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FUNDC2 promotes liver tumorigenesis by
inhibiting MFN1-mediated mitochondrial fusion
Shuaifeng Li1,2,8, Shixun Han1,2,8, Qi Zhang3, Yibing Zhu1, Haitao Zhang1,2, Junli Wang3, Yang Zhao1,2,

Jianhui Zhao3, Lin Su4, Li Li5, Dawang Zhou 6, Cunqi Ye1, Xin-Hua Feng1,2,7, Tingbo Liang 3 &

Bin Zhao 1,2,3,7✉

Mitochondria generate ATP and play regulatory roles in various cellular activities. Cancer

cells often exhibit fragmented mitochondria. However, the underlying mechanism remains

elusive. Here we report that a mitochondrial protein FUN14 domain containing 2 (FUNDC2) is

transcriptionally upregulated in primary mouse liver tumors, and in approximately 40% of

human hepatocellular carcinoma (HCC). Importantly, elevated FUNDC2 expression inversely

correlates with patient survival, and its knockdown inhibits liver tumorigenesis in mice.

Mechanistically, the amino-terminal region of FUNDC2 interacts with the GTPase domain of

mitofusin 1 (MFN1), thus inhibits its activity in promoting fusion of outer mitochondrial

membrane. As a result, loss of FUNDC2 leads to mitochondrial elongation, decreased mito-

chondrial respiration, and reprogrammed cellular metabolism. These results identified a

mechanism of mitochondrial fragmentation in cancer through MFN1 inhibition by FUNDC2,

and suggested FUNDC2 as a potential therapeutic target of HCC.
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M itochondria are double-membrane organelles playing
essential cellular functions. Besides being major sites of
chemical energy production, they are also important for

many cellular processes, such as biosynthesis, cell death, and
innate immunity1–3. It is thus unsurprising that mitochondrial
dysfunctions are involved in many diseases such as metabolic
disorders, neurodegenerative diseases, and cancer4,5. Mitochon-
dria exist as a dynamic network that constantly change mor-
phology to maintain organelle homeostasis, and to adapt
organelle functions to the extracellular environment. Mitochon-
drial dynamics include the movement of mitochondria along the
cytoskeleton, alteration of the internal mitochondrial architecture,
and connectivity mediated by fusion and fission events. Mito-
chondrial fusion and fission, which are relevant to mitochondrial
quality control, respiration, apoptosis, and Ca2+ homeostasis, are
catalyzed by a range of proteins, especially dynamin-like GTPa-
ses. For example, mitofusin 1 and 2 (MFN1 and MFN2) trans
associate to promote tethering and fusion of the outer mito-
chondrial membrane (OMM) in a GTPase-dependent manner6,7.
Optic atrophy 1 (OPA1) is another GTPase that localizes at the
inner membrane and plays an essential role in fusion of inner
mitochondrial membrane (IMM)8. On the other hand, dynamin-
related protein 1 (DRP1) is recruited into ring-like structures at
the point of future fission through association with Fission 1
homolog protein (FIS1) and mitochondrial fission factor (MFF)
to sever mitochondrial membranes through GTP hydrolysis9,10.
Alternatively, FIS1 may promote mitochondrial fragmentation by
inhibiting MFN1/2 and OPA111. Functional significance of
mitochondrial dynamics has been highlighted by genetic studies
in mice demonstrating embryonic lethality upon ablation of
mitochondrial fusion and fission proteins12,13.

As the cellular power house, dysregulation of mitochondria in
cancer was observed for a long time. Otto Warburg had con-
cluded that cancer cells rely on glycolysis, and mitochondria are
inactivated14. However, extensive research in the last decade
demonstrated that most cancer cells not only maintain active
mitochondria, but also derive a significant fraction of their ATP
through oxidative phosphorylation15. In fact, an RNA inter-
ference screen had identified mitochondrial oxidative phosphor-
ylation as the major pathway required for optimal proliferation of
cancer cells in low glucose condition as that found in the tumor
microenvironment16. Furthermore, mitochondria synthesize
anabolic precursors to support rapid cell proliferation. However,
cancer cells often exhibit fragmented mitochondria, as that found
in lung cancer, breast cancer, and glioblastoma17–20. Enhanced
fission or reduced fusion was linked to such a phenotype, and
reversal of the phenotype by inhibition of DRP1 or over-
expression of MFN2 promotes cell cycle arrest and apoptosis21.
Mitochondrial fragmentation may promote tumorigenesis
through cellular protection by isolating damaged mitochondrial
portions, thus preventing catastrophe and cell death22. In addi-
tion, mitochondrial fragmentation was also associated with
increased production of reactive oxygen species (ROS), which is a
potent driver of cancer initiation, although it may have compli-
cate roles in later stages of tumorigenesis23. Despite these find-
ings, the mechanism of mitochondria fragmentation in cancer
was not yet clear.

Physiological roles of mitochondrial dynamics in the liver were
revealed by liver-specific conditional knockout mice. Livers of
MFN1 conditional knockout mice displayed a highly fragmented
mitochondrial network, accompanied by enhanced respiration
capacity, and biased use of lipid as the main energy source24. The
mice were thus protected against insulin resistance induced by
high-fat diet. Primary liver cancer (PLC) is one of the most
common human malignancies and third leading cause of cancer-
related mortality worldwide25. Hepatocellular carcinoma (HCC),

the most common form of PLC, has very limited systematic
therapies, and new strategies are urgently in need. Previous stu-
dies have revealed shorter mitochondrial length in HCC tissues
compared to adjacent nontumor tissues23. Tissue culture and
tumor xenograft studies have suggested that mitochondrial frag-
mentation in HCC cells plays a key role in cell proliferation and
migration23,26. However, the mechanism of dysregulated mito-
chondrial dynamics, and its functional roles in primary tumors
are still lacking.

In this work, we systematically screened dysregulated mito-
chondrial proteins in HCC, and identified FUNDC2 as an ele-
vated protein associated with poor prognosis. We demonstrated
an important role of FUNDC2 in mitochondrial fragmentation by
inhibiting MFN1 through physical interaction with the GTPase
domain. Furthermore, reversal of mitochondrial fragmentation by
FUNDC2 knockdown reduces tumor energy level, reprograms
cancer metabolism, and suppresses primary liver tumors in an
MFN1-dependent manner in vivo.

Results
Elevated FUNDC2 correlated with poor survival in HCC. To
systematically study dysregulated expression of mitochondrial
proteins in HCC, we analyzed 1136 mitochondrial proteins from
MitoCarta 3.027, a database of mitochondrial proteome. Tran-
scriptional levels were examined in The Cancer Genome Atlas
(TCGA) cohort of human HCC, and 267 genes were significantly
upregulated in tumors (fold change > 2, p < 0.0001) (Fig. 1a). In
order to facilitate functional studies in vivo, we examined the
expression of these genes in a mouse model of primary liver
tumor generated by in situ genome editing of hepatocytes28–30.
Hydrodynamic force was generated by pressurized injection of
solution into the tail vein to breach endothelium and closely
associated hepatocytic plasma membrane, such that transposon
plasmids were delivered into hepatocytes. Liver tumors were
induced within 2–3 months after injection by transposon-
mediated integration and expression of oncogenes MYC and
RAS (Fig. 1b, c). Immunohistochemistry (IHC) staining of the
epitope tag confirmed expression of oncogenes in tumors
(Fig. 1c), and histopathological analysis revealed features of
steatohepatitic HCC as previously reported31 (Supplementary
Fig. 1a). Transcriptome of tumors was profiled by RNA-seq, and
filtering of dysregulated genes in MYC+ RAS-induced mouse
liver tumors identified 5 genes upregulated more than 5-fold
(p < 0.05) (Fig. 1a). Among them, MTHFD1L and GLS have been
reported to be tumor-promoting in HCC32,33. However,
Kaplan–Meier analysis demonstrated that elevated expression of
FUNDC2 and PRELID2 were most significantly associated with
short survival of patients (Fig. 1d, Supplementary Fig. 1b–d).

