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An expanded reference map of the human gut
microbiome reveals hundreds of previously
unknown species
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The gut is the richest ecosystem of microbes in the human body and has great influence on

our health. Despite many efforts, the set of microbes inhabiting this environment is not fully

known, limiting our ability to identify microbial content and to research it. In this work, we

combine new microbial metagenomic assembled genomes from 51,052 samples, with pre-

viously published genomes to produce a curated set of 241,118 genomes. Based on this set,

we procure a new and improved human gut microbiome reference set of 3594 high quality

species genomes, which successfully matches 83.65% validation samples’ reads. This

improved reference set contains 310 novel species, including one that exists in 19% of

validation samples. Overall, this study provides a gut microbial genome reference set that can

serve as a valuable resource for further research.
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The human gut is the richest ecosystem of microbes in the
human body, being composed of an estimated 1013

microbial cells1. Each person’s gut harbors few hundreds of
species out of the thousands which can occupy this ecological
niche. Many of these species are difficult to cultivate despite an
ever-growing effort based on new culturing methods. In addition,
a grand effort has taken place in past years to improve upon
assembling new microbial genomes from metagenomic sequen-
cing, and to establish techniques of classifying these genomes to
create more elaborated reference sets of the human microbiome.

The gut microbiome is in constant cross-talk with the cells and
systems of our body, and is linked to human health and disease2,3.
Human health both affects and is affected by gut microbiome
composition, at the level of richness and diversity of the micro-
biome, the influence of dysbiosis, and even the existence and
abundance of specific microbes4,5. Furthermore, microbial genes
and variations within those genes have shown to affect the
potency of drugs, a research subject in its infancy6.

Our understanding of the microbes residing within our bodies
and their effect on our health is limited by our ability to identify
the microbial content. The two main paths to microbial research
are either through marker genes, such as the 16S ribosomal RNA
genes, or through reference alignment of shotgun read sequen-
cing. In both cases, the broad genetic contents of each microbe is
deduced from what is known about its genome. Continual efforts
are made to expand this knowledge by establishing better quality
and more comprehensive genomes, by using innovative methods
and more samples gathered from different populations.

In this work, we build upon previously published genomes and
our own set of assembled genomes (aka assemblies) from 51,052
metagenomic samples, and apply strict quality control and anti-
biasing considerations to form a set of 241,118 genomes. We
proceed to cluster this set, based on the genomic distances
between pairs, and choose a representative genome for each
cluster. In this way, we construct a genome reference set with
median completeness of 95% and median contamination of
0.67%, which represents 3594 gut microbial species. All but 17 of
these species are from the Bacteria domain, with the rest being
Archaea. We term our representative set of genomes the Weiz-
mann Institute of Science or “WIS” reference set.

We show our reference set recapitulates more reads of the gut
microbiome than the previous benchmark in the field, using
validation cohorts representing both western and non-western
populations. Overall, our reference set introduces 310 novel
species, and highlights others that were not known to exist in the
human body. Thus, our reference set contributes to the grand
effort of expanding the knowledge of the human microbiome.

Results
Building a new reference set. Our process of creating the human
gut microbial genomes reference set follows the work in ref.
(“Methods”)7. Their work used 9428 metagenomic samples from
multiple human body sites, although mostly from the gut, to
recapitulate 4930 microbial species, many of which were not
known before (Table 1 and Fig. 1). From here after we term their
set of genomes the University of Trento or “UNITN” reference
set. We will later refer to a second set, the Unified Human
Gastrointestinal Genome collection, as the “UHGG” reference
set8.

We sought to improve the previously published set, by utilizing
51,052 human gut microbiome samples from various cohorts, 6
times more samples than were used in ref. 7. These cohorts
include individuals with a variety of diseases such as diabetes,
multiple sclerosis, cardiometabolic syndromes, fatty liver, cancer,
and irritable bowel disease9–14. Other than allowing to choose T
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higher-quality representative genomes, having more samples
from different individuals elevates the chances of assembling rare
microbial species’ genomes, that in most people exist in lower
abundance than is required for the genome assembling process.

Our metagenomic samples are mostly of Israeli adults (range
4–93 years old, median 55) but we also complimented the 142,912
newly assembled genomes produced from our samples with
assemblies we gathered and curated from previously published
studies (up to 2019) originating in different countries (short-read
metagenome sequencing-based assemblies: 86,191 from ref. 7 and
7211 from ref. 15, isolate-based assemblies: 94 from ref. 16, 1327
from ref. 17, and 528 from ref. 18 and ref. 19, and nanopore
metagenome sequencing-based assemblies: 2855) (Table 1 and
“Methods”)7,15–19. Metadata of all 241,118 assemblies used is
available in Supplementary Data 1. We chose not to include
public repositories, such as the National Center for Biotechnology
Information (NCBI) genomes for two main reasons. First, as it
has no metadata which is required for our filtration criteria
(“Methods”) and second, as it is biased toward species that are in
the focus of scientific research. For example, Escherichia coli is a

relatively low abundant species in the human gut, however, it
portrays 10% of the “NCBI-RefSeq” dataset as of December 2020,
while Prevotella copri is a highly abundant species in the human
gut but it is represented by less than 0.05% of the dataset. Having
biases between the number of different species’ assemblies,
unrelated to their actual prevalence or abundance, can harm the
clustering process that aims to group assemblies from different
sources by the species they belong to. Naturally, these over-
represented species, found in public repositories, will also be
assembled from metagenomic samples or from isolates. Due to
the same bias concern, we chose to focus on a single body site, the
human gut (Table 1 and “Methods”).

