panels, respectively. Previously known loci
were colored in blue for ±250 kb of the lead variant and colored in red for ±250 kb
of new associations of this study. a HbA1c, b LDL, and c ALT.
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common variant loci was 473 and 77 of them were novel (Supple-
mentary Data 4).

The 144 novel signals included five instances where the lead SNP
was a nonsynonymous coding variant providing a direct route to new
biological inference (Supplementary Data 4). For example, a missense
SNP rs1047781 (I129F) in fucosyltransferase 2 (FUT2) was newly asso-
ciated with ALT level (MAF = 49.6%; P = 1.83 × 10−12; Supplementary
Data 4). The enzyme FUT2 is responsible for the addition of fucose to
sugarmoieties of glycolipids and glycoproteins by a-1,2-fucosylation38.
Previously, Chambers et al. reported that a synonymous variant
(rs281377) and an intronic variant (rs516246) in FUT2 were associated
with alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT),
respectively4. The coding rs1047781 variant has been reported to dis-
play a marginally significant association with an indicator of liver
damage (AST/ALT ratio), but the association with absolute levels of
AST or ALT is novel39. In mice, abrogation of Fut2–/– function leads to
acute liver damage and increased alkaline phosphatase, AST, and ALT
levels38.

We further performed enrichment analysis to describe more
comprehensive shape of 144 novel signals using FUMA-GWAS40.
Enrichment of candidate genes in differentially expressed gene sets
was mostly similar between known and novel loci (Supplementary
Fig. 4). One notable feature was a difference in tissue specificity of
known and novel loci of ALT based on enrichment analysis of differ-
entially expressed genes in various tissues (Supplementary Fig. 4).
Candidate genes from known ALT loci showed enrichment in differ-
entially expressed gene sets in tissues of liver and small intestine.
However, genes from novel loci of ALT showed enrichment in differ-
entially upregulated gene sets of kidney medulla and cortex. Among
the candidate genes of novel loci of ALT, FUT2 secretor status was
associated with self-reported kidney disease41. SOX6 was reported as a
modulator of renin expression in the kidney42. The amount of FABP3 in
urine of patients with acute kidney injury was suggested as diagnostic/
prognosis marker for renal replacement therapy43. Patients with liver
disease often complicated with kidney disease44. The relationship of
kidney and liver is complex and underlying pathophysiology of kidney
disease comorbid with liver disease is still not fully understood44. The
functional enrichment analysis of ALT loci highlighted the possible
shared genetic components of liver and kidney diseases.

We further extended replication using data from UK Biobank that
had become available in the interim. UK Biobank data from 337,475
European participants were available for 121 of the 144 novel signals at
the 133 novel loci. Seventy-three signals (57.0%) with consistent effect
directionwerenominally replicated (P <0.05) in the Europeandatasets
and showed high correlation of genetic effects (overall r = 0.737;
Supplementary Data 4 and Supplementary Fig. 5).

Some of the apparent disparities between the East Asian and
European findings are likely to reflect differences in effect allele fre-
quencies (EAF). Across the 943 signals seen in the combined KBA/BBJ
analysis, EAF was highly correlated (r =0.71) between EAS and EUR
based on 1000 Genomes Phase 3 or gnomAD database (Supplemen-
tary Fig. 6). As might be expected, variants first identified in East Asian
samples tended to show higher EAF in EAS compared to EUR (Sup-
plementary Fig. 6). Among the 144 novel signals, 99 signals (68.8%)
showed at least a 20% (relative) increase in EAF in EAS than EUR
populations. Notably, there were 15 common signals from the EAS
analysis (EAS MAF > 1%) that had a MAF <0.1% in EUR, and 22 signals
with EAS MAF ≥ 5% and EUR MAF < 1% in EUR (including 12 signals that
were entirely monomorphic in EUR). Amongst the 48 non-replicated
SNPs at the 121 novel signals for which UK Biobank data were available,
7 showed higher MAF (>5%) in EAS than Europeans (MAF < 1%).

Consistency of genetic effects and allele frequency difference
among populations indicate thatmany of the novel associations in this
study resulted from the increased statistical power offered by higher
EAF in EAS including several instances of population specific alleles.

Rare variants associated with metabolic traits in 126K Koreans
Rare variants provide an additional source of heritability for complex
biomedical traits. Although numerous rare variants with large genetic
effects have been described30,45,46, rare variant discovery efforts have
tended to be underpowered (compared to common variant discovery
by GWAS), and the contribution of functional rare variants to trait
variance remains unclear47. The KBAwas designed to allow genotyping
of 208Kputatively functional variants (includingmissense, frameshift,
start/stop gain or lost, splice site donor or acceptor variants) retrieved
from 2572 Korean sequenced samples33. Of these, 68,431 of the var-
iants with genotypes passing quality control (Methods section) were
rare (MAF < 1%), and ~95% of these (64,991) were listed in the gnomAD
database48. Association analysis of these 68,431 single rare variants (by
linear regression) revealed 66 variants with significant associations (at
a threshold of P < 8.12 × 10−8, that is, 0.05 adjusted for 68,431 variants
and nine traits) for a total of 89 variant-trait pairs (Supplementary
Datas 6 and 7). A rare variant was regarded as ‘known’ if the specific
rare variant was previously reported to be associated with the same
trait, and ‘novel’ otherwise. Only twelve of these associations had been
described previously for the same trait (Methods section; Supple-
mentary Data 7). Differences in MAF underlie some of these novel
findings: 28 of the 66 rare variants identified in Koreans were mono-
morphic in Europeans (Supplementary Data 7).

