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Identification of spatially variable genes with
graph cuts

Ke Zhang1,4, Wanwan Feng1,4 & Peng Wang 1,2,3

Single-cell gene expression data with positional information is critical to dis-
sect mechanisms and architectures of multicellular organisms, but the
potential is limited by the scalability of current data analysis strategies. Here,
we present scGCO, a method based on fast optimization of hidden Markov
Random Fields with graph cuts to identify spatially variable genes. Comparing
to existing methods, scGCO delivers a superior performance with lower false
positive rate and improved specificity, while demonstrates a more robust
performance in the presence of noises. Critically, scGCO scales near linearly
with inputs and demonstrates orders of magnitude better running time and
memory requirement than existing methods, and could represent a valuable
solution when spatial transcriptomics data grows into millions of data points
and beyond.

Systematic assessment of the spatial context of gene expression is a
cornerstone in understanding the mechanistic functionality and
molecular organization of tissues and organs1,2. Currently, two main
classes of experimental approaches have been established. Utilizing
probes for individual RNA molecules to directly quantify gene
expression in situ, image-based single-cell spatial transcriptomics,
such as seqFISH3 and MERFISH4, can measure hundreds of genes in an
entire tissue section with single-cell resolution. Alternatively, by
combining RNA-Seq with positional barcoding, genome-scale spatial
transcriptomics can be generated for hundreds of tiny spots each
containing multiple cells5,6.

A basic task of analyzing spatial transcriptomics data is to
identify spatially variable (SV) genes: here defined as genes whose
expression distributions display significant dependence on their
spatial locations. Besides the statistical characteristics, recent
transcriptome-wide studies indicated that SV genes could also
demonstrate a strong conservation in their spatial patterns, such that
many SV genes display similar dependencies on spatial locations,
resulting in similar trends in spatial patterns of their expression
values5. Furthermore, SV genes are often markers or essential reg-
ulators for tissue pattern formation and homeostasis, consequently,
the expression patterns of SV genes generally align remarkably well
with underlying tissue structures. Recently, three prominent

methods based on marked point process (trendSceek)7, Gaussian
process (spatialDE)8, or Generalized linear spatial model (SPARK)9

were developed to identify SV genes. Although these methods have
been shown to identify SV genes successfully, these algorithms have
computational efficiency ofO(n2) orO(n3)7–9, limiting their utilities as
spatial transcriptomics data grows into millions of data points and
beyond.

Here, we present a scalable algorithm, single-cell graph cuts
optimization (scGCO), to identify SV genes. ScGCO utilizes a hidden
Markov random field (HMRF), a probabilistic graph model that cap-
tures statistical (conditional independence) and spatial properties of
modeled variables, to identify SV genes. To scale the existing graph
cuts algorithm to genome-wide analyses, we developed a heuristic
method to automatically set smooth factor, the hyperparameter in
graph cuts, by optimizing the signal-to-noise ratio (SNR) of graph cuts
results. Extensive analyses with both simulated data and multiple
spatial transcriptomics datasets from a wide variety of biological
samples suggested that scGCO identified one of the highest numbers
of SV geneswhilemaintained a better robustness and amore favorable
false positive rate (FPR) than existing methods. More importantly,
scGCO demonstrated improved scalability and could process millions
of data points with a desktop computer. With the number of analyzed
data points growing beyond millions in a single experiment, scGCO
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could be a valuable tool to fully realize the potential of single-cell
spatial transcriptomics data.

Results
Overview of scGCO method
ScGCOmodels spatial geneexpressionas amarkedpointprocesswhere
points represent the spatial locations of measured cells or spots, and
marks are discrete gene expression states (downregulated, upregu-
lated, etc.) associated with points. The dependency of points with a
specific mark on spatial locations can then be analyzed under the
complete spatial randomness (CSR) framework. The null hypothesis of
CSR model assumes that points with a specific mark in a 2D space are
distributed in a completely random fashion and can be described by
homogeneous spatial Poisson process. Consequently, the probability of
observinga certainnumberofpoints (cells/spots)with aparticularmark
(gene expression state) within a specified area can be calculated exactly
following homogeneous spatial Poisson process (see methods). For a
particular spatial distribution of gene expression, if there are regions
whose number of cells/spots of specific marks are associated with sta-
tistically significant low probabilities according to the CSR model, we
can reject the null hypothesis, and conclude that the gene expression is
dependent on spatial locations and designate the gene as spatially
variable. Unfortunately, for a spatial distribution of points, the exact
locations and shapes of such “spatially dependent” regions are
unknown, and previous methods, such as trendSceek7, have been
developed to approximate the CSR model using distributions of pair-
wise distances between points without explicitly identifying the regions

demonstrating spatial dependence. Although these methods demon-
strated usefulness in identifying SV genes, they cannot illustrate the
exact boundaries of regions demonstrating spatial dependence, which
are often of biological interests, and more importantly, these algo-
rithms have computational efficiency of O(n2) or worse and are unsui-
table for analyzing large spatial transcriptomics datasets.

A key advantage of scGCO to overcome these limitations is to
utilize HMRF, an effective Bayesian method for object recognition in
computer vision, to explicitly identify candidate regions for spatial
dependence, which allows scGCO to directly test for spatial depen-
dence under the CSR model. To model the spatial gene expression
data with HMRF, scGCO first employs Delaunay triangulation to
transform spatial locations of measured cells/spots into an undirected
graph, where each node represents a data point (a single cell or a spot
measuring multiple cells, depending on the technologies utilized) in
the spatial transcriptomics data (Fig. 1). Next, scGCO utilizes Gaussian
mixturemodeling to separate a gene’s expression values into different
bins, which represent different gene expression states. The float gene
expression value associated with each node in the HMRF was then
transformed into corresponding bin number, and the resulting bin
number was assigned to the node, creating an initial label assignment
for the HMRF. The initialized HMRF was then optimized by the fast
graph cuts algorithmof Boykov et al.10–12 to learn the true hidden labels
of the nodes in HMRF, which represent authentic gene expression
states. Because the HMRF model penalizes neighboring nodes with
different labels, the learned labels optimized by HMRF will naturally
form segments containing identical labels. These HMRF-identified
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Fig. 1 | Overview of scGCO for SV gene identification. a A gene’s spatial expres-
sion pattern. Each dot represents a cell and is placed according to its spatial
coordinate.bRepresenting a gene’s spatial expressionwith hiddenMarkov random
field (HMRF). cOptimizingHMRF using graph cuts algorithmwith different smooth
factors and identifying the best graph cuts result that maximizes a score based on

the signal-to-noise ratio. d P-value for each gene was evaluated using the best
segmentation under the complete spatial randomness (CSR) framework.
Benjamini–Hochberg (BH) correction was utilized to identify spatially variable (SV)
genes at genome-scale. Cells are represented with Voronoi diagrams. Thicker lines
highlight the segmentation boundaries identified by graph cuts.
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segments presumably represent authentic spatial structures of the
analyzed tissues. We then used these segments as the candidate
regions to test for spatial dependence of observed gene expression
under the CSR model.

