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Reconstruct high-resolution 3D genome structures
for diverse cell-types using FLAMINGO
Hao Wang1, Jiaxin Yang1, Yu Zhang2, Jianliang Qian 1,3✉ & Jianrong Wang 1✉

High-resolution reconstruction of spatial chromosome organizations from chromatin contact

maps is highly demanded, but is hindered by extensive pairwise constraints, substantial

missing data, and limited resolution and cell-type availabilities. Here, we present FLAMINGO,

a computational method that addresses these challenges by compressing inter-dependent

Hi-C interactions to delineate the underlying low-rank structures in 3D space, based

on the low-rank matrix completion technique. FLAMINGO successfully generates 5 kb- and

1 kb-resolution spatial conformations for all chromosomes in the human genome across

multiple cell-types, the largest resources to date. Compared to other methods using various

experimental metrics, FLAMINGO consistently demonstrates superior accuracy in recapitu-

lating observed structures with raises in scalability by orders of magnitude. The reconstructed

3D structures efficiently facilitate discoveries of higher-order multi-way interactions, imply

biological interpretations of long-range QTLs, reveal geometrical properties of chromatin,

and provide high-resolution references to understand structural variabilities. Importantly,

FLAMINGO achieves robust predictions against high rates of missing data and significantly

boosts 3D structure resolutions. Moreover, FLAMINGO shows vigorous cross cell-type

structure predictions that capture cell-type specific spatial configurations via integration of 1D

epigenomic signals. FLAMINGO can be widely applied to large-scale chromatin contact maps

and expand high-resolution spatial genome conformations for diverse cell-types.
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The three-dimensional (3D) architecture of genomes plays
pivotal roles in DNA replication, genome stability, and
tissue differentiation1–3. Quantitative characterization of

spatial chromosome conformations is crucial for deciphering the
complex systems of spatially coordinated transcriptional and
epigenetic activities4–6, leading to the understanding of gene
regulation mechanisms. The genome-wide high-throughput
chromosome conformation capture technique such as Hi-C7,8 has
been one of the driving forces in studies of 3D genome structures.
The Hi-C datasets profiled from different cell-types and
species7,9–13 have revealed structural components of genome
organization7,10,14, such as chromatin loops, topologically asso-
ciated domains (TADs), and chromatin compartments. Although
these findings have provided powerful insights into the governing
rules of chromosome folding at large scales (~100 kb–1Mb), such
as the loop extrusion model15,16, it is still computationally diffi-
cult to accurately reconstruct high-resolution spatial conforma-
tions, such as at ~5 kb resolution, for all chromosomes in large
genomes.

Since the collection of Hi-C experiments is growing, the resulting
massive Hi-C data call for efficient computational algorithms for
modeling 3D genomes. Previous algorithms of 3D reconstruction
using Hi-C data have been able to predict spatial distances mainly at
low-resolutions or within specific genomic segments17. Typically,
based on experimentally estimated conversion functions14, the
observed Hi-C contact frequency is converted into spatial distances,
which we term as observed Hi-C distances in this paper. In general,
a consensus structure or an ensemble of structures are inferred by
maximizing the similarity between predicted and observed Hi-C
distances using optimization-based (such as MDS-type or manifold
learning techniques)18–27 or probabilistic approaches (such as
MCMC strategy)28–32. Representative state-of-the-art algorithms
that have been shown to outperform other methods, along with
some recent developments, include ShRec3D33, GEM-FISH34,
Hierarchical3DGenome35, RPR36, SuperRec37, ShNeigh38, and
PASTIS28 (Methods section, Supplementary Note 1). The accuracy
of a predicted structure is mainly evaluated by its capability of
recapitulating the measured pairwise distances between genomic
loci from Hi-C. Spearman correlation is one of the widely used
metrics to quantify the accuracy. However, four fundamental
challenges still need addressing in developing an efficient algorithm:
(1) high scalability to reconstruct high-resolution spatial config-
urations for all chromosomes from massive Hi-C datasets; (2)
superior performance to handle large fractions of missing data,
which is a common drawback of Hi-C experiments; (3) capability to
make accurate cross cell-type structure predictions, since the vast
majority of cell-types lack Hi-C data; and (4) capability to predict
high-resolution structures from low-resolution Hi-C contact maps.

To address the above four challenges, we have developed a low-
rank matrix completion based methodology for reconstructing
3D genome structures from Hi-C data. Low-rank matrix com-
pletion has been found to be a powerful modeling framework for
3D shape inferences in different scientific fields39–41. One of the
key advantages of such a modeling method is that it is able to
explicitly leverage the low-rank property of a pairwise-distance
matrix (rank ≤5 for Euclidean distance matrix, see Methods
section)42 in an objective function for optimization, and such a
low-rank property has not been explicitly utilized in previous
approaches, such as multidimensional scaling based methods.
Efficient incorporation of the low-rank constraint into the
modeling process allows fast structure reconstruction from just a
small subset of Hi-C data, making the algorithm scalable for high-
resolution structure predictions for large chromosomes with high
fractions of missing data.

Our efforts have led us to create a Fast Low-rAnk Matrix
completion algorithm for reconstructINg high-resolution 3D

Genome Organizations from Hi-C data, FLAMINGO (https://
github.com/wangjr03/FLAMINGO), which has been imple-
mented to generate both 5 kb- and 1 kb-resolution 3D chromo-
somal structures for the human genome. Based on extensive
performance evaluations using data from both simulated struc-
tures and experimental Hi-C datasets from the human genome,
the high-resolution chromosome structures generated by FLA-
MINGO demonstrate substantially improved accuracy, compared
with other state-of-the-art methods. The predicted high-
resolution spatial distances in 3D space are further justified by
orthogonal experiments (such as ChIA-PET43, Capture-C44,45,
and SPRITE46), providing biological insights into long-range
chromatin interactions in gene regulation. Beyond 2D contact
maps, the predicted 3D structures by FLAMINGO can help to
identify higher-order multi-way chromatin interactions, interpret
potential mechanisms of genetic QTLs, characterize the geome-
trical patterns of chromatin folding, and facilitate the under-
standings of structural variations. Moreover, even using only 10%
of down-sampled Hi-C contacts, FLAMINGO still achieves
higher accuracy than other methods, demonstrating its superior
capability of handling missing data in Hi-C. In addition, an
integrative version of our algorithm, iFLAMINGO, is built to
further combine 1D epigenomics data, such as DNase-seq signals,
with Hi-C data, which allows us to make cross cell-type predic-
tions of 3D genome architectures and boost the resolution of
predictions. These algorithmic advantages will not only expand
the coverage of cell-types for 3D genome modeling but also
improve the information extraction from the fast-growing col-
lection of experimental Hi-C data.

Results
FLAMINGO algorithm to reconstruct high-resolution 3D
genome architectures. Based on the ‘beads on a string’ polymer
model47, every chromosome is modeled as a chain of ‘beads’
consisting of DNA fragments or loci, and the pairwise distances
between genomic loci are biologically induced from the Gram
matrix of their 3D coordinates (Fig. 1a). To reconstruct the 3D
spatial structure, the normalized chromatin contact maps from
Hi-C experiments can be converted into an observed distance
matrix as suggested by previous studies10,14, whose validity and
robustness are justified by both computational model selections
and empirical comparisons with image-based data (see Methods
section). The observed distance matrix typically contains large
portions of unmeasured distances (namely, missing data), espe-
cially for high-resolution genomic loci (~5 kb fragments)10.
FLAMINGO predicts the optimal genome structure based on a
low-rank matrix completion framework (Fig. 1a and Methods
section). The objective function contains three terms: (1) a term
to impose the low-rank constraint on the Gram matrix of pre-
dicted 3D coordinates, since the 3D distance matrix has a rank at
most five; (2) a term measuring the differences between predicted
and observed distances, which is evaluated on the measured
subset of pairs of loci; and (3) a penalty term penalizing unrea-
listic distances between adjacent DNA fragments. FLAMINGO
uses the alternating-direction method of multipliers48 to solve the
optimization problem. At convergence, the optimal 3D structure
that minimizes the objective function is identified, along with the
completed pairwise distance matrix (Fig. 1a).

The key feature of FLAMINGO is to incorporate the low-rank
constraint (rank ≤ 5) of the 3D distance matrix of size N ×N into
the optimization process, where N is the number of genomic loci,
such as the number of 5 kb DNA fragments. Since the pairwise
spatial distances are generated by the 3D coordinate matrix of
genomic loci (rank ≤ 3), the resulting symmetric Euclidean
distance matrix has a rank at most 542. It is because the squared
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Euclidean distance matrix is a sum of three matrices: one being
the Gram matrix of rank at most 3 and each of the other two
being of rank at most 1 (see Methods section). And thus, it has
intrinsic degrees of freedom at most 5N, which, compared to the
size N ×N of the entire full matrix, is extremely small when N is
large. Therefore, in order to recover the entire distance matrix, we
may just need the number of measurements of the distance
matrix to be proportional to the intrinsic degrees of freedom. In
fact, as long as the information of the underlying distance matrix
is not concentrated on a few entries, each randomly selected
measurement of pairwise distances will be equally informative,
suggesting that the information can be substantially compressed49

(Fig. 1a). Hence, by minimizing the rank of the inferred Gram
matrix, low-rank matrix completion models49 offer at least two
benefits (Methods section): (1) accurate 3D structures can be
reconstructed from subsets of observed distances; and (2) fast
matrix calculations can be carried out based on sparsity and low-
rankness of the underlying matrices. Remarkably, both benefits
are heavily needed for high-resolution structure predictions. By
dividing the genome into high-resolution DNA fragments such as
at 5 kb-resolution, the size of the distance matrix becomes huge,
many entries of which have no data due to the limited sequencing
depth of Hi-C experiments. Thus, FLAMINGO is able to build
high-resolution 3D structures from the fast-growing collection of
Hi-C datasets with decent scalability at computational complexity
O(N2) without demanding increased sequencing depths (Methods
section, Supplementary Note 1, and Supplementary Figs. 1 and 2).

To enable parallel computations, FLAMINGO also employs a
hierarchical strategy by dividing each chromosome into 1Mb
domain-level fragments that are further divided into 5 kb DNA
fragments, where we define a 1Mb fragment as a domain
(Methods). The same low-rank matrix completion algorithm is
applied on both the inter-domain hierarchy consisting of 1 Mb
fragments, which leads to a basic structural skeleton, and the

intra-domain hierarchy of 5 kb fragments, which results in intra-
domain structures. Different from other methods that only align
the endpoints of domain fragments34 or whose refinement
processes are dominated by intra-domain distances35, an iterative
rotation algorithm along the three spatial directions is developed
to assemble intra-domain structures into the inter-domain
skeleton, by aligning all measured off-diagonal distances so as
to maximize the consistency with inter-domain 5 kb-resolution
Hi-C contacts (Supplementary Fig. 3 and Methods section). At
convergence, the iterative rotation algorithm leads to the full
high-resolution structures for each chromosome.