For 52 of the 89 rare variant associations, previous association
analyses, using exome array and/or sequencing data, have revealed
variant-trait associations that implicate different coding alleles in the
same genes12,13,21,22,24,49–55 (Supplementary Data 7 and 8). Some of the
novel variant-trait associations involved variants previously dis-
covered from sequencing based studies on related traits: for example,
a variant rs730882109 (H583Y at LDLR; MAF = 0.02%) which was sig-
nificantly associated with LDL-cholesterol in the present study, had
previously been reported in a subject with hypercholesterolemia53.
Variants rs199689137 and rs147194762, leading to missense coding
changes in ABCG5 and ABCG8 respectively were recently discovered
from sequencing data of nine Japanese families with sitosterolemia54.

External replication of the rare variant associations seen in the
Korean study was complicated by the fact that the publicly accessible
summary statistics of these traits lacked equivalent rare variant cov-
erage: data fromBBJwere limited to variants withMAF > 1% andonly 21
of the 66 rare variants were present in UK Biobank exome sequencing
data (N = 138,032) (Supplementary Data 7 and Supplementary Fig. 7).
Among 89 rare associations discovered in this study, 9 associations
including 4 novel were replicated (P <0.05with consistent direction of
effect).Genetic effects of 21 rarevariants betweenKBAandUKBiobank
were highly correlated (r =0.83; Supplementary Fig. 7). To gain further
understanding of the reliability of the rare variant associations detec-
ted in KBA, we genotyped 22,608 further samples from KoGES
(KBArep). Overall, effect sizes were highly correlated between the dis-
covery and replication studies (r =0.97; Supplementary Fig. 7A), and
67 of the 89 variant/trait associations detected in the far larger dis-
covery sample were replicated at P <0.05 in KBArep with consistent
direction of effect (Supplementary Data 7).

In all, 84 of the 89 rare variant/trait-associations mapped within
1Mb of a previously-known or newly-associated common variant sig-
nal (74 of them within 500 kb). These findings are consistent with
previous reports demonstrating that many rare variant associations
occur at loci already implicated by common variant GWAS16,17,25,56. To
exclude non-independent associations generated by closely located
common and rare signals17,56,57, sets of common and rare associations
within 1Mb apart (i.e., within the same “co-incident” locus (CL), see
Methods section) were jointly analyzed by multiple linear regression.
Across a total of 46 such CLs, there were 125 common lead and rare
variants to be considered (Supplementary Data 9), and, for most, (86
of 125 [68.8%]) conditional analyses indicated independence (<10%
reduction in effect size on conditional). Fourteen variants (one
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common; 13 rare) showed a 10–30% reduction in effect size when
conditioned on other nearby lead variants, and for a further 16
(implicated in 22 rare variant associations) the reduction exceeded
30% (Supplementary Data 10). Amongst the latter group of 16 unique
rare variants, 8 were annotated as damaging, and 8 as benign (dbNSFP
v2.9) (Supplementary Data 10). The APOE region (CL#25) provides an
example of such dependent associations across a set of 2 common
(rs429358 and rs7412) and 6 rare lead variants: the signals for all six
rare variants were drastically diminished after conditional analyses
(Supplementary Datas 8 and 10), an inference supported by haplotype
analysis (Supplementary Data 11 and 12).

We explored known clinical consequences of the rare variant
associations detected using ClinVar database58, finding entries for 22
variants, nine annotated asbenign (or likelybenign), six as of uncertain
significance, and five pathogenic (two returned conflicting inter-
pretations of pathogenicity; Table 1). The rare variant associations
observed in our study can provide additional evidence to support
ClinVar interpretation. For example, ClinVar considers that a rare
variant rs104894487 (A142T at EPB42) may be related to hereditary
spherocytosis based on ‘uncertain significance’ annotated by one
submitter and ‘pathogenic’ by two others59. The rare allele association
at EPB42 in this study involved reduced levels ofHbA1c, consistentwith
the reduced red cell half-life seen in patients with hereditary
spherocytosis60.