Comparison to UNITN. In comparison to UNITN our new
reference set is composed of genomes that are of significantly
higher quality (median completeness 95% vs. 91%, q < 0.0001 (q is
the Bonferroni corrected P value) and median contamination
0.67% vs. 0.70%, q < 0.05, Mann–Whitney U test), have sig-
nificantly longer contigs (measured by N50, half of the genome
sequence is covered by contigs larger than or equal to the N50

Fig. 1 Phylogenetic tree of the new human gut microbiome genome reference set. Inside the circle is a phylogenetic tree of the WIS representative
genomes colored according to their Genome Taxonomy Database (GTDB) assigned phylum (see color legend). Inner ring shows the distance each of the
WIS genomes has from the closest genome in the UNITN or UHGG reference sets, stratified by its phylogenetic distance level—below species level in
white, species level in green, genus level in orange, family level in red and order level in brown. Second ring (counting from the inside) shows the highest
phylogenetic level the genome was un-identified at, by GTDB—same colors as in the inner ring. Third ring shows the genome production method—short-
read metagenome-assembled genomes (MAG) in purple, nanopore MAG in orange, and isolates in yellow. Outer ring line length is proportional to the log10
of the cluster size each genome represents.
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contig size) (median N50 5.57e+ 04 base pairs (bp) vs.
3.04e+ 04 bp, q < 0.0001, Mann–Whitney U test), have overall
significantly higher genome length (median length 2.22e+ 06 bp
vs. 1.96e+ 06 bp, q < 0.0001, Mann–Whitney U test) and repre-
sent bigger clusters (mean cluster size 67.09 vs. 39.61, q > 0.05,
Mann–Whitney U test) (Fig. 2a–d, g). For the same information
regarding all assemblies used (rather than just the ones that were
chosen to be the species’ representatives) see Supplementary Fig. 1.

The notable difference in completeness is not incidental as we set
this parameter threshold to be 70% for all of our assemblies while
Passoli et al. chose a threshold of 50%7. We chose to increase the
completeness threshold, as higher completeness results in lower
systematic bias in quality parameters estimates, and this bias is very
small (<2%) in cases where genomes are over 70% complete and less
than 5% contaminated20–22. Higher completeness also ensures
clustering together of partial assemblies of the same genome
(“Methods”). The notable difference in contigs length expressed by
the N50 parameter is driven mostly by the alternative methods for
curating genomes we used, nanopore and isolates as will be later
shown (Fig. 1, third ring). The WIS reference set has fewer genomes
(3594 vs. 4930), which is expected given the single body site used to
create it. For example, species that are exclusive to the skin
microbiome should not appear in our gut-derived reference set
(Table 1).

Computational approaches of producing genomes can suffer
from mis-binning, the association of unrelated contigs resulting
in chimeric genomes. In order to mass evaluate the frequency of
this potential issue, we used Genome UNClutterer (GUNC)
which assesses the probability of a genome being a chimeric
mixture of distinct lineages by using a clade separation score
(CSS) (“Methods”)23. We found that in comparison to UNITN
our reference has significantly fewer genomes suspected to be
chimeric (6.82% vs. 11.36% CSS > 0.45, median CSS 0.09 vs. 0.12,
q < 0.0001, Mann–Whitney U test) (Fig. 2e).

We procured fewer assemblies per sample than UNITN for
several reasons. Our samples are all single-end with
9.74e+ 08 ± 3.18e+ 08 bp per sample (computed by read length
times read depth), while UNITN comprises both single-end and
paired-end samples with 4.21e+ 09 ± 3.39e+ 09 bp per sample,
this lower number of bp restricts the number of assemblies that
can be produced from a sample with current computational tools.
Furthermore, applying harsher quality control and filtration
criteria reduced the number of assemblies we obtained from each
sample.

A principal issue with the UNITN reference set is that a few of the
phylogenetic species in it are represented by multiple genomes, even
though both reference sets’ clusters were created by the same
hierarchical process bounded by an average MinHash (MASH)
distance of 0.05 (a proxy for one minus the accepted species-level
boundary of 95% average nucleotide identity (ANI))
(“Methods”)24,25. For example, according to the UNITN reference
set, there are 15 genomes that belong to the species Clostridium sp,
13 to the species Streptococcus mitis and 188 additional genomes
that have a non-unique species identification. In addition, the closest
pair of genomes in it is 0.035 MASH distance apart. Due to the
nature of how species were historically delineated based on
biochemical properties and morphology, non-unique species
identification is not an issue in itself. However, the genomic
similarity between representative genomes exemplified by the
MASH distance is a problem since it causes inconclusive read
alignment. Our strict quality control, anti-biasing considerations and
focus on the human gut microbiome resulted in only 79 genomes
with non-unique species identity and none of the taxonomic species
names were assigned to more than seven genomes. Moreover, the
closest pair of genomes in our reference set is 0.040 MASH distance
apart (Fig. 1 outer ring and Fig. 2h).

Passoli et al. termed 11,402 species clusters as non-human as
they included only NCBI genomes and no assemblies from any of
their samples7. Notably, 77 of our genomes are assigned to these
“non-human” species clusters, and given that all our assemblies
are from human stool this suggests these 77 species do exist in
humans after all.

In order to evaluate how well our new reference set
recapitulates reads from short-read metagenomic samples in
comparison to this previous benchmark, we aligned an external
source of 1528 samples of individuals from the Netherlands that
participated in the LifeLines study onto both reference sets
(“Methods”, Fig. 3a, and Supplementary Data 2)26,27. The
percentage of reads that align to a reference set with no more
than a few errors or as commonly called “mapped”, is
significantly higher in the WIS reference set than in the UNITN
set (median value of 83.65% vs. 79.78%, q < 0.0001,
Mann–Whitney U test). This reduces the amount of unknown
matter, expressed by un-aligned reads, by 19.1% with some of the
remaining DNA content not even expected to be covered by any
of these reference sets that do not include viruses, fungi, and food.

Unique alignment, portrayed by the percentage of reads that are
better aligned (in terms of mapping errors) to a single area in one
representative genome of the reference set than to any other, is a
sign of increased variability within the reference set. Therefore, we
also measured this parameter and found that the gap in unique read
alignment between the sets is larger than the gap in non-unique
alignment (median value of 65.20% vs. 58.51%, q < 0.0001,
Mann–Whitney U test).

We conducted the same process on 3096 held-out samples
from our own cohort where we received similar results, and on
three smaller cohorts of non-western populations from India
(n= 110), El Salvador (n= 113), and Tanzania (n= 68), that are
often less represented in scientific research28–30. On the non-
western cohorts, the difference in read alignment was not
significant, and in one case, of the Tanzanian cohort, it was even
significantly higher in UNITN, perhaps as Tanzania is relatively
highly represented in the UNITN set, and did not necessarily
make it into our set. In terms of unique alignment, the WIS
significant advantage was maintained throughout the non-
western populations tested, which shows our process was broad
enough and did not specifically capitulate the typical Israeli adult
gut microbiome (Fig. 3b–e).

