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Intrinsic bias estimation for improved
analysis of bulk and single-cell chromatin
accessibility profiles using SELMA

Shengen Shawn Hu 1, Lin Liu2, Qi Li3, Wenjing Ma 1,4, Michael J. Guertin5,
Clifford A.Meyer 6,7, Ke Deng 3, Tingting Zhang 8 &Chongzhi Zang 1,9,10

Genome-wide profiling of chromatin accessibility by DNase-seq or ATAC-seq
has been widely used to identify regulatory DNA elements and transcription
factor binding sites. However, enzymatic DNA cleavage exhibits intrinsic
sequence biases that confound chromatin accessibility profiling data analysis.
Existing computational tools are limited in their ability to account for such
intrinsic biases and not designed for analyzing single-cell data. Here, we pre-
sent Simplex Encoded Linear Model for Accessible Chromatin (SELMA), a
computational method for systematic estimation of intrinsic cleavage biases
from genomic chromatin accessibility profiling data. We demonstrate that
SELMA yields accurate and robust bias estimation from both bulk and single-
cell DNase-seq and ATAC-seq data. SELMA can utilize internal mitochondrial
DNA data to improve bias estimation. We show that transcription factor
binding inference from DNase footprints can be improved by incorporating
estimated biases using SELMA. Furthermore, we show strong effects of
intrinsic biases in single-cell ATAC-seq data, and develop the first single-cell
ATAC-seq intrinsic bias correction model to improve cell clustering. SELMA
can enhance the performance of existing bioinformatics tools and improve the
analysis of both bulk and single-cell chromatin accessibility sequencing data.

Cis-regulatory elements in the genome play a critical role in tran-
scription regulation by interaction with protein molecules such as
transcription factors (TFs). These DNA elements are usually unwrap-
ped from packed nucleosomes and are accessible in the chromatin
structure1,2. Genome-wide profiles of chromatin accessibility are a
means tomeasure the global landscapes of active regulatory elements
in different cell types. DNaseI hypersensitivity sequencing (DNase-seq)
and the assay for transposase-accessible chromatin using sequencing

(ATAC-seq) have become widely used for the genomic profiling of
chromatin structure and accessibility3,4. Signal enrichments, or
“peaks”, fromDNase-seq or ATAC-seq data are considered to represent
accessible chromatin regions and can be used for inferring regulatory
elements or TF binding sites. In addition, DNase-seq and ATAC-seq
data also exhibit footprint patterns, which are fine structures in the
accessible chromatin where high-affinity protein-DNA interactions
protect the DNA from DNaseI or Tn5-transposase cleavages4,5.
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DNase/ATAC-seq footprint detection has been implicated as an effec-
tive approach for identifying accurate TF binding sites at base-pair
resolution6,7. A few computational tools have been developed for
detecting footprints from DNase-seq (RepFootprint8, Wellington9,
PIQ10) or ATAC-seq data (HINT-ATAC11, ToBIAS12). A recent study inte-
grated 243 DNase-seq samples from different human cell and tissue
types and reported approximately 4.5 million DNaseI consensus
footprints associated with TF occupancy across the human genome as
one of the largest maps of human regulatory DNA7.

The premise of using DNase-seq and ATAC-seq data to profile
chromatin accessibility is that enzymatic DNA cleavages represented
by sequence reads reflect local chromatin openness only. However, it
has been shown that both DNaseI and Tn5 transposase exhibit
sequence selection biases in high-throughput sequencing data13–16.
Such intrinsic enzymatic biases in sequencing data can potentially
confound observed cleavage patterns and footprint detection. The
characterization and correction of intrinsic cleavage biases are
essential to DNase/ATAC-seq data analysis. To characterize intrinsic
cleavage biases, most studies use a k-mer model, in which the k-mer
DNA sequence centered at a cleavage site of DNaseI/Tn5 is used as the
signature of this cleavage13,16,17. The sequence bias can be estimated by
counting the occurrences of cleavages with each k-mer in one dataset
relative to the genome-wide occurrences of this k-mer. A naive k-mer
model assumes that k-mers are independent of each other, resulting in
an exponential increase in the degree of freedom when k increases.
Therefore, a naive k-mermodel becomes less feasible in practicewith a
large k, especially with samples having insufficient sequencing depth.
Although most studies use 6-mers with 46 = 4096 parameters8,10,13,16–18,
it is unclear whether a different model with a larger k-mer size and
more feasible parameter estimation can achieve better performance.

Several studies have used various computational approaches for
intrinsic cleavage bias estimation8,14,16,19 and footprint detection with
bias correction16,18–20 for bulk DNase/ATAC-seq data. Recently, single-
cell ATAC-seq (scATAC-seq) has enabled chromatin accessibility pro-
filing in thousands of individual cells at one time21–24. Due to the high
sparsity of single-cell data and because most chromatin accessibility
regions contain only one read in one cell, any potential bias can be
substantial in scATAC-seq data compared to bulk data, creating addi-
tional challenges in computational analysis. Incorporating intrinsic
cleavage bias effects for improved scATAC-seq analysis also requires
comprehensive assessment and development of innovative methods.

Here, we present Simplex Encoded Linear Model for Accessible
Chromatin (SELMA), a computational framework for the accurate
estimation of intrinsic cleavage biases and improved analysis of
DNase/ATAC-seq data for both bulk and single-cell experiments. We
demonstrate that SELMA generates more accurate and robust bias
estimation from bulk DNase/ATAC-seq data than the naive k-mer
model and that SELMAcanutilizemitochondrialDNA (mtDNA) for bias
estimation instead of requiring a separate naked DNA sample. We
show an improved TF occupancy inference on ENCODE consensus
footprints by including SELMA-estimated biases for each footprint.
Finally, we show that SELMA-estimated biases can be incorporated
with existing scATAC-seq computational tools to generate more
accurate cell clustering analysis.

Results
SELMA improves cleavage bias estimation in DNase-seq and
ATAC-seq data
We developed SELMA for an accurate and robust estimation of
intrinsic cleavage biases from chromatin accessibility sequencing
data. In SELMA, we start with a naive k-mer model to calculate the
frequency of observed cleavage sites at each k-mer relative to the
total occurrences of this k-mer (Fig. 1a). We further encode each
k-mer as a vector in the HadamardMatrix H16, derived from a simplex
encoding model, in which the k-mer sequences are encoded as the

vertices of a regular 0-centered simplex25,26. Intuitively, a k-mer can
be represented as k mononucleotides and k − 1 adjacent dinucleo-
tides. Each mononucleotide is encoded as the 3-dimensional vector
of one of the four tetrahedral vertices of the cube of side 2 centered
at the origin. Each dinucleotide is encoded as the outer product of
the 2 vectors representing the associated nucleotides (Fig. 1b).
Including an intercept, this k-mer simplex encodingmodel has a total
of 1 + 3 × k + 9 × (k −1) = 12k − 8 parameters,much fewer than thenaive
k-mer model (4k). We use a linear model to fit these 12k − 8 para-
meters from the naive k-mer biases, and use the fitted values as the
SELMA-modeled cleavage biases (Fig. 1c).

As an intrinsic property of the enzyme (DNaseI/Tn5 transposase),
the cleavage biases are expected to be invariant across cell types and
independent of chromatin states (Supplementary Fig. 1a). Comparing
data from two cell types using different 8-mer models as an example,
we found that the biases estimated using SELMA have a higher corre-
lation than those estimated using the naive k-mer model, for both
DNase-seq (Fig. 1d, e) and ATAC-seq (Fig. 1f, g). Using sequence reads
from genomic regions with different chromatin accessibility levels, the
naive k-mer model was not able to generate very consistent bias esti-
mations (Supplementary Fig. 1b, c), but the k-mer biases estimated by
SELMA using the same data were highly consistent (Supplementary
Fig. 1b–e). The sequence preferences of DNaseI or Tn5 cleavage can be
better reflected when the enzymes are applied to deproteinized naked
genomic DNA16,17. We found that the k-mer cleavage biases in naked
DNA DNase/ATAC-seq data estimated with the naive k-mer model can
still be improved by SELMA, obtaining more consistent bias scores
between different cell systems (Fig. 1h–k). These data demonstrated
that SELMA can improve the accuracy of estimating k-mer cleavage
biases in DNase-seq and ATAC-seq data.