The interplay of common and rare variants in relation to the
genetic risk score
Genetic risk scores (GRS) summarize the contribution of genome-wide
association signals on individual phenotypic variance8, and have
potential for preventive intervention, lifestyle modification, and clin-
ical decision making8. For eachmetabolic trait, we calculated CV-GRSs
using the sets of common lead variants significantly associated with
each trait from the KBA/BBJmeta-analysis (and taking effect sizes from
the same). To reduce overfitting of CV-GRS when applied to discovery
samples, the evaluation of CV-GRS performance was restricted to the
23 K samples from theKBArep replication cohort. As expected, trait CV-
GRS showed strong associations with their respective phenotypes
(Supplementary Data 13 and 14): trait variance explained increased by
1.5% (for ALT) to 10.2% (for HDL) when CV-GRS was added to a model
using only covariates including age, sex, and recruitment area (Sup-
plementary Data 13). Individuals with GRS measures at the upper end
of the distribution had metabolic trait values consistent with future
health risk. For example, mean HbA1c of the top 1% of HbA1c GRS was
5.75%. The top 10% risk group prefigured future diabetes considering
prediabetic condition defined with FPG measures of 110–125mg/dL,
HbA1c of 5.7–6.4%61. Also top 1% of lipids GRS showed an elevated
mean level of lipids close to dyslipidemia (satisfying one of the fol-
lowing: TC ≥ 240mg/dL, LDL > 160mg/dL, TG > 200mg/dL, or
decreased HDL < 40mg/dL)2, an indicative of elevated cardiovascular
risk (Supplementary Data 15).

Rare variants with comparatively large effects on trait measures
have the potential to improve the performance of GRS, in some indi-
viduals at least. We generated ALL-GRS scores by adding, to the CV-
GRS, only those rare variants that had been demonstrated, based on
conditional analysis, to be independent of nearby common variants
(Supplementary Data 7 and 9).

The performance of the ALL-GRS was only marginally better than
the equivalent CV-GRS in both discovery and replication studies
(Supplementary Data 14 and 16): in KBArep, the increase in trait var-
iance explained was <1% (Supplementary Data 14). This reflects the
relatively small proportion of individuals who carry trait-associated
rare alleles (for example, for HbA1c, 0.54% of the 125,872 individuals in
the discovery sample: for LDL, 7.96%). This limits the impact of the rare
alleles on GRS performance even though associated rare variants had
effect sizes that were on average nine times greater than common

variants overall (and five times greater when compared to common
alleles at the same locus; Supplementary Data 4 and 7).

An obvious limitation of population-level comparisons between
the performance of the CV-GRS and ALL-GRS is that coverage of the
rare variant space was, for a variety of reasons including pre-defined
array content and sample size, far less comprehensive than that of the
common variant contribution to trait variation. An alternative
approach for gauging the impact of rare variants concentrates on their
impact on common variant polygenic risk in the subset of individuals
that are carriers8. To study the interplay of rare alleles and common
variant polygenic effects (as measured by the CV-GRS), samples were
grouped into four categories based on the direction of rare allele
effects (Supplementary Data 17 and Supplementary Fig. 8). The first
group included individuals from KBA who carried one or more rare
alleles associated with improved health (that is, decreasing levels of
traits other than HDL): the proportion of the sample ranged from 1.0%
for AST to 3.5% for TC (there were no such carriers for GGT). The
second group comprised KBA individuals carrying only one or more
rare alleles associated with reduced health: these constituted from
0.3% for FPG to 5.8% for LDL (none for HbA1c, ALT, and AST). The third
group of individuals carried a mixture of rare alleles which (for a given
trait) had opposing effects: this was a small group constituting 0.01%
for FPG to0.15% forHDL (andnone forHbA1c, ALT, AST, andGGT). The
remaining group carried no rare associated alleles: this reference
group ranged from 92.04% of the sample for LDL to 99.29% for GGT).

Trait levels were decreased (or, in the case of HDL, increased)
between 2% (HbA1c) and 28% (ALT) in the first group (as compared to
the reference group, and increased (HDL, decreased) between 3%
(FPG) and 22% (TG) in the second group (Supplementary Data 17).
Similar patterns were observed in the KBArep dataset (23 K samples)
(Supplementary Data 17). These effects resulted in redistribution of
some individuals assigned high disease risk on the basis of their CV-
GRS measures. For example, the proportion of dyslipidemia based on
TG level (TG > 200mg/dL) for individuals in the top decile (mean
TG= 170.2mg/dL) of the CV-GRS for TG was 26.1% while the propor-
tion was increased to 35.7% in the subset with TG-raising rare alleles
(mean TG= 236.2mg/dL; Supplementary Data 17). This illustrates the
impact of rare alleles (that typically go unmeasured using array based
approaches) on the performance of GRS that are based on common
variants alone.

Inherited risk of glycemic traits and relation to T2D
Individuals with GRS measures associated with adverse metabolic
profiles (e.g., high glucose or cholesterol) are likely to show increased
susceptibility to trait-related diseases such as diabetes or coronary
artery disease. We explored this further in the KBA data, focusing on
the relationship between glycemic traits (FPG; HbA1c) and T2D
(Methods section).