A key obstacle in optimizing HMRF is to determine the best value
for the hyperparameter: smooth factor in the graph cuts algorithm. To
enable efficient optimization of HMRF at genome-scale, we developed
a heuristic sequential search procedure to identify the best smooth
factor that maximizes the signal-to-noise ratio of graph cuts results,
which helps to identify the best segmentation. ScGCO then uses the
best segmentations as candidate regions to test whether the observed
gene expression states demonstrate significant dependence on spatial
locations under the CSR model. Finally, the p-values of all genes were
adjusted with the Benjamini–Hochberg Procedure to identify statisti-
cally significant SV genes at genome-scale.

Performance evaluation using simulated spatial gene expres-
sion data
Because a gold standard SV gene set is not available, we first compared
scGCO’s performancewith existingmethods using a simulated dataset
consisting of 1000 SV genes and 9000 random genes. Specifically, we
simulated ten spatial patterns: 7 artificial patterns representing a wide
range of shapes from simple linear strip to complex nonlinear Swiss
rolls; and three authentic biological patterns extracted from mouse
olfactory bulb tissue structures (Fig. 2a).We simulated 100 samples for
each of the ten patterns, creating 1000 SV genes. To generate random
samples without spatial dependence, we randomly shuffled the 1000
SV genes by randomly assigning expression values to different nodes
while keeping each node’s spatial location fixed. This random shuffling
process was repeated nine times to create 9000 random samples.
Clustering analyses demonstrated that the 1000 SV genes form ten
well-separated clusters occupying a broad space when projected into
2D plane via t-distributed stochastic neighbor embedding (t-SNE)13,
suggesting that our simulated patterns demonstrate sufficient com-
plexity and canbe used to robustly estimated algorithms’performance
(Supplementary Fig. 1a). Expectedly, the 9000 random samples don’t
form any clusters when projected into 2D plane, confirming that their
expression values don’t demonstrate spatial dependence, and can be
effectively used as negative controls (Supplementary Fig. 1b).

To further evaluate the robustness of tested methods, we added
increasing amounts of Gaussian noises into the 10, 000 simulated
genes, creating six datasets with different levels of noises. We then ran
two published algorithms: SPARK and spatialDE, together with scGCO
on these datasets, and evaluated their capacity to identify SV genes
(Fig. 2b and Supplementary Fig. 2). At low noise levels, these methods
delivered comparable performance. Importantly, scGCO excelled at
high noise levels and delivered the best accuracy, sensitivity and
F1 score when the Gaussian noise was increased to 0.6. ScGCO also
demonstrated a second best false positive rate (FPR), which is well-
controlled even at noise level of 0.6, with average FPR of
0.0013 (Fig. 2c).

The excellent performance of tested methods suggested that
Gaussian noises are not strong enough to perturb analyzed methods.
To further evaluate these methods, we introduced additional pertur-
bations by first randomly selecting some nodes, then randomly
exchanging their expression values (Fig. 2d and Supplementary Fig. 3).
Under such dramatic perturbations, the performance of all methods
deteriorated significantly as the percentage of perturbed nodes
increases. Importantly, scGCO delivered the highest robustness to
random exchanges and delivered the best performance among all
tested methods in terms of accuracy, sensitivity and F1 scores, while
maintained a similar FPR (Fig. 2e). Taken together, the comprehensive
evaluation using simulated datasets suggested that scGCO is a highly
robust method that delivers excellent performance in identifying
SV genes.

ScGCO identifies SV genes from mouse olfactory bulb data
We next applied scGCO to spatial transcriptomics data from mouse
olfactory bulb (MOB)5 measuring gene expression in spots with a
diameter of 100 μm, which consists of multiple cells. Because tren-
dSceek only identified < 100 genes in two out of twelve replicates7, we
focused on the comparisonwith spatialDE and SPARK.We first applied
scGCO to replicate 11 of the MOB data, which spatialDE and SPARK
analyzed extensively in their study8,9. ScGCO identified 796 SV genes
(adjusted p-value < 0.05), which is about 12-fold more than spatialDE
(67 genes) and is comparable to SPARK (772 genes) (Fig. 3a). Extending
the analysis to all 12 replicates revealed a similar picture: scGCO
(665.00 ± 342.57) on average identified a similar number of SV genes
with SPARK (693.50 ± 302.56), which are significantly more than spa-
tialDE (332.83 ± 166.97) (Supplementary Fig. 4, p-value < 0.01).

To examine the authenticity of identified SV genes, we next
evaluated their biological relevance. Consistent with previous obser-
vations that many SV genes share similar spatial patterns5, SV genes
identified by scGCO consistently formed four clusters when projected
onto a low-dimensional space via uniform manifold approximation
and projection (UMAP)14 across all 12 replicates (Fig. 3b and Supple-
mentary Fig. 5). Although SV genes identified by spatialDE or SPARK
also formed clusters, the number of clusters varied across different
replicates, suggesting that they are less robust (Supplementary Figs. 6
and 7). To gain further biological insights into the formed clusters, we
examined the spatial expression trends of genes in each cluster and
compared them to known MOB tissue structures derived from H&E
staining, which consists of five annotated layers (Fig. 3c). Reassuringly,
genes identified by scGCO in each cluster demonstrated different
trends that aligned with different layers of the known tissue structures
(Fig. 3d, e). For example, in replicate 11, genes in cluster 0 are strictly
overexpressed in the GCL layer, genes in cluster 1 are overexpressed in
ONL layer, genes in cluster 2 are overexpressed inOPL andMCL layers,
and genes in cluster 3 are underexpressed in GCL layer (Fig. 3d, e).
Expectedly, each cluster of genes can resolve matching tissue struc-
tures (Fig. 3d). Similar results were also observed in other replicates,
suggesting that they aremarker genes for specific spatial domains, and
represent authentic SV genes (Supplementary Figs. 8 and 9).

Because a common characteristic of SV genes is the alignment
with known tissue structures, we next quantified how well do the
identified genes satisfy this criterion. We first examined whether the
identified SV genes could resolve all the five known layers of MOB
tissue structure with a high accuracy using results from replicate 11
(Fig. 3f, g). To maximize the power to resolve true tissue structures
(using more authentic SV genes), while minimizing erroneous struc-
tures from false positive SV genes, we used the SV genes commonly
identified by the three tested methods as the positive reference.
Indeed, all five layers of MOB tissue structures can be resolved using
common SV genes (Fig. 3f), with over 90% of the spots in the recon-
structed tissue structure can be correctly assigned to the matching
layer derived fromH&E staining, confirming that the set of commonSV
genes are valid positive references (Fig. 3f). Importantly, the MOB
tissue structure resolved using SV genes uniquely identified by scGCO
could also resolve all five layers that matches the known structure well
(Fig. 3g). On the contrary, the tissues structures resolved using SPARK-
only or spatialDE-only genes are noticeably different from knownMOB
structures and couldn’t resolve all five layers (Fig. 3g).