FLAMINGO has been applied on the normalized Hi-C datasets
from six human cell-types (GSE6352510) to generate 3D structures
for chromosomes 1–22 and X at 5 kb-resolution (Supplementary
Fig. 1), which are the largest resources of reconstructed 3D
structures for the human genome at high-resolution (https://github.
com/wangjr03/FLAMINGO). For example, at 5 kb-resolution,
chromosome 1 contains 44,027 DNA fragments, excluding the
centromere and telomere regions, and 94.5% entries of the observed
distance matrix in GM12878 are missing data. The structure of
chromosome 1 can be predicted quickly by FLAMINGO (Fig. 1b).
The two types of chromatin compartments (A/B) are organized into
separable positions in the predicted structure, consistent with the
polarized architecture observed from the multiplexed FISH14. By
zooming into the high-resolution structure, predicted loop
structures are found corresponding to previously annotated TADs
(Fig. 1b), where the pairs of CTCF-associated Hi-C loop anchors
(CTCF-CTCF pairs) are predicted with significantly shorter spatial
distances, compared to genomic-distance controlled pairs in two
cases: (1) pairs between a CTCF-anchor and a random anchor with
the same genomic separation (CTCF-random pairs, Supplementary
Fig. 1 boxplot, right, p-value= 5.21 × 10−4, one-sided Wilcoxon
test), and (2) pairs between random anchors with the same genomic
separation (random-random pairs, Supplementary Fig. 1 boxplot,
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Fig. 1 FLAMINGO reconstructs high-resolution 3D genome structures from Hi-C data. a Schematic figure of FLAMINGO. Biologically, the distance matrix
(size N by N) is induced by the 3D coordinate matrix of DNA fragments (size N by 3), which guarantees that the rank of the distance matrix is no more
than five (upper panel). The low-rank property suggests the potential of information compression (N2 entries to 5N entries), and enables FLAMINGO to
efficiently reconstruct structures from incomplete distance matrices and perform superiorly against large portions of missing data. Equipped with high
scalability, FLAMINGO can quickly predict the optimal coordinate matrix that reproduces the observed distances from Hi-C data (middle panel), leading to
the high-resolution 3D genome structure and the completed distance matrix (lower panel). b Reconstructed 5 kb-resolution structure of chromosome 1 in
the human genome by FLAMINGO. Chromatin compartments (A: orange; B: blue) demonstrate polarized positioning in the predicted structure. A
representative example of predicted loop structures is shown in the zoom-in view, where both anchors interact with each other (supported by ChIA-PET
interactions) and are bound by CTCF and Rad21. Color gradients represent consecutive TADs within each type of compartments.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30270-2 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2645 | https://doi.org/10.1038/s41467-022-30270-2 |www.nature.com/naturecommunications 3

https://github.com/wangjr03/FLAMINGO
https://github.com/wangjr03/FLAMINGO
www.nature.com/naturecommunications
www.nature.com/naturecommunications


left, p-value= 2.78 × 10−5, one-sided Wilcoxon test). In addition,
FLAMINGO has also generated 3D chromosomal structures at
1 kb-resolution in GM12878 for all chromosomes (Supplementary
Fig. 2), which represent spatial reconstructions with the highest
resolution to date. Moreover, FLAMINGO is robust to the choice of
conversion factors for converting interaction frequency to distance,
where the conversion factor is chosen within the range suggested by
previous studies14,28 (Supplementary Fig. 4).

Benchmark performance based on simulated structures. The
performance of FLAMINGO was benchmarked on simulated
structures. The distance matrix generated from the benchmark
structure was randomly down-sampled and then mixed with
noise (Fig. 2a and Methods section). By applying FLAMINGO on
the noisy incomplete distance matrices, the reconstructed 3D
structures can be identified with fast convergence (Supplementary
Fig. 5), and they are in strong agreement with the original
benchmark structures (relative error < 0.03 and correlation
> 0.999) (Fig. 2b). In addition, the accuracy is robust against a

wide range of down-sampling rates and different levels of noise
(Fig. 2c, d and Supplementary Fig. 5, correlation > 0.999),
demonstrating that FLAMINGO is capable of handling missing
data. The high accuracy is also found to be robust when FLA-
MINGO is applied to a series of simulated structures with dif-
ferent sizes (Supplementary Fig. 6), suggesting the performance is
not affected by the number of genomic loci along chromosomes.
Furthermore, to validate the iterative assembly algorithm for
organizing intra-domain structures, we partitioned the bench-
mark structure into different domains and then reconstructed the
whole structure using the assembly algorithm. The assembled
structures recapitulate the benchmark structure with high accu-
racy (relative error < 0.005, correlation > 0.999) and are inde-
pendent of specific choices of domain partitions (Supplementary
Fig. 7a, b).

Superior reconstruction accuracy across diverse cell-types. The
performance of FLAMINGO on experimental Hi-C data in the
human genome was then systematically evaluated and compared
with the state-of-the-art methods. As demonstrated in Fig. 1b and
Supplementary Fig. 1, FLAMINGO is able to quickly reconstruct
3D chromosome structures at 5 kb-resolution, which are quali-
tatively consistent with both large-scale chromatin properties,
such as compartments and TADs, and small-scale structural
details, such as chromatin loops and CTCF/cohesin bindings. The
predicted structural skeletons (1Mb-resolution) of chromosomes
are strongly supported by results from both Hi-C (average cor-
relation= 0.95, Supplementary Fig. 8a) and FISH14 (average
correlation= 0.80, Supplementary Fig. 8b and Supplementary
Note 1), consistently higher than other methods. The recon-
structed structures also vary across different cell-types, consistent
with cell-type-specific chromatin contact patterns from Hi-C
(Supplementary Fig. 9). Taking the predicted structure of chro-
mosome 21 in GM12878 as an example, FLAMINGO recon-
structs clear loop structures for TADs and predicts short 3D
distances for inter-TAD chromatin contacts (Fig. 3a). Compared
to the fuzzy input distance matrix converted from Hi-C (Sup-
plementary Fig. 10), the distance matrix derived from the pre-
dicted 3D structure shows substantially improved resolution
(Fig. 3a), and the reconstructed long-range inter-TAD contacts
are supported by experimental Capture-C interactions (Supple-
mentary Fig. 10).

To quantitatively evaluate the genome-wide accuracy at 5 kb-
resolution, the predicted 3D chromosome structures were evaluated
according to their consistency with the observed distance matrices
derived from Hi-C (Methods section). Similarities between
structures are quantified by Spearman correlations, which have
been widely used as accuracy metrics in structure analysis. To note,
achieving high correlations at 5 kb-resolution is a much harder
problem than at low-resolutions (e.g. 100 kb- or 1Mb-resolution),
because Hi-C signals at 5 kb-bins are much noisier and the number
of high-resolution constraints in optimization is huge. Remarkably,
the Spearman correlations between the predicted and observed 3D
distances at 5 kb-resolution, including both diagonal sub-matrices
for intra-domain structures and off-diagonal sub-matrices for inter-
domain structures, are robustly high across all six cell-types (Fig. 3b,
left). The predicted structure in IMR90 shows the highest
correlation (average correlation= 0.603 across 23 chromosomes),
followed by structures predicted in GM12878 and K562 (average
correlations= 0.512 and 0.525 respectively). The Spearman correla-
tions based on off-diagonal points alone (i.e. inter-domain
distances) also show similar levels (correlations > 0.42), except for
HUVEC (correlation= 0.32). These results are significant achieve-
ments, considering the extensive noisy constraints imposed by the
huge number of pairwise distances at 5 kb-resolution. For example,
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Fig. 2 Performance evaluation based on simulations. a Given a benchmark
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sampling rates and mixed with different levels of noise (Noise level 1: low-
level; Noise level 2: high-level; see Methods). The incomplete noisy
distance matrices are used as inputs for FLAMINGO. The reconstructed 3D
structures are compared with the benchmark structure by calculating
relative errors and correlations. b One example of the reconstructed
structure by FLAMINGO (down-sampling rate= 0.5, noise level 1, see
Methods), which aligns with the benchmark structure almost identically
(correlation= 0.9999999, relative error= 0.0037). c, d The performance
of FLAMINGO (relative errors: the y-axis) under various down-sampling
rates and noise levels, with respect to the accuracy of 3D distance matrices
(c) and 3D coordinates of DNA fragments (d). Error bars represent the
standard deviations of relative errors examined based on n= 10
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rate. Data are presented as mean values ±SD. Source data are provided as a
Source Data file.
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in chromosome 1, there are 6.7 × 107 pairs of 5 kb fragments with
measured Hi-C contacts as constraints. Furthermore, the predicted
intra-domain structures demonstrate higher correlations across the
six cell-types (Fig. 3b, right), especially in GM12878, K562, and
IMR90 (average correlation > 0.73). In addition, even at 1 kb-
resolution, the reconstructed 3D structures achieve high correla-
tions with the observed spatial distances for both whole

chromosomal structures and intra-domain structures (Supplemen-
tary Fig. 2, all-points correlations ~0.4 and intra-domain correla-
tions ~0.6). These consistently high correlations indicate that
FLAMINGO is able to capture both long-range genome folding
patterns and detailed structures within domains.