In the KBA GWAS, glycemic trait analyses had been restricted to
individuals without diabetes, allowing us to examine the impact of
the glycemic GRS (Methods section; Supplementary Data 1) on T2D
prevalence across the entire 126 K samples of KBA (which included
12,135 cases of T2D). Both the FPG and HbA1c GRSs were strongly
associated with T2D (FPG-GRS: OR (per SD of the GRS) = 1.46,
P = 3.21 × 10−300; HbA1c-GRS: OR = 1.35, P = 4.95 × 10−194, Supplemen-
tary Data 18). Previous evidence indicates that the genetic con-
tribution to variation in HbA1c can be decomposed into glycemic and
erythrocytic components, the latter acting through effects on red-
cell longevity15: as expected, only variants implicated in the former
contributed to T2D prevalence (OR = 1.43, P = 1.03 × 10−268; Methods
section, Supplementary Data 19 and Fig. 3). Moreover, classification
performance by area under the curve (AUC) of glycemic and ery-
throcytic components further support contribution of glycemic
components to T2D prevalence. The AUC was 0.60 and 0.51 for
glycemic and erythrocytic components, respectively. When mean
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levels of glycemic traits were plotted alongwith GRS, there were little
change of mean FPG level among bins of HbA1c GRS using only
erythrocytic components (Supplementary Fig. 9).

To gain further insights we focused on the CV-GRS for FPG
(hereafter, FPG-GRS), grouping all 126 K genotyped KBA subjects into
10 bins based on their FPG-GRS. T2D prevalence ranged from 6.0% in
the lowest FPG-GRSbin, to 14.1% in the highest (Fig. 3a).We considered
the impact of adding genotype data for the four rare variants with a
significant association with FPG in this population (Supplementary
Data 7). These variants were tested for an association with T2D (12 K
cases and 94K controls). Of these, only the coding variant at
rs770224130 (I349F in SLC30A8) (MAF = 0.6% in KBA,monomorphic in
Europeans from gnomAD) was associated with T2D (OR =0.403,
P = 1.11 × 10−16; Supplementary Data 20). Carriers of the protective rare
allele at this variant had a T2D prevalence in KBA of 4.9% (compared to
9.6% among the full set of 126 K samples in KBA), equivalent to that of
the lowest FPG-GRS group. Not surprisingly therefore, adding the
SLC30A8 variant genotype to the FPG-GRS predictions had a marked
impact (Table 2 and Fig. 4a): for example, the T2D prevalence for the
top decile of the FPG-GRS fell from 14.2%overall to 7.3% in carriers; and
from 6.1% to 3.7% in the bottom decile (Table 2 and Supplemen-
tary Fig. 10).

We next generated a T2D-GRS from the KBA data using previously
reported variants17,62 and applying effect sizes estimated in this study
(Supplementary Data 21). This T2D-GRS was, as expected, more pre-
dictive of T2D prevalence than the FPG-GRS (though this may in part
reflect overfitting of the score; Supplementary Data 22). The

combination of FPG-GRS and T2D-GRS was more powerful than either
alone, with individuals in the top 10% of both scores showing ~5-fold
increase in T2D prevalence compared to median group (40–60%) in
both FPG-GRS and T2D-GRS, and those in the top percentile showing
~16-fold increase (Supplementary Data 22). Amongst individuals in the
top quintile for both FPG-GRS and T2D-GRS, T2D prevalence was 20%,
but only 12% in carriers of the protective SLC30A8 allele (Fig. 4b). Thus,
analyses based on this single rare protective variant, present in about
1% of Koreans, illustrate how the performance of GRS constituted from
common variants alone cannot be relied upon to provide robust dis-
ease prediction in carriers of impactful rare alleles8,32 (many of whom,
of course, will not be identified as such based on common variant
focused analysis).

Discussion
In this study of 288,127 East Asian subjects from Korea and Japan, we
identified over 1000 common and rare variant associations across nine
metabolic traits (SupplementaryDatas 2–7),manyof themnovel. Since
most GWAS data have been generated in individuals of European
descent, these data build understanding of variants influential in East
Asians, and contribute to efforts to develop clinical genomic tools that
can be used in diverse populations10.

We used these data to explore the contributions of common and
rare variants to trait variance (defined using a threshold MAF of 1%),
demonstrating thatwhilst GWAS-captured commonvariants dominate
at the population level, the greater effect size evident from some trait-
associated rare variants can translate intomarked impact in a subset of
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Fig. 3 | Prevalence of type 2 diabetes by GRS group. Samples were grouped into
10 groups based on GRS scores in an increasing order. CV-GRS indicates GRS using
common lead variants identified in this study. For each GRS bin, T2D prevalence

was calculated as # of T2D samples divided by # of samples in the GRS bin. a FPG
and b HbA1c.
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individuals. We illustrate this interplay between common variant
polygenic scores and rare variants through the effects of a protective
rare allele at SLC30A8 on T2D risk across strata of polygenic risk
predictions.

We also tested the transferability of GRS by employing genetic
effect sizes derived from East Asians and Europeans using commonly
available variants of KBA, BBJ, and UKB (Supplementary Data 23). Our
study demonstrated that CV-GRS using effect sizes from KBA showed
greater variance explained over those of KBA+ BBJ meta-analysis and
Europeans when applied to KBA yet CV-GRS based on KBA+ BBJ and
trans-ethnic meta-analysis showed comparable performance. This
result suggested that local ancestry within East Asia would affect the
performance of CV-GRSmore than an increase of sample size in meta-
analysis comprising genetically closely related local ancestries. The

variance explained of CV-GRS when applied to UKB was the largest
using effect sizes from UKB followed by the comparable performance
from trans-ethnic CV-GRS, further supporting the use of the results
from genetically close samples. Taken together, these results implied
that GRS can be reliably constructed based on summary statistics from
close ancestries or a large-scale trans-ethnic meta-analysis.