Accounting for more of the genetic content, as exemplified by
the increased mappability, aids in studying the microbes. In
particular, it helps in understanding their genetics and the effect
variations within their genomes have on their capabilities and on
host health.

Different methods of producing genomes. In order to produce
this improved quality and more divergent reference set, we
complemented the short-read devised metagenome-assembled
genomes (MAG) with data from nanopore sequencing and
sequencing of isolates, both methods produce higher-quality
assemblies16–19. These alternative method assemblies represent
2% of our assembled genomes and 21% of our chosen species
representative genomes. The 21% are composed of 12%
nanopore-based MAG that were produced from a small subset of
our samples and 9% isolates’ based genomes that were publicly
available.

These two methods produce genomes that are significantly
improved in all quality measures (completeness, contamination,
N50, and genome length) to the short-read based MAG
(q < 0.0001, Mann–Whitney U test) (Fig. 4a–d). In our reference
set, species representative genomes from isolates significantly
outperformed nanopore-based MAG in terms of completeness
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Fig. 2 The WIS reference set shows higher-quality measures than UNITN. WIS (n= 3594 genomes) in blue, UNITN (n= 4930) in red and UHGG
(n= 4744) in Brown. a–f are violin plots of the completeness, contamination, N50, length, CSS, and RRS of the representatives genomes. In each plot, the y
axis is the parameter value and drawing width is the kernel density estimate. The dashed line is the median and the dotted lines are the interquartile range.
g Cluster size histogram. h MinHash (MASH) distance between representatives histogram. Both axes are in log10 scale. Bonferroni corrected P value
annotations: not significant (ns) q > 0.05, *q < 0.05, **q < 0.01, ***q < 0.001, ****q < 0.0001 according to Mann–Whitney U test. The completeness
threshold in WIS was 70% while it was 50% in UNITN and UHGG. Panels b, c and e seemingly have values under zero, this is a graphical illusion of violin
plots since the distribution is dense around the minimal value (zero).
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(median value of 99 vs. 96, q < 0.0001, Mann–Whitney U test)
and genome length (median value of 3.37e+ 06 vs. 2.66e+ 06,
q < 0.0001, Mann–Whitney U test), but were significantly lower
than the nanopore genomes in terms of N50 (median value of
2.16e+ 05 vs. 1.88e+ 06, q < 0.0001, Mann–Whitney U test).
With regards to contamination there was no significant difference
between the two methods (median value of 0.24 in isolates vs.
0.40 in nanopore-based MAG, q > 0.05, Mann–Whitney U test).
For the same information regarding all assemblies used (rather
than just the ones that were chosen to be the species’
representatives) see Supplementary Fig. 2.

In terms of CSS, nanopore MAG have significantly fewer
genomes suspected to be chimeric than isolates, and both have a
significantly lower chance than short-read MAG (0.88% of nanopore
MAG, 1.28% of isolates and 8.39% of short-read MAG have
CSS > 0.45, median CSS 0.00, 0.07, and 0.12, respectively, q < 0.0001,
Mann–Whitney U test) (Fig. 4e).

Despite these two alternative sources for genome assembly
having many advantages, they are still more expensive and thus can
only be applied to a small number of samples. Furthermore, not all
gut microbes have yet been successfully cultured. Therefore, even
though we enriched our genome pool with these improved quality
genomes, most of our assembled genomes (98%) and the chosen
species’ representative genomes (79%) are still produced from
short-read based MAG.

Genetic annotations. Using standard tools we annotated the gen-
omes in both the UNITN and WIS reference sets (“Methods”,
Supplementary Data 3). The total number of segments identified as
genes, not necessarily annotated, is 8,138,394 in WIS and 9,506,317
in UNITN. The absolute number of uniquely annotated genes, that

is counting each gene once even if it appears in multiple species, is
30,545 in WIS and 30,730 in UNITN. These numbers translate to
17.18% more uniquely annotated genes per bp in the WIS set than
in the UNITN set (3.5 × 10−6 vs. 3.0 × 10−6), 12.49% more uniquely
annotated gene products per bp (1.4 × 10−6 vs. 1.2 × 10−6) and
10.47% more uniquely annotated enzymes per bp (5.2 × 10−7 vs.
4.7 × 10−7). These results were unexpected since the UNITN refer-
ence set includes genomes that originated from multiple body sites
(although most are from the gut) and thus are expected to cover a
wider range of functions while the WIS reference set originated only
in a single body site—the gut. A possible explanation for these results
is that the increased quality of the WIS genomes made them more
accurate and thus it was easier for the annotation tools to recognize
the genes in the reference set. Another possible complementary
explanation is that the higher number of starting samples allowed
the curation of genomes and hence functions of microbes that are
missing from the UNITN reference set. In contrast, this could stem
from the gut being a more researched body site, and hence more
annotated. Regardless of the reason, since the absolute number of
uniquely annotated genes is comparable this indicates that, specifi-
cally for the gut microbiome, our new reference set covers a wider
range of genes and hence functions than the UNITN reference set.

We broke down the annotated segments into the following
categories—protein-coding (CDS), transfer ribonucleic acid RNA
(tRNA), miscellaneous RNA (miscRNA), ribosomal RNA (rRNA),
transfer-messenger RNA (tmRNA), and repeating regions (Fig. 5).
In all categories, the WIS reference set had significantly more
annotations per genome than UNITN (q < 0.0001, Mann–Whitney
U test). The gap between the WIS and UNITN reference sets is most
prominent in the rRNA category where there are almost five times
more occurrences per genome. Deepening into this category, we

Fig. 3 More reads are successfully aligned to the WIS reference set than to the UNITN reference set. WIS in blue, UNITN in red and UHGG in brown.
a Netherlands (n= 1528 samples), b Israel (n= 3096 held-out samples), c India (n= 110), d El Salvador (n= 113), and e Tanzania (n= 68) percentage of
reads (y axis) that were aligned (left) and that were uniquely aligned (right) to each genome reference set. The boxes show the quartiles of the dataset
while the whiskers extend to 1.5 of the interquartile range, points beyond the whiskers are considered to be outliers. Bonferroni corrected P value
annotations: not significant (ns) q > 0.05, *q < 0.05, **q < 0.01, ***q < 0.001, ****q < 0.0001 according to Mann–Whitney U test.
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found that there are 1.04 5S genes, 0.68 16S genes and 0.63 23S
genes per genome on average in the WIS reference set, while there
are only 0.35 5S, 0.10 16S, and 0.06 23S genes per genome on
average in the UNITN reference set—a 2.97, 6.72, and 10.15-fold
differences, respectively (all significantly different, q < 0.0001,
Mann–Whitney U test). This increased rRNA curation is highly
driven by the alternative methods of genome assembly—isolates and
even more so nanopore. The 16S gene is of particular interest as it is
known to be present in all bacteria and consists of a highly
conserved region that can be identified using PCR, inter-spread by

variable regions that are species or genus specific31. The downside of
identifying bacteria using 16S is that it requires prior knowledge to
tie the variable 16S regions’ sequences to a taxonomy, and that it
only recognizes bacteria presence and not its full genomic context.
For many of the gut bacteria, this prior knowledge does not exist but
can now be deduced using our expanded reference set.

