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Mode-pairing quantum key distribution
Pei Zeng 1, Hongyi Zhou1, Weijie Wu1 & Xiongfeng Ma 1✉

Quantum key distribution — the establishment of information-theoretically secure keys

based on quantum physics — is mainly limited by its practical performance, which is char-

acterised by the dependence of the key rate on the channel transmittance R(η). Recently,

schemes based on single-photon interference have been proposed to improve the key rate to

R ¼ Oð ffiffiffi
η

p Þ by overcoming the point-to-point secret key capacity bound with interferometers.

Unfortunately, all of these schemes require challenging global phase locking to realise a

stable long-arm single-photon interferometer with a precision of approximately 100 nm over

fibres that are hundreds of kilometres long. Aiming to address this problem, we propose a

mode-pairing measurement-device-independent quantum key distribution scheme in which

the encoded key bits and bases are determined during data post-processing. Using con-

ventional second-order interference, this scheme can achieve a key rate of R ¼ Oð ffiffiffi
η

p Þ
without global phase locking when the local phase fluctuation is mild. We expect this high-

performance scheme to be ready-to-implement with off-the-shelf optical devices.
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Quantum key distribution (QKD)1,2 is currently the most
successful application of quantum information science
and serves as the first stepping stone towards a future

quantum communication network3. A core advantage of QKD
compared to other quantum communication tasks is that it is
ready to implement with current commercially available off-the-
shelf optical devices. However, two major characteristics of QKD
—its practical security and key-rate performance—limit its real-
life implementation. The key generation speed suffers heavily
from transmission loss in the optical channel. Fundamentally, the
asymptotic key rate for point-to-point QKD schemes is upper
bounded by the repeaterless rate-transmittance bounds4,5, which
are approximately linear functions of the transmittance, R ≤O(η).
For example, when η is small, the PLOB repeaterless rate-
transmittance bound5 is about 1.44η. Quantum repeaters6–8 have
been proposed as a radical solution to this problem. Unfortu-
nately, none of the quantum repeater proposals is easy to
implement in the near term.

In real-life use, the deviation of the realistic behaviour of
physical devices from their ideal ones gives rise to critical issues in
practical security. There are many quantum attacks that can take
advantage of the loopholes introduced by device imperfections9.
A typical QKD system can be divided into three parts: source,
channel, and measurement. The security of the channel has been
well addressed in the security proofs for QKD10–12. The source is
relatively simple and can be well characterised13. In contrast, the
measurement device is complicated and difficult to calibrate.
Moreover, an adversary could manipulate the measurement
device by sending unexpected signals14,15. To solve this imple-
mentation security problem, measurement-device-independent
quantum key distribution (MDI-QKD) schemes have been pro-
posed to close the detection loopholes once and for all16. Various
experimental systems have been successfully demonstrated17–20,
with extension to a communication network21.

A generic MDI-QKD setup is shown in Fig. 1a. Each of the two
communicating parties, Alice and Bob, holds a quantum light
source, encodes random bits into quantum pulses, and sends
these pulses to a measurement site through lossy channels.
Measurement devices are possessed by an untrusted party,
Charlie, who is supposed to correlate Alice’s and Bob’s signals via
interference detection. Based on the detection results announced
by Charlie, Alice and Bob sift the local random bits encoded in
the pulses to generate secure key bits. Note that the security of
MDI-QKD schemes does not rely upon the physical imple-
mentation of the detection devices. Alice and Bob need to trust
only their own locally encoded quantum sources. Since neither
Alice nor Bob receives quantum signals from the channel during
key distribution, any hacker’s attempt to manipulate the users’
devices becomes extremely difficult compared to regular QKD
schemes14,15.

Strictly speaking, MDI-QKD is not a point-to-point scheme, as
there is an interference site between Alice and Bob. Consequently,
it is not necessarily limited by the repeaterless rate-transmittance
bound. Nevertheless, the original MDI-QKD scheme16, in which
Alice and Bob both encode a ‘dual-rail’ qubit into a single-photon
subspace on two polarization modes, unfortunately, cannot
overcome this bound. Later, alternative schemes were
proposed22,23 in which the qubit is encoded into two optical time
bins. We refer to schemes of this type as two-mode MDI-QKD, in
the sense that the single-side key information is encoded in the
relative phase of the coherent states in the two orthogonal optical
modes, i.e., second-quantized electromagnetic fields. To correlate
Alice’s and Bob’s encoded information in a two-mode scheme, a
successful two-photon interference measurement is required. If
either Alice or Bob’s emitted photon is lost in transmission, there
will be no conclusive detection result. For example, in the time-

bin encoding scheme23 shown in Fig. 1b, Alice and Bob each emit
a qubit encoded in two time-bin modes, with Alice emitting A1

and A2 and Bob emitting B1 and B2. Only when both the inter-
ference between modes A1 and B1 and that between A2 and B2
yield successful detection can Alice restore Bob’s raw key infor-
mation. Thus, successful interference requires a coincidence
detection. Due to this coincidence-detection requirement, rounds
with only a single detection are discarded, resulting in a relatively
low key generation rate—one that is a linear function of the
transmittance, O(η). From the perspective of practical imple-
mentation, however, coincidence detection also has certain mer-
its. This approach can ensure stable optical interference, while
Alice and Bob need only to stabilise the relative phases between
the two modes.