With fewer parameters, SELMA enabled us to assess the effect of
k-mer size on the performance of bias estimation. Using a “bias-
expected cleavage” approach8,13,16,19, we compared the bias estimation
performances measured by the correlation coefficient between the
genome-wide observed cleavages and bias-expected cleavages esti-
mated using SELMA with different k. A higher correlation coefficient
indicates a more accurate bias estimation to calculate the expected
cleavages. For both DNase-seq and ATAC-seq data from two different
cell lines, we found that 10-mer outperforms any other k-mer
(Fig. 1l–o). We then applied this analysis to more DNase-seq and
ATAC-seq data from a variety of human tissues generated by ENCODE
and found that 10-mer always exhibited the best performance (Sup-
plementary Fig. 2). The above empirical evidence suggested that 10-
mer is theoptimal choice for intrinsic cleavagebias estimation forboth
DNaseI (DNase-seq) and Tn5 (ATAC-seq) cleavages.

SELMA improves ATAC-seq bias estimation by considering
dimeric Tn5 cleavages
Many studies processedDNase-seq andATAC-seq data in a similarway,
treating individual DNA cleavage sites directly as indications of
accessible chromatin8,14. However, the mechanisms of enzymatic DNA
cleavage are different between DNaseI and Tn5 transposases. Unlike
DNaseI, the Tn5 transposasebindsDNA as a dimer and inserts adapters
on the two strands separated by 9 bp4,27 (Fig. 2a). As a result, the pre-
sence of each observed Tn5 cleavage in ATAC-seq data should be the
consequence of two insertion events induced by the same Tn5 dimer,
and the bias estimation of a Tn5 cleavage site should consider both the
observed cleavage and the coupling cleavage 9 bp downstream on the
reverse strand. Therefore, SELMA estimated the bias on an ATAC-seq
cleavage site as the geometricmeanof the bias scores of the 10-mers at
the 5’observed cleavage and at the 3’ cleavage9 bpdownstreamon the
reverse strand (Fig. 2a). To show the dimeric Tn5 cleavage effect, we
calculated the cross-correlation between the genome-wide profiles of
the plus strand cleavages and theminus strand cleavages. As expected,
weobserved a peak at 9 bp of the cross-correlation curve specifically in
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the ATAC-seq data but not the DNase-seq data (Fig. 2b, c). Similarly, we
observed perfectly matching aggregate cleavage patterns on TF motif
consensus sites between plus strand and minus strand cleavages
shifted by 9bp (Supplementary Fig. 3a, b).

Using the similar “observed-expected correlation” approach
described above, we found that SELMA considering dimeric cleavages

outperformed models considering only 5′ cleavage in generating a
more accurate bias-expected cleavage pattern for ATAC-seq data
(Fig. 2d, e). We confirmed that this observation was specific to ATAC-
seq, as similar analyses for DNase-seq from the same cell lines did not
show a similar level of improvement (Supplementary Fig. 3c, d).
We also compared SELMA with several existing bias estimation
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approaches18 and found that SELMA’s performance was the best for
ATAC-seq data from several cell lines as well as different human tissue
types from ENCODE (Fig. 2d, e, Supplementary Fig. 3e–j). Several new
Tn5-based techniques have recently been developed for improved
chromatin accessibility profiling, including THS-seq28, Fast-ATAC-
seq29, and Omni-ATAC-seq30. Data from these technologies showed
intrinsic cleavage biases similar to those of conventional ATAC-seq
(Supplementary Fig. 3k–n). We found that SELMA also outperformed
other approaches in bias estimation (Fig. 2f–i). Collectively, these data
suggested that SELMA can most accurately estimate intrinsic cleavage
biases in data from ATAC-seq and other Tn5-based techniques.

SELMA enables accurate bias estimation by utilizing mitochon-
drial DNA (mtDNA) reads
Accurate estimation of enzymatic cleavage biases independent of
chromatin usually requires a control sample of deproteinized naked
DNA digested by the same enzyme. Biases estimated from the naked
DNA control data can be used to correct the chromatin accessibility
profiling data13,14,16–18 (Fig. 3a). In conventional DNase/ATAC-seq data
analyses, sequence reads mapped to mitochondrial DNA (mtDNA) are
usually discarded4. Lacking histones responsible for the chromatin
structure, mtDNA is similar to deproteinized naked DNA31–33. There-
fore, we sought to use the mtDNA reads from DNase/ATAC-seq data
for cleavage bias estimation as an alternative to using a naked DNA
control sample (Fig. 3b). Likely because of relatively low read counts
and lack of sequence diversity (e.g., human mtDNA is only <20 kb
long), the naive k-mer model exhibited poor performance on bias
estimation frommtDNA reads, using bias scores estimated fromnaked
DNA as a reference (Fig. 3c). In contrast, SELMA generated a more
accurate bias estimation from the same mtDNA reads, which was
highly consistent with the bias scores estimated from the naked DNA
data (Fig. 3d), demonstrating the power of SELMA to use less input to
make accurate bias estimations.We applied this approach to a series of
ATAC-seq and DNase-seq datasets for different human tissues from
ENCODE and found that SELMAwas better than the naive k-mermodel
in yielding a consistently higher correlation coefficient (>0.9) between
mtDNA-estimated bias and naked DNA-estimated bias for every ATAC-
seq and DNase-seq sample tested (Supplementary Fig. 4a, b). Many
optimized ATAC-seq protocols aimed to reduce mtDNA reads to
increase the fraction of chromatin DNA reads for chromatin accessi-
bility signal yield29,30. We sampled down mtDNA reads to test the
performance of SELMA in making robust bias estimations and found
that SELMA could accurately estimate the bias with as few as 50,000
mtDNA reads (Fig. 3e, Supplementary Fig. 4c), which is approximately
0.2% of the sequencing depth of a regular ATAC-seq sample and lower
than the fraction of mtDNA reads in any existing ATAC-seq
experiment29,30. These data demonstrated that by applying SELMA,
mtDNA reads can be utilized to substitute naked DNA control samples
for accurate bias estimation.

Considering SELMA-estimated bias improves TF binding infer-
ence on ENCODE DNaseI footprint regions
With an accurate bias estimation model developed, we next sought to
examine the potential effect of intrinsic biases on TF binding foot-
prints in chromatin accessibility profiling data. Focusing on the 4.5
million human DNaseI consensus footprints across the human

genome, we plotted the DNaseI cleavages from different human cell
lines and observed similar classic DNaseI cleavage protection (“foot-
print”) patterns across these footprint regions (Fig. 4a, Supplementary
Fig. 5a). Interestingly, we also observed a recurrent pattern of the
SELMA-estimated DNaseI cleavage bias that is well aligned with the
DNaseI cleavage pattern across these footprint regions (Fig. 4b, Sup-
plementary Fig. 5b). In the aggregate view of footprint regions of dif-
ferent lengths, the DNaseI cleavage signals exhibited a clear “cliff-
bound valley”-shaped footprint pattern (Supplementary Fig. 5c). The
DNaseI cleavage bias scores exhibited a pattern of two spikes located
inside the footprint coordinates (Supplementary Fig. 5d). After nor-
malizing various footprint lengths, we plotted the aggregate DNaseI
cleavage patterns across all consensus footprint regions and found
that the overall “footprint pattern” clearly included the double spike
pattern of cleavage biases (Fig. 4c), which aligned well with the two
spikes in the aggregate bias score pattern (Fig. 4d), indicating a pos-
sible contribution of intrinsic biases to the DNaseI footprinting.