ThePRS approachusing genome-wide variantswould increase the
variance explained for traits. We performed PRS analysis for nine
metabolic traits and T2D and compared the performance of PRS
compared to those of CV-GRS. For metabolic traits, PRS showed
increased variance explained of ~4% (14.3%) for HDL compared to CV-
GRS (10.2%) in the replication study (Supplementary Data 24). How-
ever, PRSs forother traits showedcomparable performance to thoseof
CV-GRS (Supplementary Data 14). In addition, when T2D PRS was

Table 2 | Prevalence of T2D in GRS groups stratified by the presence of a rare protective allele

GRS type Group Non-carrier Carrier of a rare protective allele Odds ratio 95% CI P-value

N T2D prevalence (%) N T2D prevalence (%)

– All samples 123,948 9.7 1458 4.87 0.398 0.31-0.51 1.42E-13

FPG Top 10% 12,451 14.18 96 7.29 0.338 0.15-0.76 8.16E-03

Bottom 10% 12,367 6.05 164 3.66 0.512 0.22-1.17 1.13E-01

ForGRSgroups, T2D prevalencewas calculated for non-carriers and carriers of a rare protective allele. For each GRSgroup, a logistic regressionmodel was used to test an association between T2D
and a rare protective variant adjusted for age and sex.
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applied to the analysis summarized in Table 2 and Fig. 4b, the results of
T2D PRS showed similar results to those of T2D-GRS (Supplementary
Data 24 and Supplementary Fig. 11). Although limited increment has
been shown in performance of PRS compared to those of GRS using
top signals63, a thorough PRS analysis is warranted for various traits
and analyticmethods as shown a large increment in variance explained
for HDL in this study.

The heterodimer of ABCG5 and ABCG8 is known to play a crucial
role in cholesterol secretion64. Recent crystal structure of
ABCG5/ABCG8 heterodimer suggested that interaction between the
extracellular domain helices of both proteins is important for sterol
exit from the transmembrane domains65. A nonsense mutation
R446Ter in ABCG5 detected for association with LDL and TC in our
study generates truncated protein resulting in the missing of the
extracellular domain helix. We believe that this mutation disrupts the
heterodimer formation between ABCG5 and ABCG8, ultimately result-
ing in the accumulation of cholesterol. The functional relevance of a
missensemutationM429V in ABCG8 to the cholesterol secretion is not
clear on the basis of ABCG5/ABCG8 heterodimeric structure as exem-
plified in theClinVar record, inwhich thismutation indicateduncertain
significance on the certain clinical condition (Table 1). However, this
mutation strongly associated with LDL and TC in our study and also
replicated in UKB exome sequencing data, implying certain steric
alteration in the heterodimer caused by this amino acid substitution.

One of the obvious limitations of this study is that our ability to
survey rare variation across the genome was constrained both by the
content of the array, and the sample size. The latter restricts rare
variant association discovery to alleles of relatively large effect.
Moreover, haplotype phasing using common and rare variants in this
studywould be less accurate considering sparse number of genotyped
variants and limited number of rare variants compared to those of
sequencing data. Therefore, careful interpretation is required. Whole
genome sequencing approaches deployed on cohorts of this scale (or
larger) are required to extend the range of rare variants that can be
robustly implicated in trait variation. In addition, the KBA study was
best-suited to the study of quantitative traits, given case numbers for
most diseases were relatively low. The future of studies like this will
rely on the integration of data across multiple large biobanks, a pro-
cess we were able to initiate through combining data from Korea with
similar data from Japan and the UK.

Taken together, the present study provides new insights into the
architecture of trait variation in East Asianpopulations, documents the
interplay of common and rare variants that contribute to genetic
predisposition to disease, and highlights the value of rare functional
variants to promote novel therapeutic strategies.

Methods
Study subjects
This studywas approved by the institutional review board of the Korea
Disease Control and Prevention Agency, Republic of Korea. The Kor-
ean Genome and Epidemiology Study (KoGES) was initiated in 2001 to
investigate the genetic and environmental factors responsible for
complex diseases in Koreans. A detailed description of the KoGES has
been previously reported34. In the three population-based cohorts,
10,030, 173,357, and 28,338 participants were independently recruited
from the KoGES_Ansan and Ansung study, the KoGES_health examinee
(HEXA) study and the KoGES_cardiovascular disease association study
(CAVAS), respectively. All participants (aged 40–70 years) provided
written informed consent and were examined through epidemiologi-
cal surveys, physical examinations, and laboratory tests.

Blood biochemical quantitative traits weremeasured for glycemic
traits (FPG, HbA1c, and a-2h on oral glucose tolerance test(OGTT)),
plasma lipids (HDL, LDL, TG, andTC), and liver enzymes (ALT, AST, and
GGT). However, the OGTT trait was not analyzed because only ~5% of
the total KBA samples (6,483 samples in the KoGES_Ansan and Ansung

study) were available. Friedewald’s formula was used to calculate the
LDL concentration66. Individuals receiving ongoing medication or
therapy with a high probability of influencing metabolic traits, were
excluded from the analysis (Supplementary Data 1). The basic char-
acteristics of the traits are summarized in Supplementary Data 1.