Elevated mRNA levels of FUNDC2 and PRELID2 in HCC were
validated in an independent cohort of HCC34 (Fig. 1e).
Furthermore, pairwise comparison of tumor and para-tumor
tissues revealed elevated FUNDC2 protein levels in 22 out of 54
HCC samples (Fig. 1f). However, a qualified antibody for
detection of endogenous PRELID2 could not be validated. Taken
together, screening of genes encoding mitochondrial proteins
identified overexpression of FUNDC2 and PRELID2 in HCC,
which negatively correlated with patient survival.

Knockdown of FUNDC2 suppresses liver tumorigenesis in
mice. In order to determine the functional roles of upregulated
FUNDC2 and PRELID2 in liver tumorigenesis, we first confirmed
their expression levels in MYC+ RAS mouse liver tumors by
quantitative RT-PCR (Fig. 2a). Elevated protein level of FUNDC2
was also visualized by IHC on liver sections (Fig. 2b). We then
designed a multiplexed genome editing strategy, in which
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FUNDC2- or PRELID2-specific shRNAs were expressed simul-
taneously with MYC (Fig. 2c, Supplementary Fig. 2a). Knock-
down of FUNDC2 markedly suppressed tumorigenesis (Fig. 2d,
e). Importantly, re-expression of FUNDC2 rescued tumorigenesis,
indicating tumor suppression was due to specific ablation of
FUNDC2 (Fig. 2d, e). However, knockdown of PRELID2 did not
affect tumorigenesis (Fig. 2f, g). Knockdown and re-expression of

FUNDC2 and PRELID2 in tumors were confirmed by quantitative
RT-PCR (Supplementary Fig. 2b).

We further examined histopathological alterations induced by
knockdown of FUNDC2. Markedly enhanced steatohepatitic
features were revealed by hematoxylin and eosin (HE) staining in
FUNDC2 knockdown tumors, which was confirmed by oil red
staining of lipid droplets (Fig. 2h, i), suggesting dysregulated
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metabolism. Cell proliferation was evaluated by staining of Ki67.
However, Ki67+ proliferating hepatocytes were comparable
between FUNDC2 knockdown and control tumors (Fig. 2h, j).
Nevertheless, the level of AFP, which is a biomarker of HCC
aggressiveness, was markedly reduced by FUNDC2 knockdown
(Fig. 2h, k). Taken together, knockdown of FUNDC2 altered tumor
cell metabolism and suppressed liver tumorigenesis in mice.

FUNDC2 regulates mitochondrial structure and function. We
next investigated how might FUNDC2 promote tumorigenesis. It

was reported that FUNDC2 localize to the ΟΜΜ35. We con-
firmed the mitochondrial localization of FUNDC2 in mouse liver
tumors by multiplexed IHC (Fig. 3a). To further study the
mitochondrial function of FUNDC2, we generated FUNDC2
knockdown and re-expressing Huh-7 HCC cells (Supplementary
Fig. 3a). Consistent with the pro-tumor roles of FUNDC2 in vivo,
knockdown of FUNDC2 markedly reduced cellular colony for-
mation on soft agar (Fig. 3b, Supplementary Fig. 3b). However,
we found that mitochondrial mass, mitochondrial membrane
potential, or cellular ROS levels were not affected by FUNDC2
knockdown (Supplementary Fig. 3c–f). Nevertheless, electron
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microscopy revealed that mitochondrial length was significantly
longer in FUNDC2 knockdown cells, and was rescued by re-
introduction of FUNDC2 (Fig. 3c, d). In MYC+ RAS tumors,
mitochondria were also fragmented, and abnormal swollen cristae
could be observed (Fig. 3e, f). These defects were rescued by
knockdown of FUNDC2, and were induced again by restoration
of FUNDC2 expression (Fig. 3e, f). Thus, FUNDC2 plays an
important role in mitochondrial fragmentation in tumors.

To determine the effect of FUNDC2 knockdown on mitochon-
drial function, we measured oxygen consumption rates (OCR) by
seahorse analysis. The results indicate that both basal and
maximal respiration were reduced by FUNDC2 knockdown, and
were rescued by re-expression of FUNDC2 (Fig. 3g, Supplemen-
tary Fig. 3g). A similar effect of FUNDC2 knockdown on
mitochondrial respiration was also observed in the HepG2 cell
line (Supplementary Fig. 3h–j). By measuring extracellular
acidification rates (ECAR), we found that glycolysis was also
reduced by FUNDC2 knockdown (Fig. 3h, Supplementary Fig. 3k),
excluding a switch from mitochondrial respiration to glycolysis
by FUNDC2 knockdown. It should be noted that glucose uptake
was not inhibited by FUNDC2 knockdown (Supplementary
Fig. 3l). Consistently, knockdown of FUNDC2 reduced cellular
ATP level, which could also be rescued by re-introduced
FUNDC2 (Fig. 3i). We further generated primary culture of
MYC+ RAS liver tumor cells (Supplementary Fig. 4a). Cellular
identity was confirmed by expression of oncogenes (Supplemen-
tary Fig. 4b, c). FUNDC2 knockdown and re-expression again
inhibited and rescued mitochondrial respiration (Supplementary
Fig. 4d, e), and resulted in respective changes of cellular energy
level (Supplementary Fig. 4f).

By MS-based targeted metabolomics, we found that metabo-
lites of the TCA cycle and glycolysis were decreased by FUNDC2
knockdown in tumors (Fig. 3j, Supplementary Data 1). Impor-
tantly, these metabolites could be used for macromolecular
biosynthesis, thus were believed to play important roles in
supporting cancer cell growth. In contrast, purine and pyrimidine
metabolites were increased. Metabolism of amino acids was both
increased and decreased by FUNDC2 knockdown. Since accu-
mulation of lipid droplets was observed in FUNDC2 knockdown
tumors, we also carried out MS-based lipidomics, and confirmed
accumulation of lipids commonly found in lipid droplets,
including triglycerides, diglycerides, cholesteryl esters, and sterols
(Fig. 3k, Supplementary Data 2). However, phospholipids which
play critical roles in membrane formation and lipid signals fueling
cell proliferation and malignancy36, were greatly reduced by
knockdown of FUNDC2. Taken together, elevated FUNDC2 plays
important roles in energy production and metabolic reprogram-
ming in tumor cells.

FUNDC2 interacts with MFN1. To determine the mechanism by
which FUNDC2 regulates mitochondrial dynamics and function,
we profiled FUNDC2-interacting proteins in Huh-7 cells by
tandem affinity purification. Mass spectrometry (MS) revealed
that about 17% of proteins co-purified with FUNDC2 were
mitochondrial proteins, including MFN1 and MFN2, which are
dynamin-related GTPases mediating fusion of OMM (Fig. 4a).
Due to the observation that FUNDC2 regulates mitochondrial
dynamics, we focused on MFN1/2. Immunoprecipitation con-
firmed the interaction between FUNDC2 and MFN1/2 on both
ectopic and endogenous expression levels (Fig. 4b, c).