To assess the interference of intrinsic biases with DNaseI cleavage
patterns at TF binding footprints, we aligned the 4.5million consensus
footprints with more than 10,000 human TF ChIP-seq datasets from
the Cistrome Data Browser database34,35 and collected two sets of
footprint regions: “TF binding hotspots”, the footprint regions over-
lapping with TF binding sites detected frommore than 3000 ChIP-seq
datasets, and “TF binding deserts”, the footprint regions that do not
overlap with any TF binding sites from any ChIP-seq dataset or any
human TF motif sequence from the HOCOMOCO database36 (Supple-
mentary Fig. 5e). We compared the aggregate DNaseI cleavage pat-
terns and the bias score patterns in these two sets of consensus
footprint regions and found that the DNaseI cleavage pattern in TF
bindinghotspot regionswasdominatedby the classicDNaseI footprint
pattern with little interference from the bias (Fig. 4e, f), while in the TF
binding desert regions, the entire cleavage “footprint” pattern was
apparently determined by the two spikes from the intrinsic bias
(Fig. 4g, h). These results suggested that although the overall DNaseI
cleavage pattern is indicative of TF binding, the intrinsic cleavage bias
may interfere with the real footprint pattern, and the effect on those
footprint regions with rare TF binding events can be drastic. These
observations were reproducible in DNase-seq data from different cell
and tissue types (Supplementary Fig. 6a, b).

To quantify the level of intrinsic cleavage biases in a consensus
footprint region, we defined a footprint bias score (FBS) as the relative
SELMA-estimatedbias score at the two spikes compared to the average
SELMA bias score across the rest of the region for each footprint.
Consistent with what we observed in the aggregate view, the FBSs for
TF binding deserts were significantly higher, while the FBSs for TF
binding hotspots were significantly lower, than the background of all
consensus footprints (Fig. 4i,p < 10−5, by one-sidedWilcoxon rank-sum
test), indicating that FBS might be an informative feature of the con-
sensus footprint regions and might help separate true TF binding
footprints from false-positive DNaseI footprint patterns. Next, we used
a model-based approach to assess the potential power of SELMA-
derived FBS in boosting the performance of TF binding inference from
DNase-seq signal patterns on consensus footprint regions containing
the TF motif sequence. For every TF with a known motif in a cell type
with both ChIP-seq and DNase-seq data available, we employed a
multinomial logistic regression model using different sets of features,

Fig. 1 | SELMA framework for cleavage bias estimation. a Schematic of a naive
k-mer model for cleavage bias estimation. b Simplex encoding model. The coor-
dinates of the 4 tetrahedral vertices of the cube encode the 4 nucleotides. Each
dinucleotide is encoded as the outer product of the 2 mononucleotides. p repre-
sents the number of parameters in a k-mer simplex encoding model. c SELMA uses
k-mer simplex encoding followed by a linear regression for k-mer cleavage bias
estimation. Comparison between the naive k-mer model (d, f, h, j) and SELMA
(e, g, i, k) on k-mer cleavage bias scores estimated from DNase-seq data (d, e, h, i)

and ATAC-seq data (f, g, j, k). Each dot in a scatter plot represents an 8-mer, with its
estimated bias score from different datasets represented in the x- and y-axes.
ChromatinDNA (d–g) and nakedDNA (h–k) fromdifferent humancell lines (d–i) or
different species (j, k) were compared as labeled. R represents the Pearson corre-
lation coefficient. l–o Intrinsic cleavage bias estimation accuracy measured by
correlation between genome-wide observed (OBS) and bias-expected (EXP) clea-
vages with different k-mers. A higher Pearson correlation coefficient (R) indicates a
better prediction of the observed cleavage profile using the estimated biases.
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Fig. 2 | SELMA consideration of dimeric Tn5 cleavages for ATAC-seq.
a Schematic of SELMA consideration of dimeric Tn5 cleavages. b, c Cross-
correlation between 5′ cleavages and 3′ cleavages across genome-wide accessible
chromatin regions in the human GM12878 cell line from ATAC-seq (b) and DNase-
seq (c) experiments. The x-axis represents the shift distance (in bp) between 5′ and
3′ cleavages. d–i Comparison of ATAC-seq intrinsic cleavage bias estimation
accuracy measured by Pearson correlation coefficients (R) between genome-wide

observed (OBS) and bias-expected (EXP) cleavages for human GM12878 (d) and
K562 (e) cell lines, as well as severalmodified Tn5-based assays (f–i). Different bars
represent different estimation approaches: gray for considering the 10-mer at the
observed cut only (5′ only); orange for SELMA; and blue for several published
approaches. Modified Tn5-based assays include f THS-seq with standard Tn5;
g THS-seq with mutated Tn5; h fast-ATAC-seq; and i omni-ATAC-seq.
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each of which may include DNase-seq read count, DNaseI footprint
score produced from an existingmethod, and an optional FBS, to infer
theTFbinding occupancy (determinedbypeakoccurrence inChIP-seq
data) in the motif-containing footprint regions. For each footprint
method, we compared the TF binding inference performance of the
originalmethod (read count + footprint score as features), the original

method plus a randomized naive k-mer bias score feature as a control,
and the original method plus the SELMA bias score (FBS), using an
integrated rank score strategy. We included our previous footprint
method13 and several representative methods that outperform others,
Wellington9 and HINT11,19 (with and without bias correction mode) in
this comparison. We surveyed all human cell types that have both
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DNase-seq and more than 20 TF ChIP-seq samples available from
ENCODE, including in 7 cell lines and a total of 375 ChIP-seq samples
for 156different TFs (SupplementaryDataset 1, Supplementary Fig. 7a).
For each TFChIP-seq sample in each cell line, we calculated differential
rank scoreof the inferenceperformanceby adding abias score feature.
As a result, adding a random k-mer bias score did not change the
inferenceperformance. In contrast, themodelswith SELMA FBS added
can significantly increase the rank scores for the majority of ChIP-seq
samples, regardless of which method was used originally to calculate
the footprint score (277–291, or 74–78%, varying across different
footprint methods, Fig. 4j, Supplementary Fig. 7, Supplementary
Dataset 2). For example, using our previous footprint method13, 277
ChIP-seq samples (74%) received a higher inference rank score when
considering SELMA FBS, covering 117 (75%) of the 156 TFs (Supple-
mentary Dataset 2). Among these, Zinc finger family TFs including
CTCF and REST showed the highest improvement after considering
footprint bias (Supplementary Fig. 8, Supplementary Dataset 2), con-
sistent with previous studies about the positive correlation between
footprint strength and residence timeof the TF onDNA13,16.Meanwhile,
the SOX family (e.g., SOX5) and HLH family (e.g., MYC) TFs rarely
showed improved inference performance after considering footprint
bias (Supplementary Fig. 8, Supplementary Dataset 3). These TFs were
thosehaving short residence timeonDNAandweak footprints16, which
were expected not to be affected by footprint biases. These results
demonstrated that considering the intrinsic cleavage bias can improve
the performance of existing footprint computational methods for the
binding inference for most TFs with footprints.

To assess whether the intrinsic bias has different levels of inter-
ference with the footprint regions for different TFs, we selected two
subsets of sequence motif-containing footprint regions for each TF as
the top 10% with the highest FBS or the bottom 10% with the lowest
FBS, and compared the frequencies of observing actual TF binding
(overlapping with a ChIP-seq peak) in these subsets of footprints. We
found that different TFs had various preferences for binding at low-
FBS footprints or high-FBS footprints. Among the 156 TFs included, a
significantly larger amount of TFs can be improved with SELMA FBS
than those that cannot be improved by SELMA (Fig. 4k). These results
suggested that intrinsic cleavage biases might affect different TFs at
various levels in divergent directions, and considering intrinsic bias
should improve the footprint-basedTFbinding inference formostTFs.

SELMA improves the accuracy of cell clustering from single-cell
ATAC-seq data
Single-cell ATAC-seq (scATAC-seq) technologies enable the detection
of accessible chromatin regions at single-cell resolution in thousands
of cells at a time21–23. Due to the scarcity of cleavage events in an
individual cell, most chromatin accessibility regions in a single cell
have only one aligned fragment, making the potential influence of
intrinsic cleavage biases more substantial in scATAC-seq data than in

bulk ATAC-seq data. We collected scATAC-seq datasets generated
using different platforms for different biological samples, human
hematopoietic cells37, mixed human cell lines21, and mouse primitive
gut tube38, and found that the scATAC-seq data contained similar
intrinsic cleavage biases to bulk data with highly correlated bias scores
estimated by SELMA (Supplementary Fig. 9a–c). We estimated the
average cleavage bias for each individual cell (cell bias score, CBS) and
found that the distribution of CBS was different across cell cluster
patterns, batches, and annotated cell types (Fig. 5a–i, Supplementary
Dataset 4). We further surveyed datasets from the 10x Single-Cell
Multiome platform for different biological systems including mouse
embryonic brain, human peripheral blood mononuclear cells (PBMC),
and human lymph node, each of which has scATAC-seq and scRNA-seq
performed in the same cell and we used the scRNA-seq derived cell
clusters as the “pseudo” ground truth to label the cells. As a result, we
still found similar intrinsic cleavage biases in the scATAC-seq part of
the data (Supplementary Fig. 9d–f) and CBS affecting different cell
clusters (Fig. 5j–r, Supplementary Dataset 4). These observations
indicated that, regardless of experimental platforms and biological
systems, the Tn5 intrinsic cleavage biases can contribute to cellular
heterogeneity observed from scATAC-seq data and can affect cell
clustering analysis.