Coincidence detection is the essential factor that prevents
MDI-QKD from overcoming the linear key-rate bound. To
eliminate this requirement, a new type of MDI-QKD scheme
called twin-field quantum key distribution (TF-QKD) based on
encoding information into a single-optical mode have been
proposed24, illustrated in Fig. 1c. Later on, variants of TF-QKD
have been proposed, among which the key information in
encoded in either the phase25,26 (known as phase-matching
QKD) or the intensity27 (known as sending-or-not-sending TF-
QKD) of coherent states. In this work, we refer to these twin-
field-type schemes as one-mode MDI-QKD schemes for a con-
ceptual comparison to the traditional two-mode MDI-QKD
schemes, since the single-side information in these schemes is
encoded into a single-optical mode in each round. We remark
that the single-optical-mode encoding MDI-QKD scheme was
first proposed in ref. 28 as “MDI-B92” scheme. Similar to the
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Fig. 1 Comparison of two-mode, one-mode and mode-pairing MDI-QKD
schemes. a Schematic diagram of a generic MDI-QKD scheme. The solid
and dashed pulses yield successful and unsuccessful detection,
respectively, at the measurement site. For b, c and d, each wave packet in
the diagram represents two independent pulses emitted simultaneously by
Alice and Bob. b In two-mode MDI-QKD schemes, the pairing of the blue
pulses (as phase references) and orange pulses (as signals) is
predetermined, necessitating coincidence detection. c In one-mode MDI-
QKD schemes (e.g., twin-field quantum key distribution and its variants),
there is no phase reference pulse, necessitating global phase locking. d In
the mode-pairing MDI-QKD scheme, in accordance with the detection
results, Alice and Bob pair the clicked pulses and assign them to be either
reference or signal pulses, such that neither coincidence detection nor
global phase locking is required.
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Duan-Lukin-Cirac-Zoller-type repeater design29, such one-mode
schemes use single-photon interference instead of coincidence
detection, hence yielding a quadratic improvement in key rate
compared to two-mode schemes24–26. As a result, they can
overcome the point-to-point linear key-rate bound4,5. Unfortu-
nately, one-mode schemes are more challenging to implement
due to the unstable optical interference resulting from the lack of
global phase references. For example, in the phase-matching
QKD (PM-QKD) scheme25, the key information is encoded into
the global phase of Alice’s and Bob’s coherent states. The phases
of the coherent states generated by two remote and independent
lasers need to be matched at the measurement site. A small phase
drift or fluctuation caused by the lasers and/or channels is
hazardous for key generation.

At first glance, it seems that we cannot simultaneously enjoy the
advantages of one-mode schemes (i.e., quadratic improvement in
successful detection) and two-mode schemes (i.e., stable optical
interference), due to an intrinsic trade-off between the information-
encoding efficiency and robustness. On the one hand, the relative
information among different optical modes is more difficult to
retrieve when the channel loss is large. On the other hand, the
global phase of a coherent state is not as stable as the relative phase
between two coherent states travelling through the same quantum
channel. In a typical 200-km fibre with a telecommunication fre-
quency of 1550 nm, the phase of a coherent state is susceptible to
small fluctuations in the optical transmission time (~10−15 s),
optical length (~200 nm) and light frequency (~100 kHz). Recently,
experimentalists have made great efforts to demonstrate high-
performance in one-mode schemes, utilising high-end technologies
to perform a precise control operation to stabilise the global phase
by locking the frequency and phase of the coherent states30–37.
However, this increases the experimental difficulty and undermines
the applicability of one-mode schemes in real life.

In this work, we propose a mode-pairing MDI-QKD scheme that
aims to offer both—simple implementation and high performance.
Hereafter, we refer to this scheme as the mode-pairing scheme for

simplicity. By observing that the majority of detection events are
single-clicks and are discard in the two-mode MDI-QKD schemes,
we try to recycle the discarded single-click in the mode-pairing
scheme. To do that, the coherent states in the transmitted modes are
initially prepared independently with randomly encoded informa-
tion. Based on the fact that the two detection events used to read out
the encoded information do not need to occur at two pre-
determined locations, the key is extracted from two paired detection
events rather than coincidence detection, as shown in Fig. 1d. This
offers a quadratic improvement akin to that of one-mode schemes
when the local phases can be stabilized using currently available
phase stabilization techniques. Moreover, key information about the
mode-pairing scheme is encoded in the relative phases or inten-
sities, whose stability relies only upon the conditions of the local
phase references and optical paths. Therefore, the technical com-
plexity is similar to that of two-mode schemes, which have been
widely implemented both in the laboratory17–19,38 and in the
field21,39. Notably, to adapt to different hardware conditions, the
mode-pairing scheme can be freely tuned between the one-mode
and two-mode schemes by adjusting a pulse-interval parameter (as
discussed later in Results’ subsection “Pairing strategy”) during data
postprocessing to optimise the system performance.

Results
Mode-pairing scheme. In the mode-pairing scheme, Alice and
Bob first prepare coherent states with independently and ran-
domly chosen intensities and phases in each emitted optical
mode. These coherent states are sent to the untrusted measure-
ment site, Charlie. Based on Charlie’s announced measurement
results, Alice and Bob pair the optical modes with successful
detection and determine the key bits and bases for each mode pair
locally. They then sift the bases and generate secure key bits via
postprocessing. The scheme is introduced in Box 1 and illustrated
in Fig. 2a. For simplicity of the introduction of the main protocol
design, we omit the details of the decoy-state method40 and

Box 1 | Mode-pairing scheme

1. State preparation: In the i-th round (i= 1, 2, . . . ,N), Alice prepares a coherent state
ffiffiffiffiffi
μai

p
eiϕ

a
i

�� �
in optical mode Ai with an intensity μai randomly

chosen from {0, μ} and a phase ϕai uniformly chosen from [0, 2π). Similarly, Bob randomly chooses μbi and ϕbi and prepares
�� ffiffiffiffiffi

μbi

q
eiϕ

b
i
�
in mode Bi.

2. Measurement: Alice and Bob send modes Ai and Bi to Charlie, who performs single-photon interference measurements. Charlie announces the click
patterns for both detectors L and R.
Alice and Bob repeat the above two steps for N rounds. Then, they postprocess the data as follows.

3. Mode pairing: For all rounds with successful detection, in which one and only one of the two detectors clicks, Alice and Bob apply a strategy of
grouping two clicked rounds as a pair. The encoded phases and intensities in these two rounds form a data pair. A simple pairing strategy is
introduced in Box 2.

4. Basis sifting: Based on the intensities of the two grouped rounds indexed by i and j, Alice labels the ‘basis’ of the data pair as Z if the intensities are
(0, μ) or (μ, 0), as X if the intensities are (μ, μ), or as ‘0’ if the intensities are (0, 0). Bob sets the basis using the same method. Alice and Bob
announce the basis of each data pair; if they both announce the basis X or Z, they maintain the data pairs, whereas otherwise, the data pairs are
discarded.

5. Key mapping: For each Z-basis pair (Z-pair for simplicity) at locations i and j, Alice sets her key as κa= 0 if ðμai ; μaj Þ ¼ ð0; μÞ and κa= 1 if
ðμai ; μaj Þ ¼ ðμ;0Þ. For each X-basis pair (X-pair for simplicity) at locations i and j, the key is extracted from the relative phase ðϕaj � ϕai Þ ¼ θa þ πκa,

where the raw key bit is κa ¼ ððϕaj � ϕai Þ=πmod2Þ
j k

and the alignment angle is θa :¼ ðϕaj � ϕai Þmod π. In a similar way, Bob assigns his raw key bit

κb and determines θb. The difference in the key mapping for Z-pairs is that, Bob sets the raw key bit κb as 0 if ðμbi ; μbj Þ ¼ ðμ;0Þ and κb= 1 if
ðμbi ; μbj Þ ¼ ð0; μÞ. As an extra step on the X-pairs, if Charlie’s detection announcement is (L, L) or (R, R), Bob keeps the bit κb; otherwise, if Charlie’s
announcement is (L, R) or (R, L), Bob flips κb. For the X-pairs, Alice and Bob announce the alignment angles θa and θb. If θa= θb, then the data pairs
are kept; otherwise, the data pairs are discarded.

