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A structural and functional subdivision in central
orbitofrontal cortex
Maya Zhe Wang 1,2✉, Benjamin Y. Hayden 1,2,3 & Sarah R. Heilbronner1,3

Economic choice requires many cognitive subprocesses, including stimulus detection,

valuation, motor output, and outcome monitoring; many of these subprocesses are asso-

ciated with the central orbitofrontal cortex (cOFC). Prior work has largely assumed that the

cOFC is a single region with a single function. Here, we challenge that unified view with

convergent anatomical and physiological results from rhesus macaques. Anatomically, we

show that the cOFC can be subdivided according to its much stronger (medial) or weaker

(lateral) bidirectional anatomical connectivity with the posterior cingulate cortex (PCC). We

call these subregions cOFCm and cOFCl, respectively. These two subregions have notable

functional differences. Specifically, cOFCm shows enhanced functional connectivity with PCC,

as indicated by both spike-field coherence and mutual information. The cOFCm-PCC circuit,

but not the cOFCl-PCC circuit, shows signatures of relaying choice signals from a non-spatial

comparison framework to a spatially framed organization and shows a putative bidirectional

mutually excitatory pattern.
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Choosing among rewarding options requires coordination
of multiple brain functions spanning sensory perception to
valuation and motor output. Among brain regions asso-

ciated with economic choice, the orbitofrontal cortex (OFC) has
attracted the lion’s share of attention1–10. There is increasing
evidence of functional subdivsions within OFC relevant to eco-
nomic choice. For example, the central OFC (cOFC) is associated
with evaluation, value comparison, cognitive mapping, and
prospection6,11–14. The medial OFC may be more associated with
abstract valuation and learning processes12,15. The lateral OFC
may signal resource availability16. These distinctions, based on
coarse parcellations, likely reflect just some of the functional
heterogeneity present within the OFC.

Economic choice requires the transformation of sensory and
mnemonic information into actions11,17–23. In other words,
economic choice involves a transformation from a non-spatial
comparison framework to action-oriented, and therefore in most
cases spatial, one. It is likely that the cOFC plays a key role in this
process. However, the nature of that role remains unclear. Many
studies have emphasized the abstract side of cOFC processing;
however, a growing number of studies suggest that it may have an
important spatial role as well (e.g.,24–27). The inconsistency across
studies, along with the functional divisions explained above, raise
the possibility that different parts of cOFC may have hetero-
geneous functions. Delineating that heterogeneity may allow for
more precise specification of cOFC’s contributions to economic
choice.

We hypothesized that the key to understanding the role of
cOFC in the transformations associated with choice is through its
connectivity with another region involved in economic choice:
the posterior cingulate cortex (PCC). This region, located in the
posteromedial cortex, has not received the same amount of
scholarly scrutiny from decision neuroscientists as cOFC.
Nevertheless, the PCC has a confirmed spatial repertoire28–32 and
plays a fundamental economic role29,33–37. That is, while PCC has
consistent responses to outcomes, those responses are spatially
selective, perhaps due to the strong interactions between this
region and the parietal cortex and medial temporal lobes38–40.
Finally, PCC has direct bidirectional communication with
OFC38,41–44. Because of its potential to help translate choice-
related information from cOFC into a spatial domain, we wanted
to probe how the cOFC-PCC circuit might facilitate transfor-
mations associated with choice.

Results
OFC-PCC anatomical connectivity. To identify the anatomical
connectivity between PCC and OFC, we injected the tract-tracer
fluororuby in the PCC gyrus, centered at the border between
areas 23a and 30 (with some involvement of area 29,45). This
injection resulted in widespread retrograde and anterograde
labeling throughout the anterior and posterior cingulate cortices,
parietal lobe (precuneus and intraparietal sulcus), medial tem-
poral lobe (hippocampal formation), and frontal cortex (pri-
marily dorsolateral prefrontal and orbitofrontal cortices).
Projections to the OFC were particularly interesting for their
specificity: cells and terminal fields were clustered around the
medial orbital sulcus (mainly area 13a, but also including lateral
14 O and caudal 11, based on Paxinos et al., 2009;45 Fig. 1A–D).
There were projections to other OFC subregions, but these were
noticeably and qualitatively less dense. These results are con-
sistent with other, similarly placed cases from the
literature38,41–44, including several indicating a potentially
homologous connection in rats46. A second injection targeted the
PCC sulcus, and also resulted in labeling around the medial
orbital sulcus, although it was less specific (Supplementary Fig. 1).

We concluded that although the PCC does connect with other
cOFC subareas (cOFCl), its relationship with the subareas sur-
rounding the medial orbital sulcus (from here on referred to as
cOFCm) is unique. We next examined the functional properties
of this circuit.

Behavior and electrophysiology. We recorded neural activity in
all three regions—PCC (recording sites were 14–23 mm posterior
to bregma; 0–4 mm lateral to midline, 10–20 mm ventral to
surface of the brain), cOFCm (9–12 mm anterior to bregma,
7–11 mm lateral to midline, in the medial orbital sulcus, on the
orbital base of the cortex), and cOFCl (9–12 mm anterior to
bregma, 12–16 mm lateral to midline, in the orbital gyrus and the
medial bank of the lateral orbital sulcus, on the orbital base of the
cortex) (Fig. 1C)—while rhesus macaques (Macaca mulatta,
Subjects P and S) performed an economic choice task we have
used several times in the past (first used in ref. 47; Fig. 2A). On
each trial, the subject chose between two randomly generated
risky offers (i.e., gambles). Offer varied along the dimension of
stakes (small, 125 μL, medium, 165 μL, or large, 240 μL, repre-
sented as non-red colors) and probability (0–100% by 1%
increments, represented as proportion of the non-red color).
Features of each offer and the location (left vs. right) of the first
offer (offer 1) were independently randomized on each trial.

As in our past studies using this task (e.g.,47), both subjects
generally chose the option with higher expected value (EV,
Supplementary Fig. 2). Specifically, subjects preferred larger EV
on 73.10% of the trials (subject P: 73.35%; subject S: 72.39%, both
p < 0.001, binomial test). This behavior resembles those we
observed in past studies (e.g.,47,48). We defined trials in which
subjects chose the inferior option as “error trials” (see below). We
recorded 44 cells in cOFCm (23 from subject P, 21 from subject
S), 54 cells in cOFCl (28 from subject P, 26 from subject S) and
213 cells in PCC (89 from subject P, 124 from subject S). We
confirmed recording location by reconciling with atlases based on
MRI, and further confirmed by listening to white and gray matter
changes when driving down the probe and creating an atlas that
was reconciled to the Brainsight images.