FLAMINGO was then compared with other methods, GEM-
FISH34, ShRec3D33, Hierarchical3DGenome35, ShNeigh38, RPR36,
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Fig. 3 FLAMINGO demonstrates superior accuracy and scalability for high-resolution structure predictions. a The reconstructed structure of
chromosome 21 at 5 kb-resolution (left). The color gradient represents the genomic distance to the centromere (flanking centromere; yellow; flanking telomere:
black). As an example, FLAMINGO recovers the chromatin loop formed by two TADs (chr21:31,375,000–32,985,000; middle), corresponding to inter-TAD
hotspots in the reconstructed 3D distance matrix (right). b Robust performance of FLAMINGO across six cell-types at 5 kb-resolution. Correlations between
predicted and observed distance matrices are calculated for all 5 kb fragments (all-points: blue) and fragments within domains (intra-domain: salmon). Error
bars represent the standard deviations across n= 23 chromosomes. c Performance comparison with the state-of-the-art algorithms based on Hi-C data in
GM12878 at 5 kb-resolution (all-points: left; intra-domain: right). Error bars represent the standard deviations across chromosomes with complete predictions
(n= 23 for FLAMINGO, Hierarchical3Dgenome and SuperRec; n= 10 for ShRec3D; n= 9 for ShNeigh; n= 6 for RPR). GEM-FISH does not have error bars
because it can only complete the prediction for chromosome 21. d Orthogonal chromatin interaction data provides additional evaluation metrics: anchors of
chromatin interactions are expected to have short 3D distances. e–g FLAMINGO predicts significantly shorter distances between anchors of chromatin
interactions profiled by Capture-C (n= 3,692) (e), ChIA-PET (n= 214) (f) and SPRITE (n= 871) (g). The statistical significance (***) is calculated by one-sided
Mann–Whitney test: (e) p-value= 9.4 × 10−25 (orange) and p-value= 7.6 × 10−24 (blue); (f) p-value= 2.8 × 10−22 (orange) and p-value= 5.1 × 10−20 (blue);
(g) p-value= 7.4 × 10−31 (orange) and p-value= 6.5 × 10−42 (blue). The 3D structures of different methods are normalized for fair comparison. The center
lines of boxplots show the median, the upper and lower box limits show the 25th and 75th percentiles respectively. The whiskers extend up to 1.5 times the
interquartile range away from the limits of the boxes. Outliers outside this range were removed from the figure. h One example of chromatin loops predicted by
FLAMINGO for a significant ChIA-PET interaction (red links) linking the KCNA2 promoter (red) with a distal enhancer (orange). i Comparison of the
computational scalability by measuring the runtime (y-axis) as a function of different numbers of genomic loci (x-axis). Source data are provided as a Source
Data file.
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and SuperRec37, which are state-of-the-art and recently developed
algorithms representing different modeling strategies (Methods
section and Supplementary Note 1). Strikingly, FLAMINGO
achieved substantially higher correlations than all the other
methods, for both whole chromosome structures and intra-
domain structures, at 5 kb-resolution (Fig. 3c and Supplementary
Figs. 11 and 12). For example, FLAMINGO achieved a correlation
of 0.53 for whole chromosome structures in GM12878, while the
other methods only achieved correlations below 0.45 (Fig. 3c, left).
Similar advantage of FLAMINGO is also observed when the
performance comparison is restricted to off-diagonal long-range
inter-domain distances (Supplementary Fig. 11). Moreover, focus-
ing on detailed intra-domain structures, FLAMINGO achieved a
correlation of 0.76 in GM12878, while the other methods only
achieved correlations below 0.6 (Fig. 3c, right). Similarly,
FLAMINGO outperformed across all the other five cell-types at
5 kb-resolution (Supplementary Fig. 12).

To further leverage orthogonal data for performance compar-
isons, high-resolution chromatin interactions profiled by Capture-
C45, ChIA-PET50, and SPRITE46 experiments were used to
evaluate whether the reconstructed structures assign short 3D
distances between interacting anchors (Fig. 3d, Methods section).
Remarkably, FLAMINGO consistently demonstrated higher accu-
racy than other methods across all three sets of experimental
metrics (Fig. 3e–g). The reconstructed structures from FLA-
MINGO assign statistically significant shorter 3D distances
between anchors of chromatin interactions (p–value < 2 × 10−16,
one-sided Mann–Whitney test), while other methods are less likely
to capture the structural proximity for chromatin interactions. As
an example (Fig. 3h), a long-range ChIA-PET interaction
(~130 kb) on chromosome 1 links a distal enhancer element (the
anchor 2) to the promoter region of gene KCNA2 (the anchor 1),
where both anchors are bound by CTCF and Rad21. Interestingly,
in the reconstructed high-resolution structure by FLAMINGO, the
enhancer and the promoter are in close proximity with each other
and the genomic region in between forms a smooth chromatin
loop. As comparison, the Hierarchical3DGenome algorithm does
not assign a short spatial distance between the interacting enhancer
and the KCNA2 promoter (Supplementary Fig. 13a). Additional
examples can be found in Supplementary Fig. 13b, c. These results
not only provide rigorous evidence to validate the superior
accuracy, but they also underscore the impacts of FLAMINGO
on decoding the mechanisms underlying orchestrated gene
regulation in 3D space.

Advanced scalability for large-scale chromosome conforma-
tions. High-resolution 3D structure modeling places stringent
demands for performance, reliability, and more importantly,
scalability on algorithms, since a large number of genomic loci
and pairwise distances are used in the optimization procedure.
Based on efficient information compression and matrix compu-
tation, the computational complexity of FLAMINGO is O(kN2),
where N is the number of genomic loci, such as the number of
5 kb DNA fragments, and k is a small constant (Supplementary
Note 1). For example, it only took 42 min and 2.2GB memory for
FLAMINGO to reconstruct the 5 kb-resolution 3D structure for
chromosome 1, the largest chromosome in the human genome
(Methods, Supplementary Note 1). For chromosomes 2–22 and
chromosome X, FLAMINGO was able to predict their structures
even faster (Supplementary Fig. 14a). As comparison, the state-
of-the-art algorithms all have inferior scalability. The running
times for Hierarchical3Dgenome and ShRec3D increase rapidly
when the number of genomic loci becomes large (Fig. 3i), while
the other methods (i.e. SuperRec, ShNeigh, RPR, and GEM-FISH)
are even slower (Supplementary Fig. 14b). Most of these methods

can only make predictions for short chromosomes (e.g. chr12–22)
at 5 kb-resolution (Supplementary Note 1). Furthermore, because
FLAMINGO can accurately predict the 3D structures based on a
small subset of pairwise distances, the scalability of FLAMINGO
can be improved further by down-sampling the distance matrix
from Hi-C (Supplementary Fig. 14c). In addition, based on our
tests of 1 kb-resolution reconstruction for all chromosomes in
GM12878 (Supplementary Fig. 2), FLAMINGO can generate
complete predictions for large chromosomes fast. For the largest
chromosome (chr1), it takes <25 h using 200GB memory to
reconstruct the 1 kb-resolution 3D structure. Therefore, FLA-
MINGO provides drastic improvements on the computational
scalability, which is much desired since a large number of Hi-C
datasets are to be generated in the near future51,52.

Analysis of multi-way interactions and QTLs by FLAMINGO
beyond 2D Hi-C contact maps. To demonstrate the biological
discoveries enabled by FLAMINGO that are not directly visible
from 2D contact maps, the reconstructed 3D chromatin struc-
tures are used to resolve two important questions. First, we
analyzed the predicted 3D structure’s capability of capturing
multi-way chromatin interactions. Spatially coordinated mole-
cular processes frequently form multi-way interactions (e.g. 3-
way, 4-way, or 5-way interactions) in 3D space46,53,54, which play
pivotal roles in coupled transcriptional and epigenetic activities55.
However, Hi-C contact maps can only reveal pairwise 2-way
chromatin interactions. Moreover, the high rates of missing data
in Hi-C result in large genomic regions with almost no measured
interactions, further limiting the capability of finding multi-way
interactions from 2D contact maps. Since FLAMINGO recovers
the whole spatial structure, we hypothesize that the predicted 3D
structures can improve the identification of multi-way interac-
tions. The multi-way chromatin interactions profiled by SPRITE
experiments in GM1287846 are used to justify this hypothesis. In
addition to pairwise interacting anchors (Fig. 3g), the
GM12878 structure predicted by FLAMINGO consistently
assigns significantly shorter spatial distances among anchors of
multi-way interactions in SPRITE (Fig. 4a, p-value < 10−2, one-
sided Wilcoxon test), compared to genomic-distance controlled
random samples, suggesting the predicted 3D structures are in
strong agreement with the higher-order organizations of multi-
way interactions. More importantly, compared to using the Hi-C
contact map derived distance matrix, the predicted 3D structure
by FLAMINGO can capture more multi-way interactions (Fig. 4b,
Supplementary Fig. 15a, b). Here, a multi-way interaction is
considered to be captured if all interacting anchors are located in
the same 3D spatial neighborhood, where all pairwise spatial
distances between anchors are smaller than a specified threshold.
As shown in Fig. 4b, across a wide range of thresholds on nor-
malized spatial distances, FLAMINGO consistently demonstrates
higher capabilities of discovering more 3-way interactions. Even if
relaxed distance thresholds are used, 28.5% 3-way interactions
from SPRITE experiments cannot be identified based on Hi-C
contact map derived distance matrix, while being captured by
FLAMINGO (Fig. 4b). It is because these 3-way interactions
involve distal interacting anchors across very long-range genomic
regions (median genomic distance= 2.32Mb), where Hi-C con-
tact maps suffer from high rates of missing data. Similar results
are also found for 4-way and 5-way interactions (Supplementary
Fig. 15a, b), where FLAMINGO achieves much higher advan-
tages. Fig. 4c shows a representative example of a 3-way inter-
action that has been identified by SPRITE experiments46. The
three interacting anchors are brought into spatial proximity based
on the predicted loop structures, which are also highlighted in the
predicted distance matrix (Fig. 4c, right). As comparison, the
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distance matrix based on the Hi-C contact map shows no signals
of spatial closeness for the three anchors. As another interesting
example, a candidate 4-way interaction mediated by CTCF across
a 12Mb genomic region in chr1 is discovered by FLAMINGO,
while the Hi-C based distance matrix shows no spatial patterns
(Supplementary Fig. 15c). These results suggest that, by recon-
structing 3D spatial structures, FLAMINGO can help to identify
multi-way chromatin interactions and reveal higher-order gen-
ome organizations, beyond 2D Hi-C contact maps.

Second, we analyzed the predicted 3D structure’s utility in
interpreting genetic associations, such as long-range expression
QTLs (eQTL) and distal histone QTLs (hQTL) in matched cell-
types or tissues. QTLs statistically link genetic variants to molecular
phenotypes and facilitate understandings of disease genetics. But it
has been challenging to delineate the underlying molecular

mechanisms of genetic associations. Spatial proximity between
genetic variants and target genes or histone modification peaks
have been suggested to mediate genetic associations56,57. Similar to
the approach of multi-way chromatin interaction analysis, the
predicted 3D structure is evaluated with respect to its ability of
interpreting QTLs58–62 based on predicted short spatial distances,
compared to using the Hi-C contact map derived distance matrix.
Interestingly, across a wide range of thresholds on normalized
spatial distances, substantially higher fractions of eQTLs and
hQTLs are found to have their genetically associated loci (i.e. SNP-
promoter or SNP-histone pairs) placed into small 3D neighbor-
hoods by FLAMINGO (Supplementary Fig. 16). Focusing on the
long-range eQTLs61 whose SNPs and target gene promoters are
>900 kb away, these SNP-promoter pairs are found to be assigned
with significantly shorter spatial distances, compared to genomic-
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proximity. Source data are provided as a Source Data file.
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distance controlled random pairs (p-value= 1.3 × 10−3, one-sided
Wilcoxon test, Fig. 4d), suggesting the effectiveness of FLAMINGO
in interpreting genetic associations. For each specific long-range
eQTL (>900 kb), a random set of SNP-promoter pairs with the
same genomic-distance from the same chromosome is generated
(Methods). Among these long-range eQTLs (n= 1227), 671 of
them (54.7%) are predicted to have spatial distances that are at
least 2-fold shorter than the median spatial distances of genomic-
distance controlled random pairs. As a representative example
(Fig. 4e), the SNP rs77725975 is a significant long-range eQTL to
the gene FERMT3 (p-value= 2.6 × 10−4) in whole blood cells61

with a genomic distance of 983 kb. This eQTL is placed into 3D
proximity by FLAMINGO in GM12878, where the SNP
rs77725975 and FERMT3’s promoter are located spatially close
to each other, while the Hi-C based distance matrix fails to provide
structural basis to interpret this eQTL. Similarly, distal hQTLs62

are also found to be assigned with significantly shorter spatial
distances by FLAMINGO, compared to genomic-distance con-
trolled random pairs (p-value= 2.84 × 10−3, one-sided Wilcoxon
test, Fig. 4f). Among the distal hQTLs (n= 20,950), 11,797 of
them (56.3%) are predicted to have spatial distances that are at
least 2-fold shorter than the median spatial distances of genomic-
distance controlled random pairs. As shown in Fig. 4g for a set of
distal hQTLs (p-value < 1.8 × 10−4), FLAMINGO reconstructs a
loop structure which brings the SNPs close to the specific target
H3K4me1 peak that is ~75 kb away. In contrast, the distance
matrix derived from Hi-C contact maps shows no signal of long-
range interactions in this region. These results strongly support the
FLAMINGO’s ability of interpreting the potential mechanisms of
distal QTLs by leveraging the reconstructed spatial proximity
information, a critical step further to decipher genetic associations
with molecular phenotypes.