We next assessed whether considering intrinsic cleavage biases
can improve cell clustering based on scATAC-seq data. We used the
actual cell-type labels as the clustering ground truth for the human
hematopoietic cell sample and the mixed human cell line sample, and
used scRNA-seq data-projected cell labels as a “pseudo” ground truth
for the other samples. We used the adjusted Rand index (ARI)39 to
quantify the accuracy of an unsupervised clustering result. As scATAC-
seq-based cell clustering can be performed on all chromatin accessi-
bility regions (ATAC-seq peaks), we sought to address whether
removing peaks with high intrinsic biases can increase the clustering
accuracy. We first tested a simple clustering approach that involved
principal component analysis (PCA) dimensionality reduction fol-
lowed by K-means clustering. For most cases in the 6 scATAC-seq
datasets, cell clustering after removing 1–50%of peakswith thehighest
PBS can increase ARI from using all peaks (Supplementary Fig. 10).
Although the level of improvements varies across different datasets
and not every percentage of peak removal yields a higher ARI, such
improvement in clustering accuracy by removing high-bias peaks is
statistically significant compared to the control of randomly removing
the same number of peaks (Fig. 6a–f). These data suggested that
scATAC-seq cell clustering could be improved by excluding high-bias
peaks that confounded the analysis.

To correct the intrinsic cleavage bias effect in scATAC-seq data in
a systematic manner, we developed a general model to weight peaks
by the percentile of SELMA PBS (Fig. 6g). The weight function was
determined empirically using a Beta distribution based on the relative
contribution of each PBS percentile of peaks to the true cell type

Fig. 4 | TF binding inference onDNaseI footprint regions is affected by intrinsic
cleavage biases and improved by SELMA. Heatmaps of DNaseI cleavage patterns
in the GM12878 cell line (a) and SELMA-estimated bias scores (b) around ENCODE
DNaseI consensus footprint regions. 5′ and 3′ patterns were plotted separately.
Footprint regions were consistently ranked by footprint length, and signals for
every 1000 regions with similar lengths were averaged as one row in the heatmap.
Aggregate plots of DNaseI cleavage patterns (c, e, g) and SELMA-estimated bias
scores (d, f, h) at all 4,460,438 ENCODE DNaseI consensus footprint regions (c, d),
40,110 footprint regions overlapping with TF binding hotspots (e, f), and 10,106
footprint regions overlapping with TF binding deserts (g, h). DNaseI cleavages are
fromGM12878 (c and e) andmerged fromGM12878, K562 and ENCODE tissues (g).
Dashed lines represent estimated bias spikes in the footprint regions. i SELMA-
estimated footprint bias scores (FBS) for footprint regions at TF binding hotspots
(yellow; n = 40,110), all footprint regions (white; n = 4,460,438), and footprint
regions at TF binding deserts (purple; n = 10,106). jDifference of performance rank

scores for transcription factor binding inference from DNaseI footprint using var-
ious methods for human cell lines (n = 375 TFs for each boxplot). Boxplots with
different colors represent different approaches as indicated in the legends.
k Scatter plot showing the heterogeneous effect of intrinsic cleavage biases on
different TF motifs. Each data point represents motif sites for one TF in one cell
type. Fractions of the TF-bound motif sites overlapping with high-FBS footprint
regions and with low-FBS footprint regions are plotted on the x- and y-axes,
respectively. More motifs located above the diagonal line indicate that more TFs
are more likely to bind at low-FBS sites than at high-FBS sites. The p value was
calculatedby one-tailed t-test comparing the distribution of log-likelihood ratios (y-
axis/x-axis) to the standard normal distribution. The centerline, bounds of box, top
line, and bottom line of the boxplots represent the median, 25th to 75th percentile
range, 25th percentile − 1.5 × interquartile range (IQR), and 75th percentile +
1.5 × IQR, respectively. All P values were calculated by the one-sidedWilcoxon rank-
sum test.
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Fig. 5 | Intrinsic cleavage biases affect single-cell ATAC-seq data analysis.
Visualization of intrinsic cleavage bias effect in different cell clusters derived from
scATAC-seq data for different biological samples and different experimental
platforms: human hematopoietic cells (a–c), mixed human cell lines (d–f), mouse
primitive gut tube (g–i), and 10× Single-Cell Multiome data for mouse embryonic
brain (j–l), human peripheral bloodmononuclear cells (PBMC) (m–o), and human
lymph node (p–r). a,d, g, j,m,pUMAP visualizationwhere cells are colored by cell

type/labels/clusters. b, e, h, k, n, q Same UMAP visualization but cells are colored
by cell bias score (CBS). c, f, i, l, o, r CBS distributions of cells from different cell
types/batches/clusters. Boxes are colored by cell clusters using the same color
palette as the first column. The centerline, bounds of box, top line, and bottom line
of the boxplots represent the median, 25th to 75th percentile range, 25th per-
centile – 1.5 × interquartile range (IQR), and 75th percentile + 1.5 × IQR, respec-
tively. The cell numbers for all boxplots are listed in Supplementary Dataset 4.
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Fig. 6 | SELMA bias correction model improves single-cell ATAC-seq cell clus-
tering. Comparisons of cell clustering accuracy before and after considering the
peak bias score (PBS) on scATAC-seq data for human hematopoietic cells (a),
mixed human cell lines (b), mouse primitive gut tube (c), and 10× Single-Cell
Multiomedata formouse embryonicbrain (d), humanPBMC(e), andhuman lymph
node (f). K-means clustering was performed after PCA dimensionality reduction.
Blue, using all ATAC-seq peaks; orange, after removing 1–50% of peaks with the
highest peak bias score (PBS). For each percentage of peaks retained from 50% to
99%with a 1% increment, 100 randomly sampled subsets of peakswere used as the
background for determining the relative ranks of all peaks or retained peaks. The
relative ranks of the adjusted Rand index (ARI), defined as the rank relative to the
100 randomly sampled sub-datasets, for the 50 cases from 50% to 99%, were
plotted (n = 50 for each boxplot). P values were calculated by the one-sided Wil-
coxon signed-rank test. The centerline, bounds of box, top line, and bottom line of

the boxplots represent themedian, 25th to 75th percentile range, 25th percentile –
1.5 × interquartile range (IQR), and 75th percentile + 1.5 × IQR, respectively.
g Schematic of SELMA single-cell peak bias correction model. Peaks are weighted
and adjusted based on PBS percentile using an empirically determined weight
function. h–m Comparisons of the accuracy (measured by ARI) of single-cell
clustering generated using different existing tools on scATAC-seq data with
(orange) or without (blue) SELMA single-cell peak bias correction. Each panel
represents the result for a scATAC-seq sample fromadifferent biological systemor
experimental platform: human hematopoietic cells (h), mixed human cell lines (i),
mouse gut tube (j),mouse embryonic brain (k), humanPBMC (l) and human lymph
node (m). Each data point at the center of the error bar represents the average
(mean) ARI generated from 100 runs with different random seeds using the
method labeled on the x-axis. The error bar represents the standard devia-
tion (n = 100).
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classification (Supplementary Fig. 11, “Methods”). We applied this
weight function to adjust the peak-by-cell read count matrix for
intrinsic bias correction and used the bias-corrected data matrix for
cell clustering analysis. To evaluate the performance, we tested several
commonly used single-cell data analysis tools, including APEC40,
Seurat41, scran42, and snapATAC43, in addition to K-means, for scATAC-
seq cell clustering, and compared the cell clustering accuracy of the
uncorrected raw data with the bias-corrected data. While different
tools showed various performances, across the 6 biological samples
we tested, the bias-corrected data yielded a significantly higher ARI
than the uncorrected data did for most cases (Fig. 6h–m, Supple-
mentary Fig. 12a–f, Supplementary Dataset 5), including all cases for
human hematopoietic cells (Fig. 6h, Supplementary Fig. 12a) and
mixed human cell lines (Fig. 6i, Supplementary Fig. 12b), the two
datasets with actual cell-type ground truth. While the absolute level of
difference in ARI varies (Supplementary Fig. 12g), the overall
improvement is statistically significant (P = 0.03), under the clustered
one-sided paired t-test taking correlation structures within datasets
into account44. Furthermore, regardless of which clustering method
was used, the approach that yielded the highest ARI in each of the
6 samples is always using the bias-corrected data. These results
demonstrated that SELMA can reduce the effect of intrinsic cleavage
biases in scATAC-seq data and can be applied to existing single-cell
data analytical tools to improve the accuracy of cell clustering analysis.