To examine this issue further, we utilized four metrics, accuracy,
precision, sensitivity, and F1 score, to quantify how well could the sets
of unique genes resolve MOB tissue structures, using the structure
resolved by common genes as the positive reference. SV genes
uniquely identified by scGCO delivered the best performance in all
four metrics comparing to SV genes uniquely identified by SPARK or
spatialDE (Fig. 3h). For example, scGCO-only genes could assign
73.66% of nodes to the correct layers, while SPARK-only and spatialDE-
only genes could only assign 52.67% and 16.79% nodes to the correct
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Fig. 2 | Performance of SV gene identification algorithms using simulated data.
a The ten spatial patterns utilized in our simulation. b Representative graph cuts
results at increasing Gaussian noise levels for scGCO. P-values were calculated by
scGCO without multiple-testing correction. c Line plots showing accuracy, sensi-
tivity, false positive rate (FPR) and F1 score for SPARK, spatialDE, and scGCO with
increasing Gaussian noises. Plots were generated from n = 10 independent simu-
lations at each noise level. Error bars indicate the means ± SD. d Representative

graph cuts results at increasing percentage of randomly exchanged cells for scGCO
at Gaussian noise level of 0.3. P-values were calculated by scGCOwithout multiple-
testing correction. e Line plots showing accuracy, sensitivity, FPR and F1 score for
SPARK, spatialDE, and scGCO with increasing percentage of randomly exchanged
cells. Plots were generated from n = 10 independent simulations at each exchange
rate. Error bars indicate the means ± SD. Source data are provided as a Source
Data file.
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graph cuts boundaries. f Reconstructed MOB tissue architecture using SV genes
jointly identified by all three methods. g The MOB tissue structures resolved using
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genes (upper column 3), scGCO-only genes (lower column 1), SPARK-only genes
(lower column 2), and spatialDE-only genes (lower column 3). h Line plots showing
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i Line plots showing the cumulative distribution of Jaccard distance of identified SV
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line: SV genes uniquely identified by scGCO; green line: SV genes uniquely identi-
fied by spatialDE; blue line: SV genes uniquely identified by SPARK; gold line: genes
with random expression patterns as negative control. The vertical gray dashed line
indicates the estimate distance cutoff corresponding to 95% of common genes. P-
valueswere calculatedusing the two-sidedpairwise Kolmogorov–Smirnov (KS) test
without multiple-testing correction. Source data are provided as a Source Data file.
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layers in replicate 11, respectively. We then extended the analyses to all
12 replicates, and the comprehensive analyses confirmed that SV genes
uniquely identified by scGCO on average are best in resolving MOB
tissue structures among the tested methods (Supplementary Figs. 10
and 11).

To further quantify the biological relevanceof identifiedSVgenes,
we next evaluated the similarity of each identified SV gene with the
positive reference MOB tissue structures reconstructed with common
genes. To this aim, we aligned each gene’s spatial expression trend
with the reference MOB tissue structures. To achieve a robust eva-
luation, we used three different metrics: normalized Hamming dis-
tance, Jaccard distance, and Hausdorff distance. To further illustrate
the significance of observed alignments between putative SV genes
and the reference MOB tissue structures, we also calculate these
metrics for genes with randomly generate spatial expression patterns,
which serve as negative controls. Reassuringly, the commonly identi-
fied genes demonstrated the best alignment with the reference tissue
structures in all three metrics across the twelve replicates. On the
contrary, random genes generally demonstrated the poorest align-
ments with the reference tissue structures (Fig. 3i and Supplementary
Fig. 12). Importantly, SV genes uniquely identified by scGCO con-
sistently demonstrated better alignments with the reference tissue
structures than genes uniquely identified by SPARK or spatialDE
(p < 0.0001 for Hamming distance, Jaccard distance and Hausdorff
distance, Kolmogorov–Smirnov test) (Fig. 3i and Supplemen-
tary Fig. 12).

To gain a quantitative understanding of the FPR using the
cumulative distributions of thesemetrics, thresholds for false positives
were determined for each metric which classified 95% of the com-
monly identified SV genes as true positives. We then applied the same
threshold to genes uniquely identified by each method. For all 12
replicates, SV genes uniquely identified by scGCO consistently
demonstrated the lowest FPR in all threemetrics using the established
thresholds (Supplementary Fig. 12). For example, 45.07% of scGCO-
only genes demonstrated a better Jaccard distance than the threshold
(0.64) in replicate 11. On the contrary, only 34.90% of SPARK-only
genes and 0%of spatialDE-only genes passed the threshold in replicate
11 (Fig. 3i). Furthermore, direct visualization of SV genes uniquely
identified by each method confirmed that scGCO-only genes indeed
demonstrated more similarities to the reference MOB tissues struc-
tures (Supplementary Figs. 13 and 14). Finally, the SV genes identified
by scGCO were enriched with neuron-related GO terms and pathways
(Supplementary Fig. 15), confirming their biological relevance.

Methods ignoring spatial context are not effective in identifying
SV genes
We next compared SV genes identified by scGCOwith genes identified
by methods without considering spatial information (Supplementary
Fig. 16). Genes identified by scGCO accounted for less than 13.0% (377
of 2894) of highly variable genes (HVGs) identified by Seurat while
ignoring spatial context, or less than 26.3 % (473 of 1798) of genes
identified by DESeq2 by comparing gene expression in the five layers
of MOB tissue against each other in replicate 11. Importantly, most
genes uniquely identified by DESeq2 or HVGs demonstrated much
worse alignment with the reference MOB tissue structures than SV
genes uniquely identified by scGCO (ScGCO vs. DESeq2: p-value =
6.39e−48 for Hamming distance, p-value = 9.60e−52 for Jaccard dis-
tance, and p-value = 4.79e−40 forHausdorff distance. ScGCOvs.HVGs:
p-value = 1.02e−132 for Hamming distance, p-value = 4.06e−137 for
Jaccard distance, and p-value = 4.52e−85 for Hausdorff distance,
determined by Kolmogorov–Smirnov test) (Supplementary Fig. 16b),
confirming that HVGs or DESeq2 are not viable methods to identify SV
genes. The DESeq2 results revealed that biologically relevant spatial
patterns are not required to generate significant differential expres-
sions between different tissue structures (Supplementary Fig. 16c–f),

highlighting the importance to explicitly model spatial variabilities in
identifying biologically relevant SV genes.