We further mapped protein sequences mediating the interac-
tion between FUNDC2 and MFN1. FUNDC2 has its amino (N)-
and carboxyl (C)-terminals exposed to the cytosol with two
tandem transmembrane (TM) regions in between35. Truncation
mutants were made according to this arrangement (Fig. 4d). Co-

immunoprecipitation experiments indicated that peptide 1–127
with deletion of the C-terminal cytosolic region retained
interaction with MFN1 (Fig. 4e). However, neither the N-
terminal, C-terminal, nor TM regions alone could interact with
MFN1. We postulated that the TM regions may be important for
OMM localization of FUNDC2, thus facilitating interaction of the
N-terminal with MFN1. Indeed, addition of the TM regions
resulted in mitochondrial localization of the N-terminal frag-
ment, which was by itself diffusive in cytosol (Supplementary
Fig. 5a). MFN1 also has two tandem TM regions with both ends
exposing to the cytosol37. The larger N-terminal fragment
contains a GTPase domain (Fig. 4d). Co-immunoprecipitation
experiments indicated that a mutant (1–336) largely comprising
the GTPase domain, and another mutant (1–584) extending more
to the C-terminal could interact with FUNDC2 (Fig. 4f). It should
be noted that these two mutants were cytosolic likely due to
lacking of the TM regions (Supplementary Fig. 5b). Two other
mutants lacking the GTPase domain could not interact with
FUNDC2, although they were mitochondria-localized (Fig. 4f,
Supplementary Fig. 5b). Importantly, the GTPase domain of
MFN1 (1–336) could also interact with FUNDC2 1–127,
indicating a direct interaction of the two regions (Fig. 4g). We
next asked whether the GTPase activity of MFN1 is playing a role
in interaction with FUNDC2. K88T, K222Q, and W239A
mutations were reported to impair MFN1 GTPase activity6,38,39.
Interestingly, interactions of these mutants, especially W239A,
with FUNDC2 were largely reduced (Fig. 4h). Taken together,
FUNDC2 is a partner of MFN1 interacting with its GTPase
domain.

FUNDC2 inhibits GTPase activity of MFN1. Hydrolysis of GTP
is critical for MFN1 trans association and tethering of OMM for
fusion6. Interestingly, by an in vitro GTPase activity assay, the
activity of MFN1, but not MFN2, was inhibited by co-expression
of FUNDC2 (Fig. 5a). Furthermore, GTP loading of endogenous
MFN1 was monitored by pulldown assay using GTP-agarose
beads, which indicated that expression of FUNDC2 attenuated
GTP-binding of MFN1, but not MFN2 (Fig. 5b, Supplementary
Fig. 6a). Consistently, knockdown of FUNDC2 increased GTP-
binding of endogenous MFN1 but not MFN2 in Huh-7 and
HepG2 cells, which could be normalized by re-expression of
FUNDC2 (Fig. 5c, Supplementary Fig. 6b). These data suggest
that although MFN1 and MFN2 are homologous proteins both
interacting with FUNDC2, they could be differentially regulated
by FUNDC2.

We further asked whether FUNDC2 regulates GTP-loading of
MFN1 in mouse liver tumors. GTP pulldown assay was
performed using tumor lysates. While there were some variations
in MFN1/2 expression levels in MYC+ RAS tumors, GTP-
binding of MFN1 was clearly enhanced by knockdown of
FUNDC2, and repressed by restoration of FUNDC2 (Fig. 5d).
In order to determine whether FUNDC2 suppresses MFN1 GTP-
binding in human HCC, we first profiled the expression of
FUNDC2 in 20 HCC samples by quantitative RT-PCR (Supple-
mentary Fig. 6c). The top and bottom five samples were subjected
to GTP pulldown assay. While slightly higher expression of
MFN1 could be observed in FUNDC2-high tumors, the GTP-
binding of MFN1 was clearly lower than FUNDC2-low tumors
(Fig. 5e). Furthermore, co-immunoprecipitation experiments
indicated that trans association of MFN1 could be suppressed
by co-expression of FUNDC2 (Fig. 5f). Taken together, FUNDC2
inhibits the GTPase activity and trans association of MFN1.

FUNDC2 regulates mitochondrial dynamics by inhibiting
MFN1. In order to determine the functional roles of MFN1 in
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regulation of mitochondria by FUNDC2, we generated MFN1 or
MFN2 knockout Huh-7 cells by CRISPR/Cas9, which was con-
firmed by western blotting for MFN1 or MFN2 expression
(Supplementary Fig. 7a). Cells were further infected for re-
expression of MFN1 and knockdown of FUNDC2 (Supplemen-
tary Fig. 7a). Colony formation assay indicated that knockout of
MFN1 but not MFN2 eliminated the effect of FUNDC2 knock-
down on reducing colony formation (Fig. 6a, Supplementary
Fig. 7b). Furthermore, re-expression of wild type, but not the
W239A mutant of MFN1 restored suppression of colony for-
mation by FUNDC2 knockdown. Consistently, Mitotracker
staining revealed a requirement of wild-type MFN1, but not
MFN2 for the presence of elongated mitochondria by FUNDC2
knockdown (Fig. 6b). MFN2 has a key role in tethering

mitochondria to endoplasmic reticulum (ER), and impaired
tethering could result in ER stress40. We thus quantified mito-
chondria associated ER-membranes (MAM) in tumors, and
found that the percentage of MAM to mitochondria perimeter
was not affected by FUNDC2 knockdown (Supplementary
Fig. 7c). In addition, knockdown of FUNDC2 in Huh-7 cells or
tumors did not induce ER stress as indicated by phosphorylation
level of PERK, protein level of Bip, and protein level of ATF4
(Supplementary Fig. 7d, e).

The function of MFN1 downstream of FUNDC2 was further
confirmed by a FUNDC2/MFN1 double knockdown Huh-7 cell
line (Supplementary Fig. 8a). By electron microscopy, mitochon-
drial elongation caused by FUNDC2 knockdown was largely
rescued by further knockdown of MFN1 (Fig. 6c, d). Importantly,
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knockdown of MFN1 blocked reduction of cellular ATP level by
FUNDC2 knockdown (Fig. 6e). We thus asked whether regulation
of cellular metabolism by FUNDC2 also depends on MFN1.
Seahorse analysis indicated that in MFN1 knockout cells,
shFUNDC2 could no longer reduce mitochondrial respiration,
and MFN1 wild type but not the W239A mutant could rescue the
effect (Fig. 6f, Supplementary Fig. 8b). Similar observations were
also made in the HepG2 cell line by double knockdown of
FUNDC2/MFN1 (Supplementary Fig. 8c, d). However, in MFN2
knockout cells, FUNDC2 regulated mitochondrial respiration
normally (Supplementary Fig. 8e). By measuring ECAR, the
regulation of glycolysis by FUNDC2 was also found depending on
MFN1 (Fig. 6g, Supplementary Fig. 8f). Since it was reported that
liver-specific knockout of MFN1 promotes the use of lipids as
energy source24, we also measured mitochondrial respiration
when palmitate was used as energy source. Surprisingly, FUNDC2
knockdown also reduced palmitate oxidation, which was rescued
by MFN1 knockout (Fig. 6h, Supplementary Fig. 8g). This result
is in consistent with the accumulation of lipid droplets in
FUNDC2 knockdown tumor cells. Taken together, inhibition of
MFN1 is playing a critical role downstream of FUNDC2 in
regulating mitochondrial fragmentation and respiration in
tumor cells.