Geometrical property of chromatin structures. To gain addi-
tional insights into genome folding, 3D geometrical metrics are
needed to describe the complex shapes of chromatin structures,
which cannot be directly obtained from Hi-C contact maps. The
reconstructed 3D structures provide a systematic platform for
dissecting geometrical signatures of chromatin organization. To
do this, we calculated the curvatures for every 5 kb genomic bin
along the 3D curves of chromosomes. A larger curvature around a
genomic region indicates the chromatin bends more sharply,
while a smaller curvature suggests the region is relatively straight.
Interestingly, the curvatures around TAD boundaries show sig-
nificantly lower curvature than flanking genomic regions (Fig. 5a,
p-value= 2.2 × 10−16, one-sided Mann–Whitney test). Con-
sidering the loop extrusion model16, it suggests that, when a loop
is established and the extrusion complex stops sliding, the DNA
located around the extrusion complex is maintained rigid. In
addition, genomic regions with large curvatures show sig-
nificantly higher GC-contents (Fig. 5b), consistent with the
increased flexibility of GC-rich DNA sequences63,64 that may
facilitate intra-TAD interactions.

Reference structure to interpret single-cell variabilities. Based
on observations of recent single-cell Hi-C and imaging data65–68,
chromatin structure is dynamic and demonstrates variabilities
across individual cells. The optimal consensus structure recon-
structed from bulk tissue Hi-C by FLAMINGO thus provides a
reference of chromatin folding aggregated from a pool of cells,
which can be used as a basis to delineate and interpret the
ensemble of chromatin configurations69,70. We compared FLA-
MINGO’s predicted consensus structure to the single-cell struc-
tures profiled by diffraction-limited 3D imaging68 to analyze their
relationship. The image-based dataset68 contains an ensemble of

single-cell structures for a specific genomic region in chr21 at
30 kb-resolution. The averaged structure is calculated from the
ensemble and is then compared with FLAMINGO’s prediction.
Fig. 5c shows the comparison for a loop structure in this region.
Both 5 kb- and 30 kb-resolution predictions from FLAMINGO
align well with the averaged structure of single cells (Fig. 5c, left).
More importantly, the differences between these structures are
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Fig. 5 Geometrical signatures of predicted chromatin configuration and
its comparison to single-cell structures. a TAD boundaries demonstrate
lower curvatures than flanking genomic regions. The center lines of
boxplots (n= 11,208) show the median of normalized curvatures, the upper
and lower box limits show the 25th and 75th percentiles respectively. The
whiskers extend up to 1.5 times the interquartile range away from the
limits of the boxes. Outliers outside this range were removed from the
figure. b The regions with high curvatures show higher GC-content
compared with genomic background. One-sided Mann–Whitney test
***p-value= 2.7 × 10−29 (green, n= 5261) and p-value= 3.4 × 10−34 (blue,
n= 5261). The center lines of boxplots (n= 5261) show the median, the
upper and lower box limits show the 25th and 75th percentiles respectively.
The whiskers extend up to 1.5 times the interquartile range away from the
limits of the boxes. Outliers outside this range were removed from the
figure. c The consensus structure predicted by FLAMINGO consistently
aligns with the average structure across single cells in K562. Right: the
errors between the predicted consensus structure and the average
structure (blue) are smaller than the intrinsic standard deviations among
single cells (orange). d The consensus structure predicted by FLAMINGO is
in strong agreement with the average structure across the subset of cells in
cluster 2. Right: the errors between the predicted consensus structure and
the cluster-2 specific average structure (blue) are smaller than the intrinsic
standard deviations among single cells in cluster 2 (orange). Source data
are provided as a Source Data file.
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consistently smaller than the intrinsic standard deviations among
single-cells within the ensemble (Fig. 5c, right), suggesting that
the consensus structure can sufficiently quantify the major pat-
terns of structural configurations. In addition, it suggests that the
distance information derived from Hi-C contact frequency is
overall consistent with the spatial configurations obtained from
imaging techniques. To further analyze the structural variations
relative to the consensus structure, the single-cell structures are
classified into five different clusters, where individual cells
belonging to the same clusters have similar structures. Structural
variabilities are observed across distinct single-cell clusters.
Interestingly, for the subset of cells in cluster 2, the cluster-
specific average structure is highly similar to the predicted con-
sensus structure (Fig. 5d, left), with the differences largely smaller
than the intrinsic standard deviations among single cells within
this cluster (Fig. 5d, right), further supporting the biological
relevance of the predicted structure. The other four clusters also
similarly demonstrate the overall folding patterns, each of which
contains specific variations relative to the predicted consensus
structure (Supplementary Fig. 17). Across all five clusters, the
consensus structure consistently shows smaller differences to the
cluster-specific average structures, than the intrinsic standard
deviations of single cells within each cluster (Supplementary
Fig. 17). These results suggest that the predicted consensus
structures by FLAMINGO can facilitate improved interpretation
of the structural heterogeneity in ensembles of single-cell
structures.

Robust performance to handle missing data in Hi-C datasets.
Due to limited sequencing depths of typical Hi-C experiments
and low mappabilities of certain genomic regions, the observed
distance matrices from Hi-C usually contain large portions of
missing data10,71, which present a very challenging problem for
high-resolution modeling. For instance, considering the same Hi-
C dataset for chromosome 1, the rate of missing data is 21% at
100 kb-resolution but quickly increases to 94.5% at 5 kb-resolu-
tion. Overall, the rate of missing data is >80% across chromo-
somes 1–22 and X in the human genome at 5 kb-resolution
(Supplementary Fig. 14a). By incorporating the low-rank prop-
erty of the distance matrix into the optimization procedure,
FLAMINGO has the superior advantage of handling high rates of
missing data.

To demonstrate FLAMINGO’s capability of handling missing
data, the observed distances derived from Hi-C were further
down-sampled to check whether FLAMINGO still can reproduce
the same high-resolution structures (Methods). As a representa-
tive example on chromosome 21 (chr21:34,000,000–35,000,000),
FLAMINGO was able to robustly reconstruct the structure even if
50% of the observed pairwise distances from Hi-C was further
down-sampled (Fig. 6a). By further down-sampling the dataset to
the levels with only 20% and 5% of observed data remaining,
FLAMINGO was still able to infer the loop structures formed by
the four TADs in this region, with slightly increased intra-TAD
fluctuations. In contrast, Hierarchical3DGenome predicted fuzzy
structures with substantial fluctuations across all down-sampling
rates. In addition, specific intra-TAD chromatin contacts were
also captured by FLAMINGO, as shown by the specific hotspots
within the TAD blocks in the predicted distance matrices at 50%
and 70% of down-sampling rates (Fig. 6a), while Hierarchical3D-
Genome only generated vague distance matrices without
detailed structures within TAD blocks. More interestingly,
FLAMINGO was also able to predict the short 3D distance for
long-range inter-TAD contacts in the loop structure using only
70% of observed data (p-value= 0.038, permutation test, genomic
distance controlled) (Fig. 6b), while Hierarchical3DGenome

predicted a much longer distance (p-value= 0.186). The
predicted inter-TAD distance is in agreement with the original
Hi-C distance matrix (Fig. 6c) and demonstrates a higher level of
specificity, although it was inferred from down-sampled data. As
additional justifications of the predicted structure with missing
data (down-sampling rate= 70% or 50%), the specific intra- and
inter-TAD chromatin contacts recovered by FLAMINGO, but not
predicted by Hierarchical3DGenome, are supported by CTCF
and cohesin bindings, along with convergent pairs of CTCF
motifs (Fig. 6d, Supplementary Fig. 18a, and Supplementary
Note 1).

As global quantitative evaluations, the recovered 3D structures
and predicted distances by FLAMINGO using different down-
sampled input matrices are compared with the originally
observed distances. Strikingly, for the whole 5 kb-resolution
distance matrix including both inter- and intra-domain struc-
tures, the correlation coefficients remain stable and high (~0.49),
until <30% of observed distances from Hi-C are kept for
predictions (Supplementary Fig. 18b). Focusing on detailed
intra-domain structures, the correlation coefficients still remain
to be robustly high (>0.74), until <50% of observed distances are
kept (Fig. 6e). Across the wide range of down-sampling rates,
FLAMINGO robustly achieves higher accuracy than other
algorithms, based on comparisons using observed Hi-C contact
maps (Fig. 6e and Supplementary Fig. 18b) and also other
chromatin interaction datasets, such as Capture-C, ChIA-PET,
and SPRITE (Supplementary Fig. 18c–e). For example (Fig. 6e),
using only 10% of observed data, FLAMINGO achieved better
accuracy than the state-of-the-art method, Hierarchical3DGen-
ome, which used all of the observed data (Fig. 3c). These results
clearly demonstrate FLAMINGO’s ability to accurately reproduce
high-resolution structures based on Hi-C with large fractions of
missing data, which will significantly relax the demand of
sequencing depths in Hi-C experiments and thus promote wide
implementations of Hi-C in practice.

