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Universality of Dicke superradiance in arrays of
quantum emitters
Stuart J. Masson 1✉ & Ana Asenjo-Garcia 1✉

Dicke superradiance is an example of emergence of macroscopic quantum coherence via

correlated dissipation. Starting from an initially incoherent state, a collection of excited atoms

synchronizes as they decay, generating a macroscopic dipole moment and emitting a short

and intense pulse of light. While well understood in cavities, superradiance remains an open

problem in extended systems due to the exponential growth of complexity with atom

number. Here we show that Dicke superradiance is a universal phenomenon in ordered

arrays. We present a theoretical framework – which circumvents the exponential complexity

of the problem – that allows us to predict the critical distance beyond which Dicke super-

radiance disappears. This critical distance is highly dependent on the dimensionality and

atom number. Our predictions can be tested in state of the art experiments with arrays of

neutral atoms, molecules, and solid-state emitters and pave the way towards understanding

the role of many-body decay in quantum simulation, metrology, and lasing.
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Atoms in close proximity alter each others’ radiative
environment and collectively interact with light1–4. The
“environment” for each of the atoms depends on the

internal state of all others, which changes in time. For fully-
inverted atoms at a single spatial location, this leads to the
emission of a short pulse of light that initially rises in intensity, in
contrast to the exponential decay of independent atoms. This
“superradiant burst”, or Dicke superradiance, occurs because
atoms synchronize as they decay, locking in phase and emitting at
an increasing rate. Superradiant bursts have been observed in a
variety of dense disordered systems3–9. Dicke superradiance has
also been demonstrated in cavities10,11, where the condition of
atoms at a point is emulated by the confinement of the optical
field to zero dimensions. In this high-symmetry scenario, atoms
are indistinguishable from each other, and can only occupy states
that obey a particle-exchange symmetry. This restricts the Hilbert
space to permutationally symmetric states, whose number scales
linearly with atom number, thus making the dynamical evolution
exactly solvable.

Numerical studies of superradiant emission in extended geo-
metries (of sizes larger than the emission wavelength) have been
limited to small numbers of atoms12,13, small numbers of
excitations14, or uniform atomic densities where specific atomic
positions are not taken into account15. However, recent experi-
mental demonstrations of ordered atomic arrays, via optical
tweezers16–21 and optical lattices22–25, open a new world of
possibilities, where hundreds of atoms can be placed in almost
arbitrary positions. These setups thus demand a new outlook on
the problem, which has remained open until now due to the
exponential growth of the Hilbert space. In extended systems,
particle-exchange symmetry is broken and numerical calculations
require a Hilbert space which grows as 2N, where N is the atom
number.

Here, we introduce a theoretical framework that scales linearly
with atom number and allows us to demonstrate that Dicke
superradiant decay generically arises in extended systems, below a
critical inter-atomic distance that depends on the dimensionality.
We do so by noting that there is no need to compute the full
dynamical evolution of the system: the nature of the decay can be
deduced from the statistics of the first two emitted photons. We
find that as the inter-atomic distance increases, there is a smooth
crossover between a superradiant and a monotonically decreasing
emission rate, as shown in Fig. 1. We obtain an analytical

“minimal condition” for Dicke superradiance, which is universal
and provides a bound on the maximal inter-atomic separation to
observe this phenomenon. This enables us to study the role of
geometry in the decay of very large atomic arrays, a significant
conceptual advance on a decades-old problem.

Theory
We first present the theoretical toolbox to describe the dynamics
of a collection of atoms interacting via a shared electromagnetic
field. We consider N identical two-level atoms of spontaneous
emission rate Γ0 and transition wavelength λ0 placed in free space
with arbitrary positions. After tracing out the electromagnetic
field using a Born–Markov approximation26,27, the atomic den-
sity matrix ρ ¼ ψ

�� �
ψ
� �� evolves as

_ρ ¼ � i
_
½H; ρ� þ∑N

ν¼1
Γν
2

2Ôνρ Ô
y
ν � ρ Ôy

νÔν � Ôy
νÔνρ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dissipative evolution: correlated photon emission

;

ð1Þ
where the Hamiltonian H describes coherent interactions
between atoms and fÔνg are operators that represent how atoms
“jump” from the excited to the ground state by collectively
emitting a photon. Jump operators are found as the eigenstates of
the N ×N dissipative interaction matrix Γ with elements Γij,
proportional to the propagator of the electromagnetic field (i.e.,
the Green’s function) between pairs of atoms i and j (see
refs. 12,26–28 and “Methods”). The corresponding eigenvalues
provide the jump operator rates {Γν}, which represent how fre-
quently such a jump occurs. Each of these jump operators
imprints a phase in the atoms, and generates a photon with a
specific spatial profile in the far field. They thus can be under-
stood as collective “decay channels” for the atomic ensemble.

