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Diversity of spatiotemporal coding reveals
specialized visual processing streams in
the mouse cortex
Xu Han 1,2✉, Ben Vermaercke1,3 & Vincent Bonin 1,2,4,5,6✉

The cerebral cortex contains diverse neural representations of the visual scene, each enabling

distinct visual and spatial abilities. However, the extent to which representations are dis-

tributed or segregated across cortical areas remains poorly understood. By determining the

spatial and temporal responses of >30,000 layer 2/3 pyramidal neurons, we characterize the

functional organization of parallel visual streams across eight areas of the mouse cortex.

While dorsal and ventral areas form complementary representations of spatiotemporal fre-

quency, motion speed, and spatial patterns, the anterior and posterior dorsal areas show

distinct specializations for fast and slow oriented contrasts. At the cellular level, while diverse

spatiotemporal tuning lies along a continuum, oriented and non-oriented spatial patterns are

encoded by distinct tuning types. The identified tuning types are present across dorsal and

ventral streams. The data underscore the highly specific and highly distributed nature of

visual cortical representations, which drives specialization of cortical areas and streams.
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V isual and sensorimotor processing in mammals depends
on a vast sensory cortical processing network whose
neurons encode specific aspects of the visual world to

enable specific abilities and behavioral goals. At the center of this
network are visual cortical areas, which integrate specific visual
information from cortical and thalamic pathways1 to generate
visual tuning properties (i.e., selectivity for particular visual fea-
tures) of increasing complexity. While neurons in the primary
visual cortex (V1) are tuned to basic visual features2,3 (e.g., the
orientation of a bar), neurons in higher visual areas (HVAs) are
tuned to more complex properties (e.g., pattern motion, the
curvature of an object)4–6.

In primates, dorsal and ventral cortical areas form two broad
information streams, which encode specific information and
make specific contributions to behavior7–9. Involved in motion
processing, neurons of the dorsal stream have specific motion
tuning properties encoding the location and movement of objects
(e.g., pattern motion, direction, and speed selectivity)10–12.
Involved in scene analysis, neurons of the ventral stream show a
variety of spatial tuning properties (color, curvature, etc.)
encoding object identity13–15. Forming specific connectivity with
the magnocellular and parvocellular pathways, the dorsal and
ventral streams integrate visual information of distinct spatio-
temporal scales and distinct spatial features16,17. However, there
is considerable overlap between these representations18, suggest-
ing a more elaborate organization of visual information in the
cortex.

In mice, over ten visual cortical areas have been identified, each
forming a distinct visual field representation and distinct long-range
connectivity19–21. Mouse cortical neurons display many of the visual
tuning properties observed in cats and primates, including orienta-
tion selectivity, tuning for spatial and temporal frequency, motion
speed selectivity, and selectivity for stimulus size22,23. As in primates,
these areas are directly implicated in perception and behavior24–26.
Accumulating evidence also indicates organized visual
pathways23,27–30 and processing streams31–37. In particular, dorsal
and ventral HVAs show specific functional tuning biases suggestive
of specialized representations and processing streams29,31–36.
Anterolateral (AL) and posteromedial (PM) areas respectively
respond most strongly to fast and slow moving stimuli. Widefield
functional imaging of HVAs reported biased responses to stimuli of
different spatiotemporal frequencies in dorsal and ventral areas35

but did not address the diversity and specificity of HVA neural
populations. While V1 studies reported nearly exclusively
orientation-tuned responses with a diverse orientation selectivity in
excitatory neurons22,38, HVA data indicate differences in orientation
selectivity across visual areas with the dorsal areas presenting higher
selectivity than V1 and ventral areas31,32.

However, existing datasets in the mouse focus on a limited
subset of visual areas with relatively sparse sampling of the
neuron population and restricted sets of stimuli; therefore, the
functional relationships amongst populations of visual areas
remain poorly characterized. With regard to visual stimuli, most
studies in the mouse used drifting gratings as the stimulus of
choice for the characterization of visual properties. Some studies
used motion stimuli39–41 but did not characterize detailed spatial
and temporal properties. A recent large-scale study37 recorded
responses to a broader set of stimuli but could not characterize
differences across visual areas and processing streams.

In this study, we characterized at cellular and mesoscopic levels
the organization and specialization of visual processing streams in
the mouse cortex. Using rich visual noise stimuli, we probed the
multidimensional functional tuning properties of superficial
cortical excitatory neurons, addressing selectivity for spatial and
temporal frequency, motion speed, and tuning for oriented and
non-oriented stimuli. We found diverse and stereotyped visual

tuning types with biased distribution across the dorsal and ventral
cortical areas. They form the cellular basis of area-specific
representations and provide strong functional evidence for par-
allel specialized processing streams in the mouse visual cortex.

Results
Characterization of mouse visual cortical areas with spatio-
temporal noise stimuli. To investigate the organization and
specialization of visual processing streams in the mouse cortex,
we characterized, using 2-photon calcium imaging42 in Thy1-
GCaMP6s mice43 (line GP4.12, N= 10 mice) and para-
meterized visual stimuli (Fig. 1a), (azimuth 0 to 100 deg; elevation
−30 to 50 deg), the visual receptive field tuning properties of layer
2/3 cortical pyramidal neurons, sampling activity across eight
retinotopic visual cortical areas delineated using widefield calcium
imaging (Fig. 1b–c, Supplementary Fig. 1, Supplementary
Movie 1) including V1 and seven higher visual areas (HVAs). In
the primate cortex, ventral and dorsal visual areas show distinct
functional properties44,45. To investigate whether an analogous
organization exists in the mouse, we contrasted tuning properties
in V1, LM (lateromedial), dorsal areas AL, RL, AM, and PM
(anterolateral, rostrolateral, anteromedial, and posteromedial),
and ventral areas LI and POR/P (laterointermediate, postrhinal/
posterior areas). Because the borders between POR and P could
not always be identified, the results for these two areas are pre-
sented as ‘POR/P’.

To characterize neurons’ tuning properties, we presented
spatiotemporal noise stimuli made of random visual patterns of
different spatial and temporal frequency (dataset 1–2) and spatial
anisotropy (spatial elongation, dataset 3). The patterns were
generated by frequency-filtering random noise sequences with a
bank of filters of characteristic center spatial and temporal
frequencies and spatial orientation bandwidth tiling the spatio-
temporal spectrum (Supplementary Fig. 2, Supplementary
Movie 2, see Methods).

To characterize tuning for spatiotemporal frequency in
orientation selective and non-selective populations, we recorded
responses to 30 combinations of center spatial and temporal
frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cpd; 0.5, 1, 2, 4, 8, 16 Hz;
spatial and temporal bandwidth: 1 octave) (Fig. 1d; dataset
1–2) using spatially isotropic and anisotropic stimuli of two
distinct spatial orientation bandwidth (Fig. 1d, left vs. right,
infinite vs. 15 deg spatial orientation bandwidth, full width half
maximum [FWHM]; dataset 1 and 2). The orientation of
the anisotropic stimuli varied at constant speed (45 deg/s;
Supplementary Movie 2 center). To probe tuning for spatial
elongation, we recorded responses to 16 combinations of spatial
frequency and orientation bandwidth (spatial frequency: 0.04,
0.08, 0.16, 0.32 cpd; orientation bandwidth: infinite, 60, 30, 15 deg
FWHM; temporal frequency 2 Hz; Supplementary Fig. 2c; dataset
3). The stimuli were presented in a randomized order in 4-s
epochs interleaved with 4-s epochs of gray screen. Each
combination of spatiotemporal frequency and spatial aniso-
tropy was repeated four times using random noise sequences (see
Methods).