Comparison to UHGG. A new reference set, expanding the gut
segment of UNITN in ref. 7, was recently published as the Unified

Fig. 4 Nanopore and isolates representative genomes show higher-quality measures than those of short-read-based MAG. Short-read metagenome-
assembled genome (MAG) (n= 2825 genomes) in purple, nanopore MAG (n= 457) in orange and isolates (n= 312) in yellow. a–f are violin plots of the
completeness, contamination, N50, length, CSS, and RRS of the representatives genomes, respectively. In each plot, the y axis is the parameter value and
drawing width is the kernel density estimate. The dashed line is the median and the dotted lines are the interquartile range. Bonferroni corrected P value
annotations: not significant (ns) q > 0.05, *q < 0.05, **q < 0.01, ***q < 0.001, ****q < 0.0001 according to Mann–Whitney U test. Panels b, c, and e
seemingly have values under zero, this is a graphical illusion of violin plots since the distribution is dense around the minimal value (zero).
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Human Gastrointestinal Genome collection8. This reference set
has not yet been established as a benchmark, but a thorough
comparison to our work is still required. Their assembly set does
not introduce new data, and overlaps with ours in many of the
public datasets used, but it also includes genomes from NCBI,
PATRIC, and IMG repositories that we find to be biased towards
species that have been the focus of scientific research. The UHGG
assembly set is composed of 286,997 genomes, which by their
criteria (of 99.9% ANI between two assemblies from the same
sample) are considered to be 204,938 non-redundant genomes,
15% less than the size of our assemblies set, where our anti-
biasing considerations inherently excluded assemblies from the
same person in cases where they were under 0.05 MASH distance
apart (equivalent to being over 95% ANI apart) (Table 1).

The UHGG assembly set was derived by using lower quality
thresholds (completeness >50% and contamination <5%, com-
bined with an estimated quality score (completeness-5*contam-
ination) >50), and was iteratively clustered and later combined to
a resulting set of 4644 species-level clusters, 29% more species
than in the WIS reference set. The same quality parameters were
considered for choosing representatives in both UHGG and WIS,
with only the N50 weight being larger in WIS. However, in
UHGG, isolates were prioritized over MAG, that is, even if a
MAG had a higher-quality score than an isolate genome, the
latter would still be chosen as the representative.

In terms of quality, the UHGG representative genomes are
significantly more complete than the WIS representative genomes
(median completeness 96% vs. 95%, q < 0.0001, Mann–Whitney
U test) but have significantly shorter contigs (median N50
4.87e+ 04 bp vs. 5.57e+ 04 bp, q < 0.0001, Mann–Whitney U
test). With regards to contamination and genome length there is
no significant difference between the two sets (median contam-
ination 0.67% vs. 0.67%, q > 0.05 and median length
2.15e+ 06 bp vs. 2.22e+ 06 bp, q > 0.05, Mann–Whitney U test)
(Fig. 2a–d). Perhaps their higher completeness, even while using
lower quality thresholds, stems from the prioritization of isolate
genomes over MAG, which as we showed tend to be more

complete. For the same quality information regarding all
assemblies used (rather than just the ones that were chosen to
be the species’ representatives), see Supplementary Fig. 1.

UHGG has significantly smaller clusters (mean cluster size 60.97
vs. 67.09, q < 0.0001, Mann–Whitney U test), and more genomic
similarity among its representative genomes in comparison to WIS
(0.019 vs. 0.040 minimal MASH distance) (Fig. 2g, h). Taken
together, this might indicate redundancies in the set of representa-
tives, possibly due to the iterative clustering process. There is no
significant difference in the likelihood of the representative
genomes between the two sets to be chimeric (6.82% vs. 5.88%
CSS > 0.45, median CSS 0.09 vs. 0.11, q > 0.05, Mann–Whitney U
test) (Fig. 2e).

In terms of the percentage of read alignment of the external
validation cohort, the UHGG reference set recapitulates sig-
nificantly fewer reads than the WIS reference set (median value of
82.85% vs. 83.65%, q < 0.0001, Mann–Whitney U test), but in
terms of unique read alignment UHGG recapitulates significantly
more reads than WIS (median value of 66.12% vs. 65.20%,
q < 0.0001, Mann–Whitney U test) (Fig. 3a). We obtained similar
results on the internal validation cohort. However, as in UNITN,
on the smaller non-western cohorts the difference in read
alignment was not significant, and in one case, of the Tanzanian
cohort, it was even significantly higher in UHGG. In terms of
unique alignment, UHGG maintains its significant advantage
over WIS (Fig. 3b–e).

There are 1158 genomes in the UHGG reference set which are
not under the species-level genomic distance from any WIS
representative, and there are 406 species in WIS that are not in
the UHGG reference set by the same criteria. Creating a
combined reference set of all the WIS representatives with the
additional 1158 representative genomes from UHGG recapitu-
lates a median value of 84.43% of the reads, significantly higher
than either one of the two reference sets on their own (q < 0.0001,
Mann–Whitney U test). However, this combined set is sig-
nificantly worse in terms of unique read alignment than each
of the reference sets on their own, as it only captures a median
value of 64.9% of the reads (q < 0.0001, Mann–Whitney U test).
Evaluating the prevalence of the unique species of each set, we
found the UHGG unique species have significantly lower
prevalence than the WIS unique species (mean prevalence in
the external validation cohort of 11.51% vs. 26.14%, P < 0.01, and
in the internal validation cohort of 14.09% vs. 36.29%, P < 0.0001,
Mann–Whitney U test).