To obtain as unbiased as possible a survey of neurons in our
population, we performed no preselection on neurons for
functional roles. Average firing rates (FR) were low. Firing rate
across all times (including inter-trial interval (ITI)) were 1.44 Hz
in PCC, 0.70 Hz in cOFCm, and 0.80 Hz in cOFCl. Comparing
mean ranks with Kruskal–Wallis test (a.k.a. non-parametric
ANOVA), there is a significant difference among three regions
(χ2= 26.46, p < 0.001). PCC had a higher FR than both cOFCm
(p= 0.002) and cOFCl (p < 0.001) while the FR in cOFCm and
cOFCl did not differ (p= 0.814).

Functional connectivity. To ask whether the cOFCm -PCC cir-
cuit shows greater functional connectivity than the cOFCl -PCC
circuit, we employed spike-field coherence, which relates the
recorded action potentials of one region to the local field potential
(LFP) oscillations of another. This analysis shows how the spiking
region and LFP region communicate and synchronize with each
other49–53; see Methods and Supplementary Fig. 3). During the
offer epoch, the broadband spike-field coherence in the
cOFCmspk-PCClfp circuit is higher than that in the cOFCl spk-
PCClfp circuit (z= 5.01, p < 0.001, Wilcoxon signed rank test,
Fig. 2B–C). Indeed, cOFCm spk-PCClfp shows higher coherence
within all five frequency bands that we tested during the offer
epoch (delta= 0.5–5 Hz; theta= 5–10 Hz; alpha= 10–15 Hz;
beta= 15–30 Hz; gamma= 30–100 Hz; Fig. 2D; Supplementary
material; Methods). The same pattern occurs in the choice and
outcome epochs (cOFCm spk-PCClfp > cOFCl spk-PCClfp; choice:
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z= 2.81, p= 0.005; outcome: z= 3.70, p= 0.005). During choice,
higher coherence occurs in the cOFCmspk-PCClfp circuit than the
cOFCl spk-PCClfp circuit within the theta, alpha, and gamma
bands, but not the delta or beta bands (Fig. 2E; Supplementary
material). During outcome, higher coherence occurs in all but the
beta band in the cOFCmspk-PCClfp circuit than the cOFCmspk-
PCClfsp circuit (Fig. 2F; Supplementary material).

We next examined mutual information between these areas
(see Methods), which captures the shared information, in
entropy, between two spike trains, one from each region, in
either the cOFCm-PCC circuit or cOFCl-PCC circuit. We first
defined one information channel as one spike train from one
region (either cOFCm or cOFCl) and another spike train from the
other region (PCC; using a method developed by ref. 54). We
identified 9372 channels in the cOFCm-PCC circuit and 11502
channels in the cOFCl -PCC circuit and calculated the averaged
mutual information per channel within each circuit. We found
that the cOFCm-PCC circuit shares higher mutual information
than cOFCl-PCC (7.44 × 10−4 vs. 6.72 × 10−4 bits/channel;
z= 17.47, p < 0.001, Wilcoxon signed rank test). Mutual informa-
tion in both circuits increased significantly at task onset
(p < 0.025, shuffle test; Supplementary material; Methods),
suggesting that the observed mutual information effect reflects
task-driven, rather than spontaneous, fluctuations (Fig. 2G).

Neural computation. We next analyzed encoding of task variables
with a multiple linear regression model. All three regions encoded
offer and outcome values in their respective epochs with similar
proportions of neurons, encoding strengths, and latency (Supple-
mentary material; Methods). They also all encoded the chosen
option (offer 1 vs. 2) and chosen location (left vs. right). Note that in
this case, latency for chosen offer is defined relative to the moment
of the appearance of the second offer. However, cOFCm encoded
the chosen option (offer 1 vs. 2) with shorter latency (90ms,
F= 3.35, p= 0.037, GLM Gamma distribution; Methods) than both
cOFCl (170ms, t=−2.14, p= 0.033) and PCC (150ms, t=−2.36,
p= 0.019), suggesting chosen option information arises first in
cOFCm. PCC appears to be more spatially sensitive than either OFC
region: it showed a higher proportion of neurons encoding chosen
location (19.25%, n= 41/213, p < 0.001, binomial test) than chosen

option (10.80%, n= 23/213, p= 0.001, binomial test; these are dif-
ferent, χ2= 5.31, p= 0.021, chi-square test); neither OFC region
shows this pattern (cOFCm: 18.8% encoding location, 18.8%
encoding option; cOFCl: 13.0% encoding location, 16.7% encoding
option, see Supplementary material). In addition, PCC (140ms) and
cOFCm (150ms) encoded the chosen location with significantly
shorter latencies than cOFCl (230ms; F= 5.71, p= 0.004; Supple-
mentary material).

Since chosen option encoding arises first in cOFCm, this result
suggests that cOFCm might carry out the value comparison
between two offers to arrive at the choice encoding. To explore
this idea more fully, we turned our focus to the negative
correlation of regression coefficients for the two offers, which we
have argued is a signature of comparison47,55. The reason this is a
putative signal of value comparison is that it reflects a coding of
the difference in the values of the two options—the key decision
variable for choice, because it can be rectified to produce choice19.
We performed this analysis using a 200 ms analysis window
(350 ms after offer 2 onset) and found that cOFCm showed this
putative mutual inhibition signal (r=−0.36, p= 0.016, Spear-
man correlation; Fig. 3A). We did not observe such an effect in
cOFCl (r=−0.18, p= 0.190; Fig. 3B) or in PCC (r= 0.02,
p= 0.943; Fig. 3C). We also did not find this negative correlation
during the later choice epoch (from 400ms to 200 ms before
choice action) in any of the three regions (Supplementary
Fig. 4A–C). The effect size of these negative correlations was not
significantly different in cOFCm vs. cOFCl (z=−0.93, p= 0.176;
Fisher’s Transformation test) but was significantly larger in
cOFCm than in PCC (z=−2.32, p= 0.010).