6. Parameter estimation: Alice and Bob estimate the fraction of clicked signals q(1, 1) and the corresponding phase error rate eXð1;1Þ of Z-pairs where

Alice and Bob both emit a single photon at locations i and j, using the data of the Z-pairs and X-pairs. They also estimate the quantum bit error rate
E(μ, μ),Z of the Z-pairs.

7. Key distillation: Alice and Bob use the Z-pairs to generate a key. They perform error correction and privacy amplification on the basis of q(1, 1),
E(μ, μ),Z and eX11.
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discrete phase randomisation here. A complete description of the
mode-pairing scheme is given in the Methods’ subsection “Mode-
pairing scheme with decoy states”.

In the mode-pairing scheme, we mainly consider the keys
generated from the Z-pair data, since they have a much lower
quantum bit error rate EZ

μμ than the X-pair data. The encoding of
the mode-pairing scheme in Box 1 originates from the time-bin
encoding MDI-QKD scheme23. If Alice’s two paired optical
modes {Ai, Aj} are assigned to the Z-basis, then the state of the
two optical modes is either

��0�Ai

�� ffiffiffi
μ

p
eiϕ

a
j
�
Aj

or
ffiffiffi
μ

p
eiϕ

a
i

�� �
Ai
0j iAj

,

where ϕai and ϕaj are two independent random phases. We can
write the encoded states in a unified form:

ψa
Z

�� �
Ai;Aj

¼ ffiffiffiffiffiffiffi
κaμ

p
eiϕ

a
i

�� �
Ai

�� ffiffiffiffiffiffiffi
�κaμ

p
eiϕ

a
j
�
Aj
; ð1Þ

where κa is the encoded key information and �κ :¼ κ� 1 is the
inverse of κ. In the other case, in which the two optical modes
{Ai,Aj} are assigned to the X-basis, we can rewrite their two
independent random phases ϕai and ϕaj as

ϕa :¼ ϕai 2 ½0; 2πÞ;
ϕaδ :¼ ϕaj � ϕai 2 ½0; 2πÞ: ð2Þ

In this way, the phase ϕa becomes a global random phase on
the pulse pair, while ϕaδ is the relative phase for quantum
information ‘encoding’. Due to the independence of ϕai and ϕaj ,
the phases ϕa and ϕaδ are also independent of each other and
uniformly range from [0, 2π). By definition, we have
ϕaδ ¼ θa þ πκa. Then, the X-pair state can be written as,

ψa
X

�� �
Ai;Aj

¼ ffiffiffiffiffi
μa

p
eiϕ

a�� �
Ai

�� ffiffiffiffiffi
μa

p
eiðϕ

aþθaþκaπÞ�
Aj
; ð3Þ

where μa∈ {0, μ}. When θ= 0 or π/2, Alice emits X-basis or Y-
basis states, respectively, as used in the time-bin encoding MDI-
QKD scheme23.

We remark that in either the Z-pair state in Eq. (1) or the X-
pair state in Eq. (3), there is a global random phase ϕa, which will
not be revealed publicly. With this (global coherent state) phase
randomisation, the emitted Z- and X-pair states can be regarded
as a mixture of photon number states40. Then, Alice and Bob can
estimate the detections caused by the pairs where they both emit
single photons and use them to generate secure keys, in a manner
similar to traditional two-mode schemes. Therefore, the security
of the mode-pairing scheme is similar to that of two-mode

schemes. Nevertheless, the mode-pairing scheme in Box 1 has the
following unique features.

1. The emitted states in different optical modes {Ai} are
independent and identically distributed (i.i.d.). Therefore,
the information encoded in different optical modes is
completely decoupled.

2. Based on the postselection of clicked signals, different
optical modes are paired afterwards. The relative informa-
tion between the two modes is then converted into raw
key data.

In the mode-pairing scheme, the key information is deter-
mined not in the state preparation step, but by the detection
location, sharing some similarities with the differential-phase-
shifting QKD scheme41,42. It is the untrusted measurement site
that determines the location of successful detection and thereby
affects the pairing setting. The ‘dual-rail’ qubits encoded on the
single photons are ‘postselected’ on the basis of this detection. By
virtual of the independence of the optical modes, the information
encoded in the ‘postselected’ qubits cannot be revealed from other
optical pulses.

For another comparison, the sending-or-not-sending (SNS)
TF-QKD scheme27 also uses a Z-basis time-bin encoding,
whereby either Alice or Bob emits an optical mode to generate
key bits. The state preparation of the mode-pairing scheme shares
similarities with the SNS-TFQKD scheme. However, the
information of the mode-pairing scheme is encoded into the
relative information between the two optical modes. As a result,
the basis-sifting and key mapping of the mode-pairing scheme
follow different logic originated from the time-bin encoding
MDI-QKD scheme23. Note that in the SNS scheme, bits 0 and 1
are highly biased in the Z basis, whereas in the mode-pairing
scheme, they are evenly distributed.

A critical issue in the security analysis of the mode-pairing
scheme is to maintain the flexibility to determine in which two
optical modes to perform the overall photon number measure-
ment until Charlie announces the detection results. Note that, in
the original two-mode QKD schemes, the encoders can always be
assumed to perform an overall photon number measurement and
post-select the single-photon components as good ‘dual-rail’
qubits before they emit their signals to Charlie. In the mode-
pairing scheme, however, this is not viable because the optical
pulse pair, for which the single-photon component is defined, is
postselected based on Charlie’s detection announcement. To solve

L R
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Fig. 2 Schematic diagram of the mode-pairing MDI-QKD scheme and the simple pairing strategy with maximal-pairing interval l. The solid and dashed
pulses are those with and without successful detection, respectively. Orange and blue pulses are, respectively, the front and rear pulses that succeed in
pairing within l pulses, while grey pulses are the ones fail in pairing. a In the mode-pairing MDI-QKD scheme, Alice and Bob, first prepare coherent pulses
with random intensities chosen from {0, μ} and random phases ϕaðbÞi 2 ½0; 2πÞ and send them to Charlie. After interference measurement, Charlie
announces the detection results, based on which Alice and Bob pair the pulses and determine their encoding bases. For X-pairs, they announce the
alignment angles θa and θb and keep data for which θa= θb. They use Z-pairs to generate keys and other data for parameter estimation. b We set l= 2 in
the simple pairing strategy for example. The labels Fk and Rk represent the front and rear pulses, respectively, in the k-th successful pair.
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this problem, we introduce source replacement for the random
phases in the coherent states to purify them as ancillary qudits
and define an indirect overall photon number measurement on
them. The source-replacement procedure can be found in the
Methods’ subsection “Source replacement of the encoding state”.
Conditioned on the indirect overall photon number measurement
result to be single-photon states, the X-basis error rate fairly
estimates the Z-basis phase error rate for the signals for which
Alice and Bob both emit single photons.