Cross cell-type prediction of 3D structures. Currently experi-
mental Hi-C data have been collected only for a limited number
of cell-types, due to the cost of the experiments or the difficulty of
collecting sufficient numbers of cells for certain cell-types71. To
enlarge the coverage of cell-types for 3D genome modeling,
FLAMINGO is further extended to iFLAMINGO, an integrative
version of the algorithm that can make cross cell-type predictions.
To predict the 3D structure for a cell-type without Hi-C data,
defined as target cell-type, iFLAMINGO combines two pieces of
information (Fig. 7a and Methods section): (1) Hi-C data from
another cell-type, defined as source cell-type, which provides the
overall structural backbone of the genome; and (2) chromatin
accessibility data, such as DNase-seq, from the target cell-type,
which provides the cell-type-specific 1D epigenomic landscape.
DNase-seq data are widely available across a large panel of cell-
types and can characterize chromatin accessibilities at base pair
resolution6. Since the levels of DNase-seq signals of a pair of
genomic loci are associated with their 3D distances, for instance,
co-accessible loci being significantly closer to each other in 3D
space (Supplementary Fig. 19a), a regression model is built to
impute approximate 3D distances based on DNase-seq signals in
the target cell-type (Supplementary Fig. 19b). The imputed cell-
type-specific distances are then incorporated into iFLAMINGO to
predict the 3D genome structure in the target cell-type (Methods
section).

iFLAMINGO was applied on the Hi-C data from GM12878
to predict the 3D genome structure in K562 by integrating
K562-specific DNase-seq data into the modeling process.
The resulting structure of chromosome 21 is shown in Fig. 7a
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(GM12878->K562). The 3D structure predicted based on
GM12878 Hi-C alone is shown as the negative control, and
the structure predicted directly from K562 Hi-C is included
as the positive control (Fig. 7a). The GM12878->K562 structure
not only captures the global structural signatures of the

K562 genome but also reconstructs detailed loop structures
more similar to K562, both of which are highlighted in Fig. 7a.
By comparing with K562-specific chromatin interactions
profiled by independent ChIA-PET experiments72, the pre-
dicted 3D distances between interaction anchors from the
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show the average correlations based on n= 10 independently down-sampled input matrices and error bars correspond to the standard deviations across the ten
random samples. Smaller down-sampling rates represent larger fractions of missing data. Source data are provided as a Source Data file.
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GM12878->K562 structure are significantly shorter than the
distances from the GM12878 structure (Fig. 7b, p-value=
0.0003, one-sided Mann–Whitney test), suggesting the quanti-
tatively improved similarity between the GM12878->K562 and
K562 structures. Furthermore, the predicted spatial distances in
the GM12878->K562 structure achieve a higher correlation
with the experimentally-derived spatial distances of K562 Hi-C
(correlation= 0.62, Supplementary Fig. 19c), compared to the
correlation achieved by the basic experimentally-derived spatial
distances of GM12878 Hi-C with the experimentally-derived
spatial distances of K562 Hi-C (correlation= 0.55), suggesting
that the predicted GM12878->K562 structure by iFLAMINGO
captures the cell-type specificity of K562.

iFLAMINGO was further applied on all source-target pairs
from the six cell-types with Hi-C data, and the performance was
evaluated based on the correlations between predicted and
observed distance matrices in target cell-types (Methods section).
As comparison, the optimal structures predicted by FLAMINGO
without using DNase-seq data are included as negative controls.
Among all the 30 source-target cell-type pairs, iFLAMINGO
achieved a higher accuracy for almost all the cross cell-type
predictions (Supplementary Fig. 20), not only for the whole
distance matrices (Fig. 7c) but also for intra-domain structures
(Fig. 7d). These consistent improvements underscore iFLAMIN-
GO’s ability of cross cell-type structure predictions and highlight
the importance of 1D epigenomic information in 3D genome
modeling.

To further demonstrate iFLAMINGO’s potential on enlar-
ging the cell-type coverage for 3D structure reconstructions, the
accuracy of cross cell-type 3D predictions is plotted as a
function of 1D epigenomic similarities between the source and
target cell-types (Fig. 7e). Using GM12878 or K562 as source
cell-types, the accuracy of predicted intra-domain 3D structures
in target cell-types is significantly associated with the 1D
epigenomic correlations to the source cell-types (p-value=
0.02). Based on the fitted linear function, to obtain a cross cell-
type prediction with accuracy>0.6, which is a level already
higher than the state-of-the-art methods using Hi-C directly
from the target cell-types (Fig. 3c), iFLAMINGO only requires
Hi-C data available from a source cell-type with medium 1D
epigenomic similarities (correlation > 0.65). Combined with the
ongoing experimental efforts of chromatin characterizations,
such as the 4D Nucleome Consortium51, iFLAMINGO will
substantially expand the catalog of cell-types with high-
resolution 3D structures.

Boost the resolution of 3D structures from low-resolution Hi-C.
Since another limiting factor of experimental Hi-C data is the
resolution of contact maps being low73,74, a tradeoff of genome-
wide coverage of sequencing reads, it is much desired to predict
high-resolution 3D structures from low-resolution contact maps of
Hi-C. By incorporating high-resolution 1D epigenomic data, such
as DNase-seq, iFLAMINGO is able to boost the resolution of the
predicted 3D genome structures (Fig. 8a and Supplementary
Fig. 19). After splitting low-resolution DNA fragments into high-
resolution bins, DNase-seq signals help delineate the distance
ambiguity across consecutive bins and fine-tune the structures
through optimization (Methods section).

As a representative example, FLAMINGO was applied to the
25 kb-resolution distance matrix for chromosome 10, resulting in
a 25 kb-resolution 3D structure (Fig. 8b, left). On the other hand,
based on the 5 kb-resolution distance matrix, the 5 kb-resolution
structure was generated by FLAMINGO as the benchmark
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cell-type (left). An example of the 3D structure of chromosome 21 for K562
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structural properties are highlighted by arrows where iFLAMINGO correctly
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three structures (orange and purple). b Comparison of 3D distances
between interacting ChIA-PET anchors based on the predicted 3D
structures of GM12878 (blue), GM12878->K562 (orange) and K562 (pink).
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this range were removed from the figure. c, d Performance comparisons
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y-axis) for cross cell-type predictions of intra-domain structures as a
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on cross cell-type predictions from GM12878 and K562 (p-value= 0.02,
n= 12, two-sided Student’s t-test). Source data are provided as a Source
Data file.
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structure (Fig. 8b, right). Finally, applying iFLAMINGO on the
25 kb-resolution distance matrix, along with the DNase-seq data,
led to a 5 kb-resolution structure, the 25 kb->5 kb structure
(Fig. 8b, middle), which shows increased similarity to the 5 kb-
resolution benchmark structure. The 25 kb->5 kb structure not
only captures large-scale structural properties but also recovers
the detailed high-resolution loops in the 5 kb-resolution structure,
which are missing in the 25 kb-resolution structure (Fig. 8b).

To quantitatively evaluate the accuracy of boosted resolution
genome-wide, a series of low-resolution distance matrices, at
10 kb, 25 kb, and 50 kb resolution, respectively, were generated
from the same Hi-C datasets. The reconstructed structures were
then compared with the original 5 kb-resolution distance matrix.
Across all the tests, iFLAMINGO achieved the highest correla-
tions to the benchmark structures (Fig. 8c–e). For instance, using
10 kb-resolution distance matrices as inputs, iFLAMINGO
achieved an average correlation of 0.37 for the whole recon-
structed 5 kb-resolution matrices and an average correlation of
0.79 for intra-domain matrices, both of which are higher than the
state-of-the-art methods even when they were directly applied on
5 kb-resolution input matrices (Fig. 3c). Therefore, iFLAMINGO
not only substantially improves the information extraction from
low-resolution Hi-C data but will also widely facilitate the
implementation of Hi-C protocols without stringent constraints
on resolution.

Discussion
In this study, we have developed an algorithm, FLAMINGO, to
reconstruct high-resolution spatial conformations for large gen-
omes in 3D space. Using low-rank matrix completion techniques,
FLAMINGO is able to substantially improve data mining effi-
ciency for Hi-C experiments. Based on a series of rigorous per-
formance evaluations, FLAMINGO consistently demonstrates
superior accuracy and advanced scalability compared to other
state-of-the-art methods. The strong agreements between the
predicted genome architectures and orthogonal experimental
evidence, such as Capture-C, ChIA-PET, and SPRITE, further
highlight FLAMINGO’s ability of capturing high-resolution
spatial signatures of chromatin. Biologically, the reconstructed
3D structures facilitate additional discoveries and understandings,
beyond 2D contact maps, such as higher efficiency of identifying
multi-way chromatin interactions, interpretation of long-range
QTLs, geometrical properties associated with TAD boundaries,
and providing structural references to analyze single-cell vari-
abilities of chromatin folding. Furthermore, FLAMINGO, along
with its integrative version iFLAMINGO, addresses four funda-
mental challenges in 3D genome modeling: (1) high scalability to
reconstruct high-resolution 3D structures for all chromosomes
from massive Hi-C datasets; (2) robust performance to handle
large portions of missing data in Hi-C; (3) accurate cross cell-
type prediction of 3D structures for cell-types lacking Hi-C
datasets; and (4) boosting the resolution of reconstructed 3D
structures from low-resolution Hi-C contact maps. Given all
these advantages, FLAMINGO will be an important tool for both
computational and experimental studies on 3D genomes. The
reconstructed high-resolution structures across different cell-
types will significantly facilitate biological insights into the spatial
organization of chromatin and its underlying mechanisms.

As one of the major benefits of FLAMINGO, the generated
high-resolution 3D structures can serve as a platform to under-
stand how transcriptional regulation is modulated in 3D space.
Overlaid with functional genomics data, FLAMINGO predictions
provide high-resolution structural supports for long-range reg-
ulatory links between enhancers and promoters (Fig. 3e–h), and
recover the short 3D distances between CTCF-associated
boundaries of chromatin loops (Fig. 6a–d and Supplementary
Fig. 1). Moreover, beyond 2D chromatin contact maps, FLA-
MINGO can help to analyze higher-order multi-way interactions
(Fig. 4a–c) and long-range cis-regulatory QTLs (Fig. 4d–g), and
characterize geometrical signatures of chromatin shapes
(Fig. 5a–b). In recent years, deep learning models have been
developed to predict regulatory interactions in gene regulation
and TAD organization from DNA sequences75,76. Since
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Fig. 8 iFLAMINGO predicts high-resolution 3D structures from low-
resolution Hi-C matrix by integrating 1D epigenomics datasets. a Scheme
of the high-resolution 3D structure prediction. Low-resolution distance
matrix from Hi-C for N large DNA fragments of size 10 kb, are divided into
smaller DNA fragments of size 5 kb, resulting in a 2N by 2N distance
matrix, where the small DNA fragments inherit the same distances to other
fragments from the original large fragment. The high-resolution 1D
epigenomics signals in each small DNA fragment are integrated into
iFLAMINGO to predict the high-resolution 3D genome structures. As one
example, the 3D structure of chromosome 5 at 5 kb-resolution predicted
from the 10 kb-resolution distance matrix is shown. b Example of the
predicted 5 kb-resolution 3D structure of chromosome 10 from 25 kb-
resolution distance matrix (middle, 25 kb->5 kb), compared with the 25 kb-
resolution structure (left) and the 5 kb-resolution structure (right). The
large-scale structural differences are highlighted by red boxes. The
comparisons of detailed intra-domain structures (red) are shown in inset.
The red arrows represent the boundaries. c–e Performance comparison of
predicting 5 kb-resolution structures from 10 kb-resolution (c), 25 kb-
resolution (d), and 50 kb-resolution distance matrices (e). Correlations
between predicted and observed 5 kb-resolution distances are calculated
for all DNA fragments, i.e. all-points, and for fragments within the same
domains, i.e. intra-domain. The bar plot shows the average correlations
across n= 23 chromosomes and the error bars show the standard
deviations across 23 chromosomes. Data are presented as mean values
±SD. Source data are provided as a Source Data file.
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FLAMINGO and deep learning models have complementary
algorithmic strengths, it is expected to gain system-level knowl-
edge on the relationship between gene regulation and chromatin
organization by combining FLAMINGO with these deep learning
algorithms.