This negative correlation between regression weights, then, is a
putative neural correlate of value comparison through mutual
inhibition. We wondered whether the transition of attention from
offer 1 to offer 2 results in a reversal of tuning for offer 1 value, as
predicted by attentional alignment models of value
encoding19,56–58. We found that in cOFCm, the relevant betas
are positive correlated (r= 0.385, p= 0.010). Likewise, the
regression weights for offer 1 during the offer 1 epoch were also
negatively correlated with those for offer 2 during the offer 2 epoch
(r=−0.314, p= 0.039). Consistent with the idea that the two
cOFC subregions are functionally different, the pattern was
different in cOFCl—specifically, no correlation was observed for

Fig. 1 Anatomical connectivity between cOFC and PCC and matching recording sites. A Injection site (black, Case M1FR) is rendered in 3D and shown in
a sagittal view (left) and on a coronal slice (right). B Projections to the cOFC rendered in 3D and shown on an orbital view. Red indicates dense terminal
fields; pink indicates light terminal fields; gray spheres are labeled cells. The majority of cOFC labeling is around the medial orbital sulcus. On the right,
coronal slices with full PFC labeling, colors are as on the left. A photomicrograph indicates label around the medial orbital sulcus. C Coronal sections of
example recording site from each of OFC, with cOFCm on left and cOFCl in the middle, and PCC. D Putative subdivisions of cOFC on coronal slices of an
atlas brain76.
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either comparison (respectively: r= 0.078, p= 0.578) and
r= 0.224, p= 0.104). The corresponding data in PCC resembled
the patterns in cOFCm for the first comparison, although not for
the second (r= 0.271, p < 0.001; r= 0.065, p= 0.344). Overall,
these results highlight the differences between cOFCl and cOFCm,
specifically, that the putative neural correlate of value comparison is
observed in the medial area, but not detected in the lateral area.

Comparison in a spatial frame of reference in PCC. We
observed a comparison signal in PCC, but as befitting its sup-
posed spatial role, it was a spatially oriented value comparison.
Specifically, we observed a negative correlation between regres-
sion coefficients for left and right offer values (EVl and EVr), as
opposed to first and second as in the previous analysis (r=−0.24,
p < 0.001; Fig. 3F) during the offer 2 epoch in PCC. This signal
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was not significant in either cOFCm (r=−0.16, p= 0.293;
Fig. 3D) or cOFCl (r= 0.10, p= 0.454, Fig. 3E). This result
suggests that even though both cOFCm and PCC are involved in
value comparison, they adopted different frameworks: cOFCm
computed the choice in a more abstract space consistent with the
order in which options appeared in sequence, but PCC computed
the same choice in a more concrete action space. Interestingly, the
effect size of these negative correlations was not significantly
different in cOFCm vs. PCC (z=−0.49, p= 0.313) but was sig-
nificantly larger in PCC than in cOFCl (z=−2.21, p= 0.014).
However, during the later choice epoch, we found the same signal
in both PCC (r=−0.19, p= 0.006) and cOFCm (r=−0.33,
p= 0.029), but not cOFCl (r= 0.31, p= 0.022) (Supplementary
Fig. 4D–F), suggesting that a comparison signal in the spatial
framework emerges first in PCC and later in cOFCm, but not in
cOFCl.

Transformation of comparison signal. Next, we asked how the
observed functional connectivity between cOFCm and PCC
relates to the negotiation between abstract sequence space and
action space (that is, between EV1 - the expected value of the first
offer - vs. EV2 - the expected value of the second offer) and
between left vs. right). We next used Granger causality
(see Methods), a method that examines the relative correlation
between two time series at different lags to identify a putative
causal role between the two, given certain assumptions. We used
a 200 ms sliding window over the whole period of interest, that is,
an epoch beginning with the appearance of the second offer and
ending with the occurrence of the choice, as indicated by the start
of a saccade toward the choice target. We found that the strength
of comparison signal between EV1 and EV2 in cOFCm Granger-
caused the strength of comparison signal between EVl-EVr in
PCC (gc= 40.56, p= 0.019) with a 240 ms (4.17 Hz) lag. In the
reverse direction, the strength of mutual inhibition for EVl-EVr
in PCC Granger-caused the strength of mutual inhibition for
EV1-EV2 in cOFCm (gc= 59.75, p= 0.014), but with a much
longer lag (380 ms; 2.63 Hz).

Further supporting a functional distinction between cOFCm
and cOFCl, the strength of mutual inhibition for EV1-EV2 in
cOFCl did not Granger-cause the strength of mutual inhibition
for EVl-EVr in PCC with any time lag (see Methods for controls
for confounding variables). These results suggest that through the
communication in the cOFCm -PCC circuit, but not the cOFCl
-PCC circuit, the computation for value comparison transformed
from abstract sequence space (in cOFCm) to action space
(in PCC).

These results suggest we should be able to decode choice signal
more strongly in abstract sequence space (in the format of chosen
option, offer 1 vs. 2) in cOFCm but decode choice more strongly

in action space (in the format of chosen location, left vs. right) in
PCC. This prediction is borne out by Linear Discriminant
Analysis (LDA) supports. Although chosen options (offer 1 vs. 2)
and chosen location (left vs. right) were all significantly decodable
from all three regions, PCC showed a significantly higher
decodability for chosen location (χ2= 8.12, p= 0.004; Fig. 3G±H).
More importantly, the decodability for chosen option (offer 1 vs.
2) in cOFCm Granger-caused the decodability for chosen location
(left vs. right) in PCC (gc= 11.19, p= 0.025) with a 200 ms
(5 Hz) lag. This Granger-causal relation was absent on error trials
(gc= 3.04, p= 0.552; Supplementary Fig. 6).

In the reverse direction, the decodability for chosen location
(left vs. right) in PCC Granger-caused the decodability for chosen
option (offer 1 vs. 2) in cOFCm (gc= 17.59, p= 0.025), but with
a longer lag (400 ms; 2.5 Hz). In contrast, the decodability for
chosen offer (offer 1 vs. 2) in cOFCl did not Granger-cause the
decodability for chosen location (left vs. right) in PCC at any time
lag (see Methods for controls for confounding variables). As a
control analysis, the same result pattern was not observed for
decodability of EV1 (high vs. low; Supplementary Fig. 6;
Supplementary material). These results suggest that the
cOFCm-PCC circuit, but not the cOFCl-PCC circuit, mediates
the transformation of choice readout from an abstract non-spatial
to an action-oriented spatial framework. Speculatively, this
transformation may be important for correct choice behavior,
since the both the decodability for choice and the Granger causal
relation between cOFCm and PCC was disrupted in error trials,
and the transformation was impacted by whether the choice was
easy or difficult (Supplementary material; Supplementary Fig. 6).