FUNDC2 regulates metabolism by inhibiting MFN1. To
determine whether metabolic reprogramming downstream of
FUNDC2 is also due to MFN1, we carried out MS-based targeted
metabolomics comparing control and MFN1 knockout cells.
Consistent with findings by Seahorse analysis, metabolites of the
TCA cycle and glycolysis were increased by knockout of MFN1
(Fig. 7a, b, Supplementary Data 3). In contrast, pathways
increased by shFUNDC2, including purine metabolism were

decreased by further knockout of MFN1 (Fig. 7a, c). In order to
determine how knockdown of FUNDC2 perturbs glucose flux,
cells were grown in 13C6-glucose tracer, and incorporation of the
label was analyzed by MS. Within 24 hours of tracing, FUNDC2
knockdown cells had lower levels of M+ 3 glyceraldehyde-3-
phosphate, M+ 3 phosphoenolpyruvate, M+ 3 pyruvate and
M+ 3 lactate, indicating reduced glycolytic flow to lactate
(Fig. 7d, e). Examining the isotopomer distribution of TCA cycle
intermediates, we found a significant reduction in M+ 2 citrate,
M+ 2 α-ketoglutarate, M+ 2 fumarate, and M+ 2 malate
derived from 13C6-glucose (Fig. 7f). This was in addition to an
overall reduction of citrate, a-ketoglutarate, fumarate, and malate
isotopomers in FUNDC2 knockdown cells (Fig. 7f). The pentose
phosphate pathway (PPP), which branches from glycolysis
(Fig. 7d), is required for the synthesis of ribonucleotides, and is a
major source of NADPH for the synthesis of fatty acids and the
scavenging of ROS41. Interestingly, a significant increase in M+ 6
6-phosphogluconate and M+ 5 ribose-5-phosphate derived from
13C6-glucose was observed in FUNDC2 knockdown cells (Fig. 7g),
indicating diversion of glucose to PPP. However, M+ 7
sedoheptulose-7-phosphate in the revisable non-oxidative phase
of PPP was reduced, suggesting that PPP was diverted to syn-
thesize pentose phosphate from fructose-6-phosphate rather than
synthesize fructose-6-phosphate from pentose phosphate
(Fig. 7g). Importantly, all the above phenotypes induced by
FUNDC2 knockdown were rescued by knockout of MFN1
(Fig. 7e–g).

In addition to accumulation of lipids in FUNDC2 knockdown
cells, targeted metabolomics revealed reduced acetylcarnitine, an
indicator of mitochondrial β-oxidation. To examine changes in
FAO, we fed cells with 13C16-palmitate that is channeled into the
mitochondria for FAO by a carrier palmitoylcarnitine (Fig. 7d).
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The TCA cycle intermediates showed an overall reduction in
M+ 2 isotopomers, which was rescued by MFN1 knockout
(Fig. 7h). These results confirmed that FUNDC2 promotes FAO
by inhibiting MFN1. Taken together, MFN1 is a critical
downstream effector of FUNDC2 in reprogramming glucose
and lipid metabolism in tumor cells.

FUNDC2 promotes liver tumorigenesis via inhibition of
MFN1. If inhibition of MFN1 is a key mechanism of tumor
promotion by FUNDC2, overexpression of MFN1 should sup-
press tumorigenesis similar to FUNDC2 knockdown. Indeed, co-
expression of MFN1 with MYC+ RAS strongly suppressed
tumorigenesis (Supplementary Fig. 9a–c). More importantly, by
multiplexed genome editing, knockdown of MFN1 abolished the
tumor-suppressive function of shFUNDC2 (Fig. 8a–c). Further
co-expression of MFN1 wild type, but not the W239A mutant
rescued the tumor-suppressive function of shFUNDC2. Successful
knockdown and rescue expression of FUNDC2 and MFN1 was
demonstrated by quantitative RT-PCR (Supplementary Fig. 9d,
e). Histopathological analysis indicated that lipid accumulation in

tumors induced by FUNDC2 knockdown was also MFN1-
dependent (Fig. 8d, e). In addition, expression of AFP on protein
and mRNA levels was also suppressed by FUNDC2 knockdown in
an MFN1-dependent manner (Fig. 8d, f). Thus, inhibition of
MFN1 by FUNDC2 plays a critical role in liver tumorigenesis.

Consistent with reduced cellular ATP level upon FUNDC2
knockdown in tissue culture, we found that energy level was
maintained or even higher in liver tumors, but was significantly
reduced by FUNDC2 knockdown, as indicated by phosphorylated
Acetyl-CoA carboxylase (ACC), a marker of energy deficiency
(Fig. 8g). Furthermore, measuring of ATP level in human HCC
also indicated higher energy level in FUNDC2-high tumors
(Fig. 8h). Taken together, elevated expression of FUNDC2 in liver
tumors not only plays an important role in mitochondrial
fragmentation, but also promotes energy production to meet the
demand of tumors.

Discussion
Reprogramming of cellular metabolism is a hallmark of cancer15.
However, the importance of mitochondrial dysfunction in cancer
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was overlooked until the finding that depletion of mitochondrial
DNA reduced tumorigenic potential of cancer cells42,43. Repro-
grammed mitochondrial functions support tumorigenesis in
many ways. For instance, oncogenic signaling promotes the use of
intermediates from the TCA cycle to generate anabolic precursors
for synthesis of fatty acids and nonessential amino acids44–46.
Excessive electron transport flux was also found in cancer cells

that not only produces ATP, but also results in formation of ROS,
which plays multiple roles during tumorigenesis47,48. These
abnormalities of mitochondria are intimately related to dysre-
gulated mitochondrial dynamics, such that fragmented mito-
chondria were often found in cancer cells. Downregulation of
MFN2 or elevation of DRP1 expression was found to contribute
to this phenotype in lung, breast, and other cancers49,50.
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Furthermore, post translational modifications of regulators of
mitochondrial dynamics were found to play a role. For instance,
MFN1 is phosphorylated at an atypical ERK site in its heptad
repeat 1 domain51. This site was proved essential to mediate
MFN1-dependent mitochondrial elongation and apoptosis
downstream of the MEK/ERK cascade. However, systematic
functional evaluation of dysregulated mitochondrial proteins in
cancer was still absent. In this study, by screening for tran-
scriptionally dysregulated genes encoding mitochondrial proteins
in human HCC, we identified FUNDC2 and PRELID2, which
were correlated with patient survival. Functional characterization
of these genes was facilitated by hydrodynamic injection-based
multiplexed in situ genome editing of mouse hepatocytes, which
achieved silencing of target genes precisely in tumor cells induced
by defined oncogenes30. In such a way, the robust tumor-
promoting function of elevated FUNDC2 was revealed. By

binding and inhibiting MFN1, FUNDC2 promotes mitochondrial
fragmentation in vitro and in vivo (Fig. 8i).

Little was known about the biological functions of FUNDC2. It
was demonstrated that mitochondrial FUNDC2 interacts with
phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby pro-
motes phosphorylation of AKT35,52. Such a function specifically
supports survival of platelets. In addition, it was found that liver-
specific knockout of FUNDC2 promotes cellular accumulation of
triglycerides and non-alcohol fatty liver disease (NAFLD), as well
as glucose intolerance induced by high-fat diet in mice53. While it
was suggested that FUNDC2 regulates lipid metabolism by direct
binding to the promoter region of SREBP1c54, it is in odds with
the subcellular localization of FUNDC2 to mitochondria.
Nevertheless, such a phenotype is consistent with our finding of
reduced FAO and accumulation of lipid droplets upon ablation of
FUNDC2. It should be noted that liver-specific knockout of
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MFN1 results in not only a highly fragmented mitochondrial
network, but also enhanced mitochondrial respiration24. In this
report, it was demonstrated that MFN1 deficiency increased
complex I abundance, which may explain increased respiration.
Thus, although mitochondrial fragmentation was more thought
to reduce respiration, that caused by inhibition of MFN1 seems
different. Whether this difference is due to other functions of
MFN1 is worth further investigation. It is also tempting to
speculate that FUNDC2 may play a physiological role in the
metabolism of normal liver tissue via inhibition of MFN1, and
altered mitochondrial dynamics due to attenuated FUNDC2
expression may contribute to the pathogenesis of NAFLD. In
addition, FUNDC2 was first cloned as an interacting partner of
HCV core protein55, which raises the possibility of dysregulated
mitochondrial dynamics by HCV infection through FUNDC2.
Thus, inhibition of MFN1 and mitochondrial fusion could be a
major mechanism of FUNDC2 in broader biological contexts.
Despite homology between MFN1 and MFN2, the later was not
inhibited by FUNDC2, although physical interaction could be
detected. The difference could be due to variation in critical
protein sequences or differential subcellular localizations, but the
exact reason awaits further investigation. In contrast to MFN1,
knockout of MFN2 in liver causes a nonalcoholic steatohepatitis
(NASH)-like phenotype and liver cancer, suggesting non-
complementary roles of MFN1 and MFN256.