A summary of the acquired data is presented in Table 1. We
quantified the visual-evoked responses of a total of 87,309 somatic
regions located 100–300 µm below the pia (hereafter referred to as
‘neurons’), which showed at least one calcium transient during
any of the recordings. Unless stated otherwise, the analyses
were restricted to neuronal cell bodies showing the combination
of high-amplitude visually-evoked calcium responses (stimulus-
evoked response amplitude > 3x standard deviation of baseline
activity for over one sec) and highly-correlated response time
courses across repeated trials (reliably responsive neurons, 75th
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percentile of correlation coefficients between de-randomized sti-
mulus-evoked fluorescence traces across trials, r >0.3, see
Methods) (Fig. 1h, Supplementary Fig. 3, 32,580/87,309 cells,
dataset 1–3), representing between 25 and 49% of the imaged
neurons across visual areas.

Divergent representations of spatiotemporal frequency in
dorsal and ventral visual areas. In primates, neurons in the
dorsal and ventral streams integrate inputs from visual pathways
with specific spatial and temporal tuning properties46,47. To
examine whether a similar architecture exists in the mouse cortex,
we quantified the selectivity of responses for spatial and temporal
frequency using 2D Gaussian function fits (Fig. 1d–e) (see
Methods). From these fits, we extracted response peak amplitudes
(Fig. 1h), peak and cutoff spatial and temporal frequencies, spatial
and temporal tuning shapes (spatially or temporally lowpass,

bandpass, or highpass) and bandwidth. Good quality fits were
obtained for a vast majority of neurons (Fig. 1f, root mean
squared error <10% peak amplitude, 26,659/27,701 reli-
ably responsive neurons, Table 1). For each neuron, we examined
the data from the fit with higher peak response amplitude (Fig. 1e,
thick lines; dataset 1 or 2). The isotropic and anisotropic stimuli
yielded highly correlated tuning for spatial and temporal fre-
quency (Fig. 1d, bottom, g, Pearson’s correlation coeffi-
cients, paired vs. shuffled responses: median values 0.71 vs. 0; 100
random neurons per resampling, 1000 resampling; two-sample
KS test, p < 0.001, 10,811 neurons responding to both types of
stimuli, 10 mice).

Examining the organization of spatiotemporal tuning
across visual areas, we observed a high degree of specificity. In
individual visual areas, neurons exhibit a broad spectrum of
tuning properties (Figs. 2a, c; 3a, c). Across visual areas, specific
response patterns emerge (Figs. 2a–d and 3a–d), whereby

Thy1-GCaMP6s (GP4.12)
V1 Layer 2/3 
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neurons in distinct visual areas are activated by distinct ranges
of spatiotemporal frequencies (Fig. 2b). While V1 neurons
respond most strongly to stimuli of low temporal and low spatial
frequencies, LM neurons show the strongest activation in
response to stimuli of mid-range spatiotemporal frequencies.
Similarly, whereas neurons in anterior higher visual areas (AL,
RL, AM) show the strongest activation for stimuli of high
temporal and low to mid-range spatial frequencies, neurons in
posterior higher visual areas (PM, LI, and POR/P) show the
nearly opposite response pattern with the strongest activation for
stimuli of low temporal and high spatial frequencies. Accordingly,
the distributions of tuning shapes (Fig. 2d), peak spatial and
temporal frequencies, and spatial and temporal frequency cut-
offs show highly significant biases (Fig. 3b, d; Supplementary
Fig. 5; hierarchical bootstrap KS tests accounting for inter-animal
variations, see Methods). Consistent across animals (Supplemen-
tary Fig. 4a–c), the biases are robust to variations in the
response reliability threshold used to identify visually-responsive
neurons (Supplementary Fig. 4d).

These representational biases also provide indications of visual
stream specialization. Ascribed to the dorsal stream, areas AL, RL
and AM share a marked preference for fast-varying low-spatial-
resolution stimuli. Ascribed to the ventral stream, LI and
POR/P share a distinct preference for slow-varying high-spatial-
resolution visual stimuli. However, with a preference for slow-
varying high-resolution signals, the properties of area PM stand
out from those of other dorsal HVAs resembling more those of
ventral visual areas. While the differences between AL and PM
described here are consistent with the report by Anderman and
colleagues (2011)31, they differ markedly from the data of
Marshel et al. (2011)32, which showed less pronounced
differences in spatiotemporal preferences across visual areas
(Supplementary Fig. 6, detailed in Discussion).

Enhanced speed tuning and divergent visual speed repre-
sentations in higher visual areas. In primates, the dorsal stream
is specialized for visuomotor processing and its neurons
are involved in the encoding of visual motion, showing pattern
motion selectivity and neuronal responses correlated with visual

motion perception. Although sensitivity for pattern motion is
rare in the mouse cortex33, selectivity for motion speed is
observed and may be enhanced in certain HVAs31,36. The noise
stimuli contain local visual motion, which can be used to examine
speed selectivity. For such stimuli, speed is defined as the ratio of
the stimulus’ center temporal frequency over its center spatial
frequency. To study speed representations, we computed from
the fits to the responses to isotropic stimuli (dataset 1), a speed
tuning index (SI) describing the slant in the neuron’s
2-dimensional spatiotemporal tuning12 (Supplementary Fig. 7).
In this quantification, high SI values (SI > 0.5) indicate
an approximately invariant speed tuning curve for a range of
spatial and temporal frequencies, whereas low (−0.5 < SI < 0.5)
and negative (SI <−0.5) SI values, in contrast, indicate a lack of
such scale invariant speed tuning.

Examining the organization of speed tuning across areas, we
found a specific enrichment of speed selectivity in dorsal areas.
This enhancement is visible in the gradient of mean SI values
across the cortical surface (Fig. 3e). The proportion of speed-
tuned neurons is lowest in V1 (25%), which shows low average SI
values (Fig. 3e) and an approximately symmetrical spread of SI
values around the origin (Fig. 3f). In contrast, anterior dorsal
areas comprise higher proportions of speed-tuned cells (AL: 41%,
RL: 50%, AM: 47%), with high average speed tuning indices
(Fig. 3e) and significant shifts towards large SI values relative to
V1 (Fig. 3f, hierarchical bootstrap KS test). The proportion of
speed-tuned neurons is also elevated in PM (36%), but the
difference is more modest. In comparison, ventral areas LI and
POR/P show lower proportions of speed-tuned neurons (LI: 34%,
POR/P 33%) and a significant shift towards low SI values relative
to dorsal visual areas. The proportion of speed-tuned neurons
in LM (38%) appears elevated relative to V1, however, the
distributions of SI values for this area mostly did not differ
significantly from those observed in other areas.