Population dynamics reflecting the translation to action space.
We asked whether the population activity dynamics59–63 also
reflect the translation of choice to action space in the cOFCm-
PCC circuit. We conducted PCA on trial-averaged population
states for each region and then projected the trial-averaged
population activity onto the top-N principal component (PC)
space that cumulatively explained >70% of the variance (Meth-
ods; we developed this approach in ref. 14). The projected
population trajectories reflect the generative temporal evolution
of population dynamics (Fig. 4A–F), and the separation between
trajectories, which distinguished task parameters, became sig-
nificantly higher than shuffled chance level (bottom shaded area)
as the trial unfolded. These distinctions diminished in error trials,
suggesting that the population dynamics and their separation are
indeed crucial for generating correct choice behavior (see Sup-
plementary material for further results supporting this
possibility).

We then projected the trial-by-trial population states onto this
top-N PC space to obtain trial-by-trial population trajectories and

Fig. 2 Task and functional connectivity. A Two-option risky choice task. Black rectangles symbolize various task epochs subjects experience during task.
Stakes are represented as different colors: small (gray), medium (blue), or large (green) reward. Losing the gamble (no reward) is represented in red. The
height of the stakes-color region represents the probability of winning the gamble, and the height of the red-color region represents the probability of losing
the gamble. The white frame around the right option in the choice epoch represents the scenario where the subject chooses the right option with eye-
fixation. The water droplet symbol indicates that reward delivery (or lack thereof) occurs. B Trial-averaged spike-field coherence in cOFCm spk-PCClfp

circuit. X-axis: time in a trial. Y-axis: frequency. Color: strength of spike-field coherence on log10 scale (warmer colors= higher coherence). Data from the
first half of the trial (offer period) was aligned at offer 1 onset. Data from the second half of the trial (choice period) was aligned at choice execution. Dotted
gray vertical lines mark the boundaries of epochs. Solid black vertical line marks the moment a choice was made. C Spike-field coherence in cOFCl spk-
PCClfp. Conventions as in (B). D–F Difference in spike-field coherence between the two circuits (coherence in cOFCm spk-PCClfp circuit minus coherence in
cOFCl spk-PCClfp circuit), broken down into different frequency bands as a function of time (Methods), during (C) offer 1 epoch, (D) choice epoch, and (E)
reward epoch. GMutual information (averaged across number of channels) in cOFCm -PCC and cOFCl -PCC circuits. SEM: standard error of the mean. Red
shaded area: SEM of mutual information in cOFCm -PCC circuit. Blue shaded area: SEM of mutual information in cOFCl -PCC circuit. Magenta and cyan
shaded areas: the middle 95% range of the randomly shuffled mutual information (500 times) for cOFCm -PCC and cOFCl -PCC circuits, respectively.
Thus, the original (non-shuffled) mutual information values outside of the shaded area is significantly higher/lower than expected by chance.
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used adjusted distance to measure the trajectory separation (Eq. 1;
Methods;64). We found significantly larger trajectory separation
for chosen option (offer 1 vs. 2) in cOFCm (χ2= 11.51, p= 0.003,
Kruskal–Wallis test with Tukey–Kramer multiple comparison)
than in cOFCl (cOFCm > cOFCl: p= 0.007) and PCC (cOFCm >
PCC: p= 0.012; no significant difference between cOFCl and
PCC, p= 0.988; Fig. 4G). This result highlights the specific role of
cOFCm in mediating abstract comparison.

In contrast, we found significantly larger trajectory separation
for chosen location (left vs right) in PCC (χ2= 6.27, p= 0.043,
Kruskal–Wallis test with Tukey–Kramer multiple comparison)
than in cOFCl (PCC > cOFCl: p= 0.043) but not in cOFCm
(PCC ≈ cOFCm: p= 0.829; there was no significant difference
between cOFCm and cOFCl, p= 0.164; Fig. 4H). There was also
no such cross-region distinction for EV1 (high vs. low;
Supplementary material). The trajectory separation differences
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for chosen option and chosen location were also absent in error
trials (Supplementary material), consistent with the intuitive idea
that the areal difference in the unfolding trajectory separation
contributes to correct choice behavior.

Crucially, the separation between population trajectories for
chosen option (offer 1 vs. 2) in cOFCm Granger-caused the
separation between population trajectories for chosen location
(left vs. right) in PCC (gc= 9.98, p= 0.019), with a 150 ms
(6.67 Hz) lag. In the reverse direction, the distance between

population trajectories for chosen location (left vs. right) in PCC
Granger-caused the distance between population trajectories for
chosen option (offer 1 vs. 2) in cOFCm (gc= 17.28, p= 0.016)
but with a much longer lag (350 ms; 2.86 Hz). Interestingly, this
“feedback” influence seems to amplify the cOFCm to PCC
influence 300 ms after the first instance of Granger causal
influence, by increasing the Granger-causality from cOFCm to
PCC (gc= 38.29, p < 0.001; lag= 450 ms; 2.22 Hz). In contrast,
the distance between population trajectories for chosen option
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(offer 1 vs. 2) in cOFCl did not Granger-cause the distance
between population trajectories for chosen location (left vs. right)
in PCC with any time lag (see Methods for the control for
confounding variables).

Discussion
Here we report the existence of two functionally distinct sub-
regions within the cOFC that can be differentiated by their
connectivity with the PCC, both anatomically and functionally.
cOFCm, located on the banks of the medial orbital sulcus, and
cOFCl situated lateral to cOFCm. These two subregions are dis-
tinguished anatomically by their connections with PCC. The
region we call cOFCm has a stronger anatomical connectivity
with PCC than cOFCl. This anatomical distinction corresponds
to discrete functional differences, and in particular, suggests a
circuit-specific functional separation that relates to the negotia-
tion between cOFCm’s abstract (non-spatial, potentially value-
based) and PCC’s action-based (spatial) modalities. The influence
between these two structures is bidirectional, suggesting that both
representational frameworks mutually influence each other.

Our data support the hypothesis that within both regions, a
mutually inhibitory local circuit exists to compare offers, albeit in
different comparison frameworks in cOFCm and in PCC. While
local neural computation generates choice representations, their
unfolding population dynamics also interact with the generative
dynamics in other regions. The Granger-causal relations reported
here suggest the possibility that the cOFCm local computation
(possibly reflected in the value comparison signal) pushes its own
population dynamics to gradually occupy distinct neural subspace
for easy readout of choice option (choosing offer 1 vs. offer 2) in
the abstract (potentially choice value) space. This cOFCm
dynamic then nudges (Granger-causes) the PCC local computa-
tion to be conducted along choice action space and pushes its
own population dynamics to gradually occupy distinct neural
subspace for easy readout of choice action (choosing left vs.
right), coinciding with theta oscillations. The PCC dynamic in
action space, in turn, strengthens the cOFCm dynamic in abstract
space, and the cOFCm dynamic later further amplifies the PCC
dynamic in action space, coinciding with delta oscillations.
Speculatively, this locally inhibitory (within cOFCm and PCC)
and globally excitatory (between cOFCm and PCC) circuit-wise
computation pattern, locked with theta and delta band oscilla-
tions, potentially translate value representation into choice action
by amplifying choice signal through circuit interaction. Moreover,
we did not see the information relay between cOFCm and PCC in
error trials, suggesting that the transformation of choice in the
cOFCm-PCC circuit is essential for generating a correct choice.
These circuit interactions (granger causal relation) also differ in
easy vs. difficult choices, suggesting a tight relation to choice

behavior. Presumably, after the relay of information between
cOFCm and PCC, a downstream area could use the action-
bounded choice signal to form an action plan.