In Supplementary Note 2, we provide a detailed security proof
based on entanglement distillation. The main idea is to introduce
a ‘fixed-pairing’ scheme, in which the pairing setting, i.e., which
locations are paired together, is predetermined and hence
independent of Charlie’s announcement. We first prove that,
with any given pairing setting, the fixed-pairing scheme is secure,
as it can be reduced to a two-mode MDI-QKD scheme.
Afterwards, we examine the private state generated by the
mode-pairing scheme and prove that it is the same as that of a
fixed-pairing scheme under all possible measurements that
Charlie could perform and announcement methods. In this
way, we prove the equivalence of the mode-pairing scheme to a
group of fixed-pairing schemes with different pairing settings.

Pairing strategy. The pairing strategy mentioned in Step 3 lies at
the core of the mode-pairing scheme in Box 1, which correlates
two independent signals and determines their bases and key bits.
Note that the relative phase between two paired quantum signals
determines the key information on the X basis. When the time
interval between these two pulses becomes too large, the key
information suffers from phase fluctuation, which is characterised
by the laser coherence time. Therefore, Alice and Bob should
establish a maximal pairing interval l, such that the number of
pulses between the two paired signals should not exceed l. In
practice, l can be estimated by multiplying the laser coherence
time by the system repetition rate.

Here, we consider a simple pairing strategy in which Alice pairs
adjacent detection pulses together if the time interval between
them is not too large (≤l). The details are shown in the simple
pairing strategy in Box 2 and illustrated in Fig. 2b. Charlie’s
announcement in the i-th round is denoted by a Boolean variable
Ci that indicates whether the detection is successful. That is,

Ci= 1 implies that either the detector L or R clicks. Otherwise,
there is no click or double clicks.

To check the efficiency of this pairing strategy, let us calculate
the pairing rate rp (i.e. the average number of pairs generated per
pulse). We assume that Alice and Bob choose intensities 0 and μ
with equal probability, maximising the number of successful pairs
in the Z basis. With a typical QKD channel model, the pairing
rate rp is calculated as shown in the Methods’ subsection “Mode-
pairing-efficiency calculation”,

rpðp; lÞ ¼
1

p½1� ð1� pÞl� þ
1
p

" #�1

; ð4Þ

where p is the probability that the emitted pulses result in a click
event, given approximately by ηsμ. Here, ηs and η denote the
channel transmittance from Alice to Charlie and the total
transmittance from Alice to Bob, respectively. When the channel
is symmetric for Alice and Bob, we have η ¼ η2s . An explicit
simulation formula for p in a pure-loss channel is given in
Supplementary Note 4. Note that both the pairing ratio rp and the
detection probability p can be directly obtained by
experimentation.

The raw key rate mainly depends on the pairing rate rp. Now,
let us check the scaling of rp with the channel transmittance in the
symmetric-channel case. If the local phase reference is sufficiently
stable, then the maximal interval can be set to l→+∞. In this
case,

rp ¼
p
2
� ηsμ

2
¼ Oð ffiffiffi

η
p Þ; ð5Þ

where the optimal intensity is μ=O(1), as evaluated in
Supplementary Note 5. On the other hand, if the local phase
reference is not at all stable, one must set l= 1; then,

rp ¼
p2

1þ p
� η2sμ

2

1þ ηsμ
¼ OðηÞ: ð6Þ

In this case, the experimental requirements for the mode-
pairing scheme are close to those of the existing time-bin MDI-
QKD scheme23. Now, if we consider a finite value of l, the
dependence of rp(p, l) on η will be decided by how the
denominator of the first term in Eq. (4), p[1− (1−p)l], depends
on p ≈ ηsμ. When pl ≫ 1, rp(p, l) scales with p linearly, hence

Box 2 | Simple pairing strategy

Input: Charlie’s announced detection results Ci for i = 1 to N ; maximal pairing interval l.
Output: K pairs; front- and rear-pulse locations (Fk↪ Rk) for the k-th pair, where k = 1 to K.
1: Initialise the pairing index k := 1; initialise the flag f := 0.
2: for i = 1 to N do � Enumerating all locations
3: if f = 0 then � Searching for the front-pulse location
4: if Ci = 1 then � Successful detection
5: Set the temporary front-pulse location to Fk := i; set the flag to f := 1.
6: end if
7: else � Searching the rear-pulse location
8: if Ci = 1 then � Successful detection
9: Set the rear-pulse location to Rk := i; update the pairing index to k := k + 1; reset the flag to

f := 0.
10: else if Fk − i ≥ l then � Pairing interval exceeding l
11: Reset the flag to f := 0.
12: end if
13: end if
14: end for
15: Set the total number of pairs to K := k − 1.
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rp ¼ Oð ffiffiffi
η

p Þ; when pl≪ 1, it scales with p2, resulting in rp=O(η).
Around pl= 1, there will be a performance transition from rp ¼
Oð ffiffiffi

η
p Þ to rp=O(η).
In practice, l can be adjusted in accordance with the laser

quality and quantum-channel fluctuations. Note that l can also be
adjusted during data postprocessing, offering flexibility for
various environmental changes in real time. Generally, the whole
pairing strategy can be adjusted through different realisations.

Practical issues and simulation. The key rate of the mode-
pairing scheme, as rigorously analysed in the Supplementary
Note 2, has a decoy-state MDI-QKD form:

R ¼ rprs qð1;1Þ 1� HðeXð1;1ÞÞ
h i

� fHðEðμ;μÞ;ZÞ
n o

; ð7Þ

where rp is the pairing rate contributed by each block, rs is the
proportion of Z-pairs among all the generated location pairs (~1/
8), q(1, 1) is the fraction of Z-pairs caused by single-photon-pair
states ρ(1, 1) in which both Alice and Bob send single-photon
states in the two paired modes, eXð1;1Þ is the phase error rate of the
detection caused by ρ(1, 1), f is the error-correction efficiency, and
E(μ, μ),Z is the bit error rate of the sifted raw data. The fraction
q(1, 1) and the phase error eXð1;1Þ can be estimated using the decoy-
state method40,43,44. A detailed estimation procedure for q(1, 1)
and eXð1;1Þ with the vacuum + weak decoy-state method is intro-
duced in Supplementary Note 3.