It was reported that MFN1 knockout mouse embryonic fibro-
blast cells were resistant to apoptotic stimuli57. This was due to
inefficient accumulation of Bax onto OMM with incorrect cur-
vature caused by hyperfragmentation. Whether FUNDC2 reg-
ulates apoptosis of cancer cells could be further investigated in the
future. Knockdown of FUNDC2 did not decrease the ratio of
proliferating cells in tumor. However, a metabolic imbalance
featuring reduced catabolic processes including glycolysis, TCA
cycle, and FAO, as well as increased PPP was caused by FUNDC2
deletion in an MFN1-dependent manner. Furthermore, although
triglycerides and other storage lipids were accumulated, phos-
pholipids which play critical roles in membrane formation and
lipid signaling were reduced. Thus, by inhibiting MFN1,
FUNDC2 could promote tumor growth by metabolic repro-
gramming following dysregulated mitochondrial dynamics. The
observation that knockdown of FUNDC2 also reduces expression
of AFP, an indicator of HCC malignancy, and a marker of cancer
stem cells, suggests that the cancer stem cell compartment may be
more susceptible to inhibition of FUNDC2. It has been reported
that in contrast to proliferating tumor cells, cancer stem cells
exhibit higher dependence on oxidative phosphorylation58,59. In
breast cancer, by distinguishing pre-existing and newly synthe-
sized mitochondrial proteins using labeling technologies, it was
found that upon asymmetric cell division, stem-like cells con-
tained a greater number of ‘new’ mitochondria. Furthermore,
interfering with DRP1 activity abrogated asymmetric distribution
of mitochondria and reduced stem-cell properties in vitro60.
Thus, it is possible that FUNDC2-induced mitochondrial frag-
mentation maintains cancer stem cells in HCC, which awaits
further investigation.

In conclusion, we demonstrated MFN1 inhibition by FUNDC2
as a mechanism of mitochondrial fragmentation, which con-
tributes to tumorigenesis of HCC. Our results suggest FUNDC2
as a potential therapeutic target of HCC.

Methods
Human specimens. Human HCC specimens were collected in the First Affiliated
Hospital of Zhejiang University between 2012 and 2019, who were all diagnosed
with primary HCC by pathology and underwent curative surgical resection, aged
25–85, 86.8% men and 13.2% women. This study was performed in accordance
with the International Ethical Guidelines for Biomedical Research Involving

Human Subjects and the principles expressed in the Declaration of Helsinki, and
was approved by the ethic committee of the First Affiliated Hospital of Zhejiang
University. Written informed consent was acquired from the patients and the
patients’ parties.

Animal model. Animal care was provided according to regulatory standards at
Zhejiang University Laboratory Animal Center. All animal study protocols were
approved by the Zhejiang University Animal Care and Use Committee
(ZJU20210073). Four-week-old male ICR mice were purchased from Shanghai
SLAC Laboratory Animal Company. Standard laboratory chow diet for mice was
purchased from XieTong Biology (Cat# 1010082), and were fed ad libitum. The
SPF grade animal room was maintained humidity (45–60%) with a 12 h
(7:00 a.m.–7:00 p.m.) light/dark cycle. Hydrodynamic tail-vein injection was
described previously30. In detail, mice received 50 μg of total transposon plasmids
together with 10 μg PB transposase plasmids in a volume equal to 10% of mice
body weight. Plasmids for hydrodynamic tail vein injection were prepared using
the Qiagen EndoFreeMaxi Kit, and were diluted in sterile Ringer’s buffer before
injection. Animals were euthanized 80 days after injection or when symptoms of
tumorigenesis were evident, such as abdominal enlargement, lethargy or other
change in behavior, such as eating, ambulation, excretion, defecate, or increased
respiratory effort. Mice were euthanized by cervical dislocation or carbon dioxide.
Livers were pictured and weighted, and tissues were then fixed or frozen for further
processing, no data were excluded.

Plasmid construction. FUNDC2, MFN1, and MFN2 were cloned into pcDNA-c-
HA vector, and further sub-cloned into pLVX-c-HA, pLVX-c-Myc, and pLVX-c-
Flag vectors. FUNDC2 was also sub-cloned into pLVX-c-GFP. FUNDC2 andMFN1
truncation mutants were cloned into pLVX-c-GFP and pcDNA-c-HA, respectively.

shRNAs against hFUNDC2 cDNA (shhFUNDC2#1: CCGGGCGTCCAGTCAA
GGAAACTTTCTCGAGAAAGTTTCCTTGACTGGACGCTTTTTTG, shhFUND
C2#2: CCGGGATGGTGCACAGGTTTCATATCTCGAGATATGAAACCTGTG
CACCATCTTTTTTG), mFUNDC2 cDNA (shmFUNDC2#1: CCGGATGGTG
CACTGGTTTCGTATTCTCGAGAATACGAAACCAGTGCACCATTTTTTC,
shmFUNDC2#2: CCGGGATCTTGCAGAATTAACTAAACTCGAGTTTAGTT
AATTCTGCAAGATCTTTTTC), hMFN1 cDNA (shhMFN1#1: CCGGGCTCC
CATTATGATTCCAATACTCGAGTATTGGAATCATAATGGGAGCTTTTTC,
shhMFN1#2: CCGGGCTCAAAGTTGTAAATGCTTTCTCGAGAAAGCATTTA
CAACTTTGAGCTTTTTC), mMFN1 cDNA (shmMFN1#1: CCGGTACGGAGC
TCTGTACCTTTATCTCGAGATAAAGGTACAGAGCTCCGTATTTTTC, shm
MFN1#2: CCGGGCGAAAGAGAGAGCGTTTAAGCTCGAGCTTAAACGCTCT
CTCTTTCGCTTTTTC), mPRELID2 cDNA (shmPRELID2#1: CCGGAGAATGTG
GTTCCAGAGATTTCTCGAGAAATCTCTGGAACCACATTCTTTTTTG, shm
PRELID2#2: CCGGTCATTCAAACAGGCCGAATTTCTCGAGAAATTCGGCC
TGTTTGAATGATTTTTG) and non-targeting (CCGGCAACAAGATGAAGA
GCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTTC) were expressed
in pLKO.1 vector by cloning annealed oligonucleotides between EcoRI and
AgeI sites.

sgRNAs against hMFN1 (CACCGATCTCGGAGACACATGAAGG), hMFN2
(CACCGCCCCGTTACCACAGAAGAAC), and non-targeting
(CACCGGCGGGCAGAACGACCCTGAC) were designed by the Zhang
laboratory CRISPR Design Tool (https://zlab.bio/guide-design-resources). The
LentiV2 vector was used to construct sgRNA-expressing lentiviral plasmids by
cloning annealed oligonucleotides into BsmBI site.