The optimized consensus structure provides an efficient
representation of the 3D genome for biologists with the advantage
of high interpretability. Another type of methods aim to infer
variations of the underlying chromatin structures, namely
ensemble structures, using either polymer simulation models77–79

or machine learning algorithms69,70. While modeling structural
variations is important, it is sometimes difficult to biologically
interpret an individual structure from a pool of predictions and to
delineate experimental cell-to-cell variations from the increased
noisy fluctuations. As shown in the comparisons between the
reconstructed structure and the ensemble of single-cell structures,
including both ensemble average structures and variable cluster-
specific structures (Fig. 5c, d), FLAMINGO’s predictions can
serve as effective reference structures to standardize the relative
variabilities across single cells. Equipped with the complementary
advantages of accuracy and robustness against noise, FLA-
MINGO can help the ensemble-structure learning algorithms to
improve both the predictive performance and the interpretation
of structures.

There are currently two limitations of FLAMINGO, which
require future methodology developments. First, although the
transformation function from Hi-C contact frequency to spatial
distance has been justified for intra-chromosomal contacts by
previous studies14,34 and our analyses (Fig. 5c–d, Supplementary
Fig. 4, and Supplementary Fig. 17), there is currently no sys-
tematic estimation of the function for inter-chromosomal con-
tacts. Thus, FLAMINGO can only reconstruct 3D structures for
each chromosome separately, while it is difficult to assemble the
structure for the whole genome including inter-chromosomal
distances. Similarly, due to the lack of sequencing reads, cen-
tromere and telomere regions are excluded from the recon-
struction of spatial chromosome conformations. These regions,
especially centromere regions that have been demonstrated to be
important in regulating chromatin organization by previous
studies69,80, are components that should not be excluded if
organizations for the whole genome are to be assembled. In order
to achieve complete reconstructions of 3D genome, future algo-
rithmic developments will be needed to overcome this limitation.
Second, the consensus structure predicted by FLAMINGO
represents the population-average architecture from large num-
bers of cells, which can not capture the highly dynamic property
of 3D chromatin81,82 (such as the dynamic chromatin loops and
TADs). The multi-scale spatial conformation of chromosomes
varies from cell to cell83 and the variability plays important roles
in epigenetics, gene regulation, and DNA damage repair84. A
series of ensemble-structure prediction algorithms have been
developed to explore the dynamic conformations69,70,77–79. As a
future development that can help to further overcome this lim-
itation, single-cell Hi-C datasets will be needed to predict 3D
structures for individual cells. Single-cell Hi-C datasets are highly
sparse and raise significant challenges in handling missing data.
Although FLAMINGO demonstrates superior performance
against missing data for bulk tissue Hi-C datasets even with ~98%
missing rate at 5 kb-resolution (Fig. 6e, corresponding to 50%
down-sampling rate), typical single-cell Hi-C experiments have
>99.99% missing rates at 100 kb-resolution. Therefore, the highly
sparse single-cell Hi-C datasets require further algorithmic
improvements, in order to characterize the detailed structural
variations across individual cells.

Overall, the combined strengths of handling large rates of
missing data, making cross cell-type predictions, and boosting

resolutions, suggest high impacts of FLAMINGO on 3D genome
analyses. High-resolution structures can be inferred for diverse
panels of cell-types spanning different differentiation lineages,
without increasing sequencing depths or requiring closely similar
cell-types. Thus, it will not only improve the data mining of
existing Hi-C data but also address the urgent need from large-
scale Hi-C data resources to be generated in the near future, such
as the 4D Nucleome Consortium. Together with the recent
image-based 3D genome information4 and the high-dimensional
epigenomics data6,85, FLAMINGO is expected to substantially
expand our understandings of the spatially orchestrated genome
architectures across cell-types.

Methods
Chromatin contact maps and epigenomics datasets. We collected the Hi-C
chromatin contact maps of six human cell-types, including GM12878, K562,
IMR90, HMEC, HUVEC, and NHEK, from the GEO database10 (GEO:GSE63525).
To remove potential biases in the Hi-C data, we normalized chromatin interaction-
frequency matrices using the Knight-Ruiz normalization method as suggested by
previous studies10. The normalized Hi-C interaction frequencies are then trans-
formed into 3D Euclidean distances based on the exponential function14: Dij =
IFij(−η), where Dij represents the squared pairwise 3D distance between DNA
fragments i and j, IF represents the interaction frequency, and η is a free parameter.
In fact, after testing our model by taking different values of η in the range suggested
by previous experimental estimates14,28, we have found that the accuracy of
reconstruction is robust to the choice of η (Supplementary Fig. 4). Therefore, by
default, η is set to 0.5 (η/2= 0.25) as suggested by previous literature14. The validity
of 3D distances converted from Hi-C contact maps, which are termed as observed
distances from Hi-C in this paper, are also supported by the high similarity
between the reconstructed structure and averaged structures of single-cell clusters,
whose 3D configurations are directly obtained from imaging data (Fig. 5c, d and
Supplementary Fig. 17).

The genome-wide DNase-seq datasets of chromatin accessibility from the six
cell-types were collected from the ENCODE and Roadmap consortia50,86. In a
specific cell-type, for each DNA fragment, the averaged DNase-seq signal (namely
fold-change over genomic background) within the fragment is used to represent
the cell-type specific chromatin accessibility in the genomic locus. Additional
details on data collection and preprocessing are given in Supplementary Note 1.

Model framework of FLAMINGO. FLAMINGO reconstructs 3D genome struc-
tures based on Hi-C chromatin contact maps using the low-rank matrix comple-
tion technique (Fig. 1a), which can efficiently delineate underlying low-rank
structures from the large and noisy pairwise distance matrices. The cell-type spe-
cific 3D coordinates of high-resolution DNA fragments for each chromosome are
predicted by solving a constrained rank-minimization problem using the aug-
mented Lagrangian method48, which can converge fast and can robustly handle
large amounts of missing data.

To enable parallel computation, a hierarchy of two scales (1 Mb and 5 kb) is
used to model each chromosome and an integrative assembly strategy is designed
to build optimal high-resolution chromosomal structures from these two scales
(Supplementary Fig. 3). Based on simulated benchmark analysis, the performance
of FLAMINGO does not rely on specific choices of resolutions or domain
partitions (Supplementary Fig. 7). In addition, an integrative variant of
FLAMINGO, iFLAMINGO (Fig. 7a and Supplementary Fig. 19), is also developed
to incorporate cell-type-specific DNase-seq datasets into the model so as to (1)
enable cross cell-type predictions and (2) boost resolution of predicted 3D genome
structures.

Reconstruct 3D genome structures based on low-rank matrix completion.
Each chromosome is modeled as a ‘beads-on-a-string’ polymer chain, where each
DNA fragment is modeled as a bead, and the centromere and telomere regions are
removed from the analysis as suggested by previous studies33–35. Structure
reconstruction requires inferring the optimal 3D coordinates of consecutive DNA
fragments along a chromosome, which maximally align with the pairwise 3D
distances between DNA fragments observed from Hi-C data. A key property of
FLAMINGO is its capability to leverage the low-rank nature of a pairwise distance
matrix from Hi-C; namely, the high-dimensional pairwise distance matrix is bio-
logically generated by the underlying low-rank coordinate matrix of DNA frag-
ments (rank ≤ 3). Defined by the coordinate matrix (P), the Gram matrix (X =
PPT) has a rank ≤3. The squared Euclidean distance matrix (D) is a sum of three
matrices: D = diag(X)1T + 1T diag(X) − 2X where rank(X) ≤ 3, rank (diag(X)1T)
≤ 1, and rank(1Tdiag(X)) ≤ 1. Due to the property of ranks for matrix addition, the
Euclidean distance matrix has a rank ≤ 5. Based on the theory of matrix
completion42, the low-rank property of both the pairwise Euclidean distance matrix
(rank ≤ 5) and the Gram matrix (rank ≤ 3) guarantees that, under certain ran-
domness assumptions on measurements, the underlying 3D structure can be
predicted using a small fraction of data from Hi-C (Fig. 1a).
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We define P as the N by 3 coordinate matrix for N consecutive DNA fragments
along a chromosome. We also define Di,j as the squared 3D spatial distance
between DNA fragments i and j. Thus, the objective function for 3D genome
reconstruction is:

minjjXjj�

subject toXi;i þ Xj;j � 2Xi;j ¼ Di;j; i; j
� � 2 Ω;X1 ¼ 0;X ¼ XT;Xispositivesemidefinite

ð1Þ
where X = PPT is the Gram matrix, ||X||* represents the nuclear norm Trð

ffiffiffiffiffiffiffiffiffiffi
XTX

p
Þ;

which is related to the rank of matrix X, and the measurement set Ω represents a
subset of indices of DNA fragment pairs. We further introduce a linear sampling
operator A as:

A Xð Þ ¼ f 2 R Ωj j�1; f i ¼ <X;ωαi
> for αi 2 Ω ð2Þ

where αi = (αi,1, αi,2) is the index of a DNA fragment pair. The matrix basis ωαi
is

defined as:

ωαi
¼ eαi;1 ;αi;1 þ eαi;2 ;αi;2 � eαi;1 ;αi;2 � eαi;2 ;αi;1 ð3Þ

where ei,j represents a matrix which has 1 at entry (i,j) and 0 otherwise. For later
use, we define the adjoint of A as A*, where A*y ¼ ∑iyiωαi

. The subset of DNA
fragment pairs (Ω and αi) is randomly down-sampled from all measured pairs of
DNA fragments with specified down-sampling rates. Intuitively, by defining ω and
αi, the linear operator A summarizes all the constraints in one notation so that the
objective function can be re-written in a compact form:

minP Trace PPT
� �

; subject to AðPPTÞ ¼ b ð4Þ
where b = A(M) andM represents the true underlying low-rank Gram matrix from
Hi-C data satisfying Mi;i þMj;j � 2Mi;j ¼ Di;j .