Discussion
The existence of enzymatic cleavage biases in DNase-seq and ATAC-
seq experiments has been widely acknowledged in the field, but to
what extent such intrinsic biases affect data analysis, especially on the
single-cell level, has not been systematically assessed. SELMA provides
a quantitative approach for the accurate and robust estimation of
intrinsic cleavage biases in both bulk and single-cell chromatin
accessibility sequencing data and requires fewer sequence reads than
the naive k-mer model. Taking Tn5 dimerization into consideration,
SELMA yields more accurate bias estimation specifically for ATAC-seq
data by including k-mer sequences at two Tn5 cleavages 9 bp apart.
SELMA can improve functional analysis and interpretation of
chromatin accessibility profiles. On the bulk level, we showed that
considering SELMA-estimated biases can improve TF binding infer-
ence from ENCODE DNaseI consensus footprints for most TFs, with
better performances compared to existing tools, including some
that already considered “biases”. On single-cell level, we showed
widespread existence of intrinsic cleavage biases in single-cell ATAC-
seq data, and demonstrated that SELMA single-cell bias reduction
model can enhance the performance of existing tools and can increase
the accuracy of cell type clustering. Therefore, SELMA can help
researchers obtain more biological insights from chromatin
accessibility data.

SELMA is built on top of the widely used k-mer model by com-
bining simplex encoding and a linearmodel. Simplex encoding has the
unique ability to capture the pairwise symmetry and orthogonality
between mononucleotides and interactions within each dinucleotide.
It significantly reduces the degrees of freedom without losing any
variance information compared to the naive k-mer model. These
properties enable SELMA to make robust estimations from fewer
sequence reads or smaller datasets than are required by other
approaches, hence enabling de novo bias estimation from a smaller
DNA molecule, such as mtDNA in a DNase/ATAC-seq sample, without
having to generate a separate genomic naked DNA sample. However,
SELMA still relies on sufficient read counts for each k-mer for an
accurate estimation. Although the performance of SELMA may
increase with k, this effect is not unlimited. The performance using 12-
mer is not as good as using 10-mer possibly because there are not
enough reads in the dataset for many 12-mers. Nevertheless, SELMA
works well for most existing DNase/ATAC-seq datasets tested in our

study. In addition, the feasibility and superior performance of simplex
encoding have also beendemonstrated forTFmotif characterization45.
Following similar encoding strategies, SELMA can potentially be
applied to any k-mer-based model or to any high-throughput
sequencing data for robust sequence bias estimation and pattern
recognition.

The k-mer biases estimated by SELMA are consistent across spe-
cies and cell types, reflecting the assumption that the cleavage biases
are intrinsic features of the enzymatic assays. Therefore, one can
directly use the SELMA-estimated k-mer biases from DNaseI or Tn5-
digested naked DNA data as universal intrinsic biases for DNase-seq
and ATAC-seq, respectively, and incorporate these precalculated bias
scores into the data analysis. However, this bias dataset is not guar-
anteed to remain accurate inmany species that have not been profiled,
as there might be unknown biases that have not been characterized.
Although we are confident that the SELMA-estimated results should
still be largely valid, one canalways use the SELMApackage for denovo
estimation of cleavage biases from one’s own datasets.

When applying SELMA-estimated FBS to correct biases in DNase
footprints, our data were limited to ENCODE DNaseI consensus
footprints as a proof-of-principle study.While this ENCODE dataset is
thus far the largest DNase footprint repertoire, users might be
interested in de novo detection of footprints from their customized
DNase/ATAC-seq data. As many bioinformatics tools are already
available for such tasks using various computational models20,
SELMA or SELMA-generated bias information can be incorporated
into any of those models to improve the performance for more
accurate regulatory DNA identification from footprints. On single-
cell ATAC-seq analysis, while we show that SELMA single-cell bias
correction model can achieve an overall significantly more accurate
cell clustering on several publicly available datasets using a few
existing tools, performance still varies across these tools and across
different biological samples. One potential issue that limits a larger-
scale benchmarking is the lack of ground truth for most existing
scATAC-seq datasets. Except for the human hematopoietic cell
sample and the mixed human cell line sample that have the known
cell type labels as ground truth,we had to use transcriptomeprofiling
scRNA-seq data as a “pseudo” ground truth or solver standard to
determine the cell type identities, which not only depends on the
quality of as sparse scRNA-seq data, but also implies the strong but
debatable assumption that chromatin accessibility profiles should
carry the same cell identity characterization as transcriptomic pro-
files. Such imperfect “pseudo” ground truths might have caused an
insignificant improvement in many of the cases we tested. Mean-
while, the absolute level of increase in ARI also varies across clus-
tering methods and datasets, and some are relatively small. One
possible explanation is that ARI is a globalmetric considering all pairs
of cells equally and exhaustively. In the real data, however, the
intrinsic bias might only affect a small subset of cells, and the clus-
tering accuracy would only be improved on that subset of cells,
which results in a small ARI increase. Nevertheless, the overall
increase in the cell clustering consistency for different biological
systems tested indicates that SELMA bias correction reduces con-
founding noises in the data while biologically meaningful variances
are retained46. In summary, SELMA is a universal and systematic bias
reduction model and can be used to enhance the performance of
existing methods and to improve single-cell chromatin accessibility
profiling analysis.

Methods
High-throughput sequencing data collection and processing
Publicly availableATAC-seq, single-cell ATAC-seq, DNase-esq andChIP-
seq data used in this study were collected from Gene Expression
Omnibus (GEO) and the ENCODE project. Themetadata and accession
numbers are listed in Supplementary Dataset 1.

Article https://doi.org/10.1038/s41467-022-33194-z

Nature Communications |         (2022) 13:5533 11



Bulk ATAC-seq and DNase-seq data were processed as follows:
Raw sequencing reads were aligned to the GRCh38 (hg38) refer-
ence genomewith bowtie2 (v2.2.9) (-X 2000 for paired-end data)47.
Low-quality reads (MAPQ < 30) were discarded. For paired-end
sequencing data, reads with two ends aligned to different chro-
mosomes (chimeric reads) were also discarded. For paired-end
data, reads with identical 5’ end positions for both ends were
regarded as redundant reads and discarded. The nonredundant
reads were separated into chromosomal DNA (chromatin reads)
and mitochondrial DNA (mtDNA reads) based on their genomic
location. Peak detection was performed on the nonredundant
chromatin reads using MACS248 (v2.1.2) (-q 0.01, --extsize 50) and
±200 bp centered on the peak summits was collected as the
genome-wide chromatin accessible regions. The accessible
regions in each dataset were separated into 5 groups from highest
accessibility to lowest accessibility based on the read count on
each peak (for Supplementary Fig. 1). The 5′ end nucleotides of
each read were piled up to generate the genome-wide observed
cleavage profile.