As we demonstrate below, Dicke superradiance is preserved
as long as the number of (relevant) decay channels is small. This
occurs because dissipative interactions (rather than coherent
Hamiltonian dynamics) are responsible for the suppression of
superradiance in ordered arrays12,13. In the paradigmatic
example studied by Dicke, where all atoms are exactly at
one point, only one of the decay channels is bright (with
decay rate Γbright= NΓ0), while all the others are completely
dark (i.e., Γν ≠ bright= 0). This means that the only possible
decay path to the ground state for atoms that are initially
excited is through repeated action of the bright operator, which
imprints a phase pattern in the atoms that is reinforced in each
process of photon emission. Coherence emerges via this dis-
sipative mechanism, which leads to the development of a
macroscopic dipole through synchronization and to a rapid
release of energy in the form of a superradiant burst.

In ordered arrays, the number of bright decay channels can be
controlled by the inter-atomic distance. In principle, all jump
operators are allowed to act. For small lattice constants, their
decay rates vary dramatically due to constructive and destructive
interference. They can be larger (bright) or smaller (dark) than
the single atom decay rate Γ0. Extremely dark rates (which are
strictly zero in the thermodynamic limit) emerge for inter-atomic
separations below a certain distance that depends on the
dimensionality of the array29. As the distance grows, the dis-
tribution of the decay rates becomes more uniform. This leads to
a strong competition between different decay channels, and to
decoherence through the randomization of the atomic phases
after several emission processes have occurred.

We show here that Dicke superradiance generically occurs in
arrays, but only below a critical inter-atomic distance, which can
be calculated with a complexity that scales only linearly with
system size. For a fixed atom number, the superradiant burst

Fig. 1 Many-body decay is determined by the distance between
atoms and the array’s dimensionality. Inverted atoms placed at the same
location (d→ 0) interact with each other and decay collectively via the
emission of a burst of light, with a peak at time tmax. This is the hallmark of
Dicke superradiance. In contrast, atoms that are far separated (d→∞) emit
as single entities, in the form of an exponentially decaying pulse. For
extended finite arrays, there is a critical distance at which the crossover
between a superradiant burst and monotonically decreasing emission occurs.
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diminishes as the inter-atomic distance increases, eventually
being replaced by a monotonically decaying pulse. The crossover
between these regimes is marked by an infinitesimally small burst
that occurs at t= 013.

Our key insight is that atomic synchronization occurs imme-
diately or not at all, and thus the nature of the decay can be
characterized from early dynamics. In particular, one can predict
the presence of a superradiant burst based solely on the statistics
of the first two emitted photons. The minimum requirement for a
superradiant burst to occur is that the first photon enhances the
emission rate of the second. This is captured by the second-order
correlation function

gð2Þð0Þ ¼
∑N

ν;μ¼1 ΓνΓμ Ôy
νÔ

y
μÔμÔν

D E
∑N

ν¼1 Γν Ôy
νÔν

D E� �2 ; ð2Þ

where the expectation value is taken at the initial state, i.e.,
ψðt ¼ 0Þ
�� � ¼ ej i�N . When this quantity is greater than unity, the
decay is characterized as superradiant. Figure 2 shows the cor-
relation between g(2)(0) and the presence or absence of a burst for
small atom numbers, for which we can calculate the full
dynamics. As soon as g(2)(0) > 1, the time of maximum emission
deviates from zero (i.e., the burst occurs at a finite time). More-
over, the second-order correlation function increases along with
the height of the peak of the photon emission rate, and is below
unity when the rate is peaked at t= 0.