During the key mapping step in Box 1, the X-pair sifting
condition θa= θb is impossible to fulfil exactly. This results in
insufficient data for X-basis error rate estimation. To solve this
problem, one can apply discrete phase randomisation45 such that
θa and θb are chosen from a discrete set. We expect the
discretisation effect to be negligible when the number of discrete
phases is reasonably large, such as D= 16, similar to the situation
in previous works on one-mode MDI-QKD46.

Based on the above analysis, we simulate the asymptotic
performance of the mode-pairing scheme under a typical
symmetric quantum-channel model, using practical experi-
mental parameter settings. We assign the maximal pairing
interval l of the mode-pairing scheme as a value between 1 and

1 × 106, aiming to illustrate the dependence of the key rate on l.
We also compare the key rate of the mode-pairing scheme with
those of a typical two-mode scheme, time-bin encoding MDI-
QKD23, and two one-mode schemes — PM-QKD46 and SNS-
TFQKD47. The simulation results are shown in Fig. 3. We set
the misalignment error rate of the mode-pairing scheme to be
the same as the one-mode schemes for a fair comparison. In
Supplementary Note 5, we show that the key-rate performance
of the mode-pairing scheme is robust against misalignment
errors. Even with a misalignment error rate of 15%, the mode-
pairing scheme is able to surpass the repeaterless rate-
transmittance bound with l= 2000. Here, we compare the
asymptotic key-rate performance of all the schemes under
the scenario of one-way local-operation and classical commu-
nication. The simulation formulas for these schemes are listed
in Supplementary Note 4. Recently, researches48,49 show that
the key-rate performance of SNS-TFQKD can be further
improved by introducing the two-way classical
communication50,51. We will leave the advanced key distilla-
tion for future studies.

As shown in Fig. 3a, the mode-pairing scheme with only
neighbour pairing, l= 1, show a performance comparable to that
of the original two-mode scheme. These two schemes have the
same scaling property, i.e., R=O(η). The deviation is caused by
an extra sifting factor in the mode-pairing scheme as a result of
independent encoding. When the maximal pairing interval l is
increased to 1 × 103, the key rate is significantly enhanced by 3
orders of magnitude compared to the l= 1 case, making it able to
surpass the linear key-rate bound. If we further increase l above
1 × 105, then the mode-pairing scheme has a similar key rate to
PM-QKD and SNS-TFQKD and a scaling property given by
R ¼ Oð ffiffiffi

η
p Þ. In Fig. 3b, we further compare the key-rate

performance of the mode-pairing scheme under different settings
for l. When l falls within the range of 1 to 1 × 106, the key rate of
the mode-pairing scheme lies between the two extreme cases of
O(η) and Oð ffiffiffi

η
p Þ. The key-rate behaviour is dominated by the

pairing rate given in Eq. (4).
In typical optical experiments, the typical line width of a

common commercial laser is 3 kHz (see for example, ref. 32). Hence,
the coherence time of the laser is around 333 μs. In practice, the

Fig. 3 Asymptotic key-rate performance of the mode-pairing scheme. The horizontal axis representing the total communication distance with a fibre loss
of 0.2 dB/km and the vertical axis representing the key generation rate. a Main Panel: Performance comparison of the mode-pairing scheme (denoted by
MP-QKD in the plot) with the decoy-state Bennett-Brassard 1984 (BB84)1,13,40, MDI-QKD16, PM-QKD25,46, SNS-TFQKD27,47 schemes and the
repeaterless rate-transmittance bound (PLOB bound)5. Inset: The simulation parameters used in the key-rate plot, which are mainly from ref. 32. b Main
Panel: The rate-distance dependence of the mode-pairing scheme with different maximal-pairing intervals l. Inset: The key rate with respect to the pairing
interval l for a communication distance of 400 km.
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frequency fluctuation of the lasers will affect the stabilization of the
phase. To test the feasibility of the mode-pairing scheme, we
perform an interference experiment using a commercial optical
communication system with a repetition rate of 625 MHz. The
experiment detail is shown in Supplementary Note 6. Based on the
experimental data, we find that the phase coherence can be
maintained well in a time interval of 5 μs, corresponding to
l= 3000 ~ 4000. If we apply the state-of-the-art optical commu-
nication system with the repetition rate of 4 GHz37, we can realize a
pairing interval over l= 20000. As an extra remark, our current
discussion on the implementation of the mode-pairing scheme is
based on the multiplexing of optical time-bin modes. Nonetheless,
the proposed mode-pairing design is generic for the multiplexing of
other optical degrees of freedom. For example, we can introduce
frequency multiplexing. The optical modes with different frequen-
cies are first prepared and interfered independently, i.e., only the
pulses with the same frequency will be interfered. After
the announcement of detection results, Alice and Bob then pair
the locations with different frequencies during the post-processing.
This can be used to increase the effective maximal pairing interval
to an even larger value without the global phase locking. From
Fig. 3b we can see that the key rate of the mode-pairing scheme
with l= 1 × 104 remains R � Oð ffiffiffi

η
p Þ when η is smaller than 30 dB,

corresponding to a communication distance of 300 km. The
asymptotic key rate of the mode-pairing scheme is 3 to 5 orders
of magnitude higher than that of the two-mode scheme. We remark
that the decoherence effect caused by the optical-fibre channel is
negligible compared to the laser coherence time. When the fibre
length is around 500 km, the velocity of phase drift in the fibre is
<10 rad/ms32, which can be calibrated using strong laser pulses
without the need for real-time feedback control. As a result, the
value of l depends only upon the local phase reference and not the
communication distance.

