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MAPK4 promotes triple negative breast cancer
growth and reduces tumor sensitivity to PI3K
blockade
Wei Wang1,6, Dong Han1,6, Qinbo Cai 1, Tao Shen1, Bingning Dong1,2, Michael T. Lewis1,3, Runsheng Wang1,

Yanling Meng1,4, Wolong Zhou1, Ping Yi1, Chad J. Creighton 2,3, David D. Moore 1,5 & Feng Yang 1✉

About 15–20% of breast cancer (BCa) is triple-negative BCa (TNBC), a devastating disease

with limited therapeutic options. Aberrations in the PI3K/PTEN signaling pathway are

common in TNBC. However, the therapeutic impact of PI3K inhibitors in TNBC has been

limited and the mechanism(s) underlying this lack of efficacy remain elusive. Here, we

demonstrate that a large subset of TNBC expresses significant levels of MAPK4, and this

expression is critical for driving AKT activation independent of PI3K and promoting TNBC cell

and xenograft growth. The ability of MAPK4 to bypass PI3K for AKT activation potentially

provides a direct mechanism regulating tumor sensitivity to PI3K inhibition. Accordingly,

repressing MAPK4 greatly sensitizes TNBC cells and xenografts to PI3K blockade. Alto-

gether, we conclude that high MAPK4 expression defines a large subset or subtype of TNBC

responsive to MAPK4 blockage. Targeting MAPK4 in this subset/subtype of TNBC both

represses growth and sensitizes tumors to PI3K blockade.
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The AKT/mTOR signaling pathway plays critical roles in
regulating cell proliferation, survival, and metabolism.
In the canonical pathway, PI3 kinase (PI3K) catalyzes

phosphatidylinositol-3,4,5-triphosphate (PIP3) production, and
PIP3 binds and recruits AKT to the plasma membrane for
activation1–3. Phosphorylation of AKT at both Thr308 (T308)
and Ser473 (S473) is requisite for full AKT activation. mTOR
forms two different complexes, mTORC1 and mTORC2. AKT
activates mTORC1, which integrates extracellular stimuli and
nutrient signals to modulate cell growth, autophagy, and
metabolism4. In contrast, mTORC2 is the main S473 kinase of
AKT5, while PDK1 is the major T308 kinase6. The PI3K/AKT/
mTOR signaling pathway is crucial in regulating tissue home-
ostasis, and its dysregulation can cause various pathological
conditions including cancers.

About 15–20% of all breast cancers (BCa) are triple-negative
(TNBC)7–9, a devastating disease with limited therapeutic
options. Aberrations in the PI3K/PTEN/AKT signaling pathway
are common in TNBC10. The FDA has recently approved the
α-isoform-specific PI3K inhibitor Piqray (Alpelisib) to be used in
combination with fulvestrant to treat hormone receptor-positive,
HER2-negative, PIK3CA-mutated, advanced or metastatic BCa
following progression on or after an endocrine-based regimen.
However, PI3K inhibitors have shown only limited therapeutic
responses when use to treat TNBC11,12.

MAPK4 is an atypical MAPK that has not been well
studied13–15. We recently reported that MAPK4 is a key onco-
genic kinase promoting cancer via non-canonical activation of
AKT/mTOR independent of PI3K/PDK116. Here we report that
MAPK4 is highly expressed in a large subset of TNBC. MAPK4
overexpression is sufficient to drive oncogenic outcomes, while
repressing MAPK4 in the MAPK4-high human TNBC cells
greatly inhibits AKT activation, cell proliferation, and anchorage-
independent growth in vitro, and xenograft growth in vivo. The
ability of MAPK4 to directly activate AKT suggests that elevated
MAPK4 expression should reduce tumor sensitivity to PI3K
blockade. In accord with this, knockdown/knockout of MAPK4
in the MAPK4-high TNBC cells and xenografts sensitized them
to PI3K inhibition. These results identify MAPK4 as a promising
therapeutic target for TNBC and its potential in combined ther-
apy with PI3K inhibition.

Results
MAPK4 is highly expressed in a significant subset of human
TNBC. Analysis of 817 gene expression profiles in The Cancer
Genome Atlas (TCGA)17 revealed that MAPK4 expression is
elevated in 30% or more of basal-like BCa (Fig. 1a), 70–80% of
which are TNBC18–23. In contrast, much lower MAPK4 expres-
sion was detected in the other luminal A, luminal B, HER2-
amplified, and normal-like BCa types. We also analyzed MAPK4
expression in the Baylor College of Medicine BCa patient-derived
xenograft (PDX) collection with completed RNA-Seq data
(n= 92, https://pdxportal.research.bcm.edu/, public and private
data combined), the majority of which are TNBC (n= 69, Fig. 1b,
c). We also observed that MAPK4 is highly expressed in a large
subset of these TNBC PDX models. Altogether, these data sup-
port that MAPK4 is expressed at significant levels in a large
subset of TNBC/basal-like BCa.