Our data suggest that there may be important information
traveling from the PCC to the cOFC, and that this information
transfer may occur after the transfer of information from cOFC to
PCC. It is reasonable, then, to wonder what function this back-
transfer serves. Absent causal manipulations, it is impossible to
offer a definitive answer. However, our data do provide enough
information for us to make an educated speculation. Specifically,
we conjecture that the transmission of information from PCC to
cOFC can facilitate the process of reaching a consensus within
OFC. We have proposed in the past that decisions in core eco-
nomic regions can occur gradually, and that it is possible to detect
partially completed decisions55,65. These partially completed
decisions could then be transmitted to other regions and, in turn,
influence the ongoing decision. While this idea is consistent with
our data, our data nonetheless do not offer strong evidence in its
favor; as such, testing this hypothesis remains an important
future goal.

Traditional approaches to neurophysiology take the classic
numbered anatomical areas as homogeneous, and seek to
delineate their functions by sampling from them. The anatomical
areas are, however, heteromorphic. Specifically, connectivity-based
methods, which presumably relate to function more directly than
cell-type-based methods, point to important divisions within
areas. Thus, while the cOFC is often treated as a single region, our
neuroanatomy demonstrates a clear division between the more
medial cOFCm and the more lateral cOFCl. These subregions tend
to be grouped together in nearly all neurophysiological studies of
OFC, including our own past work. However, doing so risks
combining different subregions with qualitatively different func-
tions and producing misleading characterizations of regional
organization. To speculate, even just within the OFC, we might
expect to find subregional organization on the basis of con-
nectivity with the dorsolateral prefrontal cortex (perhaps to assign
values to abstract categories), the anterior cingulate cortex (per-
haps to use values to update future behavior), and the hippo-
campus (perhaps to build values from prior associations), among
others. These results, then, demonstrate the critical need for
greater tract tracing studies, and for further integration of neu-
roanatomy with single unit electrophysiology in the future.

Methods
Neuroanatomy studies. We injected the bidirectional tracer fluororuby into the
PCC of two adult male rhesus macaque (Macaca mulatta) subjects. In one (M1FR),
the injection site was located at the border of areas 23 and 30 (with some invol-
vement of area 29). In another (M6FR), the injection site was located at the border
of areas 23 and 31. We note that, although the PCC is often defined as areas 23 and
31, with areas 29 and 30 instead defined as retrosplenial cortex66–68, we were

Fig. 4 Different neural dynamics for different subregions. Top plots: trial averaged population activity projected onto top-N PC space (only top-3 PCs are
shown here), separated by choice option (offer 1 vs. 2) (A-C) or choice location (D–F), in cOFCm (left column), cOFCl (middle column), and PCC (right
column). Red: trial averaged population activity for choosing offer 1 (A–C) or left offer (D–F). Blue: trial averaged population activity for choosing offer 2
(A–C) or right offer (D–F). Squares on the trajectories mark the center of the event epoch window. Bottom plots: separation measured by Euclidean
distance between averaged population trajectories (red and blue colored lines). Y-axis: Euclidean distance. X-axis: time in a trial. Dark line: distance
between trial-averaged trajectories for choosing offer 1 vs. offer 2 (A–C) or choosing left vs. right offer (D–F). Shaded area: middle 95% trial-averaged
Euclidean distance between population trajectories from condition-shuffled data. Shuffle was only based on the choice of offer 1 or offer 2 (A–C) or on the
choice of left or right offer (D–F), the cell identities and temporal orders were not shuffled. Euclidean distance (i.e., separation; dark line) beyond the shaded
area is significant (p < 0.05). Specifically, the distance (dark line) larger than (above) the shaded area is where separation between population trajectories
is significantly larger than expected by chance (p < 0.025). These significant portions mark when the population activity dynamics significantly reflected
the choice of offer 1 or offer 2 (A–C) or on the choice of left or right offer (D–F). G, H ranked trial-by-trial adjusted distance. All simultaneously recorded
cells from a single region are used (with no replication) to generate trial-by-trial PCA trajectory, with which we measured the adjusted distance. N= 805
correct trials. Kruskal–Wallis box plot. The red horizontal line: the median. The bottom and top edges of the box: the 25th and 75th percentiles. The
whiskers extend to the most extreme data points not considered outliers. Red dots: individual outliers.
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interested in the functionality of this entire caudal cingulate region. Thus, like some
prior authors69–73, here we defined PCC as areas 23, 31, 29, and 30.

Prior to surgery, anatomical T1 and T2-weighted MRIs (3 T for M1FR and
10.5 T for M6FR) were obtained at University of Minnesota’s Center for Magnetic
Resonance Research. Stereotaxic earbars were filled with Vitamin E solution to
visualize on the MRI and guide tracer placement relative to stereotaxic zero.

On the day of surgery, monkeys were tranquilized by intramusculuar injections
of ketamine (10 mg/kg), midazolam (0.25 mg/kg) and atropine (0.04 mg/kg). A
surgical plane of anesthesia was then maintained via the administration of
inhalation of isofluorane (1–3%). Monkeys were placed in a stereotaxic instrument
(Kopf Instruments), a midline scalp incision was made, and the muscle and fascia
were displaced laterally to expose the skull. A craniotomy (~2–3 cm2) was made
over the PCC, and small dural incisions were made only at injection sites. Both
monkeys received injections of FR (50 nl, 10% in 0.1 M PB, pH 7.4, Invitrogen) in
the PCC, as well as injections of additional tracers (lucifer yellow, fluorescein,
wheat germ agglutinin conjugated to horseradish peroxidase) in other regions not
described here. These do not cross-react with FR and were made distant from the
PCC site. Tracers were pressure-injected over 10 min using a 0.5 μl Hamilton
syringe. Following each injection, the syringe remained in situ for 20–30 min.
Twelve to 14 days after surgery, monkeys were again deeply anesthetized and
perfused with 4 L of saline followed by 6 L of a 4% paraformaldehyde/1.5% sucrose
solution in 0.1 M PB, pH 7.4. Brains were postfixed overnight and cryoprotected in
increasing gradients of sucrose (10, 20, and 30%). Serial sections of 50 μm were cut
on a freezing microtome into cryoprotectant solution.