Tissue culture, transfection, and viral infection. HepG2 (HB-8065) and
HEK293T (CRL-11268) cells were from ATCC. HeLa (ATCC, CCL-2) cells were
from Dr. Fangwei Wang, and Huh-7 (JCRB cell bank, JCRB0403) cells were from
Dr. Junfang Ji. Huh-7, HepG2, HEK293T, and HeLa cells were cultured in Dul-
becco’s modified Eagle medium (Gibco, C11995500BT) containing 10% FBS and
50 μg/mL penicillin/streptomycin (Gibco, 2289322). Primary mouse liver cancer
cells were cultured in DMEM/F12 (Gibco, C11330500BT) containing 10% FBS
supplemented with EGF (20 ng/mL, Sigma-Aldrich, SRP3196), Insulin (5 μg/mL,
YEASEN, 40112ES25) and Dexamethasone (2 μM, Sigma-Aldrich, D4902). All cells
were cultured in a 37 °C humidified incubator with 5% CO2. HeLa was listed as a
commonly misidentified cell line by the International Cell Line Authentication
Committee. We use this cell line due to its high transfection efficiency. All cell lines
were authenticated by August 2021 at Genetic Testing Biotechnology Corporation
(Suzhou, China) using Short Tandem Repeat (STR) analysis as described in 2012 in
ANSI Standard (ASN-0002) by the ATCC Standards Development Organization.
Mycoplasma test for tissue culture was done in a monthly basis using MycoPlasma
Detection Kit (Vazyme, D101-01). Cells used in experiments were within 10 pas-
sages from thawing.

Transfection was performed using Lipofectamine (Thermo Fisher, L3000015)
according to the manufacturer’s instructions. Lentiviral or retroviral infection was
used to generate stable cells. Briefly, HEK293T cells were co-transfected with viral
vector and packaging plasmids, 48 h post-transfection, virus-containing medium
was collected, filtered through a 0.45-μm filter and used to infect target cells in the
presence of 10 μg/mL polybrene. Puromycin (Thermo Fisher, A1113803) or
Blasticidin (Thermo Fisher, R21001) was used for selection.
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Colony formation assay. For colony formation assay, cells were seeded into six-
well plates at a density of 5000 cells in each well and incubated for 2 weeks,
medium may be replenished every 2 days. Cells were fixed in 4% formalin for
15 min and stained with 1% crystal violet for 30 min. the number of colonies was
quantified by Image J software (version 1.52r). Each experiment was repeated for
three times.

Glucose uptake assay. 2-DG uptake was assessed using the Glucose Uptake Assay
Kit (Abcam, ab136955). Briefly, Huh-7 cells were counted and plated in 96-well
plate. 36 h later, cells were washed and incubated in 2% bovine serum albumin
(BSA, Sigma-Aldrich, A1933) for 1 h. Then cells were stimulated by insulin, fol-
lowed by 2-deoxyglucose (Sigma-Aldrich, D8375) addition for 30 min. Cells were
lysed, heated at 85 °C for 40 min, and put on ice for 5 min. Then, supernatant of
cell lysate was incubated with oxidation buffer and next neutralizing buffer. The
plate was measured at 412 nm in a microplate reader.

FACS analysis of mitochondria mass, membrane potential, and ROS. For
membrane potential measurement, 5 × 106 cells were incubated with 50 nM Tet-
ramethylrhodamine methyl ester perchlorate (TMRM, Invitrogen, M20036) and
100 nM Mitotracker green (Invitrogen, M7514) for 30 min at 37 °C. For mito-
chondria mass assay, cells were only stained with 100 nM Mitotracker green. For
CMH2DCFDA staining, 5 × 106 cells were resuspended and incubated with pre-
warmed PBS containing 2 μM CMH2DCFDA (Invitrogen, C6827) for 30 min.
After the incubation, cells were washed twice with PBS and analyzed by flow
cytometry (Beckman Cytexpert, version 1.2). Data was processed by FlowJo
(version 10).

Western blotting and immunoprecipitation. Western blotting was performed
following standard protocol. Briefly, tissues were homogenized by tissue lysis buffer
(20 mM Tris pH 7.5, 1 mM EDTA, 1 mM EGTA, 2% SDS, 150 mM NaCl, 0.1 mM
DTT, 1 mM PMSF, 1 mM Na3VO4, 50 mM NaF, and protease inhibitor cocktail)
and separated by SDS-PAGE and transferred onto PVDF membranes (Millipore,
IPVH00010). Membranes were blocked with 5% of milk and incubated at 4 °C
overnight with primary antibodies against FUNDC2 (Rabbit anti-FUNDC2, US
Biological, Cat# 035793, dilution 1:5000 v/v), MFN1 (Rabbit anti-MFN1 JF0954,
HUABio, Cat#ET1702-01, dilution 1:5000 v/v), MFN2 (Rabbit anti-MFN2, Pro-
teintech, Cat# 12186-1-AP, dilution 1:5000 v/v), HNF4a (mouse anti-HNF4a
H1415, Cosmo Bio, Cat# PPX-PP-H1415-00, dilution 1:5000 v/v), pACC (Rabbit
anti-pACC S79, CST, Cat# 3661, dilution 1:5000 v/v), HA tag (Rabbit anti-HA
C29F4, CST, Cat# 3724, dilution 1:10,000 v/v), HSP90 (Rabbit anti-HSP90, Pro-
teintech, Cat# 13171-1-AP, dilution 1:8000 v/v), Myc tag (Mouse anti-Myc-Tag
9B11, CST, Cat# 2276, dilution 1:5000 v/v), GFP (Rabbit anti-GFP, Abcam, Cat#
6556, dilution 1:5000 v/v), β-actin (Mouse anti-ACTB 7D2C10, Proteintech, Cat#
20536-1-AP, dilution 1:10,000 v/v), ATF-4 (Rabbit anti-ATF-4 D4B8, CST, Cat#
11815, dilution 1:1000 v/v), BiP (Rabbit anti-BiP C50B12, CST, Cat# 3177, dilution
1:1000 v/v), PERK (Rabbit anti-PERK D11A8, CST, Cat# 5683, dilution 1:1000 v/v)
and Phospho-PERK (Thr980) (Rabbit anti-Phospho-PERK Thr980 16F8, CST,
Cat# 3179, dilution 1:1000 v/v). Membranes were then washed and incubated with
HRP-conjugated secondary antibodies (Invitrogen A16096, 62-6520) for 1.5 h at
room temperature. Proteins were detected using an ECL detection reagent. Scans
for uncropped blots were provided in a source data file Uncropped Blots and in
Supplementary Fig. 10.

For immunoprecipitation, cells were lysed by ice-cold mild lysis buffer (100 mM
NaCl, 10 mM EDTA, 1% NP40, 10 mM Tris pH 7.5, 50 mM NaF, 1 mM Na3VO4,
0.1 mM DTT) supplemented with EDTA-free complete protease inhibitor (Sigma-
Aldrich, S8830). Cell lysates were centrifugated at 12,000 × g for 15 min at 4 °C.
Supernatants were collected and incubated with desired antibodies with rotation at
4 °C for 2 h, protein G-Sepharose (GE healthcare, 17-0618-01) was added and
incubated for another 1.5 h. Samples were then centrifuged, washed with mild lysis
buffer for four times. Samples were boiled with 1×SDS loading buffer. Primary
antibodies against MFN1 (Rabbit anti-MFN1 JF0954, HUABio, Cat#ET1702-01,
dilution 1:50 v/v), MFN2 (Rabbit anti-MFN2, Proteintech, Cat# 12186-1-AP,
dilution 1:50 v/v), HA tag (Rabbit anti-HA C29F4, CST, Cat# 3724, dilution
1:200 v/v) and Flag tag (Mouse anti-Flag M2, Sigma-Aldrich, Cat# A8592, dilution
1:100 v/v) were involved in this section.