Examining the organization of preferred (peak) speed, we
found again a high degree of specificity (Fig. 3g–h). In
comparison to neurons in V1 and LM, neurons in dorsal areas
AL, RL, and AM show a distinct preference for higher visual speed
(Fig. 3h, right). In ventral areas LI and POR/P, in contrast,
neurons show a preference for lower speed. As a result of these

Fig. 1 Characterization of mouse visual cortical areas with spatiotemporal noise stimuli. a Characterization of visual cortical neurons in primary visual
cortex (V1) and higher visual areas (HVAs) in mice. Thy1-GCaMP6s mice (line GP4.12, N= 10 mice) were head-fixed during visual stimulation and
imaging. Spatially isotropic (ISO) and anisotropic (ANISO) visual noise stimuli of specific spatial and temporal frequencies and orientations were presented
to the right visual hemifield (azimuth 0–100 deg; elevation −30–50 deg) (top). While the ISO stimuli had constant frequency spectra, the orientation of the
ANISO stimuli was varied slowly to activate neurons with a spectrum of orientation preferences (white arrow). GCaMP6s labeled L2/3 cortical pyramidal
neurons in the left visual cortex (bottom) were imaged using 2-photon (2P) microscopy through a cranial glass window. Scale bar: 100 µm. b Retinotopic
mapping of mouse visual cortical areas. The borders of primary visual cortex (V1) and higher visual areas (HVAs) were identified using 1-photon (1P)
widefield calcium imaging of responses to a clockwise circling visual stimulus. Stimulation at different visual field locations (left) activates different regions
of the visual cortex (right). This activation pattern (color coded) was used to align the cortical surface to a common area delineation. Scale bar: 1 mm.
c Distribution of functionally-characterized neurons within the common area delineation. Color-coded dots indicate the estimated neurons’ cell
body locations and assigned visual areas. Neurons with cell bodies located outside the common delineation (light gray dots) were excluded from the
analysis. d Example calcium responses to ISO (left) and ANISO stimuli (right) for three simultaneously recorded neurons. The neurons show distinct
spatiotemporal selectivity and distinct preferences for ISO and ANISO stimuli (top to bottom). Gray traces and light gray shadows: median ± median
absolute deviation (4 trials). Blue bars: 4s stimulus epochs. Scale bars: 1 ΔF/F and 10 s. e Model-based estimation of spatiotemporal frequency tuning. Dot
plots show average normalized response amplitudes (encoded as dot surface area) as a function of spatial and temporal frequency (upper left) and
amplitudes from the corresponding 2-dimensional Gaussian function fits (bottom left). Right panel: Contours show halfmaximum of responses to ISO
(yellow curves) and ANISO stimuli (green curves) estimated from model fits. For each neuron, the fit with maximal peak response (thick curves) was
selected for further analysis. f Histogram shows the distribution of normalized residuals of fits (root mean squared errors divided by the peak
amplitude) across the characterized neural population. Good quality fits (<0.1) were obtained for most cells with reliable responses (26,659/27,701
neurons, datasets 1 or 2). g Mean Pearson’s correlation coefficients of responses to ISO stimuli between paired vs. randomly-shuffled responses to ANISO
stimuli (100 cells per bootstrap subsampling, n= 1000 iterations). Two-sample KS test, p<0.001. ISO and ANISO stimuli yield similar measurements
of spatiotemporal tuning (10,811 neurons responding to both ISO and ANISO stimuli, 10 mice). h Peak response amplitudes of selected and excluded
neurons. For each distribution in g and h: kernel density estimator bandwidth 0.05; scale bar: 2.5% cells; black vertical bars: median value.
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biases in tuning, anterior dorsal areas (AL, RL, and AM) increase
their activity with increasing stimulus speed (peaking at 100–400
deg/s) whereas ventral areas (LI and POR/P) decrease their
activity (peaking at 6–12 deg/s) (Supplementary Fig. 7c, red
curves). These biases, which are consistently observed across
animals (Supplementary Fig. 7c, red curves), entail a factor of
sixteen in variations of mean speed (Fig. 3g, h; hierarchical
bootstrap KS test). Interestingly, while measures of preferred
speed and speed selectivity are approximately independent in V1,
LM, AL, and RL, high SI values in AM, PM, LI, and POR/P seem
restricted to lower visual speed (<25 deg/s) (Supplementary
Fig. 7d).

Together these data indicate that dorsal and ventral visual areas
in the mouse cortex form distinct visual speed representations.
Reminiscent of dorsal and ventral areas of the primate visual
pathways, the areas show distinct degrees of speed tuning and
differentially encode slow and fast stimuli. Compared to AL, RL,
and AM, area PM shows a distinct preference for low speed,
suggesting it partakes in a separate visual pathway.

Enhanced encoding of visual speed in higher visual areas. The
speed representations could confer HVAs an advantage in encod-
ing stimuli of different speed. To examine this possibility,
we quantified using a neural decoding analysis how accurately
the speed of pairs of visual stimuli of similar spatiotemporal fre-
quencies can be discriminated from neuronal activity in mouse
visual areas. Specifically, linear support vector machine
(SVM) classifiers were used to decode neural activity in response to
isotropic spatiotemporal stimuli (dataset 1) and dis-
criminate responses to pairs of stimuli sampled between (Fig. 4a) or
along iso-speed lines (Fig. 4d). To evaluate the advantage of HVAs
in encoding visual speed, we computed the decoding (discrimina-
tion) accuracy for neuron ensembles (pools) of different sizes
(Fig. 4b, e, insets) and estimated the fractional differences
in decoding accuracy (Δ decoding accuracy) observed
for HVA ensembles relative to V1 (Fig. 4b, c) and for sti-
muli sampled across and within iso-speed lines (Fig. 4e, f).

The analysis revealed enhanced encoding of visual speed in
HVAs in comparison to V1 (Fig. 4c, f, Supplementary Fig. 8).
Across the dataset, discrimination accuracy increases with neural
ensemble size (Fig. 4b, e, insets) showing a dependence on
stimulus spatiotemporal frequency (Supplementary Fig. 8a).
Differences in the discrimination accuracy between classifiers,
however, could be best discerned for small neuron ensembles
(Fig. 4b, e). We, therefore, quantified Δ decoding accuracy for a
range of spatiotemporal frequencies and a pool size of 16 neurons
(Fig. 4c, f). Examining Δ decoding accuracy computed between
HVAs and V1, we found that although V1 shows good
speed discrimination ability across the frequency spectrum with
a maximal accuracy of around 75%, many HVAs
show higher decoding performance with peak accuracy at around
slopes of average tuning maps and chance-level accuracy
centered around the preferred and null frequency (Figs. 2b, 4c,
Supplementary Fig. 8b). Examining Δ decoding accuracy
computed between speed and iso-speed responses, we found
neuron ensembles in dorsal and ventral areas show specific
advantages in discriminating stimuli of different speeds relative to
stimuli varying along the perpendicular axes (Fig. 4f, Supple-
mentary Fig. 8d). This advantage is most pronounced for areas
AL, RL, and AM in the dorsal stream. Nonetheless, ventral areas
LI and POR/P also show an advantage for speed coding.
Interestingly, areas PM and LM show only a weak advantage over
V1. Altogether, the results indicate that HVA neural responses
have an advantage for speed coding and this advantage is more
pronounced in anterior dorsal visual areas.T
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Distinct responses to oriented and non-oriented stimuli in
ventral and dorsal areas. We next examined the popula-
tion representations of oriented and non-oriented spatial features
in mouse visual areas. In the primate visual cortex, neurons
encode specific orientations2,48 as well as specific spatial patterns
such as the curvature or the elongation of a bar, with more
complex spatial patterns overly represented in HVAs15,49. In the
mouse cortex, neurons show diverse orientation tuning as well as
diverse spatial integration properties22,31,32,50. These areal dif-
ferences could reflect processing streams tuned to particular
spatial visual patterns. To characterize the organization of spatial
tuning across visual areas, we examined the magnitudes of
responses to isotropic and anisotropic noise stimuli (datasets 1
and 2) (Figs. 1d and 5a).