By calculating g(2)(0) analytically (see “Methods”), we obtain
the minimal condition for Dicke superradiance:

gð2Þð0Þ > 1 , Var
fΓνg
Γ0

� 	
> 1; ð3Þ

where Var is the variance of the decay rates of the jump opera-
tors. This expression is exact and universal, and does not involve
any assumption about the atomic positions. Small inter-atomic
distances maximize the variance of the decay rates, as most jump
operators will be dark (with Γν≃ 0) and just a small number of
them will be bright (with a large Γν).

We note that the complexity of the problem has decreased tre-
mendously: from solving a differential equation in an exponentially

growing Hilbert space to diagonalizing a matrix whose dimension
scales linearly with atom number. This allows one to find the
distance at which Dicke superradiance disappears in arbitrary
geometries with an extremely large atom number, as all the
necessary details are captured in the dissipative interaction matrix
Γ. Of course, one has to pay a price for this reduction in complexity.
As we cannot calculate the full evolution, we can only predict
whether a superradiant burst is going to occur or not. Extracting
information about the height of the peak or the time at which it will
appear requires a different approach30,31.

To prove that the above inequality can be used to characterize
Dicke superradiance, we demonstrate that the system does not
rephase at later times, either through Hamiltonian action or
through further dissipation. First, Hamiltonian dynamics are not
significant at early times, as shown in Fig. 3a. Due to the ordered
nature of the array, each atom (except those near the boundaries)
experiences a similar environment and local dephasing due to
Hamiltonian action is thus minimized. To further confirm this
point, we consider a time delay between the emission of the first
two photons, during which the Hamiltonian acts, and find the
Hamiltonian adds a slow dephasing to the atoms but, impor-
tantly, does not enhance photon emission (see Supplementary
Fig. 2). Second, dissipation into different channels cannot rephase
the atoms, as the process is irreversible. With each photon that is
emitted, there is one less atom able to emit. To obtain a
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Fig. 2 Photon statistics predicts Dicke superradiance. We calculate
g(2)(0) (at t= 0), as an enhanced two-photon emission rate is a pre-
requisite for a burst. The time at which the photon rate is maximum (tmax)
as a function of the second-order correlation function (at t= 0) shows that
tmax>0 only if g(2)(0) > 1. Inset: Maximum intensity, normalized by intensity
at t= 0. In both plots, all nine atoms are initially excited, with polarization
perpendicular to the array.
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Fig. 3 Role of coherent and dissipative evolution in dephasing and
suppression of Dicke superradiance. a The coherent evolution does not
significantly modify the early time dynamics, thus preserving
superradiance, as shown by the full evolution of the master equation (i.e.,
Eq. (1)) for 16 initially excited atoms with inter-atomic distance d= 0.1λ0
arranged in different geometries with and without Hamiltonian interactions.
Emission rate is normalized by that at t= 0. b Three-photon decay is never
enhanced unless two-photon emission is too, as demonstrated by the
second- and third-order correlation functions, plotted as a function of the
inter-atomic separation for a square 2D array of 6 × 6 atoms. In all cases,
atoms are polarized perpendicular to the array.
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superradiant burst, the induced atomic correlations that emerge
through decay must be large enough to compensate for the loss of
emitters, a process that gets harder the more photons have been
radiated away. We characterize this through the third-order
correlation function, which can be analytically calculated (see
“Methods”). In all geometries considered here, we find that the
third photon is never enhanced when the second photon is not.
Therefore, further jumps do not rephase the array, as shown in
Fig. 3b, where g(3)(0) drops below unity at a slightly smaller
distance than g(2)(0). As anticipated, the second photon is always
the last one to lose its stimulated enhancement.

Results and discussion
Contrary to the accepted understanding in the literature3,4, we
find that large chains and rings behave almost identically, as both
do not emit a superradiant burst above dcritical ≈ 0.3λ0, as shown
in Fig. 4a. Despite the ring’s particle-exchange symmetry, the
difference between the ring and the chain is negligible for large
atom number. This is because dephasing is caused by competition
between multiple decay channels, which exist regardless of the
array topology13. Interactions across the diameter of the ring are
very weak, so the exchange symmetry does not matter, as the
atoms essentially see the same local environment in both cases.