In order to evaluate the difference in annotations, we applied
the same standard tools to the UHGG as we did to the WIS
reference set (“Methods”). The total number of segments
identified as genes, not necessarily annotated, is 8,138,394 in
WIS and 10,547,568 in UHGG. The absolute number of uniquely
annotated genes is 30,545 in WIS and 33,376 in UHGG. Due to
the higher number of genomes in the UHGG set, these numbers
translate to 19.71% more uniquely annotated genes per bp in the
WIS set than in the UHGG set (3.5 × 10−6 vs. 2.9 × 10−6), 19.01%
more uniquely annotated gene products per bp (1.4 × 10−6 vs.
1.2 × 10−6) and 20.51% more uniquely annotated enzymes per bp
(5.2 × 10−7 vs. 4.3 × 10−7). When breaking down the annotated
segments to categories, the WIS reference set had significantly
more annotations per genome than UHGG in the CDS and
miscRNA categories (q < 0.0001 and q < 0.001, respectively,
Mann–Whitney U test), in the rest of the categories, there was
no significant difference between the reference sets (Fig. 5).

As our work is based on highly curated assemblies, introduces
142,912 assembled genomes and includes 406 species that are not
represented by UHGG, it expands the knowledge of the human
gut microbiome. In the future, both the UHGG and WIS sets,
together with other works that will follow, should be combined

Fig. 5 The WIS reference set is more annotated than the UNITN
reference set. Count per genome (each genome is a dot and the mean
overall genomes is shown as a bar, y axis is in log10 scale) of each type of
annotated segment (x axis). Protein coding (CDS), transfer ribonucleic acid
RNA (tRNA), miscellaneous RNA (miscRNA), ribosomal RNA (rRNA),
transfer-messenger RNA (tmRNA), and repeating regions, stratified by
reference set— WIS (n= 3594 genomes) in blue, UNITN (n= 4930) in
red, and UHGG (n= 4744) in brown. Bonferroni corrected P value
annotations: not significant (ns) q > 0.05, *q < 0.05, **q < 0.01,
***q < 0.001, ****q < 0.0001 according to Mann–Whitney U test.
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into a more comprehensive genome set that considers the
different methodologies and better represents a variety of
populations. Meanwhile, it is possible to add the UHGG species
not covered by WIS to our reference set, with the advantages and
disadvantages it brings.

Newly discovered human gut microbial species. We evaluated
the contribution of our reference set in two ways. First, in order to
understand whether the microbes our reference genomes repre-
sent are already known, we identified the genomes using the
Genome Taxonomy Database (GTDB) (“Methods”)32. Second, in
order to understand if the microbes our genomes represent were
already found by the UNITN or UHGG sets, we measured the
distance each of the WIS reference set genomes has to the closest
UNITN or UHGG reference genome (“Methods”).

We found that 1055 genomes (out of the 3594 we have) were
not identified as a known species by GTDB-Tk, a toolkit to
classify genomes using GTDB32. Of those unknown genomes, 93
were not classified at the genus level, two were not classified at the
family level and one was not even classified at the phylogenetic
order level (Fig. 1, second ring and Fig. 6a).

When comparing the WIS genomes to the UNITN and UHGG
sets, we found that 340 genomes are so genetically far from either
reference sets that they surpass the genomic distance that defines
a species and hence should be considered as an independent
microbial species (Fig. 1, inner ring and Fig. 6b)25. Similarly, 198
out of the 340 genomes surpassed the genus level distance and six
even surpassed the family-level distance and thus should be
considered as unfamiliar families relative to the UNITN and
UHGG reference sets.

Integrating the two outlooks together, i.e., which microbes are
known and which microbial genomes were already included in
the other reference sets, we found that 310 of our genomes belong
to microbial species that were not described before, 19 of which
belong to unfamiliar genera (Fig. 6c). The novelty of these species
is further supported by the GUNC reference representation score
(RRS), an estimate of how closely a query genome is already
represented by the GUNC reference set (unknown species would
have RRS close to 0, while known ones will have RRS closer to 1).
The RRS is significantly lower for the WIS representatives than
for UNITN and UHGG representatives (median RRS 0.67 vs. 0.74
and 0.72, respectively, q < 0.0001, Mann–Whitney U test) (Fig. 2f),
and is much lower in the 310 novel species compared to the
known ones (median RRS 0.58 vs. 0.68, P < 0.0001,
Mann–Whitney U test).

These 310 newly discovered species are mostly singletons
(76%), meaning they were the only genome in their species-level
cluster, even though some do exist in many individuals in
relatively low abundance. These species representative genomes
often originated from our own samples (98%) and are usually
short-read MAG (95%). As these species are mostly MAG
singletons, they are more likely to be suspected chimeras (11.61%
of the novel species vs. 6.36% of the known ones have CSS > 0.45,
median CSS 0.16 vs. 0.09, P < 0.0001, Mann–Whitney U test),
close to the likelihood of the UNITN species (11.36% CSS > 0.45).

For the biggest phylum in the human gut microbiome,
Firmicutes, we found 156 undescribed species that constitute
7% of the number of genomes it holds in the WIS reference set.
Similarly, for the second largest phylum in the human gut,
Bacteroidota, we found 98 undescribed species that constitute
17% of its genomes in the WIS reference set. Other smaller phyla,
such as Spirochaetota and Eremiobacterota, include only a few
undescribed species but those represent over 20% of the genomes
we have for them (Supplementary Fig. 3). Three phyla have a
single genome in the WIS reference set and of them, one was

found to be an undescribed species of the Halobacteriota phylum,
Methanomicrobia class (Supplementary Fig. 3 and Fig. 6d). This
species is of the archaeal domain and Methanocorpusculum
genus, and it originated from a singleton short-read MAG of our
own samples.

The Kiritimatiellae class is highly expanded by our newly
discovered species which constitute 80% of all its genomes in the
WIS reference set (Fig. 6d). By GTDB identifiers, we know that
the species of this class in the WIS reference set belong to two
unnamed genera. One genus has a single genome in it and it is of
a known human gut species that was also represented in the
UNITN and UHGG reference sets. The other genus has four
species, which are all new and stem from clusters with one or two
genomes in them, all these genomes are short-read MAG from
our own samples. These four species are within genus distance
level from the closest UNITN and UHGG genomes. The WIS
Kiritimatiellae reference genomes are 0.14–0.34 MASH distance
apart from each other.