Some neurons show a preference for anisotropic, oriented sti-
muli (Fig. 1d, middle and bottom; 5a, dark and light blue).
However, a subset shows the opposite preference, responding
preferentially to isotropic, non-oriented stimuli (Fig. 1d, top, 5a,
dark gray). To our knowledge, a preference for non-oriented
stimuli has never been described and could reflect receptive fields

tuned to non-oriented or weakly oriented features (e.g., curvature).
To examine the relative prevalence of these response patterns, we
computed an anisotropy preference index (API), defined as the
ratio of the difference to the sum of the average responses to
anisotropic and isotropic stimuli (see Methods). In this quanti-
fication, an API value of 0 indicates responses of similar magni-
tudes to oriented and non-oriented stimuli whereas API values of
−1 or +1 indicate specific responses to isotropic or anisotropic
stimuli, respectively. Examining the distribution of API values
across the dataset, we found a high prevalence of neurons
preferring isotropic stimuli over anisotropic stimuli. About half
the cells show comparable responses to both oriented and non-
oriented stimuli (49%, 13,168/26,659, −1/3 < API < 1/3). Further-
more, nearly a third of the neurons (31%, 8,211/26,659 cells,
datasets 1 and 2) exhibit a preference for non-oriented stimuli or
respond exclusively to these stimuli (API <−1/3). In compar-
ison, only a fifth of the cells show a preference for oriented stimuli
(20%, 5,280/26,659 cells, API > 1/3).

To determine whether the preference for anisotropic over
isotropic stimuli is predictive of the degree of orientation tuning,
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we computed, from the time courses of responses to anisotropic
stimuli (Fig. 5a, dark blue and gray, dataset 2), approximate
orientation tuning curves and associated orientation selectivity
indices (OSI) quantifying the degree of orientation tuning
(Fig. 5c–e; Supplementary Figs. 10, 11; see Methods). We
observed a correlation between the neurons’ preferences for
isotropic and anisotropic stimuli and their degree of orientation
selectivity. While neurons with high API values show high OSI
values (Fig. 5f), indicative of a highly orientation-tuned popula-
tion, neurons with low API values show comparatively low OSI
values (Fig. 5f), indicating weaker selectivity.

Previous studies reported that the degree of orientation tuning
of cortical neurons varies across mouse visual areas31,32. To
determine whether the proportions of neurons tuned to oriented
and non-oriented stimuli covary across visual areas, we examined
the distributions of API and OSI values as well as the proportion
of neurons responding exclusively to isotropic stimuli. We
observed a non-uniform distribution of neurons tuned to
oriented and non-oriented stimuli in areas of the dorsal and
ventral visual streams (Fig. 5b, g). While ventral visual areas LI
and POR/P exhibit marked shifts towards low API values relative
to other visual areas (Fig. 5b, hierarchical bootstrap KS tests) and
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elevated proportions of cells responding exclusively to non-
oriented stimuli (Fig. 5g, gray), dorsal visual areas AL, RL, AM,
and PM show low proportions of neurons responding exclusively
to non-oriented stimuli (Fig. 5g, gray) and high proportions of
orientation-tuned neurons (Fig. 5g, dark blue). In comparison, V1

and LM lie midway with API and OSI values between ventral and
dorsal visual areas. Together, these results indicate that oriented
and non-oriented stimuli are represented broadly across visual
areas and distributed specifically across dorsal and ventral visual
streams.
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Discrete response types underlie divergent representations of
oriented and non-oriented stimuli. To investigate the spatial
tuning properties underlying the preferences for oriented and
non-oriented stimuli, we characterized, in a separate dataset
(dataset 3; 22,816 cells showing reliable responses, 10 mice;
Table 1), the responses to visual patterns of varying spatial
scale and elongation (Fig. 6a) using noise stimuli comprising four
grades of orientation bandwidth (orientation bandwidth: infinite,
60, 30, 15 deg FWHM) and four spatial frequencies (spatial fre-
quency: 0.04, 0.08, 0.16, 0.32 cpd; temporal frequency: 2 Hz)
(Fig. 6b). Through their rotation, the anisotropic stimuli covered
a full range of orientation (Fig. 6a, white arrows) allowing acti-
vation of neurons with diverse orientation preferences. The joint
tuning of responses for spatial frequency and orientation band-
width yielded separable response patterns (Fig. 6b, top), which
could be quantified by examining the amplitudes of responses as a
function of elongation at the neurons’ peak spatial frequency
(Fig. 6b, bottom). We grouped neurons according to
their ANISO/ISO preferences (API values) and the similarity of
their tuning for elongation and examined the response time
courses and OSI for distinct ranges of API values.

The experiments revealed three broad response types (Fig. 6c,
d). Neurons with low API values ([−1,−1/3]) show strong
responses to isotropic stimuli and a steep decrease in response
amplitude with spatial elongation (Fig. 6b, cell 1; 6c, top). These
cells had too weak responses to elongated stimuli to probe
orientation tuning (Fig. 6d, top), so we termed them non-
orientation selective neurons (non-OS cells). In contrast, neurons
with high API values ([1/3, 1]) show weak or no responses to
isotropic stimuli and strong responses to elongated stimuli (Fig. 6b,
cell 2; 6c, middle). In comparison to non-OS cells, these neurons
show sharp calcium transients and sharp orientation tuning
(Fig. 6d, middle, Supplementary Fig. 12a), so we termed them
sharply orientation selective neurons (sharp-OS cells). Finally,
neurons with mid-range API values ([−1/3,1/3]) show robust,
comparable responses to both isotropic and anisotropic stimuli
(Fig. 6b, cell 3; 6c bottom). In comparison to sharp-OS neurons,
these cells have significantly broader orientation tuning, hence
termed broad-OS cells (Fig. 6b, cell 3; 6c bottom; Supplementary
Fig. 12a; dataset 3; sharp-OS vs. broad-OS: median OSI 0.3 vs. 0.5;
12,143 vs. 7313 neurons; two-sample KS test, p < 0.001).

Applying ward linkage clustering to the data, we observed non-
uniform representations of sharp-OS, broad-OS cells, and non-
OS cells across lower and higher visual areas (Fig. 6e, f). While
ventral areas LI and POR/P show a high proportion of non-OS
neurons and a low proportion of sharp-OS neurons, dorsal areas
AL, RL, AM, and PM show the opposite pattern, a high
proportion of sharp-OS neurons and a relative scarcity of non-OS
neurons. The distributions of tuning types in V1 and LM are
midway between ventral and dorsal areas. However, LM
comprises a higher proportion of sharp-OS cells relative to V1.
These differences in the relative frequency of response types in
visual areas are consistent with differences in average tuning for
elongation observed between areas, which were robustly observed
across mice (Supplementary Fig. 12b). Together these data
indicate that oriented and non-oriented stimuli are encoded in
the activity of discrete cell groups which are differentially
represented across cortical visual areas and across visual streams.

Clustering analysis reveals the organization of parallel pro-
cessing streams. Finally, we examined the possibility of func-
tional cell groups tuned to both spatial and temporal features.
We applied non-supervised clustering (k-means) to the neu-
rons’ responses to isotropic and anisotropic stimuli (datasets 1
and 2) (Fig. 7, Supplementary Fig. 13; Methods). The analysis

yielded 12 minimally-distant clusters which are broadly repre-
sented across visual areas (Fig. 7a; Supplementary Fig. 13a). These
clusters capture the range of the neurons’ tuning properties to the
stimuli (Fig. 7b–d), showing characteristic preferences for spa-
tiotemporal frequency, isotropic and anisotropic stimuli (Fig. 7b).
They also differ in tuning for speed, orientation, and spatial
elongation (Fig. 7c, d). A 2-dimensional representation of the
dataset (t-SNE) shows the clusters uniformly tile the response
space with no clear separation (Fig. 8b). Thus, neurons of diverse
spatiotemporal properties lie along a continuum rather than
forming discrete types.