Two- and three-dimensional arrays also display Dicke super-
radiance, at larger inter-atomic separations than those found in
chains. Interestingly, the total size of the array is much larger than
a wavelength. Figure 4b shows the critical distance for a two-
dimensional (2D) square array of up to 40 × 40 atoms. In this
geometry, the critical distance is not monotonic with the atom
number. These sudden variations are due to “revivals” in g(2)(0),
which can be seen in Fig. 3b, associated with changes in the dis-
tribution of Γν


 �
as the lattice constant hits certain geometric

resonances (see ref. 32 and Supplementary Fig. 1). For large array
(of N ~ 40 × 40 atoms), the critical distance is as large as dcritical ≈
0.8λ0 for atoms polarized perpendicular to the array surface, and it
seems to continue increasing with atom number, albeit slowly.

Dicke superradiance is due to the dominance of particular
decay channels, whose emission is enhanced due to constructive
interference. Since the sum of the decay rates is always NΓ0
(regardless of the atomic positions), these bright decay channels
must be balanced by dark decay channels to maximize the var-
iance. In ordered arrays, the presence of extremely dark channels
is explained by energy–momentum mismatch, where some
channels correspond to spin waves with wave-vectors outside the
light cone29,33. In 2D arrays, the spin wave with equal phase on all

sites, with an in-plane wave-vector k= 0, emits perpendicular to
the array. If the atomic dipole axis points in that direction then
emission is forbidden, creating a region of subradiance that
persists up to d < λ029. Hence, the crossover between superradiant
to monotonic decay occurs at much larger distances for atoms
with this polarization. The same phenomenon exists in three-
dimensional (3D) lattices for any linear polarization axis. Large
2D and 3D lattices both have values of dcritical well beyond
λ031,34,35. For these higher dimensions, the dominance of certain
channels is maintained due to robust constructive inteference
between many neighbors, compensated by large numbers of
somewhat subradiant, but not perfectly dark, channels.

We demonstrate that Dicke superradiance is robust to
imperfections typically found in experiments, such as filling
fraction smaller than unity. Figure 4c shows the bound for
stochastically generated 12 × 12 arrays filled with efficiency η.
For η= 90%, there is a small reduction in the critical distance.
However, at η= 50%, the drop is much larger. This is because
the revivals in g(2)(0) are particularly muted by imperfect filling
and, at this efficiency, do not breach unity. This phenomenon
is also responsible for the splitting of the values of dcritical
at 80% filling efficiency. Superradiance is also robust to posi-
tion disorder and small imperfections in the initial state
(see Supplementary Fig. 3).

Dicke superradiance should thus be observable in experi-
ments with arrays of inter-atomic separation below the critical
distance, which are close to being achieved in state-of-the-art
setups36,37. It is important to notice that the critical distance
does not signal a sharp transition between monotonic decay and
superradiance, but instead a smooth crossover. Experimental
signatures would be observable well below this bound. Besides
atomic tweezer arrays and optical lattices, solid-state emitters
hosted in bulk crystals38,39 or in 2D materials40–42 are good
candidates to observe this physics. These systems can achieve
small lattice constants, although they present other difficulties,
such as inhomogeneous broadening and non-radiative decay.
Nevertheless, Dicke superradiance is robust against these
sources of imperfection (see Supplementary Fig. 4).

Superradiance in an extended array is very different from
superradiance in a cavity. In the latter, superradiance involves
three phenomena simultaneously: a growth in the photon emis-
sion rate, a rapid increase of the population of the cavity mode
(due to the burst), and an N2-scaling of the radiated intensity
peak. These three concepts are not equivalent for extended arrays
in free space, and this has experimental consequences. First, in
free space, photons are scattered in all directions, and the relevant
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Fig. 4 Dicke superradiance is universal and appears (below a critical distance) for arrays of any dimensionality, including imperfectly filled ones.
a, b Boundaries between the burst (colored) and no-burst (white) regions as a function of inter-atomic distance d and atom number for a chains and rings
and b square arrays. The crossover occurs where g(2)(0)= 1. Upward pointing and downward pointing triangles represent points where, with decreasing
d, g(2)(0) goes above and below unity, respectively. c Critical distance for different filling fractions η. The histogram shows 2000 configurations of a
12 × 12 site square arrays stochastically filled with efficiency η. Envelopes are calculated as rolling averages. Atoms are polarized a parallel to the array (for
the ring this implies a spatially dependent polarization), b perpendicular (blue) and parallel (red) to the plane, and c perpendicular to the plane.
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geometry is not only that of the array, but that of the array
together with the detector. In this work, we effectively integrate
over all directions, which would correspond to collecting light
over a large solid angle. As photon emission after a jump is
directional12,13, the burst is most optimally measured by a
detector placed at the location where the far field distribution of
the brightest jump operator is maximal. We note that our
methods can be extended to account for “directional super-
radiance.” Recent work34 has shown that, unsurprisingly, the
critical distance depends on the angular position of the detector.
Second, the peak intensity may no longer scale as N2. Finding the
exact scaling is numerically challenging as it requires full dyna-
mical evolution, though it should be accessible in experiments.
Nevertheless, we speculate that the scaling will depend on the
dimensionality and inter-atomic distance, and will be slower than
N2 (approaching N for one dimension (1D) and with a power law
whose exponent increases with dimension).