MAPK4 activates AKT in human TNBC cells. To assess
MAPK4 biology in human TNBC, we first surveyed its expression
in multiple commonly used TNBC lines, including HS578T,
MDA-MB-231, HCC1937, SUM159, MDA-MB-468, HCC1395,
and HCC1806 cells, as well as in the “normal” human mammary
epithelial MCF10A cells. We observed high levels of endogenous

MAPK4 (MAPK4-high) expression in the MDA-MB-231,
HS578T, and HCC1937 cells, followed by a lower MAPK4
expression in SUM159 cells (Fig. 2a). In contrast, MDA-MB-468,
HCC1806, HCC1395, and the “normal” MCF10A cells express
low-to-nondetectable levels of MAPK4. As an initial test of the
impact of MAPK4 expression, we performed knockdown of
MAPK4 (lentiviral shRNA) in the MAPK4-high MDA-MB-231,
HS578T, and HCC1937 cells as well as in SUM159 cells. We
observed that MAPK4 knockdown in all four TNBC cell lines
repressed AKT phosphorylation and inhibited its activation, as
evidenced by inhibition of GSK3β phosphorylation (Fig. 2b). We
also overexpressed MAPK4 in SUM159, MDA-MB-468,
HCC1395, HCC1806, and MCF10A cells in a Dox-inducible
manner. In accord with loss of function results, MAPK4 over-
expression induced AKT phosphorylation and activation in these
cells (Fig. 2c and see below, Fig. 4d). In agreement with our
previous observation in other types of human cancers16, these
results indicate that MAPK4 plays essential roles in promoting
AKT phosphorylation/activation in the MAPK4-high TNBC cells.

To further confirm and extend these observations, we used
CRISPR/Cas9 technology to generate MAPK4 null BCa cell
lines as previously described16. As expected, genetic ablation of
MAPK4 in both MDA-MB-231 and SUM159 cells markedly
inhibited AKT phosphorylation and activation (Fig. 2d).
Finally, we demonstrated that MAPK4 overexpression rescued
AKT phosphorylation in MAPK4-knockout MDA-MB-231 and
SUM159 cells (Fig. 2e). Altogether, these data support a critical
role of MAPK4 in promoting AKT phosphorylation/activation
in human TNBC cells.

MAPK4 promotes TNBC cell growth in vitro. We next deter-
mined the impact of MAPK4 on TNBC cell growth. MAPK4
knockdown in the MAPK4-high human TNBC HCC1937 and
HS578T cells, as well as in SUM159 cells, greatly inhibited their
growth, including anchorage-independent growth in vitro
(Fig. 3a, c–e). Accordingly, overexpression of MAPK4 promoted
SUM159, HCC1395, and HCC1806 cell growth, as well as the
anchorage-independent growth of SUM159 cells (Fig. 3b, g).
Increased BrdU incorporation confirmed the enhanced pro-
liferation of SUM159 cells in response to Dox-induced MAPK4
overexpression (Fig. 3h). These data support a crucial role of
MAPK4 in promoting TNBC cell growth.

Human TNBC MDA-MB-231 cells have properties of cancer
progenitor cell populations24. Accordingly, while MAPK4 knock-
down in MDA-MB-231 cells did not significantly affect their
proliferation (Supplementary Fig. 1a), it greatly repressed their
anchorage-independent growth (Fig. 3f) and suppressed mammo-
sphere formation (Fig. 3i). These results further support MAPK4
tumor-promoting activity in TNBC and shed light on a potential
role of MAPK4 in regulating TNBC progenitor cell biology.

MAPK4 promotes TNBC xenograft growth in vivo. To define
how MAPK4 regulates TNBC in vivo, we compared TNBC
xenograft growth in severe combined immunodeficient (SCID)
mice using engineered MDA-MB-231 and HCC1937 cells with
Dox-inducible knockdown of MAPK4 or non-targeting control.
MAPK4 knockdown robustly inhibited TNBC xenograft growth
(Fig. 4a, b), while MAPK4 overexpression promoted SUM159
xenograft growth (Fig. 4c). These data further confirm the
tumor-promoting activities of MAPK4 in TNBC.

We have previously shown that MAPK4 overexpression
transformed the “normal” prostate epithelial PNT1A cells into
anchorage-independent growth in vitro16. To further assess the
oncogenic activity of MAPK4 in mammary epithelial cells, we
investigated MAPK4 activity in transforming “normal” human
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mammary epithelial MCF10A cells. As expected, MAPK4
overexpression similarly activated AKT and transformed
MCF10A cells into anchorage-independent growth, further
supporting the oncogenic activity of MAPK4 in mammary
epithelial cells (Fig. 4d, e).