One in eight sections was processed free-floating for immunocytochemistry to
visualize the tracer. Tissue was incubated in primary anti-FR (1:6000; Invitrogen)
in 10% NGS and 0.3% Triton X-100 (Sigma-Aldrich) in PO4 for 4 nights at 4 °C.
After extensive rinsing, the tissue was incubated in biotinylated secondary antibody
followed by incubation with the avidin-biotin complex solution (Vectastain ABC
kit, Vector Laboratories). Immunoreactivity was visualized using standard DAB
procedures. Staining was intensified by incubating the tissue for 5–15 s in a solution
of 0.05% DAB tetrahydrochloride, 0.025% cobalt chloride, 0.02% nickel
ammonium sulfate, and 0.01% H2O2. Sections were mounted onto gel-coated
slides, dehydrated, defatted in xylene, and coverslipped with Permount.

Using a Zeiss M2 AxioImager, light microscopy was used to outline brain
sections, PCC injection sites, frontal cortical terminal fields, and frontal cortical
labeled cells on 1 in 24 sections (1.2 mm apart). Terminal fields were outlined in
darkfield using a 2.0, 4.0, or 10× objective with Neurolucida software
(MicroBrightField Bioscience). Terminal fields were considered dense when they
could be visualized at a low objective (2.6×)74; otherwise, terminal fields were
considered sparse. Thin, labeled fibers containing boutons were marked as
terminating; thick fibers without boutons were considered passing. Retrogradely
labeled cells were identified under brightfield microscopy (20×) using
StereoInvestigator software (MicoBrightField Bioscience).

Cases were registered and rendered in 3D in the following way. For each case, a
stack of 2D coronal sections was created from its Neurolucida chartings. This stack
was imported into IMOD (Boulder Laboratory for 3D Electron Microscopy,75), and
a 3D reconstruction that contained the injection sites, terminal fields, and cells was
created for each case separately. To render these and merge cases together, we used
a reference model from the NIMH Macaque Template76, imported into IMOD.
Placement of all contours—injection sites, terminal fields, cells, area outlines—were
assessed according to cortical and subcortical landmarks in the brain, then checked
with the original case and corrected as needed.

Neurophysiology studies
Subjects. Two male rhesus macaques (Macaca mulatta) served as subjects to the
neurophysiology experiment. All animal procedures were77,78 approved by the
University Committee on Animal Resources at the University of Rochester (neu-
rophysiology studies) and by the Institutional Animal Care and Use Committee at
the University of Minnesota (neurophysiology and neuroanatomy studies). The
experiments were designed and conducted in compliance with the Public Health
Service’s Guide for the Care and Use of Animals. These subjects were used in past
studies involving set shifting and risky choice79–81.

Behavioral task. Subjects performed a two-option gambling task identical to the
one we used in a previous investigation (Fig. 1, Strait et al., 2014, Yoo and Hayden,
2020; see ref. 82 for context). On each trial, two offers were presented. Each offer
was represented by a rectangle on the screen (300 pixels tall and 80 pixels wide);
11.35° of visual angle tall and 4.08° of visual angle wide). Offers were separated
from the central fixation point by 550 pixels (27.53° of visual angle). Options were
either a gamble or a safe (100% probability) bet for liquid reward. Gamble offers
varied in both potential reward size and probability, which were selected with
uniform probabilities and independently of one another for each offer and trial.
Each gamble rectangle had a red section and a second section that was either blue
or green. Blue indicated that the win outcome was a medium size reward (165 μL
liquid reward); green indicated that the win outcome was a large reward (240 μL
liquid reward). The size of the blue or green portions indicated the probability of
winning this medium or large reward (Fig. 1). Win probabilities were drawn from a
uniform distribution between 0% and 100%. Reward probabilities were drawn from
uniform distributions with resolution only limited by the size of the screen’s pixels,

which let us present hundreds of unique gambles. Safe offers (1 out of every 8
offers) were entirely gray. Selecting one would result in a small reward (125 μL)
with 100% certainty. Offer reward sizes were selected at random and independent
of one another with a 43.75% probability of blue (medium reward) gamble, a
43.75% probability of green (large reward) gambles, and 12.5% probability of safe
offers. Note that this means two offers with the same reward size could be (and
often were) presented in the same trial.

The sides of the first and second offer (left or right) were randomized on each
trial. Each offer appeared for 400 ms followed by a 600 ms empty screen. After the
offers were sequentially presented, a central fixation point appeared, and the
monkey fixated on it for 100 ms. Then both offers appeared simultaneously and the
animal indicated its choice by shifting gaze to its preferred offer and maintaining
fixation on it for 200 ms. Failure to maintain fixation would return the monkey to a
choice state. Thus, subjects could change their mind if they did so within 200 ms
(although they seldom did). Following a successful 200 ms fixation, the chosen offer
was outlined with a white frame, the gamble was immediately resolved, and the
liquid reward was delivered. When the subject won the gamble, the stake (blue or
green) color would fill the offer rectangle while the water aliquot corresponding to
the stake color was delivered. When the subject lost the gamble, the red color
would fill the offer rectangle while a water reward was omitted (Fig. 2A). Trials that
took >7 s were considered aborted due to inattention and were excluded from
analysis (this removed <1% of trials). Each trial was followed by an 800 ms ITI with
a blank screen.

Eye tracking and reward delivery. Eye position was sampled at 1000 Hz by an
infrared eye-monitoring camera system (SR Research). Stimuli were controlled by a
computer running MATLAB (Mathworks) with Psychtoolbox83 and Eyelink84

Toolbox. A standard solenoid valve controlled the duration of fluid reward
delivery. For part of the behavioral training, subjects received grape juice or cherry
coke instead of water as reward. However, water reward was used during all neural
recording sessions. The relationship between solenoid open time and water volume
was established and confirmed before, during, and after recording.