In conclusion, we have put forward a universal criterion that
shines light into the physics of Dicke superradiance in extended
systems. We have also demonstrated that Dicke superradiance
universally appears in atomic arrays. We have bounded the cri-
tical distance that signals the crossover between monotonic decay
and a superradiant burst, which is far larger than previously
anticipated (for arrays of dimensionality higher than 1D). This
bound is found by diagonalizing a matrix that scales only linearly
with atom number. This method bypasses the exponentially
growing Hilbert space required for full evolution by simplifying
the problem to the statistics of the first two photons, which allows
us to predict superradiance for very large arrays. Our approach
could potentially be applied to disordered atomic ensembles43,44

(where very small inter-atomic distances are achievable, but
introduce large Hamiltonian frequency shifts that may need to be
accounted for), to other types of Markovian electromagnetic
reservoirs, such as nanophotonic structures45,46 (by simply
changing the Green’s function47), and to emitters with more
complex internal or hyperfine structure48–50.

The understanding of many-body decay provided by our work
is critical for developing robust and scalable quantum applica-
tions, ranging from quantum computing and simulation to
metrology and lasing. In particular, our work is relevant for
Rydberg atom quantum simulators51–53, where Rydberg states
may decay via long-wavelength transitions. These decay paths
may be superradiantly enhanced at short distances54,55. Atomic
arrays are also used in state-of-the-art atomic clocks and other
precision measurement experiments56,57. As such systems shrink,
it is crucial to understand the impact of collective dissipation.
Finally, controlling the light emitted by an atomic array enables
its use as an optical source. We have demonstrated that geometry
can be used to alter the collective optical properties of the array
and shape the temporal profile and statistics of the emitted light.
This presents the opportunity to use atomic arrays to produce
directional single photons58, correlated photons13, or super-
radiant lasers59. Alternatively, measurement of the emitted light
provides a window into the complex evolution of the atomic
system, and directional detection may enable heralded production
of many-body entangled dark states.

Methods
Atom–atom interactions. We consider N two-level atoms of resonance frequency
ω0 and spontaneous emission rate Γ0 in free space at positions ri


 �
. After tracing

out the electromagnetic field using a Born–Markov approximation26,27, the atomic
density matrix ρ evolves as

_ρ ¼ � i
_
½H; ρ� þ ∑

N

i;j¼1

Γij
2

2σ̂ igeρσ̂
j
eg � ρ σ̂ jeg σ̂

i
ge � σ̂ jeg σ̂

i
geρ

� �
; ð4Þ

where σ̂ ige ¼ gi
�� �

ei
� �� is the atomic coherence operator, ei

�� �
and gi

�� �
are the excited

and ground states of the ith atom, and the Hamiltonian reads

H ¼ _ ∑
N

i¼1
ω0σ̂

i
ee þ _ ∑

N

i;j¼1
Jijσ̂ ieg σ̂

j
ge: ð5Þ

The coherent and dissipative interaction rates between atoms i and j are given
by12,28

Jij � i
Γij

2
¼ � μ0ω

2
0

_
℘� � G0ðri; rj;ω0Þ �℘; ð6Þ

where ℘ is the dipole matrix element of the atomic transition and G0(ri, rj, ω0) is
the propagator of the electromagnetic field between atomic positions ri and rj26,27