Despite the lack of discrete cell groups, it is clear that each area
features a broad diversity of responses, each with its own
functional cellular makeup. Hierarchical bootstrapping of
response type distributions shows robust, significant differences
across visual areas (Fig. 8c). The pairwise distances between
distributions of response types show both a similarity and diver-
gence of representations within and between dorsal and ventral
visual streams (Fig. 8d). Specifically, ventral and anterior dorsal
areas show nearly opposite distributions of tuning preferences
and, amongst themselves, show highly similar functional make-
ups (Fig. 8d; Supplementary Fig. 14). Ventral areas LI and POR/P
show the most similar functional cellular makeup. Anterior dorsal
areas AL, RL, and AM show more similar albeit still distinct
distributions of properties. However, PM shows tuning prefer-
ences that are opposite to the properties of other dorsal areas.
Furthermore, it shows the highest cell density in regions of the
spatiotemporal tuning that are poorly represented in LI and POR/
P (Fig. 8a) and is significantly different from the ventral areas in
terms of the cellular makeup (Supplementary Fig. 14, hierarchical
bootstrapping, PM-PM vs. PM-ventral areas, Cohen’s d > 2),
indicating it may form its own distinct visual information
substream.

Discussion
By investigating with 2-photon calcium imaging in the mouse the
visual response properties of thousands of cortical excitatory
neurons, we characterized the functional organization of eight
visual cortical areas and investigated the functional specialization
of associated cortical processing streams. Using noise stimuli, we
found neurons in the superficial cortex carry highly-diverse
and highly-specific visual representations, differing in spatio-
temporal frequency tuning, stimulus speed selectivity, and sen-
sitivity to oriented and non-oriented stimuli. While V1 and LM
neurons show broadly dispersed tuning properties, HVA neurons
are more specific, representing narrower ranges of spatiotemporal
frequencies (Figs. 2 and 3) and showing more specific biases for
stimulus speed and spatial anisotropy (Figs. 4–6). Ventral and
dorsal HVAs show distinct tuning properties, responding differ-
entially to oriented and non-oriented stimuli (Figs. 5 and 6) and
encoding complementary ranges of spatial and temporal fre-
quencies, and speed (Figs. 2–4). While responses to stimuli of
varying orientation bandwidth and elongation fall into discrete
clusters (sharp-OS cells, broad-OS cells, and non-OS cells)
(Fig. 6), the joint spatial and spatiotemporal tuning lies on a
continuum (Figs. 7 and 8). Finally, a direct comparison of visual
representations across visual areas (Fig. 8) indicates that the
mouse visual cortex can be parcellated into at least three distinct
functional streams, which run through ventral areas, anterior
dorsal areas, and medial area PM, respectively. These functional
results provide a detailed map of spatial and spatiotemporal
tuning properties, which complements the anatomical evidence of
parallel visual processing streams in the mouse cortex21,51,52.
Previous studies had reported distinct spatiotemporal tuning

properties in AL and PM28,29,31. This study extends these
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observations to a broader set of visual areas using a broader set of
visual stimuli. Previous large-scale studies of HVAs measured
1-dimensional tuning at a fixed spatial or temporal frequency32,37,
which can be suboptimal for measuring neurons’ spatial and temporal
selectivity and cannot capture space-time inseparable response

patterns such as selectivity for stimulus speed. Focusing on cortical
excitatory neurons, using stimuli covering the full spatio-
temporal frequency spectrum, we found the preferred spatial and
temporal frequencies can differ by as much as 8 fold between
visual areas (Fig. 3b, d, h), differences much greater than previously
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appreciated32 (Supplementary Fig. 6). The discrepancy could reflect
differences in experimental conditions such as the calcium indicator
employed and the use of anesthetics during the recordings32. While
the spatiotemporal tuning preferences we observed in AL and PM are
generally consistent with results from studies in awake animals29,31,37

(Supplementary Fig. 6), we observed weaker speed tuning in PM than
in AL which seems to contradict previous studies31,36. The differences
could reflect our use of incoherent motion noise stimuli instead of
drifting gratings to measure speed selectivity. The stimuli differ in
degree of motion coherence, which could influence estimates of speed
selectivity39.

While the results suggest selectivity for spatial and temporal
frequency is an important driver of HVA specialization, an open
question is whether the spatiotemporal biases observed are a
property of the visual areas or a consequence of their biased
retinotopic representations19. Although we cannot rule out a
contribution of biased retinotopic representations, we note that

only highly visually responsive neurons with receptive fields on
the visual display were included in the analysis. We also note the
close correspondence between area-specific tuning preferences
and the retinotopic borders that were measured independently
(Fig. 3a, c, e, g), as well as the relative uniformity of spatio-
temporal preference within visual areas. Together, this suggests
the observed biases in spatiotemporal preferences are not entirely
driven by the biased retinotopic representations.

The properties of sharp-OS cells and broad-OS cells we iden-
tified are in line with previous studies; however, the properties of
non-OS cells are surprising (Figs. 5 and 6). While mouse V1 L2/3
excitatory neurons were reported to be exclusively orientation
tuned22,38, we found that between 40 and 60% of excitatory
neurons in V1, LM, and ventral areas respond much stronger to
spatially isotropic stimuli than to anisotropic stimuli. The sup-
pression of activity in response to elongated stimuli is an indi-
cation of nonlinear spatial integration. A linearly integrating
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neuron with an untuned receptive field should show responses of
equal or similar strength to oriented and non-oriented stimuli of
the same spatiotemporal scale. One possible mechanism could be
that non-OS cells are strongly shaped by inhibitory surround
mechanisms (surround suppression). Responding robustly to
spatially-extended isotropic stimuli but not to elongated aniso-
tropic stimuli, non-OS cells may, in particular, be affected by
orientation-tuned suppression, which has also been observed in
the mouse visual cortex50,53. Because of their specific spatial
integration properties, non-OS cells could support specific visual
processing such as boundary identification, shape coding, and
scene analysis15,49,54. Computational modeling of efficient
encoding of natural image structures predicts highly diverse
feature detectors, including classic Gabor-like edge detectors and
equally abundant detectors for non-oriented spatial patterns55,56.
These model receptive fields resemble neurons’ receptive fields
probed with natural images in the visual cortex of primates and
cats57,58 and could potentially explain non-OS cells’ preferences
for non-oriented noise (Fig. 6).

Our results provide functional evidence of multiple parallel
processing streams in the mouse visual cortex. Ventral areas LI
and POR/P preferentially encode non-oriented features and
slowly-varying high-resolution visual inputs. In contrast, anterior
dorsal areas AL, RL, and AM show pronounced responses to
visual motion, preferentially encoding oriented stimuli and fast
varying visual inputs of low-to-mid spatial frequencies. These
functional properties could reflect ventral and dorsal processing
streams with distinct roles in shape and motion processing.

Interestingly, our data suggest that the area PM, which is tra-
ditionally ascribed to the dorsal stream based on its location and
connectivity21,51,52, might form a separate processing stream or
substream. Unlike ventral areas, PM shows high orientation
selectivity; unlike anterior dorsal areas, PM shows nearly opposite
preferences for spatiotemporal frequency and functional cellular
makeups, and weak speed selectivity. Supporting this notion,
recent fine-scale connectivity studies revealed segregated input
pathways to PM and anterior dorsal areas27–30, and relatively
weak connection between them. PM also shows specific responses
to coherent visual motion39, and is a primary source of visual
inputs to the retrosplenial cortex21, which links to navigation and
contextual learning59,60. Hence, PM might reflect a specialized
processing stream in the mouse. It remains to be tested if further
branching of processing streams also exists in other species.