One advantage of the mode-pairing scheme is that it can be
adapted to specific hardware conditions. In practice, optical
systems may be unstable, causing the local phase reference to
fluctuate rapidly. In this case, we can reduce the maximal
pairing interval l and search for the optimal pairing strategy
during the postprocessing procedure. As shown in the inset plot
of Fig. 3b, the key rate of the mode-pairing scheme first
increases linearly with increasing l before saturating when l is
larger than p�1 ¼ ðμ ffiffiffi

η
p Þ�1. In this case, Alice and Bob find

successful detection within l locations with a high probability.
Even when the optical system is unstable, the key rate can be
nearly l times higher than that of the original time-bin MDI-
QKD scheme when the value of l does not exceed
p�1 ¼ ðμ ffiffiffi

η
p Þ�1. We remark that, with the original experimental

apparatus used in time-bin MDI-QKD, one can directly
enhance the key rate by a factor of ~100 using the mode-
pairing scheme. On the other hand, we note that for a given
communication distance, l does not need to be very large to
reach the maximal key-rate performance. For example, when
the distance reaches 200 km, a maximal pairing interval of
l= 1000 is sufficient to achieve the optimal key-rate perfor-
mance. We leave a detailed evaluation for future research.

Discussion
Based on a re-examination of the conventional two-mode MDI-
QKD schemes and the recently proposed one-mode MDI-QKD
schemes, we have developed a mode-pairing MDI-QKD scheme
that retains the advantages of both, namely, achieving a high key
rate with easy implementation. Since MDI-QKD schemes have
the highest practical security level among the currently feasible
QKD schemes, we expect the mode-pairing scheme paves the way
for an optimal design for QKD, simultaneously enjoying high
practicality, implementation security, and performance.

There remain several interesting directions for future work.
Natural follow-up questions lie in the statistical analysis of the
mode-pairing scheme in the finite-data-size regime and efficient
parameter estimation. Due to the photon-number-based property
of the mode-pairing scheme, previous studies of the statistical
analysis of two-mode MDI-QKD schemes52–54 can be readily
extended to analyse the mode-pairing scheme. To improve the
efficiency of data usage, Alice and Bob may perform parameter
estimation before basis sifting in order to use all signals that were
originally discarded. On the other hand, one could design a
mode-pairing scheme using the X-basis for key generation and
the Z-basis for parameter estimation.

In this work, we employ a simple mode-pairing strategy based
on pairing adjacent detection pulses. A more sophisticated pair-
ing method might make bit and basis sifting more efficient. To
improve the pairing strategy, Alice and Bob could reveal parts of
the encoded intensity and phase information. For example, in the
simple pairing strategy introduced in Box 2, Alice and Bob reveal
the bases of the generated data pairs immediately after locations i
and j are paired. If their basis choices differ, Alice and Bob
‘unpair’ locations i and j, and seek the next good pairing location
for location i until the basis choices match.

To further enhance the performance, we could extend the
mode-pairing design to other optical degrees of freedom, such as
angular momentum and spectrum mode. Meanwhile, we could
multiplex the usage of different degrees of freedom to enhance the
repetition rate and extend the pairing interval l. Such multi-
plexing techniques would have additional benefits for the mode-
pairing scheme. Suppose that we multiplex m quantum channels
for a QKD task. In a normal setting, the key generation speed
would be improved by a factor of m. For the mode-pairing
scheme, in addition to this m-fold improvement, multiplexing
would also introduce a larger pairing interval ml, since Alice and
Bob would be able to pair quantum signals from different
channels. A larger pairing interval ml would result in more paired
signals and, hence, more key bits. Especially in the high-channel-
loss regime where the distance between two clicked signals is
large, the number of successful pairs becomes proportional to the
maximum pairing interval ml. Thus, the key generation rate is
proportional to m2 in the high-channel-loss regime.

Meanwhile, entanglement-based MDI-QKD schemes are essen-
tially based on entanglement-swapping, which is the core design
feature of quantum repeaters. The mode-pairing technique may
help design a robust quantum repeater against a lossy channel. Note
that our work shares similarities with the memory-assisted MDI-
QKD protocol55 with quantum memories in the middle and with

Table 1 Comparison of the phase encoding and postprocessing procedures of the mode-pairing scheme presented in the main
text and the modified scheme considered in the security proof.

Modulated phase X-basis postprocessing Sifting condition

Original scheme A1 : ϕ
a
1 ;A2 : ϕ

a
2 θa ¼ ðϕa2 � ϕa1 Þmodπ; κa ¼ b1π ðϕa2 � ϕa1 Þmod2c θa= θb

Modified scheme A1 : ϕ
a
1 þ z

00
1π;A2 : ϕ

a
2 þ z

00
2π θa ¼ ϕa2 � ϕa1 ; κ

a ¼ z
00
1 � z

00
2 θa− θb= 0 or π

In the modified scheme, Alice introduces an extra π-phase modulation for the storage of a bit z
00
1 . This helps to decouple the phase randomisation and phase encoding analysis.
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the all-photonic intercity MDI-QKD protocol56 with adaptive Bell-
state measurement on the postselected photons. It is interesting to
discuss the possibility of combining the mode-pairing design with
an adaptive Bell-state measurement to tolerate more losses.

Moreover, the mode-pairing scheme has a unique feature in
that the key bits are determined not in the encoding or mea-
surement steps but upon postprocessing, which is an approach
that can be further explored in other quantum communication
tasks, including continuous-variable schemes.

Methods
Source replacement of the encoding state. The main idea of the security proof
for the mode-pairing scheme is to introduce an entanglement-based scheme and
reduce the security of the scheme to that of a traditional two-mode MDI-QKD
scheme. To realise this, we perform a systematic source-replacement
procedure57,58. Without loss of generality, in this subsection, we always assume the
paired locations (i, j) to be (1, 2) to simplify the notations.

For convenience in the security proof, we slightly modify the scheme described
in Box 1. First, we assume that the random phase of each mode is discretely chosen
from a set of D phases, evenly distributed in [0, 2π). We expect the corresponding
correction term in the security analysis due to the discretisation effect to be
negligible45,46. Second, in the security proof, we modify the phase encoding and
postprocessing procedures, as shown in Table 1. In the original scheme, Alice
modulates A1 and A2 based on two random phases ϕa1 and ϕa2, respectively. During
the X-basis processing, she calculates the relative phase difference ϕaδ :¼ ϕa2 � ϕa1
and splits it into an alignment angle θa in the range of [0, π) and a raw key bit κa.
We modify these procedures as follows: in addition to the two random phases ϕa1
and ϕa2, Alice also generates two bits z

00
1 and z

00
2 and applies extra phase modulations

of z
00
1π and z

00
2π to A1 and A2, respectively. During the X-basis processing, she

calculates the relative phase difference ϕaδ :¼ ϕa2 � ϕa1 and directly announces it for
alignment-angle sifting. In the Supplementary Information, we prove the
equivalence of these two encoding methods.