G0ðrij;ω0Þ ¼
eik0rij

4πk20r
3
ij

ðk20r2ij þ ik0rij � 1Þ1þ ð�k20r
2
ij � 3ik0rij þ 3Þ rij � rij

r2ij

" #
; ð7Þ

where rij= ri− rj and rij= ∣rij∣. The dissipative interactions can be recast in terms

of jump operators, Ôν

n o
, found as the N eigenvectors of the matrix Γ with

elements Γij. The decay rates, Γν

 �

, are found as the corresponding eigenvalues.
The atomic master equation thus reads

_ρ ¼ � i
_
½H; ρ� þ ∑

N

ν¼1

Γν
2

2Ôνρ Ô
y
ν � ρ Ôy

νÔν � Ôy
νÔνρ

� �
: ð8Þ

The jump operators are generically a superposition of lowering operators and
can be expanded as

Ôν ¼ ∑
N

i¼1
αν;iσ̂

i
ge; where ∑

N

i¼1
α�ν;iαμ;i ¼ δνμ and ∑

N

ν¼1
Γν jαν;ij2 ¼ Γ0: ð9Þ

In the above expression, δμν is the Kronecker delta function and αν,i is the
spatial profile of the ν− jump operator. The total photon emission rate is
calculated as

R ¼ ∑
N

ν¼1
Γν Ôy

νÔν

D E
: ð10Þ

Derivation of the second-order correlation function g(2)(0). The second-order
correlation function is calculated as

gð2Þð0Þ ¼
∑
N

ν;μ¼1
ΓνΓμ Ôy
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μÔμÔν

D E

∑
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νÔν

D E� 	2 ; ð11Þ

where the expectation value is taken on the fully excited state ej i�N , which is
the initial state of the system. Substituting in the form of the operators, as shown in
Eq. (9), one finds
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On the fully excited state, these expectation values are evaluated as
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D E
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Therefore,
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N
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N
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� 	
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N

ν¼1

Γν
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� 	2

� 2
N
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N
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Γν


 �
Γ0

� 	
� 1
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:

ð14Þ
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Derivation of the third-order correlation function g(3)(0). The third-order
correlation function is calculated as

gð3Þð0Þ ¼
∑
N

ν;μ;χ¼1
ΓνΓμΓχ Ôy

νÔ
y
μÔ

y
χÔχÔμÔν

D E

∑
N

ν¼1
Γν Ôy

νÔν

D E� 	3 :

¼
∑
N

ν;μ;χ¼1
ΓνΓμΓχ ∑

N

i;j;l;m;n;p¼1
α�ν;iα

�
μ;jα

�
χ;lαχ;mαμ;nαν;p σ̂ ieg σ̂

j
eg σ̂

l
eg σ̂

m
geσ̂

n
geσ̂

p
ge

D E

∑
N

ν¼1
Γν ∑

N

i;j¼1
α�ν;iαν;j σ̂ ieg σ̂

j
ge

D E� 	3

ð15Þ

For the fully-excited state, the denominator is NΓ0
� �3

. For the numerator, the
expectation value is

σ̂ ieg σ̂
j
eg σ̂

l
eg σ̂

m
geσ̂

n
geσ̂

p
ge

D E
¼ δip δjnδlm þ δjmδln

� �
þ δin δjpδlm þ δjmδlp

� �h
þ δim δjpδln þ δjnδlp

� �i
´ 1� δij � δil � δjl þ 2δijδil
� �

:

ð16Þ
Using the same relations as above, we calculate the value of g(3)(0) as

gð3Þð0Þ ¼ 1

N3Γ30
∑
N

ν¼1
∑
N

μ¼1
∑
N

χ¼1
ΓνΓμΓχ 1þ 2δνμχ þ δνμ þ δνχ þ δμχ þ 12 ∑

N
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�

� 2 ∑
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i¼1
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N

i¼1
jαν;ij2jαμ;ij2 � 2 ∑

N
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N
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¼ 1
N3Γ30
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N
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N
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Γ2ν þ 12NΓ30 � 6N2Γ30 � 12Γ0 ∑

N

ν¼1
Γ2ν

� 	

¼ 1þ 2 ∑
N

ν¼1

Γν
NΓ0

� 	3

þ 3� 12
N

� 	
∑
N

ν¼1

Γν
NΓ0

� 	2

þ 12
N2 �

6
N
:

ð17Þ
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