ScGCO identifies SV genes from breast cancer data
We next applied scGCO to spatial gene expression data from breast
cancer biopsies, which measured four layers of the same sample using
identical technologies as the MOB data. The biopsies consist of three
types of tissues, invasive ductal cancer (INV), ductal cancer in situ (DC),
and normal tissues (NT)5. ScGCO identified 309 SV genes in layer 2
(adjusted p-value < 0.05), which is about 3-fold more than spatialDE
(115 genes) and is comparable with SPARK (290 genes) (Fig. 4a).
Extending the analysis to all four layers demonstrated that scGCO
identified significantly more SV genes (237.50± 64.00) than spatialDE
(100.25 ± 35.15), while remained comparable to SPARK (271.25 ± 45.42)
across all 4 layers (Supplementary Fig. 17a, b, p-value < 0.05). SV genes
identified by scGCOandSPARKalso consistently formed three clusters
across all layers, a phenomenon not observed in random genes or
genes identified by spatialDE (Fig. 4b and Supplementary Fig. 17c–f).
Expectedly, each cluster of scGCO genes readily recapitulated tissue
regions corresponding to INV, DC, and NT tissues, suggesting that
scGCO robustly identified marker genes for the three tissue types
(Fig. 4c–e and Supplementary Fig. 18a–c).

We next quantified whether SV genes identified by each method
could effectively reconstruct the INV, DC andNT regions in underlying
cancer tissue, using the structure reconstructed by SV genes com-
monly identified by the three methods as the positive reference.
Expectedly, SV genes uniquely identified by scGCO consistently
demonstrated better performance than SV genes uniquely identified
by SPARKor spatialDE (Fig. 4f, g, Supplementary Figs. 18 and 19) across
all four layers. For example, in layer 2 scGCO-only genes could assign
over 65.34% of nodes to the correct regions, while SPARK-only and
spatialDE-only genes could only assign 49.80% and 48.20% nodes to
the correct regions, respectively. We next evaluated the similarity of
each identified SV genes with the reference breast cancer tissue
structures reconstructed with commonly identified SV genes. Expect-
edly, scGCO-only genes consistently demonstrated better perfor-
mance than SPARK-only or spatialDE-only genes in all three different
metrics: normalized Hamming distance, Jaccard distance, and Haus-
dorff distance (p < 0.0001, Kolmogorov–Smirnov test, Fig. 4h and
Supplementary Fig. 20).

We further quantified the FPR of identified SV genes using the
cumulative distributions of the three distances. Thresholds for false
positives were determined by assuming that 95% of the commonly
identified SV genes are true positives. For all four layers and all three
examined distance metrics, SV genes uniquely identified by scGCO
consistently demonstrated the lowest FPR (Fig. 4h and Supplementary
Fig. 20). For example, 93.79% of scGCO-only genes passed the
threshold derived from Jaccard distance (0.85) and could be con-
sidered as true positives in layer 2 (Fig. 4h). On the contrary, only
51.46%of SPARK-only genes and0%of spatialDE-only genes passed the
threshold in layer 2 (Fig. 4h). The favorable FPR of scGCO was also
evident from directly visualizing spatial expression trends of SV genes
(Supplementary Fig. 21). The high FPR was especially clear for
spatialDE-only genes, where many reported spatialDE-only SV genes
were only expressed in a few spots (Supplementary Fig. 21), a false
positive phenomenon was previously reported by the authors of
SPARK as well. Finally, the SV genes identified by scGCO are enriched
with cancer and metastasis-related GO terms and pathways (Supple-
mentary Fig. 22), confirming their biological relevance.

ScGCO identifies SV genes from seqFISH and MERFISH data
We next analyzed the single-cell resolution seqFISH data from mouse
hippocampus. The hippocampus data contains 21 different fields with
variable data qualities, and consequently, the four methods identified
varying number of SV genes showing large variations (Supplementary
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Fig. 23). The large variations suggested that the quality of seqFISH data
and biological variations are dominant factors underlying the
observed difference in method performance, and it is infeasible to
reliable compare thesemethods’ performance using the seqFISH data.
Importantly, scGCO is the only method to robustly identify large

numbers of SV genes from all fields regardless of the quality of ana-
lyzed samples (Supplementary Fig. 23), suggesting that scGCO is an
effective method to process seqFISH data under noisy conditions.

Next, we extended the analysis to MERFISH data measuring the
expression of 140 genes (including 10 negative control genes) at
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single-cell resolution in a human cell line4, which provides a direct
measure of the FPRs of existing methods (Fig. 5). Using each method’s
default cutoff, scGCO identified 112 out of the 140 measured genes as
SV genes including 5 negative control genes, SPARK identified 133 out
of the 140 genes as SV genes including all 10 negative controls, tren-
dSceek identified all 140 genes as SV genes including all 10 negative
controls, and spatialDE identified 91 out of the 140 genes as SV genes
including 5 negative controls (Fig. 5). This result confirmed that scGCO
exhibits the lowest FPR among existing SVgene identificationmethods
while still manages to identify a large number of SV genes, demon-
strating the best balance of sensitivity and specificity.

ScGCO applies to mouse neuron tissue data with LCM-seq
technology
We next analyzed two mouse neuron tissue datasets using laser-
capture microdissection coupled with RNA sequencing technol-
ogy (LCM-Seq)15. The first dataset is mouse medial ganglionic
eminence (MGE) (Fig. 6a–c). The resolution of the spatial tran-
scriptome of the MGE dataset is about 50 μm, where each spot
from a single tissue section was called a ‘voxel’, containing
approximately 100 cells. The MGE dataset sequenced 24,060
genes in 127 voxels. Importantly, the MGE data set includes 96 RNA
spike genes to control FPR. Consistent with simulated results
(Fig. 2c), scGCO, SPARK and spatialDE all demonstrated excellent
FPR, where scGCO only reported 2 spike genes as false positives
and no false positive was reported by SPARK or spatialDE (Fig. 6c).
In sharp contrast, SOMDE16, a recently developedmethod based on
self-organizing map, suffered a high false positive rate by report-
ing 62 out of 96 spikes as SV genes (Fig. 6c). Conversely, SOMDE
reported 9,345 SV genes, while scGCO (3,867 SV genes, adjusted p-
value < 0.05), SPARK (534 SV genes, adjusted p-value < 0.05) and
spatialDE (72 SV genes, adjusted p-value < 0.05) reported many
fewer SV genes (Fig. 6a, b). These results again suggested that
scGCO demonstrates the best balance of sensitivity and specificity

by reporting a large number of SV genes while still maintaining a
low FPR.