The most prevalent new species in both the internal (15.02% of
the samples had it with a mean relative abundance among those
who had it of 0.10%, and a maximal relative abundance of 1.02%)
and external (18.98% of the samples had it with a mean relative
abundance among those who had it of 0.11%, and a maximal
relative abundance of 0.85%) validation cohorts is a species of the
genus Faecalibacterium (“Methods” and Supplementary Data 4).
It is a singleton short-read MAG from ref. 15. Another new
species of this genus is third in its prevalence in the internal
validation, and second in the external validation cohort.

Among those who had it, the most abundant novel species in
the internal validation cohort belongs to the Prevotella genus and
is a cluster of nine short-read MAG from our own samples. It
exists in 0.10% of the internal validation samples with a mean
relative abundance among those who had it of 11.68%, and a
maximal relative abundance of 23.40%. However, it did not exist
in the external validation at all. The most abundant novel species
in the external validation cohort belongs to the Ruminococcus
genus and is a singleton short-read MAG from our own samples.
It exists in 0.13% of the external validation samples with a mean
abundance among those who had it of 4.93%, and a maximal
relative abundance of 7.30%. However, it did not exist in the
internal validation at all. These discrepancies exemplify the
difference in microbial composition between different popula-
tions and how our reference set, produced from a uniquely large
cohort, was even able to find previously unknown species that are
very rare in our own cohort’s population. The second most
abundant novel species is shared by both validation cohorts
(exists in 6.46% of internal validation and 4.30% of external
validation), and is also of the Ruminococcus genus. A third novel
species of this genus has 14 genomes in its cluster, making it the
biggest cluster among the novel species. All of the genomes in this
species cluster are short-read MAG from our own samples.

The genes in the genomes of these 310 species are significantly
enriched for 9 out of the 20 COG functional categories tested
(q < 0.0001, hypergeometric test) (“Methods”)33. However, since
these genomes are also significantly less annotated (median
amount of annotated genes out of all the genes in a genome,
48.59% in the novel species vs. 52.80% in the known ones,
P < 0.0001, Mann–Whitney U test), as expected for newly
discovered microbes, this is a biased comparison.

Of the annotated genes in the new species, 42 code for gene
products that are not present in the known species of our
reference set, some of these products may directly affect the host
while others are more beneficial for microbial competition. For
example, among those that can directly affect the host, we found
Lp49 antigen which is a membrane-associated protein recognized
by antibodies present in leptospirosis patients, and Fragilysin, a
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metalloprotease toxin that is cytopathic to intestinal epithelial
cells and induces fluid secretion and tissue damage in ligated
intestinal loops. An example of a gene product that may affect
microbial competition is ParE3 toxin, involved in plasmid
partition34,35.

Furthermore, the novel species hold significantly fewer
potential antibiotic resistances than the known species (21.94%
of the novel species vs. 30.21% of the known ones hold at least
one potential antibiotic resistance, and on average there are 1.06
resistances per genome in the novel species and 2.18 in the known
ones, P < 0.01, Mann–Whitney U test) (“Methods” and Supple-
mentary Data 5), yet seven novel species hold more than ten
potential resistances out of the 88 tested.

The subset of previously unknown species we elaborated on
and their new gene products and antibiotic resistances mentioned
are just a few examples of how they may be used to study the
connection between the gut microbiome and its human host, and
the competition between the microbes that harbor our body.

Discussion
In this work, we created a human gut microbiome genome
reference set (the WIS reference set) that includes 3594 species
genomes that belong to 2365 genera and 628 families. We found
that 310 of our genomes belong to microbial species that were not
known before, 19 of which belong to previously unfamiliar
genera.

Fig. 6 310 newly discovered human gut microbial species. The novel species, stratified by their phylogenetic disparity from previously discovered species
—species level in green, genus in orange, family in red and order in brown. a Upside-down funnel diagram of genomes un-identified by the Genome
Taxonomy Database (GTDB) at some phylogenetic level. b Histogram of the WIS representatives’ MinHash (MASH) distance from the closest UNITN or
UHGG representatives that exceed the species-level distance. Dashed lines are phylogenetic distance thresholds. n is the number of genomes that passed
each threshold. c Venn diagrams of novel species as un-identified by GTDB and relative to the UNITN and UHGG reference sets. Circles scaled to the
amount of species in them. d Number of known and novel species in each class. The percentage to the right of the bar is the proportion of novel species out
of all the species of the class (within our reference set).
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Our process is based on the previously published work in ref. 7

but differs from it in several ways7. First, our genomes were
assembled from a uniquely large human gut microbiome set of
51,052 samples, that we further complemented with genomes
from multiple countries to create a broad starting assembly set.
Second, we introduced genomes from alternative methods based
on nanopore sequencing and isolates, to produce genomes that
exhibit higher-quality measures. Finally, we applied harsher
quality control criteria, including some to overcome known bia-
ses, and focused purely on the human gut.

We showed that our reference set recapitulates significantly
more reads from stool samples of western populations than the
UNITN reference set, and even more than the new UHGG set. In
addition, our reference set has a significantly higher number of
identified coding regions per genome than the other two sets.

By performing metagenomic assembly on a large cohort, we
were able to obtain assemblies for genomes which only rarely
appear in a high enough abundance for the assembly process. By
the in depth methods, nanopore and isolates, on a small set of
samples, we were able to obtain genomes which typically appear
only in low abundance, but are common to many individuals. The
combination of the two sources allowed a unique coverage of
previously unknown species.

Many of these previously unknown species are singletons in
our data set, having been assembled from a single sample,
although other samples do contain them. Applying advanced
culturing and sequencing techniques to such samples may allow
acquiring more assemblies of these species and to better the
understanding of their function in the human microbiome.

These species add new members to almost all phyla known to
exist in the human gut microbiome, and for some phyla, the new
species represent over 20% of the genomes they have in our
reference set. As an example, in the Kiritimatiellae class, we found
an unknown genus with four new species. The most prevalent of
our novel species is present in over 15% of samples in both an
internal and an external validation cohorts. In contrast, the most
abundant novel species differs between these two cohorts. Overall,
the 310 novel species encode over 40 gene products that are not
seen in any of our known species genomes.