T2D phenotyping
T2D cases were defined based on the American Diabetes Association
(ADA) criteria: a FPG concentration ≥ 126mg/dL (7.0mmol/L),
OGTT ≥ 200mg/dL (11.1mmol/L), or a HbA1c ≥ 6.5% (48mmol/mol).
Participants with a past diagnosis based on self-report questionnaires
were also included in the patient group. Based on the self-reported
questionnaire, a control group was selected based on the following
ADA criteria among subjects with no diagnosis of diabetes considering
availability of variables among participants: a FPG concentration
<100mg/dL (5.6mmol/L), a OGTT < 140mg/dL (7.8mmol/L), or a
HbA1c level <6% (42mmol/mol). There were 12,135 T2D cases and
94,636 controls.

Genotyping and quality control
The Korea National Institute of Health launched the KBA project in
2014. Briefly, more than 95% of the KBA content consisted of ~600K
tagging variants for genome-wide coverage and ~208K functional
variants including missense variants, expression quantitative trait loci
(eQTL), and indels retrieved from 2579 sequenced Korean samples
consisting of 397 samples with whole genome sequencing and
2182 samples with exome sequencing data33.

All participant samples collected by KoGES and stored in the
National Bank of Korea (NBK) were genotyped using KBA v1.0 (Kv1.0)
and KBA v1.1 (Kv1.1). Kv1.0 (833 K SNPs) and Kv1.1 (827 K SNPs) share
~93% of its contents33. At the end of 2017, a total of 134,721 samples
were produced: 51,963 (38.6%) for Kv1.0 and 82,758 (61.4%) for Kv1.1.

Considering the genotyping platform and enrollment information
such as the year and site, ~3000–8000 samples were grouped into
batches for genotype calling. Genotypes were called per each batch
and quality control (QC) of the samples and SNPs was conducted in
batches. Plink v1.9 software was used for handling binary formatted
plink files67. Quality control was conducted as follows in a step-by-step
manner: (1) samples QC: exclusion of gender inconsistency (n = 70,
~0.05% of initial 134,721 samples), low call rate (<97%) or excessive
heterozygosity (HET) based on all variants on the array (HET <0.17 or
HET >0.19 for Kv1.0 and HET <0.15 or HET >0.17 for Kv1.1; n = 1160),
and outliers (PC1 > |0.1| or PC2 > |0.1|, n = 43) of the principle compo-
nent analysis results using FlashPCA268. Furthermore, by analyzing all
the batches together, 2nd-degree relatives were removed to secure
unrelated genotype data for further analysis (n = 7576). KING v2 was
used to inferring 2nd-degree relatives using overlapped variants
between Kv1.0 and Kv1.169. All QCed batches were then combined in
Kv1.0 (n = 48,005) and Kv1.1(n = 77,867). (2) SNP QC (per batch):
exclusion of poorly clustered SNPs based on the SNPolisher analysis
results, missing rate > 5%, and HWE failure P < 10−6.

For the combined Kv1.0 and Kv1.1 data, the QC of common
(MAF ≥ 1%) and rare variants (MAF < 1%) was performed separately. For
common variants, SNPs were further excluded if the missing rate was
>10%, allele frequency difference was >0.2 when compared to 1000
Genomes Project Phase 3 East Asians (n = 504) or Korean Reference
Genome (n = 397), MAF < 1%, and HWE failure P < 10−6. Consequently,
549K SNPs (Kv1.0) and 518 K SNPs (Kv1.1) were retained for phasing
and imputation analysis.

In SNPmicroarray, genotype calling of rare variants is challenging
because only a small proportion of samples are heterozygous.
Although KBA contains high quality rare variants with a high score of
quality metrics from the genotype clustering analysis, poor genotype
clusters may mislead the analysis results and impede following inter-
pretation. Therefore, we further excluded putative poorly clustered
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rare variants based on allele frequencies from East Asians in the gno-
mAD database48 and 2579 sequenced Korean samples33. In total,
163,026 functional variants (missense, frameshift, start/stop gain or
lost, splice site donor or acceptor, and structural interaction) were
available based on the 48,005 samples of Kv1.0 dataset and
77,867 samples from the Kv1.1 dataset. After combining all 153 K var-
iants of Kv1.0 and Kv1.1, the putative poorly clustered rare variants
were further excluded in a step-by-step manner. First, allele fre-
quencies of rare variants were calculated for each batch. Second, for
each rare variant, genotypes of the samples in a batch were set to
missing if the difference in the allele frequency of a rare variant in the
batch was more than 0.005 (0.5%) compared with the mean allele
frequency of the remaining batches. Variants were excluded based on
the following criteria: MAF > 1%, minor allele count (MAC) < 30, HWE
P < 10−6, or missing rate >30%. In our dataset, variants with a MAC< 30
threshold showed more unclear cluster plots with less than 30 points
in the heterozygote cluster compared to the variants with MAC ≥ 30.
For amissing rate of rare variants, the thresholdwas eased because the
missing rate was mainly based on a batch effect and not by technical
errors such as obscure genotype clustering. For the remaining rare
variants, the MAF of rare variants was compared to that of
2579 sequenced Korean samples, 504 East Asians from the 1000
Genomes Project Phase 3, and 9435 East Asian samples from the
gnomAD database. Finally, we selected only rare variants with MAF
differences of <0.5% between the 125,872 KBA data samples and either
of 2579 sequenced Korean samples, 9,435 East Asian samples from the
gnomAD database, and 504 samples from the 1000 Genomes Project
Phase 3 (Supplementary Fig. 12). As a result, 68,431 rare functional
autosomal variants were included for further analysis. Overall, we
observed a high correlation (r =0.917) of the MAF for 68,431 rare
variants between the 125,872 samples and 2579 sequenced Korean
samples. Given the recent concerns over rare variants directly geno-
typed using microarray70, allele frequencies and cluster plots were
reviewed prior to the post-association analysis. After performing
association tests for rare variants, cluster plots per batches were
visually inspected, batches with poor cluster plots were manually
removed if needed (19 variants), an association analysiswasperformed
for these additionally QCed variants. Among the associated rare var-
iants, two variants showed poor cluster plots and were excluded from
further analysis. The cluster plots of the associated rare variants are
shown in Supplementary Fig. 13.