We next analyzed the expression of 28,776 genes in 101 mouse
cervical spinal motor neurons (MNs) cells at postnatal day 5 (P5). This
dataset achieved single-cell resolution by coupling LCM with Smart-
seq2 technology17. ScGCO, SPARK and spatialDE reported very similar
number of SV genes (7391, 7409, and 7402, adjusted p-value < 0.05),
which were higher than SOMDE (3,668 SV genes) (Fig. 6d, e). Impor-
tantly, the SV genes reported by scGCO and SPARK demonstrated a
highly significant overlap (73.95%, 5466 out of 7391 genes), while
spatialDE uniquely reported 4367 SV genes, suggesting that scGCO
and SPARK shared a higher reproducibility (Fig. 6d). Furthermore,
scGCO identified all four highly expressed known MN markers MNX1,
CHAT,NEFH and PRPH28 (Fig. 6f), while the other threemethodsmissed
the key gene choline acetyl transferase (CHAT), which was reported to
be a highly specific indicator for the functional state of cholinergic
neurons in the central and peripheral nervous systems28. Previously,
twelve homeobox transcription factors have been established to dis-
play anterior-posterior spinal cord different expression profiles28.
ScGCO successfully identified 7 homeobox transcription factors as SV
genes, while spatialDE, SPARK and SOMDE could only identify 5, 5 and
3 homeobox genes, respectively (Fig. 6g and Supplementary Fig. 24a).
Furthermore, spatialDE, SPARK and SOMDE all failed to identify two
significant positional expressing genes, HOXC6 and HOXC5. Finally, all
methods demonstrated excellent FPR by excluding non-spatial glial
markers as SV genes (Fig. 6g and Supplementary Fig. 24b). Taken
together, scGCOdemonstrated the best combination of sensitivity and
specificity on single-cell MNs spatial transcriptomics data.

ScGCO demonstrates improved scalability
We next compared the scalability of scGCO, spatialDE, SPARK, tren-
dSceek, and SOMDE using simulated data. We first compared the
memory requirement using simulated data with cell numbers up to a
million. Consistent with previous algorithm analyses results7–9,
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Fig. 5 | Identification of SV genes in MERFISH data. a Bar charts showing the
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showing two cell populations. eGraph cuts of representative SV genes identifiedby
scGCO. Thick black lines denote the boundaries of different segments. Cells are
colored according to gene expression levels.
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memory footprints of spatialDE, SPARK and trendSceek grow quad-
ratically with the number of cells, and were projected to require about
100 TB, 20 TB and 20 TB memory to process 1 million cells, respec-
tively (Fig. 7a). SOMDE demonstrated an improved memory require-
ment, and was projected to require 250 GB to process 1 million cells.
Importantly, SPARK, spatialDE, trendSceek and SOMDE all reported
memory errors while processing 1 million cells, suggesting further
optimizations of these algorithms are required to process millions of
cells. In contrast, owing to the sparse graph-based representation of
data, scGCO’s memory grows favorably with the number of cells, and
can process 1 million cells using less than 8 GB memory (Fig. 7a).
Similarly, the running timeof spatialDE, SPARKand trendSceek is cubic
or quadratic in the number of cells7–9, and all three methods are
impractical to scale tomillions of cells (Fig. 7b). SOMDE demonstrated
a better scalability and were projected to analyze 1 million cells in
about 17.5 hours using a typical desktop computer. In contrast,
scGCO’s running time is near linear in the number of cells, which is
consistentwith reportedbenchmarks of graph cuts12, and cananalyze 1
million cells in about 1.5 h using a typical desktop computer (Fig. 7b).

We next evaluated these methods’ scalability using several real
spatial transcriptomics datasets (Supplementary Fig. 25). We first
benchmarked these methods on 10 human heart tissue samples ana-
lyzed with ST sequencing, where these samples contain tens to hun-
dreds of cells18. Consistent with the simulation results (Fig. 7b), scGCO

demonstrated the fastest speed among allmethods.We next extended
the analyses to five datasets of different mouse tissues using Slide-seq
technology19. On these medium sized datasets containing tens of
thousands of data points, scGCO demonstrated second best speed
which is slightly slower than SOMDE. However, the improved perfor-
mance of SOMDE was achieved by merging many cells into a single
spot to improve speed. This approach sacrifices the resolution for
speed, essentially defeating the purpose of single-cell technologies.
Interestingly, spatialDE identified the highest number of SV genes in
these datasets. A close examination revealed that the spatialDE iden-
tified SV genes have the highest percentage of empty pucks, spots
where the read count is zero (Supplementary Fig. 25d). This observa-
tion suggested that some spatialDE-only genes could represent false
positives, a phenomenon previously also reported by SPARK9.

Finally, we evaluated these methods on a mega data set with
MERFISH technology, including 1,027,848cells and 161 genes20. ScGCO
successfully processed the data in less than 2 h (115min) using a
desktop computer, a performance comparable to simulated data.
Consistent with results from simulated data, the other methods
couldn’t process the data and reportedmemory errors on a serverwith
4 TB of memory. Taken together, these results demonstrated that
scGCO demonstrates improved scalability and is a method that could
process spatial transcriptomics data with millions of data points using
only desktop computers.
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Fig. 6 | Analyses of SV gene identification algorithms with mouse neuron tis-
sues data generated with LCM-seq technology. a, b Venn diagram and bar plot
showing the overlap and number of SV genes identified by different methods from
mouse medial ganglionic eminence (MGE). (c) Bar plot showing the number of
detected RNA SPIKEs (designed as negative controls) by different methods.
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lines denote the boundaries of different segments. Cells are colored according to
gene expression levels. g Venn diagram showing the overlap of the MN marker
genes, twelve homeobox genes, six non-spatial expression genes and SV genes
identified by scGCO, spatialDE, SPARK, and SOMDE, respectively. Source data are
provided as a Source Data file.
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Discussion
Here we presented a scalable method to identify SV genes that pro-
vides a fast running time with highly robust and biologically mean-
ingful results. Despite the favorable performance comparing to
existing methods, analyses with both simulation and real biological
data suggest that the performance of scGCO could still be improved.
One potential source to further improve the performance of scGCO

lies in the optimization procedure. Although the graph cuts algorithm
is a well-established method, how to set smooth factor, the hyper-
parameter of graph cuts, is an open question. A typical approach is to
perform interactive graph cuts, where the user manually adjusts
smooth factor based on observed results21. Alternatively, when a large
set of annotated images are available, deep learning methods, such as
neuralnetworks, couldbeemployed to learn thebest segmentation for
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each analyzed image. However, for the SV gene identification problem,
where the large sets of annotated spatial patterns are unavailable, and
the task is performed at genome-scale, both interactive and deep
learning methods are not feasible. Here we developed an approach to
identify the optimal smooth factor bymaximizing signal-to-noise ratio
of the graph cuts results. Because scGCO utilizes a sequential search
procedure, it will likely only identify local optimal smooth factors,
which could potentially lead to false positives and false negatives.
Importantly, the rapid growth of spatial transcriptomics data and the
progress of biological research will establish many authentic spatial
patterns in the future, which could be exploited by supervised learning
approaches to improve the performance of scGCO.