Our gut microbiome reference set builds upon the work of
many others, and we believe it provides a significant step for-
ward. As the field progresses, the cost of more accurate
sequencing methods will decrease, and it will be easier to create
higher-quality genomes. Furthermore, focusing on samples
identified in advance as having the potential to contain
unknown species, for example in rural populations or in sick
individuals, or ones that have been found to date only in low
quality, will allow to step even further. More immediate steps
can be to understand the gene contents and function of the
species in our reference set, and their possible interactions with
the host. Another direction could be to complement the
reference set with other types of microbes, such as viruses and
fungi. Finally, while the focus on a single environmental niche
has numerous advantages in creating a consistent reference set,
it is important to create such reference sets for other environ-
ments, and compare what they share, and how they diverge,
along the path to understanding the symbiosis between host
and microbiome.

Methods
Ethics statement. The study was approved by the Institutional Review Board
(IRB) ethics committee of the Weizmann Institute of Science (Reference number:
1719-1).

Data sources. Multiple sources of assemblies were used in the construction of the
initial assembly pool. We insisted on using only assemblies for which metadata was

available, with emphasis on the sample being confirmed as a human gut micro-
biome sample, and on being able to identify multiple samples of a single individual
(for reasons which will be elaborated below).

We applied the Pasolli et al. assembly pipeline on our 51,052 stool samples,
which had undergone single-end short-read shotgun sequencing. Of these,
70 samples also underwent nanopore sequencing, combined with deep paired-end
sequencing, using a dedicated pipeline.

External MAG were taken from:

1. Pasolli et al.—119,449 assemblies with relevant metadata. Samples
originating from our own cohort were excluded, as we independently
applied the above-mentioned assembly pipeline to them7.

2. Nayfach et al.—10,116 assemblies which had metadata, and were not in
overlap with refs. 7,15.

3. Almeida et al.—no assemblies were used since all assemblies that were not in
overlap with ref. 7 lacked necessary metadata7,36.

External isolate assemblies were taken from:

1. Forster et al. and Browne et al.— 737 and 137 isolates from 20 individuals
(these two sources share the same cohort)18,19.

2. Zou et al.—1520 isolates from 150 individuals17.
3. Poyet et al.—3632 isolates from 90 individuals16.

Nanopore samples. The 70 samples chosen for Nanopore sequencing were chosen
for technical reasons, by the amount and quality of fecal sample available, and not
by any criteria which take into account their metagenomic contents.

MAG assembly procedure. On the 51,052 single-end human genome filtered
sequencing files, gathered in previous studies, we applied an assembly procedure
designed in ref. 7:

1. SPAdes (version 3.10.1) with argument ‘–only-error-correction’ was run for
preliminary error correction37.

2. Megahit (version 1.1.1) with argument ‘–min-contig-len 1000’ was run to
build contigs38.

3. Bowtie2 (version 2.2.9) was run to build an index from the contigs file with
default arguments, and to map the original sample to this index, with ‘–very-
sensitive-local’ argument39.

4. SAMTools (version 1.3.1) was used to create a sorted bam from the bowtie
output40.

5. Metabat2 (version 2.12.1) with argument ‘-m 1500’ was run, with a depth
file created using jgi_summarize_bam_contig_depths with default argu-
ments, to bin contigs into assemblies41.

6. Quality of initial assemblies was assessed with:

a. CheckM lineage_wf (version 1.0.13) with default arguments was used to
determine quality parameters. With only assemblies with >70%
completeness and less <5% contamination taken21.

b. Prokka (version 1.12) with default arguments was used to create gff files
for each assembly which passes initial quality thresholds42.

c. CMSeq (version 1.2) polymut with arguments ‘–mincov 10 –minqual 30
–dominant_frq_thrsh 0.8‘ was used to assess heterogeneity. With only
assemblies with less than 5% heterogeneity taken7.

Quality control. We follow Passoli et al. in using a more stringent <5% con-
tamination criteria, than the widely used MIMAG standard parameters for medium
(contamination <10%, completeness ≥50%) genome quality7,43. However, we
increased the completeness threshold to >70%, since according to simulations we
performed (creating partial assemblies from full single-contig assemblies) at 50%
completeness the MASH distance between two assemblies may still be over 0.05,
even with no contamination or single position errors. When we apply >70%
completeness this no longer happens, and two partial assemblies of the same
species do cluster together.

MASH distances. We follow Passoli et al. in using MASH as a distance
metric7,24. MASH is a general-purpose toolkit that utilizes the MinHash tech-
nique to estimate genomic distance. MASH distance is a good proxy for one
minus the average nucleotide identity (ANI), so that the MASH species-level
threshold of 0.05 is equivalent to the widely accepted 95% ANI, used to form
species boundaries.

Focus on the human gut microbiome. We decided to focus on a single ecological
niche, the human gut microbiome. The need for such a focus stems from the
process used to define phylogeny, and more specifically for the hierarchical clus-
tering upon which thresholds for species, genus and family levels are defined.
Different ecological niches may host the same species, but the set of genes in the
genome of the microbe may vary, causing the distance between different assemblies
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of the same species to be higher than if a single niche was studied. This may cause
single species to be split between different clusters.

Biases reduction. Another source of bias, that might stem from the use of hier-
archical clustering, especially when the distance between groups is calculated using the
average distance between the members of the groups, stems from duplication.
Duplicated, or almost duplicated, assemblies will cluster early on (because the distance
between the pair is 0 or very close to it), but from there on, this point in space will be
given double the normal weight in any averaging step.

In a single-assembly process, from a single sample, such a problem does not come
about, as the assembly process and binning of contigs, would not allow two very close
assemblies to be created. But, if the process of assembly is performed twice, on the
same sample, the two sets of assemblies created will not be exact duplicates, but would
be very close to one another, and thus using both sets in the clustering process will
cause such a bias. This is also true if two different samples of the same individual are
used. The longer the time between samples, the more the microbes of an individual
may have evolved; some microbes will evolve only slightly, others may be lost or
gained, and the abundances may change so as to make different microbes abundant
enough to be assembled at different time points. Assembling microbes from a few
samples of the same individual may add new microbes to the set assembled from a
single sample, but will also inevitably create a few copies of the same species, which will
therefore bias the clustering process.