Recording sites. Two Cilux recording chambers (Crist Instruments) were placed
over cOFC and PCC45,85–87; Fig. 1D). Note that this posterior region is overlapping
with but ventral to a region we have previously recorded in known as CGp34,88,89.
Position was verified by magnetic resonance imaging with the aid of a Brainsight
system (Rogue Research Inc.) for subject P and Cicerone system (Dr. Matthew D.
Johnson at University of Minnesota) for subject S. Neuroimaging was performed at
the Rochester Center for Brain Imaging, on a Siemens 3 T MAGNETOM Trio Tim
using 0.5 mm voxels. We confirmed recording locations by listening for char-
acteristic sounds of white and gray matter during recording, which in all cases
matched the loci indicated by the Brainsight system or Cicerone system.

Recording techniques. Multicontact electrodes (V-probes, Plexon, Inc) were lowered
using the NAN microdrive system (NAN Instruments) until the target region was
reached Following a settling period, all active cells were recorded. This lowering
depth was predetermined and calculated with the aid of either Brainsight or
Cicerone system to make sure the majority of the contacts on the V-probe were in
the gray matter of the recording region. Individual action potentials were isolated
on a Ripple Grapevine system (Ripple, Inc.). Neurons were selected for study solely
on the basis of the quality of isolation; we never pre-selected based on task-related
response properties. Cells were sorted offline with Plexon Offline Sorter (Plexon,
Inc.) by hand by MZW and lab technician, Cindy Tu. No automated sorting was
used. Neurons were assigned to cOFCm vs cOFCl prior to any analyses by SRH
following PCC connectivity criteria (Fig. 1).

Statistical analyses: Behavior. Only trials accompanying the recording sessions were
analyzed for the current paper. For choice accuracy, we defined the correct choice
as choosing the offer with expected value higher than or equal to that of the
alternative offer. Expected value (EV) is the product of stakes multiplied by
probability of winning (getting rewarded, in contrast to getting no reward).
Probability of choosing offer 1 as a function of value difference (EV1–EV2) is fitted
with generalized linear with logistic transform function and binomial distribution.
The error bars indicate 95% confidence intervals from the logistic
regression model.

Statistical analyses: Spectral analyses. Local field potentials (LFP) were collected
during recording sessions along with spike data using the Ripple Grapevine system.
LFP data from each contact of the Plexon v-probes were used. Raw data was low-
pass filtered at 100 Hz and notch-filtered at 60 Hz. All filtering and frequency-
domain (spectral) analyses were conducted in Matlab with Chronux toolbox90.
Power spectra in all three regions were calculated with all LFP channels. Spike-field
coherence was calculated using every combination of each spike train in one area
and each channel of LFP in another area. Coherence comparison used non-
parametric statistics: Wilcoxon signed rank test and Kruskal–Wallis test, both
conducted in Matlab. We used the following bandwidths for analyses: Delta
(0.5–5 Hz), Theta (5–10 Hz), Alpha (10–15 Hz), Beta (15–30 Hz), and Gamma
(>30 Hz). For coherence comparisons, we calculated the coherence with a
frequency-resolved method, such that we re-adjusted the sliding calculation
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window widths to be four times the max length for each frequency band. We
aligned data to either offer 1 or choice to achieve a better temporal resolution of the
coherence tests.

Statistical analyses: Mutual information. Mathematically, mutual information is
defined as I[X;Y]=H[X]-H[X|Y]= I[Y;X], where I is the mutual information
between random variables X and Y. It quantifies the information X gives upon
observing Y and is the same as the information Y gives upon observing X.
Equivalently, it captures how much uncertainty about X decreases after learning Y,
and vice versa. We used the Neuroscience Information Theory Matlab toolbox to
calculate the mutual information between two spike trains, one from each brain
area of interest54.

To test whether the mutual information in cOFCm-PCC or cOFCl -PCC during
task was higher than expected chance, we shuffled each single-unit’s brain area
identity to form shuffled ensembles with the same sizes as the original data. Then
we shuffled temporal sequences within ITI and, separately, within active task-time.
The temporal shuffling is to test whether the increase in mutual information was
above chance level and driven by engaging in the task. We then calculated mutual
information based on these shuffled ensembles. We repeated this procedure 500
times and obtained the middle 95% range of the shuffled mutual information as a
function of time (Fig. 3F, shaded magenta and cyan for cOFCm-PCC and cOFCl
-PCC circuits, respectively). Thus, any value outside the shaded area is significantly
higher/lower than expected by chance.

Statistical analyses: Encoding. We used a sliding multiple linear regression to
characterize the encoding of all task variables (stakes, probabilities, expected values
of offer 1 and offer 2, chosen option, chosen location, whether offer 1 was pre-
sented on left vs. right, and choice outcome [win or lose * stakes]). To do so, we
took the normalized FR of each neuron, averaged across a 200 ms time bin, and
then regressed against task parameters. The sliding procedure slid forward with a
10 ms step size. For offer epochs, we used a multiple linear regression model with
stakes, probabilities, and expected values (EV) as predictors. Expected value (EV) is
defined as the product of stake and probability. For the rest of the epochs, we used
a multiple linear regression model with stakes, probabilities, EV1, EV2, chosen
option (offer 1 vs. 2), chosen location (left vs. right), outcome (received outcome, 0
for lost gamble, reward of the stake’s size for won gamble), and whether offer 1
appeared on the left or right side of the screen. For later tests looking the expected
value tuning for left and right offers, we used a multiple linear regression model
with stakes, probabilities, left EV (EVl), right EV (EVr), chosen option (offer 1 vs.
2), chosen location (left vs. right), outcome (actually received outcome, 0 for lost
gamble, reward of the stake’s size for won gamble), and whether offer 1 (first
appeared offer) appeared on the left or right side of the screen. All predictors were
centered and converted to categorical variables when applicable. The response
variable, FR, were normalized for each neuron across trials to avoid spurious
correlation91.

Proportion of neurons was calculated based on whether neurons significantly
encoded a single parameter of interest. Encoding strength was defined as the
t-statistics of each predictor variable from the multiple regression. We used
t-statistics since they are not influenced by the actual range of each variable (even
though we centered all predictor variables) and are comparable across variables.
The comparison of encoding strength across all three regions used the
nonparametric Kruskal–Wallis test. Latency was defined as, within the analyzed
event window, the time lapsed until the encoding strength of the variable of interest
reached the peak for each neuron. Then the peak time for a region was calculated
as the median of each neuron’s peak time. Latency calculation was based on all
neurons and not only the significantly tuned ones. Whether latencies from all three
regions were significantly different from one another was tested with generalized
linear model (GLM) with a Gamma distribution, due to the fact that timing data,
such as latency or reaction time, are better described by a Gamma distribution than
a Gaussian distribution.