Single-cell sequencing technology is enjoying a rapid revolution,
and data are now being generated for millions of cells in a single
experiment22. This astronomical amount of data poses a great chal-
lenge for analysis methods, which are essential to fully realize the
potentials of single-cell data. ScGCO delivers excellent scalability and
can process millions of cells with desktop-level computational
resources. Furthermore, scGCO also possesses an easy expandability.
The graph cuts algorithm has been extended to 3-D object
recognition23 suggesting that scGCO could be readily adapted to 3-D
single-cell spatial transcriptomics data. Finally, the optimization of
graph cuts can be accelerated by GPU24, and a future GPU version of
scGCO could represent a valuable solution as spatial transcriptomics
data grows beyond millions of cells.

Methods
Identifying spatial domains with HMRF-based image
segmentation
LetG = (V, E) be an undirected graph, where V = v1, v2,…, vN is the set of
nodes, and E is the set of edges of the graph. Let S = {1, 2,…, N} be the
set of indexes for nodes in G. The edges of G define a neighborhood
system N = {Ni, i S}, where Ni is the set of nodes neighboring node i. A
family of random variables R = {ri, i ∈ S} indexed by S, where node i is
associated with random variable ri, is called a Markov random field if
and only if P(ri|rS - {i}) = P(ri|rNi). A hiddenMarkov Random Field (HMRF)
is a pairwise MRF X and Y characterized by the following. The under-
lying random field X = {Xi, i∈ S} assumes values in a finite state space L,
often called labels, whose states are not observable. The states of the
emitted random field Y = {Yi, i ∈ S} are observable. Furthermore, the
random variable Yi are conditionally independent given Xi:

P y∣xð Þ=
Y

i2 S

Pðyi∣xiÞ ð1Þ

Using Bayesian rules, we can express the join probability dis-
tribution of (X, Y) as

P y,xð Þ=P xð Þ
Y

i2 S

Pðyi∣xiÞ ð2Þ

The central task of HMRF learning is to identify a configuration x̂
of thehidden randomfield, a set of labelsX, according to theMaximum
a posteriori estimation (MAP) criterion:

x̂ = arg max
x2 χ

P y∣xð ÞPðxÞ ð3Þ

According to the Hammersley‐Clifford Theorem, the joint dis-
tribution P(x) of the hidden MRF X can be equivalently characterized
by a Gibbs distribution:

P xð Þ= expð�UðxÞÞ
Z

ð4Þ

where Z is the partition function that normalizes the distribution P(x),
and U(x) is the energy function, U(x) =

P
c2C

VcðxÞ, which is the sum of
clique potentials over all possible cliques C. Similarly, the joint like-
lihood distribution P y∣xð Þ can also be characterized by a Gibbs dis-
tribution:

P y∣xð Þ= expð�Uðy∣xÞÞ
Z

ð5Þ

Consequently, the MAP estimation of a HMRF is equivalent to
minimize the posteriori energy function:

x̂ = arg min
x2 χ

fU y∣xð Þ+ U xð Þg ð6Þ

Studies analyzing spatial expression of genes demonstrated that
the spatial distribution of expression values forms patches, where
adjacent cells tend to display comparable levels of gene expression5.
Thus, patches of cells in which a gene displays similar gene expression
levels are analogous to objects in an image. Consequently, we adopted
the classical energy formulation for HMRF-based image segmentation
in computer vision to identify spatial domains underlying observed
spatial gene expression:

E Xð Þ=
X

p2P
DpðxpÞ+ α

X

ðp,qÞ2N
Vp,qðxp, xqÞ ð7Þ

whereN is the set of 2-cliques (pairs of cells that interact directly) in the
graphical representationof single-cell spatial gene expressiondata and
P is the set of single cells in the data set. Let L be the set of possible
gene expression labels determined from Gaussian mixture modeling
analysis (see methods section below), then xp ∈ L is the label assigned
to cell p. Consequently, X = fxp∣pPg is the set of label assignment for
all cells.

DpðxpÞ is a data penalty function of assigning a particular gene
expression classification label xp to cell p. The more likely xp is for cell
p, the smaller is DpðxpÞ. Specifically, for each gene the data penalty
functions for all cells can be expressed as a P x K matrix U, where P is
the number of cells and K is the number of Gaussian distributions
determined by Gaussian mixture modeling for the analyzed gene. The
entries for U are:

Up,k = ∣ep � μκ ∣ ð8Þ

where ep is the normalized gene expressionat cellp, andμκ is themean
of the kth Gaussian distribution for the analyzed gene.

Vp,qðxp,xqÞ is the interaction energy of assigning a particular pair
of gene expression classifications to a pair of cells interacting directly,
and α is the weight, also known as smooth factor, that controls the
contribution of interaction energies to the overall energy. In HMRF
most neighboring cells are expected to have the same label, therefore
Vp,qðxp,xqÞ = 0 if xp = xq and Vp,qðxp, xqÞ > 0 otherwise.

In order to apply graph cuts algorithm to energy minimization of
HMRFs, the interaction energy must be regular25:

Ei, jð0, 0Þ+ Ei, jð1, 1Þ ≤ Ei, jð0, 1Þ+ Ei, jð1, 0Þ ð9Þ

where i and j are indices for adjacent nodes, Ei,j(0,0) and Ei,j(1,1)
represent the interaction energies when the adjacent nodes are in the
same state, Ei,j(0,1) and Ei,j(1,0) represent the interaction energies when
the adjacent nodes are in different states. The regularity of interaction
energy guarantees a duality between energy states of HMRFs and label
configurations of the corresponding graph, where the minimal energy
state matches the maximum flow of the graph, hence allowing the
application of graph cuts to solve energy minimization of HMRFs. In
our implementation, we used a topological interaction energy that has
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greater penalties when the classification of adjacent cells is further
away. Specifically, the interaction energy S is a symmetric matrix
whose entries were:

Si,j = ∣i� j∣F ð10Þ

where F is a factor that controls themagnitude of the penalty and Si,j is
the interaction energy for adjacent cells with classification i and j,
respectively.