MAPK4 promotes insulin and EGF-induced AKT activation in
a parallel action of PI3K. Due to the lack of conserved T-x-Y
motif (S-E-G for MAPK4), there are no identified MAPK kinases
(MAPKKs), the dual Ser/Thr and Tyr kinases, to phosphorylate
and activate MAPK4. Type I P21 activated kinases 1, 2, and 3
(PAK1/2/3) have been shown to phosphorylate S186 (S189 on the
closely related MAPK6) and activate the MAPK4/MAPK6-
MK5 signaling cascade25. However, a previous study revealed no
correlation between cellular MAPK4/MAPK6 phosphorylation
and the extracellular stimuli or stress conditions examined26, and
the impact of this pathway on MAPK4-AKT signaling remains
unknown. To determine whether extracellular stimuli can activate
the MAPK4-AKT signaling cascade, we first examined AKT
phosphorylation in insulin (100 nM) stimulated serum-starved
MDA-MB-231 and HS578T cells with Dox-induced knockdown
of MAPK4 (ishMAPK4) or control (iNT). Insulin treatment of

the control TNBC cell lines greatly stimulated AKT phosphor-
ylation, which lasted at least 2 h. In contrast, knockdown of
MAPK4 significantly reduced insulin-stimulated AKT phos-
phorylation at 10 min after treatment, and rapidly decreased such
phosphorylation to basal levels within 1–2 h (Fig. 5a).

To investigate how PI3K pathway inhibition affects MAPK4-
AKT signaling, we examined AKT phosphorylation/activation
status in insulin (100 nM) stimulated serum-starved SUM159
cells with Dox-induced knockdown of MAPK4 or control. These
cells were also pre-treated with PI3K inhibitors Pictilisib (20 nM),
Alpelisib (100 nM), or DMSO vehicle control. In accord with the
prediction of parallel pathways for AKT activation, either
MAPK4 knockdown or PI3K inhibition (Pictilisib or Alpelisib)
alone exhibited partial effects, while concurrent MAPK4 knock-
down and PI3K inhibitor treatment robustly blocked insulin-
induced AKT phosphorylation/activation (Fig. 5b).

To further expand these observations, we performed a similar
study in EGF (200 ng/ml) stimulated serum-starved MDA-MB-
231 and SUM159 cells with Dox-induced knockdown of MAPK4
or control. These cells were also pre-treated with PI3K inhibitors
Pictilisib (20 nM), Alpelisib (100 nM), or DMSO vehicle control.
Similar to insulin treatment, EGF treatment of the control TNBC
cell lines greatly promoted AKT phosphorylation and activation.
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Fig. 1 MAPK4 is highly expressed in a subset of basal-like BCa and TNBC. a MAPK4 mRNA expression across 817 BCa from The Cancer Genome Atlas
(TCGA). Boxplot represents 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker). P value by two-sided t test
on log2-transformed expression values. n represents independent patients. b, c MAPK4 mRNA expression across 92 BCa PDX models, including 69 TNBC
PDX models. MAPK4 is markedly expressed (at around the 50th percentile of all genes expressed) in these PDX tumors (b). IHC was used for evaluating
ER, PR, HER2 expression status within these tumors.
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Again, while either knockdown of MAPK4 or PI3K inhibitor
(Pictilisib or Alpelisib) treatment alone exhibited partial effect,
concurrent knockdown of MAPK4 and PI3K inhibitor treatment
robustly blocked EGF-induced AKT phosphorylation/activation
(Fig. 5c). Altogether, these data strongly support that extracellular
stimuli including insulin and EGF can activate the MAPK4-AKT
signaling axis in a pathway that parallels the action of PI3K.

AKT activation is critical for MAPK4 tumor-promoting
activity in TNBC. We previously demonstrated that AKT acti-
vation is critical for the tumor-promoting activity of MAPK416,27.
To further confirm this in TNBC, we examined how the AKT
inhibitors MK2206, GSK2141795, and/or GDC-0068 affect
growth of the engineered HCC1395, HCC1806, and SUM159

cells with 0.5 µg/ml Dox-induced overexpression of MAPK4
(iMAPK4) or control (iCtrl). These AKT inhibitor treatments
largely abolished the MAPK4 activities in enhancing the growth
of HCC1395, HCC1806, and SUM159 cells as well as MAPK4
activities in promoting the anchorage-independent growth of
SUM159 cells (Fig. 6a–d). These data confirm that, as we showed
in other cancer types16,27, AKT is also a key node for mediating
MAPK4 activity in promoting TNBC.