Replication study (UK Biobank)
The UKB provided genotype data for over a half million samples with
deep phenotyping and molecular data11. Related information on the
genotyping, QC, and imputation analysis has been previously
reported11. Among the QCed and imputed data, we removed indivi-
dualswith non-Europeanancestry andnon-independent samples using
Data-Field 22006 and 22020. As a result, 337,475 individuals were
included for further analysis. Samples with diseases or taking medi-
cations that likely influenced the biochemical traits were removed
using Data-Field 2443, 4041, 6153, 6177, and 41202. Biochemical traits
were filtered and transformed according to the methods of KBA
described in Supplementary Data 1. For the association analyses,
SNPTEST v2.5.2 was used for imputed variants with high imputation
quality (INFO ≥0.8). All analyses were conducted under the UKB
application 57705.

For replication study of rare variants, about 200K exome
sequencing data of UKB was analyzed71. Among 200K samples, there
were 138,032 samples available with any of nine metabolic traits
among the genotyped samples (n = 337,475) used for replication study
of common variants. In all, 21 of 66 rare variants discovered in this
study were available after excluding variants with MAC ≤ 2, missing
rate > 5%, andHWE P < 10−6. Associations between rare variants and the
transformed traits were performed using EPACTS v3.4.6.

Replication study (KBArep)
In 2018, ~24,000 samples from theHEXA cohortwere genotyped using
the KBA. The QC procedures for samples and SNPs were were per-
formed as described above for genotying and QC. As a result,
22,608 samples were remained and the variants discovered in this
study were assessed for the replication analysis. Common variants
were imputed if they were not directly genotyped. Cluster plots of rare
variants were shown in Supplementary Fig. 14.

Functional annotation
The functional category was annotated using SnpEff and SnpSift based
on the dbNSFP v2.9 database72–74. Known associations for metabolic
traits were retrieved from the GWAS Catalog (as of January 2021)75 and
the recently published GWAS literatures.

Genotype imputation
Eagle v2.3 was used for the phasing of the QCed data76. Impute v4 was
used for imputation analysis using a merged reference panel from
2504 samples of 1000 Genomes Phase 3 and 397 samples from the
Korean Reference Genome11, andQCTOOL v2was used to calculate the
imputation quality score and info values (see URLs). Imputed variants
with info <0.8 or MAF< 1% were excluded and approximately 8.3M
variants were used for further analysis. The imputation output GEN
formatted file was converted to VCF format with imputed dosages by
using GEN2VCF77.

Co-incident locus
Rare and common variants from the lead signals in this study or pre-
viously reported lead variants (P ≤ 10−5 in this study),whichwereused if
a lead variant was not obtained from the discovery study, were clus-
tered if they were located within 1Mb window. As a result, 46 co-
incident loci (CL) were defined, and they included 58 unique rare
variants (81 associations) and 44 common variants. However, eight
rare variants were not included in the CLs: (1) absence of nearby
common or rare associations within 1Mb (n = 4), (2) previously
reported common signals werewithin 1Mbyet not significant (P > 10−5;
n = 3), and (3) known common lead signal from the previous GWAS
with European ancestry (n = 1). For the APOE region, a common variant
rs429358 was added along with the lead signal rs7412. These two var-
iants are well known to produce three major APOE alleles78.

Haplotype based association analysis
For the CL, all variants ±200 kb in the region were phased using Eagle
v2.376. Phased haplotypes were then parsed to extract information on
the target variants of the region. The most frequent haplotype was
regarded as a reference and less frequent haplotypes were tested for
an association based on comparison with a reference. Multiple linear
regression analysis was performed to test the independent association
of haplotypes by jointly testing all the haplotype variables.

Calculation of genetic risk score
Using the lead common variants and rare variants discovered in this
study, the GRSwas calculated for each sample based on the sumof the
number of risk alleles weighted by the effect size of the associated
variant. For each trait, the GRSs of all samples were transformed to
follow the standard normal distribution.