The goal of graph cuts optimization is to find a configuration X, a
set of labels to all cells, thatminimizes the above energy E(X). When the
classification of cells is limited to two classes, or two labels in an image
segmentation problem, a crucial advantage of the above energy for-
mulation of HMRFs is that powerful min-cut/max-flow algorithms for
graph cuts can be used tominimize the above energy functions, which
provides fast, globally optimal solutions for two-label problems26. For
multilabel problems, globalminimization of the energy function is NP-
hard11. There are many applications of graph cuts on clustering27. In
scGCO, we adopt the alpha-expansion algorithmdeveloped by Boykov
et al., which iteratively applies 2-label graph cuts to expand each label
until the algorithm converges11. The algorithm runs in low polynomial
time and guarantees that the solution is within a known factor of the
global minimum11.

Converting spatial coordinates of gene expression data to graph
representation
To apply the graph cuts algorithm to spatial gene expression data, we
first need to represent spatial gene expression data with a HMRF graph
models. We first performed Delaunay triangulation on the spatial
coordinates of the cells. The graph produced by Delaunay triangulation
has the nice property that only authentic neighbors are connected by
edges in the graph because no cells are allowed in the triangle con-
necting three cells. Hence, Delaunay triangulation captures essential
information of cell-cell interactions with a sparse graph. The generated
graph, where each node is associated with energies derived from gene
expression data and an initial label (see the next two sections in mate-
rials and methods for details), was analyzed with graph cuts algorithm
to produce a segmentation. After the best segmentation has been
identified by graph cuts, which represents a spatial gene expression
pattern, we performed the dual operation of Delaunay triangulation to
generate Voronoi diagrams, which has been broadly used to model
cells28. To highlight the boundaries of cell clusters identified by graph
cuts, edges in theDelaunay triangulation connecting cells with different
predicted labels are identified, and Voronoi polygon edges intersecting
these identified edges in Delaunay triangulation are highlighted, pro-
viding a direct visual representation of spatial gene expressionpatterns.

Converting gene expression data to initial HMRF labels via
Gaussian mixture modeling
To assign the initial labels for HMRF, we first determined a gene’s
expression state at each cell. Wemodeled the gene’s log2 transformed
expression values with Gaussian mixture models (GMM):

pðxÞ=
XK

κ = 1

πκNðx∣μκ ,ΣκÞ ð11Þ

where πκ is the mixing coefficient satisfying 0≤πκ ≤ 1 and
PK

κ = 1 πκ = 1;
μκ and Σκ are the mean vector and covariance matrix for the kth
Gaussian distributionNðx∣μκ ,ΣκÞ, respectively. The Gaussian mixture
models were optimized with expectation–maximization (EM) algo-
rithm. We then assigned each cell a gene expression classification
according to the GMM classification of the gene’s expression level in
the cell. The classifications were ordered by corresponding gene
expression levels so that cells with larger difference in gene expression

levels have greater difference in their classifications. This setup
ensures that adjacent cells with larger expression difference are
associated with larger classification differences, which will generate
larger penalties in interaction energies of associated HMRFs. This
energy formulation favors graph cuts that put cells with similar clas-
sifications in the same subgraph.

To determine the best number of components for GMM, we
generated GMM with component numbers from 2 to 10. We then
calculated Bayesian information criterion (BIC) for each GMM and
selected the GMMwith best BIC as final GMM for downstream analysis.

Identification of optimal segmentation with iterative graph cuts
We developed a heuristic procedure to sequentially search for the
optimal graph cuts results by varying smooth factor, the hyperpara-
meter in graph cuts. A score quantifying the quality of a graph cuts
result was defined as follows:

Score = � log10ðPÞ � ∣NoiseSegments∣×
200
n

ð12Þ

where P is the spatial non-randomness p-value for the segmentation
described in the below section, ∣Noise Segments∣ represents the
number of noise segments (segments with <= 9 nodes and p >= 0.1)
in the graph cuts result, and n is the number of nodes in the graph. The
second term is a normalized number of noise segments represents the
average number of noise segments in a 200-nodes graph. The score
essentially measures the signal-to-noise ratio of the corresponding
graph cuts result.

The algorithm starts by generating the graph representation of
the spatial transcriptomics data and assigns each cell an initial label as
determined from GMM analysis. The search procedure then starts at
smooth factor 10, with a step size of 5 or 10. At each step, we applied
the alpha-expansion algorithm developed by Boykov et al., which
iteratively applies 2-label graph cuts to expand each label until the
algorithm converges11. The search stops when the score is worse than
previous smooth factor, and the best graph cuts result is returned.

Calculating the statistical significance of identified SV genes
We evaluated the statistical significance of a spatial gene expression
with the complete spatial randomness (CSR) framework, where the
distribution of points in 2-D plane was modeled as homogeneous
spatial Poisson processes. Under the CSR model, the probability of
finding exactly k points of a specific label in a region V can be deter-
mined from Poisson distribution:

Pðk,ρ,V Þ= Vρð Þke�ðVρÞ

k!
ð13Þ

whereρ represents the density of the specific label, derived by dividing
the number of nodes of the specific label with the total number of
nodes in the HMRF.

In the context of SV genes, theHMRF consists of two sets of labels.
The first set is the observed labels that are initially assigned to the
nodes, which were derived from the GMM analysis of observed gene
expression values, representing the observed states of gene expres-
sion. The second set is the hidden labels, which are the learned labels
after the HMRF was optimized and are assumed to represent the true
gene expression states of the nodes. The learned hidden labels were
used to identify segments from the graph cuts, where each segment is
a connected subgraph of the same learned label, presumably repre-
senting fundamental biological structures that will give rise to spatial
variability in gene expression.

Once the segments were identified, we then calculated the prob-
ability that the observed gene expression states occur in each segment
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using the CSR model. For each segment, V is simply the number of
nodes in the segment. The k and ρ for the analyzed segment were then
derived using the observed label. Assuming the learned hidden label
for the segment is a, then k is the number of nodes in the segment
whose observed label matches a. And ρ is simply the density of a
calculated using the observed labels. For each candidate gene, we
calculated the p-values for all segments identified by graph cuts and
reported the best result as the spatial non-randomness p-value for the
gene. For genome-scale analyses, multiple test correction was per-
formed with Benjamini–Hochberg procedure.

In summary, the central task of SV gene identification is to test
whether an observed gene expression distribution is dependent on
spatial locations. Because the region “V” to exactly test for spatial non-
randomness in the CSRmodel is generally unknown, previousmethod
suchas trendSceek canonly approximate theCSRmodel by examining
whether the distribution of the distances among all pairwise points is
significantly different from randomly distributed points. The key
advantage of our HMRF-based approach is to identify candidate
regions exactly (these derived from HMRF-based segmentation), and
directly test whether the observed gene expression displays spatial
non-randomness in the candidate regions under the CSR framework.