While the primate ventral and dorsal streams are broadly
segregated for object recognition and action guidance8, basic
visual features, such as the spatial and temporal scales of visual
stimuli, orientation, and motion, are represented in both streams
and necessary for different aspects of perception and behaviors.
Dorsal areas estimate an object’s form and motion in conjunction
to enable successful interactions61. Ventral areas identify objects
using information about the spatial features, as well as the relative
motion to the background62. Similarly, in the mouse, dorsal areas
might use the integrative encoding of visual motion and location
signals to guide navigation and interaction with the
environment24,31,33,39,63. Mouse ventral areas bear specialized
visual selectivity and connectivity that imply a role in identifying
and pursuing small objects, such as moving crickets or overhead
threats40,41,51,64–66. Other higher-order ventral-like functions
(e.g., object recognition) in the mouse or in the rat, albeit
reportedly existent67,68, might not be as developed as those in
higher visual mammals. In sum, these similarities and differences
between the mouse and the primate may reflect evolutionarily
conserved and species-specific adaptation of visual cortical
organization and functions.

The specificity and diversity of functional cell types observed
within and across cortical areas are in line with the known

anatomy of intercortical and thalamocortical connectivity. On the
one hand, functionally similar areas tend to receive inputs from
common sources and show strong recurrent connectivity,
whereas functionally divergent areas receive segregated inputs
from V1 and the thalamus, and are less
interconnected21,27–29,41,52. On the other hand, although rela-
tively weak, the anatomical connectivity between dorsal and
ventral, anterior and posterior areas is also extensive21,52, how-
ever, the functional properties of the underlying intracortical
projection neurons remain uncharacterized. The shared tuning
types observed between functionally divergent areas might form
specialized long-range connections, and this possibility remains
to be tested. Future studies combining in vivo cellular physiology
along with circuit mapping and manipulation should provide
important insights into the organization rules of connectivity and
information flow between visual cortical areas.

In conclusion, the current study provides a comprehensive
characterization of tuning properties in mouse visual cortical
areas, addressing joint spatial and spatiotemporal properties and
providing insights on the encoding of spatial and temporal
information, functional cellular makeups, distributed specialized
representations, and organization of parallel processing streams.
The results underscore the richness of visual cortical repre-
sentations and can serve as an anchor point for future studies on
visual processing and behavior, cortical and thalamic con-
nectivity, and biologically relevant computational models.

Methods
Animals and surgery. All experiments were approved by the Animal Ethics
Committee of KU Leuven. C57BL/6J-Tg (Thy1-GCaMP6s)GP4.12Dkim/J mice43

between 2 and 3-month of age (5 male and 5 female) were used for chronic
widefield and cellular calcium imaging experiments69. The mice were single-housed
in an enriched environment (cotton bedding, wooden blocks, and running wheel),
with 12 h–12 h light-dark cycle, 19–21 degrees cage temperature, 30–70%
humidity. Standard craniotomy surgeries were performed42. The mice were anes-
thetized with isoflurane (2.5–3% induction, 1–1.25% surgery). A custom-made
titanium frame was attached to the skull, and a glass cranial window was implanted
in the left hemisphere over the visual cortex. In five mice, a 5-mm cranial window
was centered over V1 (3.10 mm lateral from lambda, 1.64 mm anterior of the
lambdoid suture). In the other five mice, a 4 mm wide glass window was placed
over the posterior temporal cortex (3.80 mm lateral from lambda, 1.64 mm anterior
of the lambdoid suture). Buprenex and Cefazolin were administered post-
operatively (2 mg/kg and 5 mg/kg respectively; every 12 h for two days). All mice
were habituated to human handling and the imaging setup at least three days
before data acquisition. During the imaging experiments, the mice were comfor-
tably head restrained on a treadmill.

Visual stimulation. A 22-inch LCD monitor (Samsung 2233RZ, 1680 by 1050-
pixel resolution, 60 Hz refresh rate, brightness 100%, contrast 70%) with a mean
luminance of 54–80 cd/m2 (from edges to center) was positioned 18 cm in front of
the right eye, covering 100 by 80 degrees of the visual field (0 to 100 deg in azimuth
from central to peripheral and −30 to 50 deg in elevation from lower to upper
visual field). Visual stimuli were generated in MATLAB (The Mathworks, Natick,
MA) and presented using PsychoPy2 and custom Python code. A spherical geo-
metric correction was applied to the stimuli to define eccentricity in spherical
coordinates. The stimuli were generated by applying narrow spatiotemporal
bandpass filters (spatial and temporal bandwidth: 1 octave) to random noise (1/f
noise) (Supplementary Fig. 2; Supplementary Movie 2) and varying center spatial
and temporal frequencies and orientation bandwidth. For the retinotopic mapping,
a circular patch of bandpass filtered noise (20 deg in diameter, 0.08 cpd, 2 Hz)
moved clockwise along an elliptic trajectory on the display (azimuth: 10 to 90 deg;
elevation: −20 to 40 deg; 20 s per cycle with 20 repetitions; Fig. 1b, Supplementary
Fig. 1; Supplementary Movie 1). For dataset 1 and 2, the filters included 30
combinations of center spatial and temporal frequencies (spatial frequency: 0.02,
0.04, 0.08, 0.16, 0.32 cpd; temporal frequency: 0.5, 1, 2, 4, 8,16 Hz) for 2 orientation
bandwidth (infinite and 15 deg full-width-at-the-maximum or FWHM). For
dataset 3, the filter set included 16 combinations of center spatial frequencies and
orientation bandwidth (0.04, 0.08, 0.16, 0.32 cpd; infinite, 60, 30, 15 deg FWHM)
generated at a fixed center temporal frequency (2 Hz). The center spatial orien-
tation of the stimuli with finite bandwidth was varied to rotate clockwise at a rate of
45 deg/second. The stimuli had 50% standard root-mean-square contrast. Each
stimulus consisted of 4 s of filtered noise which was presented in alternation a 4-s
epoch gray screen of the same average luminance. The stimuli were presented in a
randomized order in four pseudorandomized trials. For each trial, a different set of
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seeds were used to generate unique noise stimuli, with varying phases yet constant
frequency spectra across trials.

1-photon and 2-photon imaging. All imaging was conducted using a dual wide-
field and 2-photon in vivo microscope (Neurolabware LLC). Widefield calcium
imaging was performed with blue excitation light (479 nm LED, 469/35 nm
bandpass filter, Thorlabs) through a low magnification (2x) objective lens (NA=
0.055, Mitutoyo) and green emission light (498 nm dichroic, 525/39 nm filter,
Semrock) collected with an EMCCD camera (QImaging EM-C2, Teledyne Pho-
tometrics; 1004 by 1002 pixels with 2 by 2 binning) at a rate of 5 frames per second
(fps). For 2-photon imaging, a 920-nm femtosecond laser beam (Newport MaiTai
DeepSee) was raster-scanned using galvo and resonant scanners (Cambridge
6215H and CRS 8K) and focused at 100–300 mm depth below the pial surface
using a 16x lens (NA= 0.8, Nikon). GCaMP6 fluorescence was collected using a
bandpass filter (510/84 nm, Semrock) and GaAsP hybrid photodetectors (H11706-
40, Hamamatsu), and images were reconstructed and acquired using Scanbox
(version 4.0, https://scanbox.org). Individual imaging planes (720 x 512 pixel per
frame, 1249 by 1067 um field-of-view) were collected at different depths. Simul-
taneous multi-plane imaging was achieved by rapidly changing the focus with an
electrically tunable lens (EL-10-30-TC, Optotune AG; staircase mode) from 100 to
300 um depth and varying the laser power (from ~50 to 120 mW). Images were
acquired from 3 or 4 evenly spaced planes at rates of 10.33 and 7.75 Hz, respec-
tively. Blackout material (Thorlabs) blocked stray light from the visual display
entering the collection light path.