For mutual inhibition, we took the regression coefficients from the above
described multiple regression models for the offer 2 epoch and the choice epoch
respectively. Then we correlated the coefficients for offer 1 vs. 2 or EVl vs. EVr with
a Spearman correlation. Spearman correlation is chosen to avoid spurious
correlation caused only by a few outliers. The strength of mutual inhibition signal is
the Spearman correlation coefficient.

Statistical analyses: Granger causality. Granger causality measures how one time
series could predict (Granger-cause) another time series, after controlling for the
fact that the later time series’s early sequences also predicts its own later
sequences92. Sometimes, calculation of Granger causality is also conditioned on
simultaneously observing other potentially confounding time series (Lütkepohl,
2005)93. For all Granger causality tests, we first used the Augmented Dickey-Fuller
test with the autoregressive model with drift variant (ARD) to determine whether a
time series was stationary. Then we used the vector autoregression model to
determine the best time lag to use through model comparison (Akaike information
criterion) with different time lags. Then the Granger causality test was used on
stationary time series or with a correction for non-stationary time series. All sig-
nificant tests for the Granger causality analysis included and controlled for all
possible confounding signals. For example, when testing whether the decidability of

choice option (offer 1 vs. offer 2) in cOFCm Granger-caused the decidability of
choice location (left vs. right) in PCC, the model also included the decidability of
choice option in PCC and cOFCl, and, choice location in cOFCm and cOFCl, as
simultaneously observed signals, and thus controlled for their explanatory power to
the tested Granger causal relation. In other words, the significant Granger causal
relations we reported in the main text and supplementary material, cannot be
explained away by other simultaneously measured signals. All Granger causality
tests were carried out in Matlab. Matlab functions used: adftest, varm, estimate,
summarize, gctest, the Econometrics Toolbox.

Statistical analyses: Decoding. We first organized population activity patterns for
the training and testing of the linear discriminant analysis (LDA) decoder. For each
trial, we aligned the normalized FR of each neuron at the onset of offer 1 pre-
sentation and took firing from 500 ms before this onset through 2500 ms after this
onset as the offer period (including 500 ms ITI before offer 1, offer 1 epoch, offer 2
epoch, and the first 500 ms of decision-making). We also aligned the normalized
FR of each neuron at choice execution (when eye-fixation on the chosen offer
passed 200 ms and thus signaled commitment to the choice). Then we took the FR
from 1500 ms before this onset through 1500 ms after this onset as the choice
period (including 1500 ms pre-choice, outcome delivery, and ITI). We then slid
through the offer and the choice periods and generated non-overlapping popula-
tion activity patterns that were 500 ms in width and tiled the entire offer and choice
periods.

Then we followed a fourfold cross validation procedure, which involved
training different LDA decoders on 75% of the correct trials to differentiate the
chosen option (offer 1 vs. 2), the chosen location (left vs. right), and the expected
value of offer 1 (EV1 high vs. low) on each trial. Then we tested the decoder on the
other 25% of the correct trials. Decoding accuracy in error trials was obtained by
using the same trained LDA decoders to decode all error trials (since none of the
error trials were used for training). For EV1 high vs. low, we compared EV1 from
each trial to the mean EV of all offers. If the EV1 was larger than or equal to the
mean, then it was counted as a high EV1, otherwise low.

Statistical analyses: Population dynamics. To measure the dynamics in population
neural activities, we first organized our spiking data into population states. We
defined the population state as the normalized firing rate of each of all simulta-
neously recorded neurons, averaged over a 200 ms time bin, in each region. Then
we slid across all time points in each trial with a 50 ms step size to calculate
population states at each sliding step. We calculated these series of population
states for two sets of simultaneously recorded ensembles in cOFCm, cOFCl, and
PCC, one from each subject. We then applied principal component analysis (PCA)
to identify a lower-dimensional space to then measure the population dynamics.
We first selected and grouped all correct trials based on whether (1) offer 1 or offer
2 was chosen; (2) left or right offer was chosen; and (3) offer 1 was a higher or
lower than average value of offers. Then we conducted PCA on the trial averaged
population states for each pair of the above-mentioned three pairs of conditions.
To make the measures of population dynamics comparable across regions, we
defined top-N PC space as the top N PCs that captured at least 70% of the variance.
For subject P, N equals 6 in cOFCm, 5 in cOFCl, and 15 in PCC. For subject S, N
equals 3 in cOFCm, 5 in cOFCl, and 3 in PCC. We then projected trial-averaged or
trial-by-trial population states from correct or error trials and each pair of con-
ditions onto this top-N PC space. This projection resulted in pairs of population
trajectories corresponding to pairs of conditions in the top-N PC space expanding
the whole trial length. We then measured the Euclidean distance at each time point
in a trial between the pairs of population trajectories. We used a shuffle procedure
in which trials were shuffled across conditions. This shuffle procedure was
implemented 1000 times to generate 1000 randomized trial-averaged trajectories
for each trial condition, and significance cutoff were set at the top and bottom 2.5%
of the shuffled results. For trial-by-trial population state projections that resulted in
a pair of two sets of population trajectories (that is, each trajectory corresponded to
a specific trial condition), we calculated the adjusted Euclidean distance. The
adjusted Euclidean distance is the Euclidean distance across conditions (cross
distance) normalized by the Euclidean distance within conditions (self distance /
dispersion). Cross distance was defined as the Euclidean distance from one point
on one trajectory in one trial condition to all the trial-by-trial trajectories’ corre-
sponding time point in the other trial condition. Self distance/dispersion was
defined as the Euclidean distance of one point on one trajectory in one trial
condition to all the other trial-by-trial trajectories’ corresponding time point in the
same trial condition.

adjusted distance ¼ cross distance
self distance

ð1Þ

Normalizing the cross distance with self distance controls for the “internal noise
level” to make the distance comparable across regions64. The distance, or
separation, between population trajectories from pairs of trial conditions represents
the population neural activity variance devoted to distinguish those trial
conditions14. Intuitively, it can be interpreted as: the larger the distance/separation
between trajectories for different conditions, the more information the variance in
this neural population conveys to tell these conditions apart. PCA analysis and
Euclidean distance calculation used pca and pdist2 functions in Matlab.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data are available under restricted access for interpreting and verifying the research
in this article. The behavioral and sorted neural data generated in this study have been
deposited in the Open Science Framework (OSF) database under https://osf.io/npqhg/?
view_only=7ce471770ed54e44b3caf0a7f5d0132d.

Code availability
All code is available at the request of the reader from the corresponding author.
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