A penalization term is further added to the objective function to control
unexpected large distances predicted between adjacent DNA fragments caused by
low Hi-C data quality at certain genomic locations. Therefore, the final objective
function is:

minP Trace PPT
� �þ λ=2jjB PPT

� �� dt1jj22; subject to AðPPTÞ ¼ b ð5Þ
where λ represents the penalization parameter, and the scalar dt represents the
maximal allowed distance between adjacent DNA fragments. The linear
measurement operator B projects the Gram matrix to the sub-diagonal elements:

B Xð Þ¼g Xð Þ2R n�1ð Þ�1;where gi Xð Þ ¼ <X;ωβi
> for βi ¼ i; iþ 1ð Þ; and 12R n�1ð Þ�1:

ð6Þ
The adjoint of B is denoted as B*, where B*y ¼ ∑iyiωβi

.
Intuitively, the low-rank matrix completion model only needs a subset of the

whole set of pairwise distances, which is indexed by Ω, to reconstruct the Gram
matrix PPT, and it requires the optimal matrix PPT to follow three properties
(Fig. 1a): (1) The rank of matrix PPT should be as small as possible by minimizing
the trace of PPT. This property is consistent with the low-rank assumption for 3D
chromatin structures; (2) The pairwise distances based on the reconstructed 3D
coordinates of DNA fragments should align with the subset of 3D distances
indexed by Ω by satisfying the optimization constraints. This ensures that the
model can accurately reconstruct 3D genome structures consistent with observed
pairwise distances; (3) The 3D distances between adjacent DNA fragments are
bounded. This constraint removes unrealistically stretched structures of chromatin
and guarantees a smooth genome structure.

Since the trace function Trace(PPT) is convex with respect to P, we solve the
optimization problem by the alternating-direction method of multipliers49. The
augmented Lagrangian is given by:

L P;Λð Þ ¼ Trace PPT
� �þ λ=2jjB PPT

� �� dt1jj22 þ r=2jjA PPT
� �� bþ Λjj22 ð7Þ

where λ is the penalty parameter, r is the regularization parameter, and Λ is the
Lagrangian multiplier. The gradient of the augmented Lagrangian with respect to P
is given by:

2Pþ 2λB�ðBðPPTÞ � dt1ÞPþ 2rA�ðAðPPTÞ � bþ ΛÞP: ð8Þ
Starting from Λ= 0 and a random initial guess for P, the following iteration will

continue until the error between the reconstructed and observed distances indexed
by Ω is smaller than a specified threshold (default=10−3): P is updated with the
Barzilai-Borwein steepest descent method using the current Λ and then Λ is
updated using the current P49. The accuracy of the model does not rely on the
value of r and λ, and we have set the parameters r= 1 and λ= 10 based on the
previous study of low-rank reconstruction of the Euclidean geometry49. To tune
the only free parameter of the model, dt, which is the maximal allowed distance
between adjacent DNA fragments, we test FLAMINGO on experimental Hi-C data
using different values of dt to select the distance yielding the smallest objective
function as the default value (Supplementary Fig. 21b), which is found to be robust
across different chromosomes and cell types (Supplementary Fig. 21c). This model
demonstrates fast convergence when applied on both simulated data and
experimental Hi-C data (Supplementary Fig. 5 and Supplementary Fig. 21a).

FLAMINGO has an intrinsic computational complexity O(kN2), where k is a
down-sampling rate to define the subset (Ω) of DNA fragment pairs
(Supplementary Note 1). Thus, FLAMINGO has sufficiently high scalability to
predict high-resolution structures for large genomes, where N is large. Moreover,
by using the low-rank property of a 3D distance matrix, FLAMINGO can
reconstruct 3D genome structures using a small down-sampling rate k, such as 0.2,
which can substantially accelerate the optimization. Furthermore, the parallelized
computation enabled by the hierarchical prediction strategy further boosts the
reconstruction speed.

Assemble predicted structures from different scales. The same low-rank
matrix completion algorithm is applied separately at two scales: (1) the 1 Mb
domain-level scale; and (2) the 5 kb intra-domain scale. To construct the final 3D
structure, the predicted intra-domain structures are assembled into the skeleton
specified by the domain-level structures. At each 1Mb domain-level DNA frag-
ment, the center of the corresponding intra-domain structure is assigned at the 3D
coordinates predicted for the domain-level fragment. The assigned intra-domain
structures are then rotated to minimize the overall reconstruction error between
the predicted and the observed pairwise distances over DNA fragments across
adjacent domains (inter-domain fragment distances) (Supplementary Fig. 3). To
identify the optimal 3D rotation matrices and control the corresponding compu-
tational cost, we search for a series of optimal 3D Givens rotation matrices on each
dimension. The 3D rotation matrices are then approximated by the multiplication
of the 3D Givens rotation matrices.

Denote the predicted intra-domain structure for domain i as Si. The optimal 3D
Givens rotation matrices for the x-axis across domains are identified by:

minθix∑j;k jjrθi x ðSi;j � CiÞ þ Ci � Siþ1;kjj2 � Di;j;iþ1;k

� �2 ð9Þ

where rθi x is the 3D Givens rotation matrix of Si for the x-axis with parameter θix ,
Si,j represents the DNA fragment j within domain i, Ci represents the center of
domain i (which is inferred from the domain-level prediction), and Di,j;i+1,k

represents the observed squared 3D distance between two inter-domain DNA
fragments (fragment j of domain i and fragment k of domain i+ 1) from adjacent
domains. The same algorithm is applied to all domains consecutively to search for
the rotation matrices of the x-axis for all domains. Intuitively, the objective
function searches for the best rotation rθi x of domain i around its center Ci to
match the distances between fragments across adjacent domains observed from the
Hi-C data. The rotation matrices for the y-axis and z-axis are obtained similarly.
Therefore, a series of 3D Givens rotation matrices are identified iteratively for the
three axes. Multiplying the converged 3D Givens rotation matrices together yields
the optimal 3D rotation matrices which are used to rotate the intra-domain
structures, leading to the final genome structure. Since it jointly models all inter-
domain distances between adjacent domains (i.e. off-diagonal points) and robustly
identifies the global optimal rotation matrices for all intra-domain structures, the
rotation algorithm will better align reconstructed structures with the Hi-C data and
boost the accuracy of reconstruction.

Benchmark performance using simulated genome structures. To quantitatively
benchmark the accuracy of FLAMINGO, we simulated 3D genome structures
and generated matrices of squared pairwise distances between DNA fragments.
The FLAMINGO algorithm was then applied to the squared pairwise distance
matrices to reconstruct the 3D structures. The model performance was evaluated
by comparing the reconstructed structure with the original structure in two
ways. (1) The relative error between the reconstructed 3D coordinates (Cre) and the
benchmark coordinates Cbenchmark of DNA fragments was calculated: REcoord ¼
jjCre � Cbenchmark jj22=jjCbenchmark jj22. (2) The relative error between the recon-
structed pairwise distance matrix (R) and the original squared distance matrix (D)

was calculated: RE ¼ jjR�D 1=2ð Þjj22=jjDð1=2Þjj22. Moreover, Spearman correlations
between predicted and benchmark structures were also calculated to quantify the
accuracy.

To test the performance of FLAMINGO with respect to missing data, we
randomly down-sampled subsets of the squared pairwise distances as inputs and
considered other squared pairwise distances as missing. Multiple down-sampled
datasets were generated with different fractions of missing data in terms of different
down-sampling rates. FLAMINGO was applied to these down-sampled squared
pairwise distance matrices, and the resulting 3D coordinates of DNA fragments
were used to calculate the relative errors and correlations.

To further test the performance of FLAMINGO on noisy inputs, we added two
levels of white noise separately into the down-sampled squared pairwise distance
matrices. As suggested by previous research49, the first level of noise (Noise level 1)
was generated by the normal distribution N(δ, δ), where δ represents the minimum
value from the down-sampled squared pairwise distances. Similarly, the second
level of noise (Noise level 2) was generated by the normal distribution N(2δ, δ). In
this way, the noisy down-sampled squared pairwise distances remain positive with
high probability, consistent with the basic property of Euclidean distances. The
simulations and down-sampling procedures were repeated 10 times for each
benchmark setting.
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To test the assembly algorithm, we divided the benchmark structure into
different domains or fragments. The intra-domain structures were reconstructed
separately and then assembled for the final structures, which were compared with
the benchmark structure. The relative errors of pairwise distances and 3D
coordinates were calculated to demonstrate the high accuracy of the assembly
algorithm and its robustness with respect to different choices of domain partitions
(Supplementary Fig. 7).

Performance comparison based on experimental Hi-C data. For each of the six
cell-types, we reconstructed the 3D structures using FLAMINGO at 5 kb-resolution
for each of the 23 chromosomes, based on the normalized Hi-C input datasets. To
quantitatively evaluate the global reconstruction accuracy of FLAMINGO, we
calculated the Spearman correlation coefficients between reconstructed and
observed 3D distances for all pairs of DNA fragments, which are defined as all-
points correlations. To further evaluate the accuracy of reconstructed intra-domain
structures, we also calculated intra-domain correlations based on pairs of DNA
fragments within the same domains. An accurately reconstructed structure is
expected to demonstrate high correlations, at both all-point and intra-domain
levels, which further suggest that the reconstructed structure quantitatively aligns
with the observed Hi-C datasets.

We compared the performance of FLAMINGO with seven representative state-
of-the-art algorithms:ShRec3D33, GEM-FISH34, Hierarchical3DGenome35,
SuperRec37, ShNeigh38 and RPR36. These methods were selected because they have
been shown in previous studies to perform better than other methods using similar
modeling strategies, and other existing methods are not included in the comparison
because either they have been shown to have less accurate performance by previous
studies or they do not practically converge at 5 kb-resolution in our tests. All these
methods were applied, based on their suggested parameters, on all of the 23
chromosomes in the six cell-types at 5 kb resolution (Supplementary Note 1).
GEM-FISH only finished for chromosome 21. ShRec3D, ShNeigh and RPR finished
predictions only for short chromosomes (ShRec3D: chr13–22, ShNeigh: chr15–22
and chrX, and RPR: chr17–22). Hierarchical3DGenome and SuperRec finished
predictions for all 23 chromosomes. The correlation coefficients based on those
chromosomes with complete predictions were calculated using the same method as
explained above. At 5 kb-resolution, the run-times on an AMD EPYC processor
with 25 cores were recorded. The maximum memory was set to be 100GB,
sufficient for all algorithms.

To further quantify the performance of FLAMINGO with respect to large
fractions of missing data, we randomly down-sampled the squared pairwise
distance matrix with different down-sampling rates. Using the down-sampled
input data, we tested the performance of FLAMINGO and other methods based on
the correlation metrics described above. For each down-sampling rate, ten random
samples with missing data were generated. The correlation coefficients were
calculated for each random sample to evaluate the model performance. Because of
impractically long computational times needed by other methods for large
chromosomes, only the chromosomes with complete predictions from these
methods are included in this comparison.

As orthogonal biological information for model comparisons, we also collected
significant long-range chromatin interactions profiled from different experiments,
including ChIA-PET72, Capture-C45, and SPRITE46. For each chromatin
interaction, we calculated the predicted 3D distances between the interacting DNA
fragments from different reconstruction algorithms. Since interacting DNA
fragments (anchors) are close to each other in 3D space, the algorithm is
considered to have higher accuracy if it yields shorter predicted distances between
interacting DNA fragments.