Benchmarking algorithms using simulated dataset
We simulated spatial gene expression datasets following the proce-
dures described by SPARK9. Briefly, the spatial location (262 spots) of
replicate 11 ofmouse olfactory bulb data were separated into 3 groups:
GCL, OPL and ONL, according to the reference tissue structures. Spots
in the GCL, OPL and ONL region were assigned expression values by
randomly drawing from N 0,σ2

� �
, N 1,σ2

� �
, and N 2,σ2

� �
, respectively.

We simulated 1000 SV genes for each σ ranging from 0.1 to 0.6 with a
step size of 0.1. We also simulated 9000 non-SV genes by randomly
assign expression value to each spot. Finally, we transformed the
expression value to count data using the normalize_count_cellranger
function in cell ranger based on the total read counts from the
real data.

Comparing spatial patterns to reference tissue structures
We used the annotated H&E staining data to generate the gold stan-
dard tissue structure, where each spot is assigned to its true layer.
Specifically, we first extract the spatial coordinates of the boundaries
of each layer from the annotated H&E staining. Next, the spatial
coordinate of each spot is compared with the coordinates of each
layer’s boundary data, and each spot was assigned to the layer con-
taining the tested spot.

We adopted the procedure described by Zhu et al29 to reconstruct
tissue structures using a set of SV genes. We first performed K-means
clustering to cluster cells using selected SV genes. The k-means clus-
tering results were set as the initial state for HMRF, and the clusters
were optimized by graph cuts to generate the final optimized HMRF.
Once the HMRF is optimized, the number of different labels of the
HMRF is taken as the number of layers of the reconstructed tissue
structure, and each spotwas assigned to corresponding layer based on
the HMRF label of that spot.

To calculate the normalized Hamming distance (described
below), Jaccard distance, and Hausdorff distances of an SV gene to the
reference tissue structures,wefirstmatcheach segment of the SVgene
to a layer of the reference tissue structure. A segment consists of spots
with the same HMRF predicted label, and was represented by a bit
vector v, such that vi = 1 if the ith spot is in the segment, and vi = 0
otherwise. Similarly, a layer of the reference canalso be representedby
a vector u. A segment v of an SV gene is assigned to a specific layer u of
the reference tissue structure if v and u have the largest overlap among
all layers of the reference structure. Once the SV gene’s segments were
all assigned tomatching layer in the reference tissue structure, we then
calculated the three metrics according to the standard definition.

Specifically, the normalized hamming distance is defined as:

∣XORðu, vÞ∣1
∣& u, vð Þ∣1 +a

ð14Þ

where XOR represents the bitwise exclusive OR operation, and &
represents the bitwise ANDoperation. ∣∣1 represents the L1-norm of the
vector. Finally, a is a positive constant set to 10 to avoid division
by zero.

Identify highly variable genes ignoring spatial context
HVGs were identified using Seurat’s FindVariableGenes function (ver-
sion 2.3.4)30. Theminimum number of genes per cell threshold was set
to 200, and genes expressed in at least 3 cells were selected for
downstreamprocessing. HVGswere identified using x.cutoff 0.0125 to
3, y.cutoff 0.6, and other parameters set to default values.

Identify genes differentially expressed between spatial domains
with DESeq2
Cells in the MOB data were separated into 5 groups according to the 5
layers tissue structure resolved using SV genes identified by scGCO.
Pairwise differential expression analyses were performed between all
possible pairs of groups with DESeq2 using default parameters (ver-
sion 1.22.2)31. Genes demonstrating significant differential expression
were identified using FDR cutoff 0.01 and relative expression FC
cutoff 1.

Comparison to existing spatial gene identification algorithms
To systematically evaluate the performance of scGCOagainst published
algorithms, we evaluated spatialDE (version 1.1.1), trendSceek (version
1.0.0), SPARK (version 1.0.2), and SOMDE (version 0.1.8). For spatialDE
and SPARK, we downloaded the scripts provided by the authors from
theirGitHubwebsite andexecuted the scriptswithoutmodification. For
SOMDE, we installed the python package. For trendSceek, we imple-
mented R scripts according to the methods descripted in trendSceek’s
original paper. The trendSceek’s scripts and the scripts to run scGCO
are provided in the tutorial files in scGCO’s GitHub repository.

To evaluate these methods, we first calculated the numbers of
true negatives (TN), true positives (TP), false negatives (FN), and false
positives (FP). We then used these values to calculate the following
fourmetrics: accuracy = (TP + TN)/(TP + TN+ FP + FN); sensitivity = TP/
(TP + FN); false positive rate (FPR) = FP/(FP + TN), and F1 score (F1) =
2∗TP/(2∗TP + FN + FP).

To estimate the scalabilities of algorithms, we evaluated memory
requirement and running time using simulated data as described by
Edsgard et al.7. For running time, we executed all algorithms on a
desktop computer with Intel® Core™ i7-6700 CPU (8 cores at
3.40GHz), 40 GiB memory, and running the Ubuntu 18.04.1 operating
system. For memory profiling, we executed all algorithms on a work-
station with 4 TB of memory. For spatialDE, SPARK, trendSceek, and
SOMDE, these algorithms exceed the capacity of available hardware
when the cell numbers are large. Because these algorithms scale
quadratically or cubically with the number of cells7–9, we estimated
theirmemory requirement and running timebyfitting available data to
polynomial functions.

Gene ontology and network analyses
The gene ontology and pathway enrichment analyses were performed
using the enrichGO and enrichKEGG functions from clusterProfiler
R-package (v 3.16.0)32. All enrichment analyses were carried out with
default parameters.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
We downloaded the spatial transcriptomics data reported by Ståhl
et al. from the Spatial Transcriptomics Researchwebsite (https://www.
spatialresearch.org/resources-published-datasets/doi-10-1126science-
aaf2403/)5. We used all 12 replicates for the mouse olfactory bulb, and
all four layers for the breast cancer data. For mouse hippocampus
seqFISH data3, we downloaded the data from https://ars.els-cdn.com/
content/image/1-s2.0-S0896627316307024-mmc6.xlsx. We used all 21
fields provided by the authors for analysis. The MERFISH data was
downloaded from the Zhuang lab website (http://zhuang.harvard.edu/
merfish.html)4,20. We used “Replicate 6” similar to spatialDE8, as these
had the largest number of cells and highest confluency. The LCM-seq
data was downloaded from Gene Expression Omnibus (GEO) of the
National Center for Biotechnology Information under the accession
number GSE60402 and GSE7651415. The ST sequencing and slide-seq
data used in this study have been available in the SpatialDB database
with website: (http://www.spatialomics.org/SpatialDB/)33. Expression
data were normalized using the same procedure as described in the
cell ranger package (https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/latest/what-is-cell-
ranger). Source data are provided with this paper.

Code availability
An open-source implementation of scGCO is available at GitHub
(https://github.com/WangPeng-Lab/scGCO)34.
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