Single-cell ATAC-seq data were processed as follows: For the
humanhematopoietic cells and themixedhumancell line samples, raw
sequencing reads were aligned to the GRCh38 (hg38) reference gen-
omewith bowtie2 (-X 2000). Low-quality reads (MAPQ< 30), chimeric
reads and duplicate reads for each individual cell were discarded. For
the mouse gut tube sample, scATAC-seq data from the 10x Genomics
platform were preprocessed with Cell Ranger ATAC (v6.1.1) with the
default parameters to generate fragments for each individual cell. For
the 10x Single-Cell Multiome datasets, the processed fragment files
were downloaded from the 10x genomics website (https://www.
10xgenomics.com/resources/datasets/fresh-embryonic-e-18-
mouse-brain-5-k-1-standard-2-0-0, https://www.10xgenomics.
com/resources/datasets/pbmc-from-a-healthy-donor-no-cell-
sorting-10-k-1-standard-2-0-0, https://www.10xgenomics.com/
resources/datasets/fresh-frozen-lymph-node-with-b-cell-
lymphoma-14-k-sorted-nuclei-1-standard-2-0-0). The fragment
files were then used as input for the subsequent analysis. Because
the Cell Ranger ATAC/ARC pipeline shifted from the Tn5 cleavage
sites to +4/-5 bp in generating the fragment file, the coordinates
were shifted back to represent the actual cleavage loci. For
scATAC-seq datasets, cells with more than 10,000 reads were
retained for analysis. For 10x Single-Cell Multiome datasets, cells
pre-selected by Cell Ranger ARC and with more than 10,000 reads
in both scRNA-seq and scATAC-seq parts were retained for
analysis.

For transcription factor motif analysis, the sequence motifs of
human TFs were collected from the HOCOMOCO database36 (v11), and
the genome-widemotif sites of TFs were detected by FIMO (v4.12.0) in
the MEME package49. Motif sites located outside of the genome-wide
36 bp unique mappable regions were excluded from the analysis. In
total, 61,531,309motif sites for 156 TFmotifs from the human genome
were included in the analysis.

SELMA model
In the naive k-mer biasmodel for intrinsic cleavage bias estimation, the
naive k-mer biaseswere calculated as described in aprevious study13. In
brief, a naive k-mer bias was estimated as the observed frequency of
the cleavages with the k-mer relative to the frequency of that k-mer in
the background. For each mapped sequence read in a DNase-seq or
ATAC-seq dataset, the enzymatic cleavage site was between genomic
positions i and i-1 for the plus (+) strand reads and between i and i+1 for
theminus (–) strand reads, where i represents the genomic position of
the 5′ nucleotide of the reads. The associated k-mer sequencewas thus
assigned as i� k

2 ,i+
k
2 � 1

� �
for the plus strand reads and i� k

2 + 1,i+ k
2

� �
for the minus strand reads. The naive k-mer bias score for k-mer j is
defined as the number of all observed cleavages with that k-mer

divided by the occurrences of that k-mer in the background:

Sj =
Nj

Mj
ð1Þ

where Nj is the count of cleavages with k-mer j, and Mj is the total
count of occurrences of k-mer j in the background (Fig. 1a). In the case
of chromatin DNA, this background included 400bp from each
chromatin accessible region centered at the peak summit detected by
MACS2. The background in the naked DNA samples included genome-
wide 36 bp unique mappable regions. The background in mtDNA
included the mitochondrial DNA sequence. The median was further
subtracted from the bias scores for visualization in the scatter plots
(e.g., Fig. 1d–k).

In the naive k-mer model, the bias score for each k-mer is
independent and empirically determined from the data. The
number of independent variables in themodel is the total number
of k-mers, i.e., 4k.

In SELMA, a simplex encoding model followed by a linear
model was employed on top of the naive k-mer model to better
estimate the intrinsic cleavage biases for each k-mer. To effi-
ciently encode a k-mer sequence considering their intrinsic
similarities, a simplex encoding model was adopted from pre-
vious studies25,26, in which the DNA nucleotides were encoded as
vectors representing the four tetrahedral vertices of a regular
0-centered simplex (Fig. 1b).

A= ½ 1 �1 �1 �
C = ½ �1 1 �1 �
G= ½ �1 �1 1 �
T = ½ 1 1 1 �

ð2Þ

In the simplex encoding, the vectors representing the four nucleotides
are of equal length, mutually orthogonal, and equidistant from each
other. To account for interactions between adjacent nucleotides, a
dinucleotide was additionally encoded as the outer product of the two
vectors associated with the two nucleotides:

AA= ½ 1 �1 �1 �1 1 1 �1 1 1 �
AC = ½ �1 1 �1 1 �1 1 1 �1 1 �
AG= ½ �1 �1 1 1 1 �1 1 1 �1 �
AT = ½ 1 1 1 �1 �1 �1 �1 �1 �1 �
CA= ½ �1 1 1 1 �1 �1 �1 1 1 �
CC = ½ 1 �1 1 �1 1 �1 1 �1 1 �
CG= ½ 1 1 �1 �1 �1 1 1 1 �1 �
CT = ½ �1 �1 �1 1 1 1 �1 �1 �1 �
GA= ½ �1 1 1 �1 1 1 1 �1 �1 �
GC = ½ 1 �1 1 1 �1 1 �1 1 �1 �
GG= ½ 1 1 �1 1 1 �1 �1 �1 1 �
GT = ½ �1 �1 �1 �1 �1 �1 1 1 1 �
TA= ½ 1 �1 �1 1 �1 �1 1 �1 �1 �
TC = ½ �1 1 �1 �1 1 �1 �1 1 �1 �
TG= ½ �1 �1 1 �1 �1 1 �1 �1 1 �
TT = ½ 1 1 1 1 1 1 1 1 1 �

ð3Þ

One can show that these vectors for dinucleotide interactions are also
of equal length,mutually orthogonal, and equidistant fromeach other.
In fact, in the simplex encoding, mononucleotides and dinucleotides
were encoded as rows in a Hadamard matrix of order 4 and a Hada-
mard matrix of order 16, respectively.

Considering both mononucleotides and dinucleotide interac-
tions, a k-mer can then be encoded as k mononucleotides and k � 1
dinucleotides, plus an intercept term. Therefore, the dimensionality of
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a k-mer simplex encoding is

p kð Þ= 1 + 3k +9 k � 1ð Þ= 12k � 8 ð4Þ

In SELMA, the intrinsic k-mer biases were then estimated in a linear
model with these 12k � 8 parameters using the observed naive k-mer
bias scores (Fig. 1c). In detail, we have

y ~
X12k�8

i = 1
aixi ð5Þ

where each observation y is the naive k-mer bias score; xi 2 1,� 1f g, is
the independent variable in the simplex encoding vectors; and ai is the
parameter to be estimated. After linear regression, the model-fitted
value ŷ was defined as the SELMA bias score for each k-mer.

For the genome-wide cross-correlation analysis presented in
Fig. 2b, c, reads from plus (+) and minus (−) strands on chromatin
accessible regions (peaks) were collected separately to generate
plus strand observed cleavage profile and minus strand observed
cleavage profile, respectively. The Pearson correlation coefficient
between the plus strand signal and the k-bp shifted minus strand
signal is:

ρk =

P
i Pi � �P
� �

Mik �Mk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i Pi � �P
� �2P

i Mik �Mk

� �2q ð6Þ

where Pi is the log-scaled plus strand cleavage count at genomic
position i (log2(cleavage+1)), Mik is the log-scaled minus strand
cleavage count at genomic position i with a k-bp shift, �P is the mean
of all the Pi, and �Mk is themeanofMik for all i. All genomic positions on
the genome-wide DNase/ATAC-seq peaks were included in the
analysis. k is chosen from 1 to 20 (x-axis in Fig. 2b, c).

Different bias estimation methods were implemented for com-
parison as follows: We use a +

i and a�
i to denote the “5′ only” intrinsic

sequence bias score at genomic position i on the plus strand and
minus strand, respectively. We use a0 +

i and a0�
i to denote the bias

score from other bias estimation methods in this section. Different
bias estimationmethods used in Fig. 2 and its associated sections are
listed below:

• For the “5′ only” method, a +
i was calculated based on the

k-mer ratio associated with the k-mer spanning positions
i� k

2 ,i+
k
2 � 1

� �
on the plus strand, and a�

i was calculated in a
similar way based on the nucleotides spanning genomic
positions i� k

2 + 1,i+ k
2

� �
on the minus strand (reverse comple-

ment of the DNA sequence on the corresponding plus strand).
This method was applied to both DNase-seq and ATAC-seq,
while the other methods were applied only to ATAC-seq as they
were specifically designed for ATAC-seq.