Data analysis. All data analysis was performed using custom scripts written in
Python or MATLAB

(The Mathworks, Natick, MA).

Retinotopic mapping and area delineation. Retinotopic maps were quantified by
averaging the acquired camera images across repeated visual stimulation trials
(Supplementary Fig. 1a, right) and calculating the phase angle of the visual sti-
mulus location evoking maximal calcium responses (Supplementary Fig. 1a, left).
Because each area has a near-complete visual representation, the trajectory of the
visual stimulus results in multiple circular activation patterns, and pinwheel-like
clockwise and counter-clockwise phase maps (Supplementary Fig. 1a, right). The
border between V1 and the surrounding HVAs was delineated by tracing the gaps
around the main activation pattern in the posterior cortex. The borders between
HVAs were drawn at the reversal of the phase map directions. Using published
delineations19,20, a template was applied on the cortical surface with varying scale,
rotation, and translation (Supplementary Fig. 1b).

Calcium imaging data. To correct x-y motion, 2P images for all experiments
during the imaging sessions were registered to a common reference image (by
registering and averaging 1200 frames from the center of the session). Regions of
interest (ROIs) of active neural cell bodies were detected by computing local
correlation (3 by 3 pixel neighborhood, threshold at correlation coefficients >0.9;
customized MATLAB software) and identifying spatially connected pixels, select-
ing ROIs with near-circular shapes (maximum length/width aspect ratio <2).
Cellular fluorescence time courses were generated by averaging all pixels in an ROI,
followed by subtracting the averaged neuropil signals in the surrounding ring
(morphological dilation, ring size matched to the ROI, nonoverlapping with
neighboring ROIs) and correcting for slow baseline drift. Raw calcium time courses
(ΔF/F0) were expressed as fractional changes to the baseline fluorescence.

Selection of visually-responsive cells. A cell was classified as responsive if the
median time courses computed across trials showed a response peak with mag-
nitude >3x standard deviation of the pre-stimulus activity (averaged >2 s) for over a
continuous period > 1 s for at least one stimulus condition. Cells responding to the
visual stimulus offset but not during visual stimulus epochs were excluded from the
analysis. Cells were selected based on a response reliability index, r, defined as the
75th percentile of the cross-trial correlation coefficients of the de-randomized
response time courses (r > 0.3, Supplementary Fig. 3a, example responses). Cells
with r > 0.3 have high amplitude responses (Fig. 1h) and significantly higher
reliability than shuffled responses (Supplementary Fig. 3c; 1000x randomization,
reporting values at 97.5 and 99.75 percentiles). Neurons’ response amplitudes were
calculated as the average ΔF/F0 over the duration of the stimulus epochs.

Tuning analysis
Spatiotemporal tuning. Responses were described by two-dimensional elliptical
Gaussian functions12,31:

R sf ; tf
� � ¼ Aexp � ðlog2sf � log2sf 0Þ2

2 σsf
� �2

 !
exp � ðlog2tf � gðsf ÞÞ2

2 σtf
� �2

 !
ð1Þ

where A is the peak response amplitude, sf0 and tf0 are the peak spatial and
temporal frequencies, σsf and σtf are the spatial and temporal frequency tuning

widths, and

gðsf Þ ¼ ξ log2sf � log2sf 0
� �þ log2tf 0 ð2Þ

In this expression, ξ is the speed tuning index (SI) that captures the slant in the
spatiotemporal frequency space. Model parameters were estimated by searching for
the model fit with least squared errors in respect to the raw responses (MATLAB
lsqcurvefit function). Fit quality was quantified as the normalized root mean
squared (RMS) error between measured and model responses as a fraction of the
peak magnitude of responses. Fits with a normalized RMS error <0.1 (10%) were
selected for quantification (see Table 1 for cell numbers). The low and high cutoffs
for the spatial and temporal frequency (cutoff frequency at half-maximum
amplitude) were measured by evaluating the functions R(sf, tf0) and R(sf0, tf),
respectively. A cell was defined as: lowpass if the low cutoff frequency is lower than
the lowest frequency tested (i.e., 0.02 cpd or 0.5 Hz), highpass if the high cutoff
frequency is higher than the highest frequencies tested (i.e., 0.32 cpd or 16 Hz), and
bandpass if the low and high cutoffs are within the bounds of the spatial and
temporal frequencies tested.

Tuning and preference for stimulus anisotropy. The preference for anisotropic
versus isotropic stimuli was quantified with an ANISO/ISO preference index (API):

API ¼ R1 � R0

R1 þ R0
ð3Þ

where R1 and R0 are the peak amplitudes of responses to anisotropic (15 deg
FWHM orientation bandwidth) and isotropic stimuli (infinite orientation band-
width), respectively. For Fig. 5b, the responses to ISO and ANISO stimuli were
used (dataset 1 and 2). In Fig. 6c, the responses to the isotropic and the most
elongated stimuli (15 deg FWHM) at the neurons’ preferred spatial frequencies
were used (dataset 3). The tuning curves for stimulus anisotropy (elongation) were
quantified as 4-element vectors of trial-averaged response amplitudes to four
orientation bandwidth at the neuron’s preferred spatial frequency (dataset 3).

Orientation tuning. Selectivity for orientation was quantified from the time course
of responses to anisotropic stimuli at the neurons’ peak spatiotemporal frequencies
using the temporal evolution of calcium signals as an approximation of the
responses to varying orientation. Because neurons tuned to 0-deg orientation show
calcium activity after both the onset and the offset of the visual stimulation, cal-
cium responses after the visual stimulus offset were wrapped around (i.e., they were
added to the onset responses), providing a more accurate estimate of responses as a
function of stimulus orientation. The resulting time courses were binned and used
for orientation tuning analysis. The orientation selectivity index (OSI) is
approximated with the equation OSI= 1-CV58. The circular variance is defined as

CV ¼ 1� ∑krke
i2θk

∑krk

����
���� ð4Þ

where rk is the average amplitude of responses at orientation angles θk (from 0 to
180 deg in radian units).

Simulations were used to validate the above method for quantification of
orientation tuning by comparing OSI estimates from spike (OSIspike) and calcium
activity (OSIcalc) (Supplementary Fig. 11). Gaussian tuning curves and Poisson
spiking neurons with zero spontaneous firing rates were used to generate time-
varying spike trains simulating responses to varying orientation. The spike trains
were convolved to obtain simulated calcium responses. The spike trains were
binned by orientation and OSIspike was calculated. The convolved calcium traces
were obtained by applying a convolution kernel to the model spike trains
(Supplementary Fig. 11b). The convolution kernel was a sum of two exponentials
with typical GCaMP6s transient parameters (rise time constant: 200 ms; decay time
constant: 560 ms)43,70. OSIcalc was obtained using the abovementioned procedure
(last paragraph). We repeated this analysis on model cells with different preferred
orientations and orientation bandwidth (10 to 170 deg FWHM) (see example
responses in Supplementary Fig. 11d) and examined the relationship between the
resulting OSIspike and OSIcalc values (Supplementary Fig. 11e).