Analysis of multi-way chromatin interactions and QTLs. The multi-way chro-
matin interactions in GM12878 are collected from a dataset of SPRITE
experiments46. To identify significant multi-way interactions, Market-Basket
algorithm is used to search for higher-order associations of multiple genomic
regions that are supported by SPRITE sequencing reads. Significant 3-way, 4-way
and 5-way interactions are called based on confidence threshold= 0.1 and support
thresholds= 3 × 10−4, 2 × 10−4 and 1.7 × 10−4, respectively. The support thresh-
olds are selected based on the curves of called significant multi-way interactions as
a function of different thresholds, and the values corresponding to the elbow points
are chosen. Genomic-distance controlled random samples of multi-way interac-
tions are used to generate the background null distribution for statistical testing on
the spatial distances among multi-way interacting anchors from the SPRITE data.
To compare the fractions of SPRITE multi-way interactions captured by short
predicted distances from FLAMINGO versus the fractions captured by short dis-
tances converted from Hi-C contact maps, distances are normalized by F-norm to
guarantee fair comparisons. A variety of thresholds of distances are used to define
3D spatial neighborhoods. A multi-way interaction is considered to be captured if
all interacting anchors are located in the same 3D spatial neighborhood. The eQTL
datasets58–61 and hQTL datasets62 are collected from matched cell-types, including
whole blood cells and lymphoblastoid cells. The same normalization procedure is
applied to compare the capability of assigning short spatial distances for QTLs
based on the predicted distances versus the distances converted from Hi-C contact
maps. Similarly, a variety of thresholds of distances are used to define 3D spatial
neighborhoods. And long-range eQTLs (>900 kb) and distal hQTLs are evaluated

whether it can be interpreted using the predicted spatial proximity by checking
whether the SNP and the target region (i.e. a gene’s promoter or histone mod-
ification peak) are predicted with shorter spatial distances, compared to samples of
genomic-distance controlled random pairs. For every QTL, 1000 random genomic-
distance controlled pairs from the same chromosome are generated for
comparison.

Curvature analysis for predicted 3D genome structures. To calculate the cur-
vature in each 5 kb genomic bin, a quadratic parametric function was fitted locally
based on the specific genomic bin and the two neighboring upstream/downstream

bins. Assume the parametric representation of the curve is r
�!ðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ,

where each dimension can be written as a quadratic function, e.g. x(t) = a0+
a1t+ a2t2. By fitting the curve locally, the curvature is calculated as κ ¼ j~r00 ´~r0j=j~r0j3.
To have a fair comparison across different chromosomes, curvatures are normalized
by the median values of each chromosome. Curvature is then calculated around TAD
boundaries10.

Comparison with image-based single-cell structures. 3D coordinates of genomic
bins at 30 kb-resolution across single cells for a 2Mb region in chromosome 21 are
collected68 and compared with FLAMINGO’s predictions. In K562, 797 single cells
are kept for comparison by filtering out cells with >10% bins having no data (missing
data). Linear interpolation is used to fill the missing coordinates in each single cell. To
normalize the scales of structures, the 3D coordinate matrix (P) of every single cell
(30 kb-resolution) is centered, and then scaled by the F-norm: Pscaled = P/||P||F.
Singular value decomposition (SVD) is then used to rotate and align the normalized
single-cell structures (Supplementary Note 1). The average structure across single cells
is calculated by taking the mean coordinates for each genomic bin. The predicted
consensus structure by FLAMINGO (5 kb-resolution) is centered, scaled and rotated
using the same procedure, and is then aligned with the average structure of single cells
or cluster-specific average structures. A 30 kb-resolution version of the consensus
structure is calculated by taking the average coordinates of six consecutive 5 kb-
resolution bins. Hierarchical clustering is applied on single-cell structures based on
Euclidean distance to classify the ensemble of single cells into clusters, which can
systematically represent the structural variabilities across single cells. After aligning
the predicted consensus structure with variable single-cell structures, the differences of
coordinates along the genomic region are calculated and compared to the intrinsic
standard deviations among single cells.

Cross cell-type prediction of 3D genome structures. To predict 3D genome
structures in cell-types without Hi-C datasets which are defined as target cell-types, we
further expand the FLAMINGO algorithm to combine the Hi-C dataset from a source
cell-type and the DNase-seq dataset from the target cell-type, resulting in an inte-
grative variant of FLAMINGO, named as iFLAMINGO. Intuitively, the Hi-C data
from the source cell-type facilitate the inference of an approximate structure, which is
fine-tuned by the cell-type-specific DNase-seq data from the target cell-type.

Based on the observation that 3D distances between interacting DNA fragments
are associated with chromatin accessibilities (Supplementary Fig. 19a), we impute
the 3D distances between any two DNA fragments in the target cell-type (Di,j)
based on DNase-seq signals and 1D genomic distances (Supplementary Fig. 19b).
The imputation is achieved by fitting a linear regression model in the source cell-
type: Di,j = α1Si + α2Sj + α3Gi,j, where α1, α2, and α3 are fitting parameters to be
determined, Di,j represents the observed distance, Si represents the DNase-seq
signal of DNA fragment i, and Gi,j represents the 1D genomic distance between
DNA fragments i and j. Based on the fitted regression model, 3D distances between
DNA fragments can be imputed in the target cell-type, using the target cell-type-
specific DNase-seq data, which are then summarized into a matrix E. Therefore,
the imputed 3D distance matrix E represents the target cell-type-specific
information which can be used to improve the reconstruction of the corresponding
3D structure.

The imputed 3D distance matrix is integrated into the original objective
function as a penalization term, so that we will solve the following problem to
reconstruct the 3D structure:

minP TraceðPPTÞ þ λ=2jjB PPT � dt1
� �jj22 þ γjjA PPT

� �� A EM
� �jj22; subject toAðPPTÞ ¼ b ð10Þ

where γ is the penalization parameter and EM is the Gram matrix of the imputed
3D distance matrix (E) for the target cell-type. The penalization term tunes the
reconstructed 3D structure in the target cell-type to align with the imputed 3D
distances from DNase-seq. Hence, by borrowing information from the source cell-
type Hi-C data, iFLAMINGO predicts the cell-type specific 3D genome structures
in the target cell-type.

To validate the performance of cross cell-type predictions, iFLAMINGO was
applied to 30 source-target cell-type pairs, based on the six cell-types with Hi-C
data available. For each source-target cell-type pair, we predicted the 3D genome
structure for the target cell-type based on the Hi-C data from the source cell-type
and the DNase-seq data from the target cell-type. The reconstructed 3D structures
for target cell-types were evaluated by calculating the correlation coefficients
between the reconstructed 3D distance matrix and the observed one based on the
Hi-C dataset from the target cell-type. As comparisons, we also evaluated the
performance using the reconstructed 3D distance matrices solely based on Hi-C
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data from the source cell-type, without incorporating the DNase-seq information
from the target cell-type.

Improve the resolution of 3D genome structures. iFLAMINGO integrates the
high-resolution chromatin accessibility data to improve the resolution of predicted
3D genome structures, such as 5 kb-resolution, based on relatively low-resolution
Hi-C contact maps, such as 10 kb-resolution. Given a Hi-C contact map at 10 kb-
resolution, we divide each 10 kb genomic fragment into two consecutive 5 kb
fragments. The 5 kb fragments inherit the same pairwise 3D distances from the
original 10 kb fragment. In this way, the m by m 3D distance matrix at 10 kb-
resolution is expanded into a 2m by 2m 3D distance matrix at 5 kb-resolution,
which serves as the initial structure for high-resolution reconstruction. The high-
resolution DNase-seq datasets of chromatin accessibility are then incorporated to
impute the 3D distances between 5 kb DNA fragments, following the same method
described above (Supplementary Fig. 19b). By applying the iFLAMINGO algorithm
on the expanded 3D distance matrix from a low-resolution Hi-C contact map and
the imputed one from a high-resolution DNase-seq dataset, the 3D genome
structure at 5 kb-resolution is then reconstructed. We applied the model on the Hi-
C dataset in GM12878 for all of 23 chromosomes at resolution of 10 kb, 25 kb, and
50 kb, respectively. The model performance is evaluated using the correlation
coefficients (all-points and intra-domain) between the reconstructed and the
observed 3D distance matrices at 5 kb-resolution.

Statistics and reproducibility. In performance comparison, all methods are inde-
pendently applied to reconstruct the 3D structures of the 23 chromosomes in the
human genome. The sample sizes of different algorithms are determined by the
number of completed reconstructions. In the analyses of ChIA-PET, Capture-C,
SPRITE, eQTLs, hQTLs, and single-cell chromatin tracing data, the sample sizes are
determined by the original datasets and no data points are excluded from the analysis.
No statistical method was used to predetermine sample size. In the simulation analysis
and the down-sampling analysis, the performance is evaluated based on ten randomly
down-sampled datasets and no data points are excluded from the analyses. To
reproduce the analysis, 3D structures of 23 chromosomes in six cell-types and the
simulated datasets are provided (see Data availability and Code availability).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Hi-C data, along with the annotations of chromatin compartments and TADs, used in
this study are available under GSE63525. Capture-C data are available under GSE86189.
ChIA-PET data in K562 are available under GSE33664 and ChIA-PET data in GM12878
are available under GSE127053. SPRITE data are available under GSE114242. DNase-seq
data are available from ENCODE and Roadmap consortia (https://egg2.wustl.edu/
roadmap/web_portal/processed_data.html). ChIP-seq datasets are available from the
GEO database (CTCF: GSM822312 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSM1002651]; SMC3: GSM935376; Rad21: GSM935332). The gene annotation is
available at GENCODE (https://www.gencodegenes.org/human/release_17.html). The
eQTL datasets are available from the supplementary data of Battle et al.58, the MuTHER
consortia (http://www.muther.ac.uk/Data.html), the Geuvadis project (https://www.ebi.ac.
uk/arrayexpress/experiments/E-GEUV-3/) and the GTEx consortium (https://storage.
googleapis.com/gtex_analysis_v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz).
The hQTL dataset is available at https://www.zaugg.embl.de/data-and-tools/distal-
chromatin-qtls/. Single-cell chromatin tracing data is downloaded from https://github.com/
BogdanBintu/ChromatinImaging. The data of simulations, reconstructed chromosome
structures, and cross cell-type predictions generated in this study are available in
FLAMINGO GitHub repository. Source data are provided with this paper.

Code availability
The FLAMINGO software87, along with all the predicted 5 kb-resolution structures of
chromosomes 1–22 and X across six cell-types, is available at GitHub. The repository also
provides scripts and instructions for structure visualizations, the 1 kb-resolution
chromosomal structure predictions for GM12878, sample codes, sample input data, and
information of relevant datasets to reproduce the analyses.
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