• For SELMA (Fig. 2a), the bias score was calculated as the geo-
metric mean of the “5’ only” bias score at the given position and
the “5’ only” bias score at 9 bp downstream of the other strand,
i.e., a0 +

i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a +
i ×a�

i+9

p
, and a0�

i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�
i ×a+

i�9

p
• For the model in Martins et al14, the bias score at genomic

position i was calculated in a similar way to the “5′ only”method
but using a gapped 11-mer model. The model could be
represented as XXXXXXNNNXNXCXXNNXNNNNXNX , in
which position i was represented by C; positions that were
ignored were represented by X and informative positions were
represented by N.

• For themodel in Baek et al18, the bias score at genomic position i
was calculated in a similar way to the “5’ only” method but the
cleavages were shifted +4/−5 bp for +/− strand cleavages. In
practice, following the description in the “bagfoot” package, the

bias score at position i was calculated as a0 +
i =a+

i + 5,
and a0�

i =a +
i�5.

• For the model in Calviello et al.8, the bias score at genomic
position i was calculated in a similar way to the “5’ only”method
but using the 6-mer bias table provided in the study.

Observed and bias-expected cleavages were calculated as follows:
The 1 bp at 5′ end positions for DNase-seq or ATAC-seq reads were
piled up to generate the genome-wide observed cleavage profile. To
generate the bias-expected cleavage profile, for a 50-bp window cen-
tered on nucleotide i, we placed the same number of observed clea-
vages following the sequence bias contribution in this window. Let cNs

i
represent the bias-expected cleavage at position i on strand s 2 f+ ,�g,
Ns

i represent the observed cleavage at position i on strand s, and as
i

denote the intrinsic cleavage bias (estimated with any of the above
methods) at position i on strand s. Then we have

cNs
i =N

s
i y

s
i

ð7Þ

where

ysi =
2a

s
iPi + 24

j = i�252
as
j

ð8Þ

We used the Pearson correlation coefficient to compare the
observed cleavage profile and the bias-predicted cleavage profile
(Fig. 2). We only considered positions within the accessible regions to
ensure that all positions had sufficient reads in the 50-bp window for
accurate estimation.

DNaseI footprint analysis
The genome-wide DNaseI consensus footprint regions were down-
loaded from Ref. 7 (https://resources.altius.org/~jvierstra/projects/
footprinting.2020/consensus.index/). A total of 4,460,438 footprint
regions that do not contain unidentified nucleotides (N) in the GRC38
(hg38) reference genome were used for subsequent analyses. The
observed DNaseI cleavage profile from a DNase-seq dataset and DNaseI
SELMA bias scores across ±50bp centered on the footprint regionwere
plotted as heatmaps (Fig. 4a, b). The footprint regions were ordered by
the footprint lengths, and each 1000 footprint regions with similar
lengths were compressed as one row in the heatmap for better visua-
lization. The plus- andminus-strand signals were plotted separately.We
aligned the footprint regions based on the two observed bias spikes in
each footprint region (located 7 bp to the right of the left boundary and
7bp to the left of the right boundary of the footprint, labeled as -0 and
+0 in Fig. 4c–h). The center regions between the bias spikes were scaled
to 4 bins to align footprint regions with different lengths.

The footprint bias score (FBS, in Fig. 4i–k) was defined as the
difference between “spike bias” and “center bias”. The “spike bias”was
calculated as the average of the two SELMA bias scores at the spike
positions, while the “center bias” was calculated as the median SELMA
bias score at the rest of the positions in the footprint region. Let FBSj ,
bj, and cj denote the footprint bias score, spike bias and center bias of
footprint j, respectively. The FBS, spike bias, and center bias are given
by:

FBSj = bj � cj ð9Þ

bj =a
s2 + ,�f g
i2B ð10Þ

cj =
gas2 + ,�f g
i2C ð11Þ
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where as
i represents the SELMA bias score at genomic position i on the

strand s 2 + ,�f g, overbar represents the average, tilde represents the
median, and B andC represent spike positions (within the flanking 1 bp
of the bias spikes) and the remaining positions of the footprint j,
respectively. To calculate the randomly shuffled FBS (random k-mer
bias), the FBS was calculated in the same way, but the bias score as

i for
each position was randomly selected from the SELMA bias score table.

The followingmethodswere used to calculate footprint scores for
comparison:

• Raw footprint: The raw footprint scorewas calculated following a

previous study13, using the formula = � log nC + 1
nR + 1 + log

nC + 1
nL + 1

� �
,

wherenC,nR andnL denote theDNase cleavagecount in themotif
region, and the flanking regions to the right and left of the motif,
respectively. The flanks are both the same length as the motif.

• Wellington footprint: We used Wellington9 (v0.2.0) with default
parameters to detect genome-wide footprints and selected
significant footprint regions with p values < 1e−10. The output
footprint score was assigned to the TF motif overlapping with
the footprint region.

• HINT footprint: We used HINT11,19 (v0.12.3) with default para-
meters to detect genome-wide footprints. For bias correction
mode, we used an additional parameter: --bias-correction. The
footprint score of each footprint region was assigned to the
overlapping TF motifs.

Inferences of TF binding with different features were imple-
mented as follows: For each TF in Fig. 4j, the TF motifs overlapping
with consensus footprint regions were collected as target regions.
DNase-seq read count in the footprint region (“reads”), footprint score
from an existing method, and bias score were used as features in a
multinomial logistic regression model to infer TF occupancy at
footprint-overlappingmotif regions. For eachavailablemethod,model
training with cross-validation and predictions were performed using
different combination of features: “original method” refers to reads +
footprint score. An additional featureof either SELMAFBSor a random
k-mer bias was added for different models. We used a performance
measure integration approach11 to evaluate different models’ predic-
tion power. For each model, we calculated the area under the ROC
curve (AUROC) at 100%, 10%, and 1% false-positive rate (FPR). We also
calculated the area under the precision-recall curve (AUPRC) at 100%,
10%, and 1% recall. We then combined these six performancemeasures
as a rank score S, defined as

S=
1
6

X
i
� log

ri
N + 1

ð12Þ

where i= 1, . . . ,6 denotes the6performancemeasures, ri is the rankof a
model for performancemeasure i, andN is the total number ofmodels.

To calculate the random k-mer bias, we randomly permuted the
SELMA k-mer bias table and generated the k-mer bias table for a
“simulated enzyme”. We used this “simulated” bias table to calculate
the FBS for each footprint region and performed TF inference mod-
eling similar to what we did for the DNaseI SELMA FBS. This permu-
tation was performed 100 times to generate 100 performance rank
scores for random k-mer bias used as controls.

Footprint prediction power of TF binding on motif sites was
assessed as follows: In Fig. 4j–k, we collected the genome-wide motif
sites overlapping with consensus footprint regions and the ChIP-seq
peaks for each TF with HOCOMOCO36 motif and ChIP-seq data avail-
able in human cell lines. We collected data from all human cell lines
with both DNase-seq and more than 20 TF ChIP-seq samples available
from ENCODE, resulting in 7 cell lines, 375 TF ChIP-seq samples, and
156 TFs (Supplementary Dataset 1). In total, we surveyed genome-wide
motif sites for 156 TFs, and 61,531,309motif sites in total. In Fig. 4k, for

each TF, we selected two subgroups of its motif sites based on the FBS
of their overlapped footprint regions: the top 10% of motif sites with
the highest FBS, defined as “sites with high-bias footprint”; and the
bottom 10% of motif sites with the lowest FBS, defined as “sites with
low-bias footprint”. We calculated the proportion of motif sites over-
lapping with TF ChIP-seq peaks for each of the two subgroups and
plotted on a scatter plot (Fig. 4k). To test whether low-bias footprints
tend to have more TF binding than high-bias footprints for most TFs,
we conducted a t-test comparing the distribution of TF binding log
likelihood ratios of low-bias over high-bias footprints to the standard
normal distribution, and the test p-value is labeled in Fig. 4k.