Real-time qPCR. Total cellular RNA was extracted with Trizol (TaKaRa, Cat#
9109). Subsequently, complementary DNAs (cDNAs) were synthesized using First-
Strand Synthesis System (TaKaRa, Cat# RR036A) according to the manufacturer’s
instructions. cDNA was analyzed by qPCR with SYBR Green (YEASEN, Cat#
11143ES50) and gene-specific primers (mPRELID2, forward 5′-GTCGCTTGC
TTCCTC-3′, reverse 5′-GATTTTCTACGCTTTCC-3′; mFUNDC2, forward 5′-
GCTAACAGTCAAGGAAA-3′, reverse 5′-TCTGGAATACGAAACC-3′; mMFN1,
forward 5′-ATCACTGCAATCTTCGGCCA-3′, reverse 5′-AGCAGTTGG
TTGTGTGACCA-3′; mSDHA, forward 5′-GAAGATTTATCAGCGTG-3′, reverse
5′-GTGTAAGAGTGAGTGGC-3′; mKi67, forward 5′-GCTCACCTGGTC
ACCATCAA-3′, reverse 5′-TGACACTACAGGCAGCTGGA-3′; mAFP, forward
5′-GTTTCCAGAACCTGCCGAGA-3′, reverse 5′-CTGAGCAGCCAAGGACAG
AA-3′; hHPRT, forward 5′-AGCCCTGGCGTCGTGATTA-3′, reverse 5′-ACAA

TGTGATGGCCTCCCA-3′; hFUNDC2, forward 5′-ACTGGCAACGAGTGGA-
GAAG-3′, reverse 5′-CATGCCAAGCAGAAAGCCTC-3′. Relative expression of
mRNA was normalized by Succinate dehydrogenase, subunit A (Sdha) or hypox-
anthine phosphoribosyltransferase 1 (HPRT1) mRNA. The real-time PCR results
were analyzed and expressed as relative expression of CT (threshold cycle) using
the 2−▵▵Ct method.

GTP-binding and GTPase activity assays. GTP-binding assay was performed as
previously reported61. Briefly, 100,000 cells were lysed by lysis buffer (100 mM
NaCl, 10 mM EDTA, 1% NP40, 10 mM Tris pH 7.5, 10 mM MgCl2, 50 mM NaF,
1 mM Na3VO4, 0.1 mM DTT). Lysates were centrifuged for 10 min at 12,000 × g,
and supernatant aliquots were used to determine total protein levels. Lysates were
then incubated with GTP-agarose suspension (Sigma-Aldrich, G9768) for 1 h at
30 °C with agitation. Agarose beads were collected by centrifugation, washed 3
times in lysis buffer, and resuspended in 40 μl SDS-PAGE sample buffer. GTP-
bound proteins were analyzed by immunoblotting.

For measurement of MFN1 and MFN2 GTPase activity, MFN1-HA and MFN2-
HA were immunoprecipitated from cell lysates, and GTPase activity was measured
with a GTPase Activity kit (Sigma-Aldrich, MAK113) according to the
manufacturer’s instructions.

Immunofluorescent staining and imaging. Cells were seeded and transfected on
glass coverslips, 24 h post-transfection, cells were fixed with 4% paraformaldehyde
in PBS for 15 min, permeabilized with 0.1% Triton X-100 for 5 min. cells were
blocked and incubated with primary antibodies against HA tag (Rabbit anti-HA
C29F4, CST, Cat# 3724, dilution 1:500 v/v) and OLLAS tag (Rat anti-OLLAS L2,
Novus Biologicals, Cat# NBP1-06713, dilution 1:100 v/v) for 2 h at room tem-
perature. After washes, cells were stained with indicated fluorophore-conjugated
secondary antibodies (Thermo Fisher, A-11008, A-11006) for another 1 h at room
temperature. After wash, coverslips were mounted by ProLong Gold antifade
mounting media with DAPI (Thermo Fisher, P36941). Images were taken by an
LSM 880 confocal microscope (ZEISS).

Transmission electron microscopy. Briefly, tumors were cut into pieces of about
1 mm3, and cells were grown on coverslips. Samples were fixed with 2.5% glutar-
aldehyde (Sigma-Aldrich, G5882) for 2 h at room temperature. After wash, samples
were post-fixed with 1% osmium tetroxide (Sigma-Aldrich, O5500) for another
1.5 h, and dehydrated with an ethanol series. Samples were infiltrated, embedded in
Epon Resin, and polymerized at 60 °C for 12 h. Ultrathin sections of 60 nm were
prepared, stained with uranyl acetate and lead citrate. Samples were observed under
a Hitachi HT7700 transmission electron microscope. Mitochondrial length was
analyzed by an Image-Pro Plus 6.0 software. For quantification of MAM, we
normalized the MAM region to total mitochondrial perimeter following a pub-
lished method62.

Seahorse assay. Cellular oxygen consumption rates (OCR) were measured in real
time using the Seahorse XF 96 Extracellular Flux Analyzer (Seahorse Bioscience).
Briefly, 10,000 cells were seeded into 96-well Seahorse microplates in 100 μL
growth medium (Agilent, 103015-100) and incubated at 37 °C in 5% CO2 overnight
and the calibrator plate was equilibrated overnight in a non-CO2 incubator. Before
the test, cells were washed twice with assay running media (unbuffered DMEM,
25 mM glucose, 1 mM glutamine, 1 mM sodium pyruvate) and incubated for 1 h in
a non-CO2 incubator. Once the probe calibration was completed, the probe plate
was replaced by cell plate. Cellular OCRs were measured by injection of the fol-
lowing compounds: 1 μM oligomycin (MedChemExpress, HY-N6782), 0.5 μM
FCCP (MedChemExpress, HY-100410), and 1 μM antimycin A (MedChemEx-
press, HY-107406) plus rotenone (MedChemExpress, HY-B1756). At the conclu-
sion of the assay, cells were lysed and protein levels were measurement by BCA kit.
OCR was normalized by the amount of total protein.

For glycolysis stress test, cells were incubated with glucose-free medium
supplemented with 1 mM pyruvate at 37 °C in incubator without CO2 for 1 h prior
to the assay. Glucose, oligomycin and 2-DG were injected into plates in order.
Extracellular acidification rate (ECAR) was normalized by the amount of total
protein.

Palmitate-BSA was prepared using 2 mM palmitate solution heated at 70 °C,
and 0.1 M NaOH was added until the solution was clear. To keep the ratio of
palmitate to BSA 5:1, palmitate solution was added to 0.34 mM BSA solution (0.9%
NaCl, 65 °C) drop by drop until the solution was clear. Finally, the 1 mM
palmitate-BSA solution was filtered and stored at −80 °C. For fatty acid oxidation
assay, cells were incubated overnight with seahorse substrate-limited medium with
0.5 mM glucose, 1× GlutaMAX (Gibco, 35050061), 0.5 mM carnitine
(MedChemExpress, HY-B0399) and 1% FBS. Before the assay, cells were
replenished with FAO assay medium (Agilent, 103693-100) and incubated for
30 min. After that, cells were pre-treated with etomoxir (40 μM, MedChemExpress,
HY-50202), palmitate (200 μM) or BSA for another 20 min. Oligomycin, FCCP,
antimycin A plus rotenone were injected into the plate in order. OCR was analyzed
and normalized by the amount of total protein.
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Measurement of cellular ATP level. ATP was measured using an ATP Assay Kit
(Beyotime Biotechnology, S0026) according to the manufacturer’s instructions.
Briefly, cells were homogenized in ice-cold lysis buffer. After centrifugation,
supernatants were added into substrate solution and the luminescence was
recorded by a microplate reader (POLARstar Omega). A standard curve of ATP
concentration was prepared from measurement of standard solutions. Protein
concentration was determined by the BCA method for normalization of ATP
concentration.