Decoding analysis. We decoded neuronal population activity using linear support
vector machine (SVM) classifiers67,71 to test how well the classifiers discriminate
response patterns for stimulus pairs with different or identical motion speeds (i.e.,
speed pairs and iso-speed pairs) using dataset 1. The speed pairs are defined as
neighboring stimulus pairs lying orthogonally to the iso-speed lines (Fig. 4a) with a
modest (4-fold) difference in speed. Switching the combination of the spatial and
temporal frequencies of speed pairs yields iso-speed pairs, which have identical
speeds (Fig. 4d). SVM classifiers were trained and tested in pairwise classification
for all possible pairs. Visual responses across four trials were split into training and
testing groups (half-half). The decoding accuracy was defined as the proportion of
correct classification decisions to the testing groups (standard cross-validation). A
resampling procedure was used to equalize the pool size across areas. For each area,
the decoding analysis was repeated 50 times with random resampling of neurons
(with replacement). Each time included 100 iterations of training and testing with a
random set of trials (without replacement). We calculated the average decoding
performance across iterations for each sampled pool and the averages across the
sampled pools to estimate the 95% confidence intervals of the performance. To test
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the scaling of decoding performance as a function of pool size, we measured
decoding performance as a function of the pool size (a logarithmic increase from 2
to 512 neurons, without replacement) per area. The decoding performance
increases with pool size and eventually reach 100 percent accuracy for most sti-
mulus pairs, but with different ascending slopes (Fig. 4b, e, insets). To quantita-
tively compare decoding performance between areas, we reported the decoding
accuracy of classifiers with a small pool size (16 neurons; Supplementary Fig. 9a, c)
and estimated the relative changes in the decoding accuracy for speed pairs in
higher visual areas with respect to V1 (Fig. 4b, c), and between speed pairs and
corresponding iso-speed pairs in each area (Fig. 4e–f). The means and 95% con-
fidence intervals of the difference in decoding accuracy were used to determine the
statistical difference levels, which were reported in Supplementary Fig. 9b, d.

Hierarchical bootstrap. For statistical analyses and clustering of data across visual
areas, a hierarchical bootstrap72 of multi-level data was used. Using a randomly
resampling approach (with replacement), the responses of specific visual areas was
represented by a hierarchical dataset of size N-M-L, where N is the number of cells
per animal, M is the number of animals per resampling, and L is the number of
resampling. Statistical and clustering analysis was then applied as described as
follows.

Statistical analysis of tuning parameters. To estimate probability density func-
tions of tuning parameters, we use kernel density estimators with a bandwidth of
0.05 or 0.1 (MATLAB ksdensity function). To assess the statistical significance of
differences between the density functions, we used two-sample Kolmogorov-
Smirnov tests applied to randomly generated hierarchical bootstrap samples (two-
sided hierarchical bootstrap KS test). For each pair of areas, we compared hier-
archical datasets using a two-sample KS test (MATLAB kstest2 function). The test
statistic D was used to compute confidence intervals (CIlow and CIhigh, at 1/2*α*100
and 100–1/2* α *100 percentile, where α is the significance level), which were
compared to critical values Dα corresponding to different significance levels
(α= 0.05, 0.01, and 0.001) where Dα is calculated as the following:

Dα ¼ cðαÞ
ffiffiffiffiffiffiffiffiffiffi
n1þn2
n1n2

q
ð5Þ

where n1 and n2 are the sample sizes of the two tested datasets, c(α) is a coefficient
determined by α [c(α)= 1.36,1.63,1.95, for α= 0.05, 0.01 and 0.001, respectively]. If
CIlow is greater than any Dα, the most significant level applicable was reported;
otherwise, no significant difference between the two distributions was reported. See
Supplementary Fig. 5a, b for a demonstration of these procedures.

Clustering. Responses to stimuli of different degrees of anisotropy (dataset 3) were
clustered into three groups of distinct tuning curves for anisotropy (MATLAB
clusterdata function, ward linkage approach). A hierarchical bootstrapping
approach was used to generate ten sub-datasets per area; each was a matrix of the
anisotropy tuning curves of 500 random reliable cells. All sub-datasets across areas
were pooled, and the tuning curves were clustered into three groups: non-OS (non-
orientation-selective), sharp-OS, and broad-OS. The fraction of these groups in
each area was averaged across sub-datasets and reported in Fig. 6f.

Responses to spatiotemporal frequencies and orientation (dataset 1 and 2) were
grouped using unsupervised clustering. A training dataset was constructed with
random sampling (with replacement) of the activity of 2000 neurons per area
responding to either ISO or ANISO stimuli (dataset 1 and 2). Each neuron is
assigned a vector of responses to ISO and ANISO stimuli (60 stimulus conditions,
response amplitude normalized to range from 0 to 1), followed by extracting the
first 12 principal components of the training dataset (explaining ~89% of the
variance in the data, the original response matrix was too large for the clustering
algorithm). A squared-Euclidean distance matrix of the new dataset was calculated
and then fed into different clustering algorithms.

To determine the clustering method and the number of clusters that yield the
best separation between clusters, we used a silhouette analysis. The k-means
clustering method outperformed spectral clustering and ward linkage clustering,
yielding the highest overall silhouette coefficients (Supplementary Fig. 13c).
Moreover, silhouette analysis revealed a maximal coefficient at around 12 clusters.
These clustering results were supported by two other independent validation
measurements with Davies-Bouldin and Calinski-Harabasz indices73

(Supplementary Fig. 13d). Afterward, the centroid of each cluster was obtained,
and neurons of the entire dataset were assigned to clusters with the nearest
centroids.

To quantify the proportion of clusters within each area with the consideration
of inter-animal variability, we used a hierarchical bootstrapping approach (1000
bootstraps, 150 neurons per mouse, 5 mice per area). From the distributions of
bootstrapping results, the means and 95% confidence intervals of the proportions
were obtained and expressed as the ratio to the chance level (1/12), where the 12
clusters were evenly presented. To determine whether specific clusters are over- or
underrepresented in each area, we compared their confidence intervals to the
chance level and determined whether the differences were significant. To quantify
the similarity between areas in terms of the proportions of encompassed clusters,
we calculated the means and standard errors of the mean of Pearson’s correlation
coefficients between areas using the hierarchical bootstrapping datasets (Fig. 8g).

To determine whether area X’s similarity with area Y (Sxy) is significantly different
from its similarity with area Z (Sxz), and to quantify the difference, we computed
the standardized mean difference, or Cohen's d, as the following,

d ¼ jMxy �Mxz jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSD2

xy þ SD2
xzÞ=2

q ð6Þ

where Mxy and Mxz, SDxy and SDxz are the mean values and standard deviations of
the corresponding bootstrap datasets Sxy and Sxz. We defined the effect size of
difference with Cohen's d < 0.2 as small, between 0.2 and 2 as median, and greater
than 2 as large (Supplementary Fig. 14).

To visualize the composition of functional clusters in different areas, we used
t-SNE to map neurons in a two-dimensional representation. The clustering training
dataset (16,000 neurons x 12 principal components) was fed to the t-SNE algorithm
(MATLAB tsne function) with a large perplexity value of 120 to better present the
global structure of the dataset. The learning rate was set to n/10 as a recommended
value for large datasets, where n is the number of cells74.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Source data for Figs and Supplementary Figures
are included in the Source Data files. Datasets 1–3 and cellular response time courses
generated in this study are openly available on figshare (https://doi.org/10.6084/m9.
figshare.18415925). Raw image data are too large (>4 TB tiff files) to be distributed. These
files are archived and maintained in local servers in the host institute, and are openly
available upon request to the corresponding author. Source data are provided with
this paper.
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