Single-cell ATAC-seq clustering analysis
For single-cell ATAC-seq data in the human hematopoietic cells and
human cell line samples, the cell-type information for each individual
cell was used as the ground truth, or the gold standard. For single-cell
ATAC-seq data in themouse gut tube sample, the cell-type information
was assigned based on label transfer40 from the single-cell RNA-seq
dataset in the same system48 (GSE136689), as the “pseudo” ground
truth, or the silver standard. In detail, we integrated scRNA-seq and
scATAC-seq data using the ArchR package50 (v1.0.1). Individual cells
with a high RNA integration score (unconstrained predicted score <
0.56) were collected as high-quality cells for the analysis. The cutoff of
the RNA integration score (0.56) was determined by maximizing the
interclass variance in the RNA integration score using Otsu’s method51.
Cell types represented by fewer than 10 cells were discarded. For the
10x Single-Cell Multiome datasets, scRNA-seq parts from each sample
were separated and clustered using Seurat (v4.0)41 with default para-
meters. The scRNA-seq clustering results were used as the “pseudo”
ground truth for scATAC-seq cell clusters.

The average bias for each individual cell (median SELMA cell bias
score, median CBS, used in Fig. 5) was calculated as the median of the
bias for all the fragments in the individual cell. The bias for eachpaired-
end fragment was calculated as the mean of the SELMA bias scores for
the 5′ end and the 3′ end.

Peak detection and peak bias score calculation were performed as
follows: We first combined all the single-cell ATAC-seq reads in the
dataset and performedMACS248 peak callingwith a q-value cutoff of 0.1
to include all the potential accessible regions in the human hemato-
poietic cell andmixed human cell line samples (100,456 peaks detected
for human hematopoietic cells and 83,318 peaks for mixed human cell
lines, respectively). For the 10x Genomics single-cell data, the q value
cutoff of 0.01 was used for peak calling (146,098 peaks detected for
mouse gut tube; 52,086peaks formouse embryonic brain; 83,491 peaks
for human PBMC; and 78,243 peaks for human lymph node, respec-
tively). Potential accessible regions with fewer than 10 covered reads or
more than 4000 covered reads were discarded in the subsequent
analysis. To consider the effect of intrinsic cleavage bias in scATAC-seq
data, we summarized the bias for each potential accessible region by
calculating the peak bias score (PBS), defined as themedian SELMAbias
score of all reads (from all individual cells) located in the peak region.

The SELMAsingle-cell peak bias correctionmodelwas designed as
follows: The goal of this model is to give a different weight to all
scATAC-seq peaks based on the PBS, so that peaks heavily affected by
intrinsic biases have a lower weight while peaks less affected by
intrinsic biases have ahigherweightwhen they are used toperformcell
clustering analysis. To estimate the relative contribution of each peak
in a scATAC-seq dataset to the clustering result, we conducted an
analysis of variance (ANOVA) for each identified peak, using the
scATAC-seq read count/signal across different cells as the variable and
the known cell-type labels as the target group labels. The F score from
the ANOVA output was used to quantify the contribution of each peak
to the clustering. Within each percentile of peaks based on their PBS
ranks, the median F score of the peaks with ANOVA p value < 0.05 was
used to represent the relative level of contribution for this percentile
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of peaks (Supplementary Fig. 11a–f). Based on the contribution pat-
terns of the scATAC-seq samples tested, a standard beta distribution
was used to model the percentile weight function:

W xð Þ= xα�1 1� xð Þβ�1

B α, βð Þ
ð13Þ

where x = 0, 0.01, 0.02,…, 0.99 is the percentile of the peak ranked by
PBS; α, β > 1 are the shape parameters; B α, βð Þ is the beta function:

B α, βð Þ= Γ αð ÞΓ βð Þ
Γ α +βð Þ ð14Þ

where Γ() is the gamma function. The beta distribution was chosen
because its probability density function has the following properties:

(1) constraints:W 0ð Þ=0 andW 1ð Þ=0; (2) normalization:
R 1
0W xð Þdx = 1;

(3) asymmetry with mode at x = α� 1
α +β�2. Based on the relative con-

tribution pattern in Supplementary Fig. 11a–f, the parameters were
empirically determined as α = 2, β = 3. Therefore, the weight function
becomes

W xð Þ= 12x 1� xð Þ2 ð15Þ

After the read count in each peak in each cell was weighted using this
weight function, thewhole read countmatrixwas scaled back to keep
the total read count in the matrix unchanged from the raw data
matrix. The adjusted read count matrix then underwent the cluster-
ing analysis. For the single-cell analysis tools that require raw
scATAC-seq reads as input, including Scran and Seurat in the ArchR
package and snapATAC, the adjusted number of reads for each peak
in each cell was synthesized from each peak region and assigned to
the cell.

scATAC-seq cell clustering and evaluation were performed as
follows: For k-means clustering as a naivemethod,weperformedPCA
dimensionality reduction on the accessible regions by individual cells
matrix of normalized read count and kept 60 PCs, followed by
k-means clustering. The number of clusters (k) in k-means clustering
was determined as the actual number of cell types in the dataset. For
published methods tested, including APEC40, Seurat41, scran42, and
snapATAC43, we applied each method with default parameters. To
evaluate the accuracy of cell clustering, we used the adjusted Rand
index (ARI)39 between a clustering result with the predefined cell-
type labels (either the actual cell-type label as the ground truth or the
scRNA-seq projected cell cluster label as the pseudo ground truth).
To evaluate the robustness of clustering results for each method, we
repeated the clustering for 100 times with different random seeds,
andused the average and standard deviationof the ARIs from the 100
runs as the evaluation metrics. APEC result is invariant with random
seeds so 100 repeats were not applied to APEC. We selected the top
60 dimensions for those methods at the dimensional reduction step
(PCA, Seurat, scran and snapATAC). We used the ArchR package50 to
implement the Seurat and scran clustering methods. To explore the
effect of intrinsic cleavage bias on scATAC-seq analysis, we selected
different percentages (from 50% to 99%, with a 1% increment) of
peaks with the lowest PBS (i.e., removing 50%-1% of peaks with the
highest PBS) as input to perform cell clustering (Fig. 6a–f). We also
randomly selected the same percentage of peaks as a control to
estimate the relative rank of the clustering performance from using
all peaks and using retained peaks. In detail, for each percentage
from 50% to 99%, we randomly sampled peaks 100 times and defined
the relative rank as the number of ARIs from random samples that
were less than the ARI from the samepercentage of retained peaks or
all peaks. The relative ranks for different percentages from 50% to
99% are summarized and plotted as boxplots in Fig. 6a–f. To evaluate

the improvement in clustering accuracy after SELMA single-cell peak
bias correction, for each method applied to each dataset, we com-
pared the ARIs from the 100 runs with different random seeds
between corrected and uncorrected data, and used the one-sided
Wilcoxon rank-sum test to assess the statistical significance of clus-
tering accuracy improvement (Supplementary Fig. 12a–f). To assess
the statistical significance of the overall improvement after bias
correction, we compared all the average ARIs from each method and
each sample between uncorrected and corrected data, using the one-
tailed paired clustered t-test, taking correlation structures into
account44. In practice, we performed the test using the ttestClust
function in the R package htestClust52, with scATAC-seq sample
labeled as groups. We also performed a clustered Wilcoxon signed-
rank test using the wilcoxtestClust function; both tests produced a
similar P value of 0.032.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mouse gut tube scATAC-seq dataset is available in the Gene
Expression Omnibus (GEO) with accession number GSE168373. The
10x Single-CellMultiomedatasets are downloaded from 10xGenomics
website (https://www.10xgenomics.com/resources/datasets/fresh-
embryonic-e-18-mouse-brain-5-k-1-standard-2-0-0, https://www.10x
genomics.com/resources/datasets/pbmc-from-a-healthy-donor-no-
cell-sorting-10-k-1-standard-2-0-0, https://www.10xgenomics.com/
resources/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-
14-k-sorted-nuclei-1-standard-2-0-0). All publicly available data used in
this study are downloaded from the GEO or the ENCODE project data
portal. Accession numbers for all the GEO and ENCODE data used in
the study are available in Supplementary Dataset 1.

Code availability
The SELMA package is available at Github at https://github.com/zang-
lab/SELMA and Zenodo at https://doi.org/10.5281/zenodo.704876753.
User instructions and example data files can be found in the README
document. Essential annotation data, analysis results, and scripts are
also available in the repository.
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