In order to acquire as many assemblies as possible, without causing such a bias in
clustering, we decided to process multiple samples of the same individual, but only
take a single assembly of each species. All assemblies of a single individual (that pass
quality thresholds) were ranked by quality (see below), and from highest to lowest each
was added to the pool of assemblies only if it was above the species-level
distance threshold (see above) from all previously added assemblies. For applying this
criterion, we needed metadata which allows identifying all the samples taken from the
same individual.

This non-biasing criterion was also used for the choice of the isolates’
assemblies, where many plates may be growing the same microbe, if they originated
from the same stool sample of a single individual.

Chosen assemblies. Applying the criteria above reduced the number of assemblies
we had at our disposal to:

● 142,912 short-read MAG assembled in-house.
● 86,191 short-read MAG from ref. 7.
● 7211 short-read MAG from ref. 15.
● 2855 nanopore MAG.
● 1327 isolate assemblies from ref. 17.
● 528 isolate assemblies from refs. 18,19.
● 94 isolate assemblies from ref. 16.

Cluster representatives. The set of assemblies in a cluster may range from a single
assembly to almost ten thousand assemblies. We chose a cluster representative
genome by quality, which is not a single criteria, but a balance between different
characteristics of the assembled genome. We estimated the completeness, con-
tamination, and N50, and balanced their relative contributions, using the following
formula:21

Completeness� 5*Contaminationþ 15log10ðN50Þ

Genome identification. We did not use named “NCBI-RefSeq” sequences in our
clustering process as Passoli et al., thus we had to identify our genomes in a
different way7. We chose to use GTDB-tk version 1.7.0, database version R202 on
the species representative genomes for this task.32,44.

Furthermore, we measured the distances between the representative genomes in
the WIS reference set and the genomes of the UNITN and UHGG reference sets,
using MASH with 104 sketch size, and their placement in UNITN non-human
clusters using PhyloPhlan, phylophlan_metagenomic version 3.0.35 with
arguments -n 1 -d SGB.Jan1945.

Genetic annotations. The representative genomes were annotated using prokka
version 1.14.6 with the argument –rfam and using eggnog version 2.0.4 with the
arguments –go_evidence all and -m diamond42,46.

Assessing chimeras. We used Genome UNClutterer (GUNC) version 1.0.5 with
default arguments to assess the probability of a genome being a chimeric mixture of
distinct lineages23.

Antibiotic resistance. We used the ABRicate tool42 version 1.0.1 on the repre-
sentative genomes with the arguments –db NCBI, CARD, ARGANNOT,
RESFINDER (all pulled on June 6th, 2021) –minid 70 –mincov 70 and combined
the results of the multiple databases in cases where the sequence was from the same

contig, strand and within a start or end buffer of 100 base pairs. In addition, we
united different codes of the same drug47–50.

Alignment. All validation samples are whole-genome sequencing of fecal meta-
genomic samples which underwent a pipeline of quality assurance, trimming to
100 bps and filtering of human reads. Non-western samples were paired-end but
were treated as single-end (i.e., each side separately, as an independent read). Read
alignment of metagenomic samples to representative sets was performed using
bowtie2 version 2.3.4.2, with arguments -a –no-unal –no-sq –no-hd –score-min
L,−40,0. Unique read alignment was defined by reads that are best aligned to a
single mapping position39.

Relative abundance. Relative abundance and prevalence estimations were calculated
using the unique relative abundance (URA) technique14. In broad terms, this method
uses only uniquely mapped reads in order to assess abundances. It divides the refer-
ence genome into windows of the same number of expected unique positions (posi-
tions from which a read taken would be unique in the given reference set), and assesses
the distribution of the number of mapped reads on these genome windows. A species
exists in the sample if enough reads are uniquely aligned to it, and the distribution of
these reads on the genome windows is uniform enough.

Statistics. All statistical analyses were conducted using a two-sided
Mann–Whitney U test, and Bonferroni correction for multiple hypotheses, unless
otherwise stated. 0.05 alpha threshold was used on corrected P values. No statistical
method was used to predetermine sample size, we took all available data (up to
2019) after quality control and bias reduction as described above.

Instruction for using our code to build a reference from a set of assemblies.
Creating a new reference set, is done in several steps, code for which is provided
with this paper (GutReferenceSet/Build_Species_Set, see Code availability):

1. Create a list of assembly files and their metadata. This file should be named
full_metadata.csv with index which is the full path of the assembled genome
fasta file and the following columns:

a. Source—source of data, so that Source + RegistrationCode is a unique
identifier of an individual from which assemblies were created

b. Method—assembly creation method (MAG/isolate/nanopore...)
c. AssemblyName—a unique identifier of the assembly
d. SampleName—an identifier of the sample the assembly was created from

(so as to identify assemblies originating from the same sample)
e. RegistrationCode—an identifier of the individual the sample was taken

from (so as to identify assemblies originating from the same individual)
f. DoNotTake—a column which is either empty or includes reasons not to

consider the assembly

2. Calculate the quality of the genomes by running checkM. The code for this
stage is GutReferenceSet/Build_Species_Set/quality.py

3. Filter by the quality and by criteria of not taking the same species from the
same person twice. The code for this stage is GutReferenceSet/Build_Spe-
cies_Set/filter.py

4. Mash all vs. all into a memory map. The code for this stage is
GutReferenceSet/Build_Our_Set/distance.py

5. Cluster based on memory-mapped distances. The code for this stage is
GutReferenceSet/Build_Species_Set/hierarchical_clustering.py

6. Choose a representative genome for each cluster. The code for this stage is
GutReferenceSet/Build_Species_Set/choose_representatives.py

7. Name the representative genomes using GTDB. The code for this stage is
GutReferenceSet/Build_Species_Set/naming.py

8. Compare the representative genomes to UNITN and build a tree structure.
The code for this stage is GutReferenceSet/Utils/phyphlan.py.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 142,912 assembled genome fastas used in this study are available in the Zenodo
database, divided into ten tarred and gzipped files, in addition to the full metadata file
describing these assemblies: https://doi.org/10.5281/zenodo.5767857. The IRB committee
determined that bona fide researchers wishing to gain access to the data should be listed
and thus access will be provided upon request. The 3594 species representative genomes
of this study have been deposited in the Figshare database, in addition to all
supplementary files: https://doi.org/10.6084/m9.figshare.16885261.

Code availability
The source code used to create our reference set is available in the following git
repository: https://github.com/erans99/GutReferenceSet.
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