Tandem affinity purification. To identify FUNDC2-interacting proteins, Huh-7
cells stably expressing FUNDC2-Flag-SBP were generated. Cells were lysed with
lysis buffer (10 mM Tris pH 7.5, 2 mM EDTA, 150 mM NaCl, 0.3% CHAPS,
2.5 mM NaF, 1 mM Na3VO4, 0.1 mM DTT and 0.5 mM PMSF) supplemented with
EDTA-free complete protease inhibitor. Lysates were centrifuged at 12,000 × g for
15 min at 4 °C, and supernatants were collected and incubated with anti-Flag M2
resin (Sigma-Aldrich, F2426) for 2 h at 4 °C. Resins were collected by centrifuga-
tion and washed three times with lysis buffer. Bound proteins were eluted with
200 ng/μL 3×Flag peptide (Sigma-Aldrich, F4799). Eluates were further incubated
with streptavidin-conjugated resin (Agilent, 240105) for another 2 h at 4 °C. Then
resins were washed and eluted with elution buffer (Tris pH 7.5, 150 mM NaCl,
0.05% Rapigest, 10 mM 2-mercaptoethanol, 4 mM biotin). Samples were then
analyzed by MS/MS.

IHC staining. Mouse livers were fixed in neutral buffered formalin for 24 h at room
temperature and then embedded and processed according to standard protocols.
Liver sections were deparaffinized through graded ethanol solutions. After an
antigen retrieval procedure of 30 min, sections were stained with specific antibodies
using the avidin-biotin complex system (Vector Laboratories, SP-2001, PK-6100).
3,3’-diaminobenzidine (DAB, Vector Laboratories, SP-4105) was used as the sub-
strate. Cell nuclei were counterstained with hematoxylin. Primary antibodies
against AFP (Rabbit anti-AFP, Abcam, Cat# ab46799, dilution 1:500 v/v) and Ki67
(mouse anti-Ki67 B56, BD, Cat# 556003, dilution 1:500 v/v) were involved in this
section.

Histopathological analysis. For histopathological analysis, HE staining was per-
formed on paraffin-embedded tissues. Lipid droplets were visualized by Oil Red
(Servicebio, G1015) staining of Tissue-Tek O.C.T compound-embedded frozen
liver sections. Histopathological images were captured under a light microscope.
Images were quantified using Image J software (version 1.52r).

Fluorescent multiplexed immunohistochemistry. Fluorescent multiplexed
immunohistochemistry was performed with Opal 7-color Manual IHC Kit
(AKOYA Biosciences, NEL811001KT) according to the manufacturer’s protocol. In
brief, sections were deparaffinized, microwave treated in epitope retrieval buffer for
45 s at 100% power and an additional 15 min at 20% power, blocked in Opal
Antibody Diluent/Block at room temperature for 10 min, incubated with the
specific primary antibody overnight at 4 °C, 10 min with the secondary horseradish
peroxidase-conjugated antibody Polymer HRP Ms + Rb at room temperature, and
10 min with Opal fluorophore working solution. Sections were rinsed between
staining steps with 1×Tris buffered Saline with Tween 20 and stripped between
each round of staining via microwave treatment in antigen retrieval buffer. After
the final microwave treatment, slides were stained with DAPI for 10 min followed
by mounting. Images were acquired with confocal microscope LSM 880 (Zeiss).

Metabolite extraction and quantitation. Intracellular metabolites were extracted
using a method described previously63,64 with modifications. Cells were quenched
using 60% methanol pre-cooled at −80 °C after a brief wash with pre-warmed PBS,
then lysed with 5 freeze-and-thaw cycles. Soluble metabolites were separated by
two rounds of centrifugation and dried with a CentriVap Concentrator system
(Labconco). For extracting tissue metabolites, ~5 mg of tissue was homogenized
and lysed by bead-beading at 4 °C in MS-grade methanol, followed by 2 rounds of
centrifugation at 15,000 × g for 15 min at 4 °C. The supernatant was dried in a
CentriVap Concentrator system (Labconco), and the pellet was collected to mea-
sure protein concentration and subsequent normalization for injection. Dried
metabolite extracts were resuspended in 60% acetonitrile and injected for quanti-
fication a triple quadrupole mass spectrometer (the QTRAP 6500+ System,
ABSCIEX) coupled with an ultrahigh performance liquid chromatography. Meta-
bolites were separated chromatographically on a SeQuant Zic-pHILIC column
(5 μm polymer 150 × 2.1 mm, Millipore Sigma) and monitored with corresponding
MRM transitions established using chemical standards. A 34-min liquid chroma-
tography program running at a flow rate of 0.15 mL/min was used. In detail, Buffer
A: 20 mM ammonium carbonate and 0.1% (v/v) ammonium hydroxide, and Buffer
B: acetonitrile. T= 0 min, 80% B; T= 20 min, 20% B; T= 20.5 min, 20% B;
T= 34 min, 80% B. Metabolites detected by MRM transitions in both positive and
negative modes were carefully re-inspected for accuracy. The area under each peak
was quantitated using a SCIEX OS software (version 1.7).

13C6 glucose and 13C16 palmitate tracing. [U-13C] glucose (Sigma-Aldrich,
389374) and [U-13C] palmitate (Sigma-Aldrich, 605573) were used to trace TCA
cycle metabolites. Cells were seeded into 60 mm dish, after 24 h, the medium was
replaced with conditional DMEM containing [U-13C] glucose or [U-13C] palmitate
with 10% dialyzed FBS. Cells were traced with [U-13C] glucose (25 mM) for 24 h or
with [U-13C] palmitate (200 μM) for 36 h. 13C incorporation into TCA cycle
metabolites leads to various forms of mass shift. We established a method to
examine these 13C-labeled metabolites in the negative ion mode according to a
previous study65 with minor modifications. The MRM transitions for detecting
13C-labeled TCA cycle metabolites were verified using metabolites extracted from
cells grown with [U-12C] and [U-13C] glucose. The tracing duration and labeling
efficiency are also optimized.

Lipid extraction and quantitation. Tissue lipids were extracted with a previous
method66 with some modifications. A mixture of 17:0 PC, 17:0 PE internal stan-
dards was added to each 10 mg tissue sample and then lysed by bead-beading at
4 °C in MS-grade methanol. Cell pellets and lysates were then transferred to glass
tubes, and chloroform was added. After a vigorous vortex, samples were cen-
trifuged, and the supernatant was transferred to a new glass tube. Pellets were saved
for measuring protein concentration using a BCA assay. Chloroform and citric acid
were added, vortexed, and phase-separated by centrifugation. The bottom lipid
phase was harvested and dried using a CentriVap Concentrator system (Labconco).
Lipid extracts were reconstituted in a sampling buffer consisting of isopropanol:
acetonitrile: water (2:1:1, v/v/v) and injected for a non-targeted lipidomics analysis
using a SCIEX QTOF 6600+ System with a scan range of m/z 100–1500 in both
positive and negative ion modes. For better resolution, lipid samples were separated
chromatographically using the LC system coupled to the QTOF system. We ran the
samples under a 17-min program on an ACQUITY UPLC BEH C18 column
(Waters, 130 A, 1.7 μm, 2.1 mm × 50mm) at a flow rate of 0.15 mL/min. Solvent A
consisted of methanol/acetonitrile/water (1:1:1, v/v/v) and solvent B was iso-
propanol, both solvents containing 5 mM ammonium acetate. The gradient started
with 20% B for 1 min, steadily increased to 60% B by 3 min, reached 98% B by
13.1 min, and then decreased to 20% B by 16 min. Raw data files were processed
using the MS-DIAL software (version 4.6) to identify and quantify lipid species67.

Statistics and reproducibility. GraphPad Prism was used for graphical repre-
sentation and statistical analysis of data. Data are presented as mean ± SD. No
statistical methods were used to estimate sample size. A standard two-tailed
unpaired Student’s t test was used for statistical analysis of the two groups. All
experiments were repeated three times unless specified. All shown results were
consistent among replicates. Kaplan–Meier survival analysis was used to estimate
overall survival.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available in the main text or supplementary materials. Human data derived
from the TCGA and GSE124535 datasets are available from https://portal.gdc.cancer.
gov/legacy-archive/search/f and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE124535. Source data are provided with this paper.
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