With the modification above, Alice further generates a random bit z01 and a
random dit (d=D) j1 in the first round. Based on the values of z01, z

00
1 and ja1, she

prepares the state ��ψCom
� ¼ �� ffiffiffiffiffiffiffi

z01μ
p

eiðπz
00
1þϕa1 Þ

�
; ð8Þ

with ϕ1 ¼ j1
2π
D . As shown in Fig. 4, we substitute the encoding of random encoded

information into the introduction of extra ancillary qubit and qudit systems
labelled as ~A1, A

00
1 and A0

1. The purified encoding state is

~Ψ
Com

��� E
~A1 ;A

0
1 ;A

00
1 ;A1

¼ 1

2
ffiffiffiffi
D

p ∑
D�1

j1¼0
j1
�� �

~A1
00j i 0j i þ 01j i 0j i þ 10j i ffiffiffi

μ
p

eiϕ
a
1

�� �þ 11j i ffiffiffi
μ

p
eiðϕ

a
1þπÞ�� �� �

A0
1 ;A

00
1 ;A1

:

ð9Þ
In Fig. 4, we provide a specific state preparation procedure. The initial state is

þD

�� �
:¼ 1ffiffiffiffi

D
p ∑

D�1

j¼0
j
�� �;

þj i :¼ þ2

�� �
:

ð10Þ

Here Alice applies a controlled-phase gate CD � ÛðϕΔÞ with ϕΔ :¼ 2π
D from the

qudit ~A1 to optical mode A1. The controlled-phase gate is defined as

CD � ÛðϕÞ~AA :¼ ∑
D�1

j¼0
j
�� �

~A
j

� ��� eiϕja
ya; ð11Þ

where a† and a are the creation and annihilation operators, respectively, of mode
A1. Alice also applies a controlled-phase gate C � ÛðπÞ from A

00
1 to A1.

In the entanglement-based mode-pairing scheme, Alice and Bob generate the

composite encoding state
��~ΨCom�

defined in Eq. (9) in each round. They emit the

optical modes to Charlie for interference. Based on Charlie’s announcement,
they pair the locations and perform global operations on the corresponding
ancillaries to generate raw key bits and useful parameters. In Fig. 5, we list
the global operations performed on Alice’s paired locations. Among them,
the relative encoded intensity τa :¼ z01 � z02 is used to determine the basis
choice. The encoded intensity λa :¼ z01 and the relative encoded phase σa ¼
z
00
1 � z

00
2 are the raw key bits in the Z-basis and X-basis postprocessing,

respectively.
A key point in our security proof is that we replace the random phases and

register them into purified systems ~A1 and ~A2. This enables us to define a global
measurement M(k, θ) on ~A1 and ~A2 to simultaneously obtain the overall photon
number and the relative phase information encoded in optical modes A1 and A2.
The construction of M(k, θ) is described in Supplementary Note 1. With the
introduction of the purified systems ~A1 and ~A2 and the existence of the global
measurement M(k, θ), Alice (same for Bob) is able to determine at which two
locations to perform the global photon number measurement after Charlie’s
announcement. With this measurement, Alice and Bob can further reduce the
encoding state to a two-mode scheme. The detailed security proof is provided in
Supplementary Note 2.

Mode-pairing scheme with decoy states. Here, we present the mode-pairing
scheme with an extra decoy intensity ν to estimate the parameters q11 and eX11. Of
course, more decoy intensities can be applied in a similar manner.

1. State preparation: In the i-th round (i= 1, 2, . . . ,N), Alice prepares a
coherent state

ffiffiffiffiffi
μai

p
expðiϕai Þ

�� �
in optical mode Ai with an intensity μai

randomly chosen from {0, ν, μ} (0 < ν < μ < 1) and a phase ϕai uniformly
chosen from the set f2πD kgD�1

k¼0 . She records μ
a
i and ϕai for later use. Likewise,

Bob chooses μbi and ϕbi randomly and prepares
�� ffiffiffiffiffi

μbi

q
expðiϕbi Þ

�
in mode Bi.

2. Measurement: (Same as Step 2 in Box 1.) Alice and Bob send modes Ai and
Bi to Charlie, who performs the single-photon interference measurement.
Charlie announces the clicks of the detectors L and/or R. Alice and Bob
repeat the above two steps N times; then, they perform the following data
postprocessing procedures:

3. Mode pairing: (Same as Step 3 in Box 1.) For all rounds with successful
detection (L or R clicks), Alice and Bob establish a strategy for grouping two
clicked rounds as a pair. A specific pairing strategy is introduced in Box 2.

4. Basis sifting: Based on the intensities of two grouped rounds, Alice labels
the ‘basis’ of the data pair as:

(a) Z if one of the intensities is 0 and the other is nonzero;
(b) X if both of the intensities are the same and nonzero; or
(c) ‘0’ if the intensities are (0, 0), which will be reserved for decoy estimation

of both the Z and X bases; or
(d) ‘discard’ when both intensities are nonzero and not equal.

See also Table 2 for the basis assignment. Alice and Bob announce the basis
(X, Z, ‘0’, or ‘discard’) and the sum of the intensities ðμai;j; μbi;jÞ for each
location pair i, j. If the announced bases are the same and no ‘discard’ state
occurs, they record the pair basis and maintain the data pairs; if one of the
announced bases is ‘0’ and the other one is X(Z), they record the pair basis as
X(Z) and keep the data pairs; if both of the announced bases are ‘0’, they
record the pair basis as ‘0’ and maintain the data pairs; and otherwise, they
discard the data. See also Table 3 for the basis-sifting strategy.

5. Key mapping: (Same as Step 5 in Box 1) For each Z-pair at locations i and j,
Alice sets her key to κa= 0 if the intensity of the i-th pulse is μai ¼ 0 and to
κa= 1 if μaj ¼ 0. For each X-pair at locations i and j, the key is extracted
from the relative phase ðϕaj � ϕai Þ ¼ θa þ πκa , where the raw key bit is
κa ¼ �ððϕaj � ϕai Þ=πmod2Þ	 and the alignment angle is
θa :¼ ðϕaj � ϕai Þmodπ. Similarly, Bob also assigns his raw key bit κb and
determines θb. For the X-pairs, Alice and Bob announce the alignment
angles θa and θb. If θa= θb, they keep the data pairs; otherwise, they
discard them.

6. Parameter estimation: Alice and Bob estimate the quantum bit error rate
EZ
μμ of the raw key data in Z-pairs with overall intensities of

ðμai;j; μbi;jÞ ¼ ðμ; μÞ. They use Z-pairs with different intensity settings to
estimate the clicked single-photon fraction q11 using the decoy-state
method, and the X-pairs are used to estimate the single-photon phase
error rate eX11. Specially, q11 and eX11 are estimated via the decoy-state method
introduced in Supplementary Note 3.