Calculation of polygenic risk score
For metabolic traits, we adopted a tenfold leave-one-group-out
(LOGO) meta-analysis method79 since the variance explained from
LOGO was greater in overall than those of PRS based on BBJ (BioBank
Japan) summary statistics. For example, FPG PRS based on BBJ showed
1.9%of variance explained (VE) while theGRS fromLOGOshowed 5.5%,
possibly caused by differences in the recruitment policy (hospital-
based in BBJ and population-based in KBA). 126 K individuals of KBA
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were divided into ten subgroups to perform a GWAS for each sub-
group on each trait. PRS-CS was used for PRS analysis using only
HapMap phase 3 variants (about 970K variants)80. Next, meta-analysis
was performed using GWASs of nine subgroups and adjusted weights
were obtained by PRS-CS from themeta-analysis results. Then PRSwas
calculated for one remaining group using the adjusted weights. These
procedures were repeated to calculate PRS for all 126K individuals for
all traits. For T2D PRS, adjusted weights were estimated from BBJ T2D
GWAS62. This T2D-PRS (VE= 9.6%) showed better performance than
LOGO in KBA (VE = 7.9%). Since KBA was included in the recently
published East Asian T2D GWAS81, we did not used summary statistics
from Spracklen et al. to avoid overfitting problem.

Classification of HbA1c associated variants into glycemic and
erythrocytic variants
HbA1c associated variants were classified into three groups: (1) ‘gly-
cemic’ if the variant was associated with FPG or T2D in this study or
reported in previous studies (P < 1 × 10−4), (2) ‘erythrocytic’ if the var-
iant was associated with hemoglobin, MCH, MCV, RBC, or MCHC
(P < 1 × 10−4) based on the available summary statistics of BBJ14, and (3)
‘unclassified’ otherwise.

Statistical analysis
For each genotyping platforms (Kv1.0 and Kv1.1), QCed genotypes
were imputed by platforms as described above. A GWAS was con-
ducted using the imputed genotypes by the platforms. For the asso-
ciation analysis, residuals were obtained from a linear regression
model of the measured value or common log-transformed value of all
traits after adjusting for age, sex, and recruitment area. The residuals
were transformed to approximate a normal distribution (Supplemen-
tary Data 1). Single variant association analysis (linear regression) on
the transformed traits was performed using EPACTS v3.4.6 assuming
an additive mode of inheritance based on the alternative allele count.
The KBA GWAS was conducted via meta-analysis based on a combi-
nation of the Kv1.0 and Kv1.1 summary statistics. Then, a meta-analysis
of the summary statistics of the KBA and BBJ was performed. Inverse
variance weighted meta-analyses were performed using METAL
software82. Associated variants (P ≤ 5.56 × 10−9) were clustered as a
locus if the variants were locatedwithin a 500 kb range. Independently
associated loci were defined if the minimum distance between any
distinct locus was greater than 500 kb. Common associations were
regarded as ‘known’ if the distance was <500 kb from the previous
associations, and ‘novel’ otherwise. Most of the length of defined loci
were <2Mb except for the APOB region on chromosome 2, the human
Leukocyte antigen region on chromosome 6, and the 12q24 region of
the well-known long-range haplotype83–85. Conditional analyses of the
GWAS summary data were performed using GCTA-COJO software
(Genome-wide Complex Trait Analysis, conditional & joint association
analysis)86 to identify independently associated variants (MAF ≥ 1% and
P < 5.56 × 10−9) (including ±500 kb of the associated loci). Miami plots
were generated using the R program (version 3.4.4). Genetic correla-
tions were calculated using GNOVA87 software by analyzing the sum-
mary statistics of the HapMap Phase 3matched variants withMAF ≥ 5%
(~869K) based on allele frequencies from the 1000 Genomes Phase 3
East Asians. The genomic inflation factor was calculated with formula:
λ =median(qchisq(1-P, 1))/qchisq(0.5,1) where P is a vector of P-values.
The LD score regression intercept was estimated using LDSC(LD
SCore) v1.01 with pre-calculated LD scores from 1000 Genome Project
phase 3 East Asians by analyzing the summary statistics of the HapMap
Phase 3 matched variants from meta-analysis results37. Candidate
genes of each locus were listed by including the gene containing the
lead variant or nearest genes of upstream and downstream of the lead
variant. The lists were used as an input for GENE2FUNC analysis of
FUMA-GWAS40. Tissue specificity was assessed by analyzing enrich-
ment of differentially expressed gene sets in a certain tissue compared

to all other tissue types using gene expression data sets of GTEx v840.
Classification performance of T2D by glycemic and erythrocytic
components was assessed by AUC. To avoid overfitting, themean AUC
of a logistic regression model with GRS based on glycemic or ery-
throcytic components was estimated in a tenfold cross-validation fra-
mework from test sets.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Overall meta-analyses summary level results generated in this study
are available at the Korea Biobank Array project website (http://
koreanchip.org/kba130k/). The results include association results from
the Korean population and meta-analysis combining the results of the
Korean and the Japanese (BioBank Japan).
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