7. Key distillation: (Same as Step 7 in Box 1.) Alice and Bob use the Z-pairs to
generate a key. They perform error correction and privacy amplification in
accordance with q11, EZ

μμ and eX11.

Mode-pairing-efficiency calculation. We calculate the expected pairing number
rp(p, l) that corresponds to the simple mode-pairing strategy in Box 2, which is related
to the average click probability p during each round, and the maximal pairing interval l.

For calculation convenience, we assume that in addition to the front and rear
locations (Fk, Rk) of the k-th pair, Alice and Bob also record the starting location Sk,

|+〉
A₁’’

A₁’

A₁
|0〉|0〉+|1〉

0 , π
Com

|Ψ     ⟩˜

A₁˜

|√z₁’ i(π )

Random phase

Encoded phase

Encoded intensity

Fig. 4 Source-replacement procedure for the mode-pairing scheme. We
substitute the encoding of all random encoded information into the
introduction of purified ancillary systems.
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which indicates the location at which the first successful detection signal occurs
during the pairing procedure for the k-th pair. If the second successful detection
signal Rk is found within the next l locations, then Fk= Sk; otherwise, Fk will be
larger than Sk. Let Gk≔ Sk+1− Sk denote a random variable that reflects the
location gap between the k-th and (k+ 1)-th starting pulses. Then the expected
pairing number per pulse is given by

rp ¼
1

EðGkÞ
: ð12Þ

Hence, we need to calculate only the expectation value of Gk. First, we split it into

two parts,

Gk ¼ ðRk � SkÞ þ ðSkþ1 � RkÞ ¼ Hk þ GðbÞ
k ; ð13Þ

where Hk:= Rk− Sk and GðbÞ
k :¼ Skþ1 � Rk . Hence,

EðGkÞ ¼ EðHkÞ þEðGðbÞ
k Þ: ð14Þ

It is easy to show that GðbÞ
k obeys a geometric distribution,

PrðGðbÞ
k ¼ dÞ ¼ ð1� pÞd�1p; d ¼ 1; 2; ::: ð15Þ

Then, the expectation value is EðGðbÞ
k Þ ¼ 1=p.

The calculation of the pulse interval Hk is more complex. Suppose that we
already know the expectation value EðHkÞ; now we calculate the expectation value
EðHkjdÞ conditioned on the distance between the starting point and the following
click. We have

EðHkjdÞ ¼
d; d ≤ l;

EðHkÞ þ d; d > l:



ð16Þ

Therefore,

EðHkÞ ¼ ∑
þ1

d¼1
PrðdÞEðHkjdÞ

¼ ∑
l

d¼1
ð1� pÞd�1pd þ ∑

d>l
ð1� pÞd�1p½EðHkÞ þ d�

¼ ∑
þ1

d¼1
ð1� pÞd�1pd þEðHkÞ∑

d>l
ð1� pÞd�1p

¼ 1
p
þEðHkÞð1� pÞl

ð17Þ

We have

EðHkÞ ¼
1

p½1� ð1� pÞl � ; ð18Þ

therefore,

EðGkÞ ¼
1

p½1� ð1� pÞl � þ
1
p
;

) rp ¼
1

p½1� ð1� pÞl � þ
1
p

" #�1

:

ð19Þ

Note added to proof. After we submitted our work for reviewing, we became
aware of a relevant work by Xie et al.59, who consider a similar MDI-QKD protocol
that match the clicked data to generate key information. Under the assumption that

System Size Measurement Outcomes Usage

Qudit
( = ) Overall photon number and 

rela�ve phase measurement 
( , )

Overall photon 
number 

Post-select the rounds with = 1: 
basis-independent source

Qudit
( = ) Rela�ve phase 

-basis: no use

-basis: alignment angle for si�ing

1
′′ Qubit CNOT gate from 2′′ to 1′′

followed by ⊗
measurement

Rela�ve encoded 
phase =

1
′′ ⊕ 2

′′

-basis: no use

-basis: raw key

2
′′ Qubit Encoded phase 

on 2: = 2
′′

-basis: no use

-basis: no use

1
′ Qubit

CNOT gate from 1′ to 2′
followed by ⊗

measurement

Encoded intensity 
on 1: = 1

′
-basis: raw key

-basis: parameter es�ma�on

2
′ Qubit

Rela�ve encoded 
intensity =

1
′ ⊕ 2

′
Basis assignment: = 1: -basis

= 0: -basis

1
Op�cal 
mode

Emi�ed to Charlie for interference

2
Op�cal 
mode

Fig. 5 The quantum operations and usage of Alice’s encoding states on two paired locations (1, 2). There are 8 systems based on Alice's two paired
locations. Among them, the two qudits ~A1 and ~A2 are measured to obtain the overall photon number ka and the relative phase θa of two optical modes A1

and A2. The two qubits A
00
1 and A

00
2 are measured to obtain the relative phase, which is the raw key bit in the X-basis. Another two qubits A0

1 and A0
2 are

measured to obtain the encoded intensity in A1 and the relative encoded intensity, which are used for the key mapping on the Z-basis and the basis
assignment, respectively.

Table 2 Alice’s (or Bob’s) basis assignment on the paired
locations i and j.

μi
0 ν μ

μj
0 ‘0’ Z Z
ν Z X ‘discard’
μ Z ‘discard’ X

Based on the intensities μi and μj on the i-th and j-th location, Alice (or Bob) assign the basis to
be either X, Z, ‘0’, or ‘discard’.

Table 3 Alice and Bob’s basis sifting procedure on the paired
locations i and j.

Alice

‘0’ X Z

Bob

‘0’ ‘0’ X Z
X X X ‘discard’
Z Z ‘discard’ Z (key generation)

Based on the assigned basis, Alice and Bob decide whether to keep the data for Z-basis key
generation, Z(X)-basis parameter estimation, or discard the data.
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the single-photon distributions in all the Charlie’s successful detection events are
independent and identically distributed, the authors simulate the performance of
the protocol and show its ability to break the repeaterless rate-
transmittance bound.

Data availability
The methods to generate the data in the plots are provided in Supplementary
Information. The data that support the plots within this paper and other findings of this
study are available from the corresponding authors upon reasonable request.

Code availability
The detailed simulation methods for the plots are provided in Supplementary
Information. The specific code that support the plots within this paper and other findings
of this study are available from the corresponding authors upon reasonable request.
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