MAPK4 reduces TNBC sensitivity to PI3K inhibition. An
α-isoform-specific PI3K inhibitor Piqray (Alpelisib) was recently
approved to treat hormone receptor-positive, HER2-negative,
PIK3CA-mutated, advanced or metastatic BCa after progression
on endocrine therapy. However, PI3K inhibitors have shown
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Fig. 2 MAPK4 activates AKT in human TNBC cells. a Western blots on MAPK4 expression in various human TNBC cell lines and MCF10A, a “normal”
human mammary epithelial cell line. H157 and H1299 are human non-small cell lung cancer cell lines expressing high levels of MAPK4 as we previously
reported. b Western blots on engineered MDA-MB-231, HCC1937, HS578T, and SUM159 cells with 4 μg/ml Dox-induced knockdown of MAPK4 (iG2,
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limited therapeutic effects in TNBC11,12. The apparent parallel
mode of MAPK4 and PI3K actions in activating AKT in TNBC
(Fig. 5) would predict that repressing MAPK4 should sensitize
MAPK4-high TNBC cells to PI3K blockade.

To define how MAPK4 affects TNBC cell response to PI3K
blockade, we performed colony formation assays on the engineered
HCC1937, HS578T, MDA-MB-231, and SUM159 cells with 4 µg/
ml Dox-induced knockdown of MAPK4 (iG2 and iG4) or control
(iNT). We treated these cells with increasing doses of PI3K
inhibitors Pictilisib, Alpelisib, or DMSO vehicle control.

Knockdown of MAPK4 both significantly repressed MDA-MB-
231, SUM159, HS578T, and HCC1937 cell growth and sensitized
them to both Pictilisib and Alpelisib treatments (Fig. 7a–d;
Supplementary Fig. 1b). We further confirmed that knockdown
of MAPK4 also sensitized SUM159 cells to another commonly
used PI3K inhibitor LY294002 (2 μM), and the effects were
comparable to treatments using Pictilisib (1 μM) and Alpelisib
(0.5 μM, Fig. 7e). Interestingly, after 10 days of culture in the
clonogenic assay settings (cells plated at low density for clonal
growth of individual cells), the MAPK4-knockdown SUM159 and
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MDA-MB-231 cells partially regained AKT phosphorylation/
activation, presumably due to PI3K-AKT pathway activation for
individual cell growth/survival. In accord with this, AKT
phosphorylation/activation in these MAPK4-knockdown cells
was highly sensitive to PI3K blockade (0.5 μM Alpelisib), further
confirming MAPK4-AKT as the essential pathway for regulating
TNBC sensitivity to PI3K inhibition (Fig. 7f).

To define whether MAPK4 overexpression makes TNBC cells
less sensitive to PI3K blockade, we also performed colony
formation assays on the engineered SUM159, MDA-MB-468,
HCC1395, and HCC1806 cells with 0.5 µg/ml Dox-induced
ectopic expression of MAPK4 (iMAPK4) or control (iCtrl). We
similarly treated these cells with increasing doses of PI3K
inhibitors Pictilisib, Alpelisib, or DMSO vehicle control. As
expected, MAPK4 overexpression both significantly promoted
SUM159, MDA-MB-468, HCC1395, and HCC1806 cell growth
and reduced their sensitivity to both Pictilisib and Alpelisib
(Fig. 8a–d; Supplementary Fig. 1c). Accordingly, the AKT
phosphorylation/activation was markedly maintained in the
MAPK4-overexpressing SUM159 and HCC1806 cells under
PI3K inhibitor treatments (compared to similarly treated iCtrl
cells), further confirming MAPK4-AKT as the essential pathway
for regulating TNBC sensitivity to PI3K inhibition (Fig. 8e).

In agreement with the colony formation assay results, knockdown
of MAPK4 both significantly repressed the anchorage-independent

growth of the MAPK4-high HCC1937 and MDA-MB-231 cells and
greatly sensitized them to PI3K inhibitors LY294002 (5 μM),
Alpelisib (1 μM), and Pictilisib (1 μM, Fig. 9a, b). SUM159 cells
express lower levels of MAPK4 (Fig. 2a), yet knockout of MAPK4
from SUM159 cells both inhibited their anchorage-independent
growth and sensitized them to PI3K inhibitors LY294002 (2 μM),
Pictilisib (0.5 μM), and Alpelisib (0.5 μM, Fig. 9c). In contrast, ectopic
expression of MAPK4 in these MAPK4-KO SUM159 cells largely
rescued their growth and reduced their sensitivity to PI3K inhibition
(Fig. 9c). In accord with these results, knockdown of MAPK4 in the
MAPK4-high MDA-MB-231 cells inhibited and overexpression of
MAPK4 in the MAPK4-low HCC1806 cells promoted their
anchorage-independent growth and increased MDA-MB-231
and reduced HCC1806 cell sensitivity to Pictilisib (Fig. 9d, e).

Altogether, these results support a crucial role of MAPK4 in
not only driving TNBC cell growth but also reducing their
sensitivity to PI3K inhibition.

MAPK4-knockout TNBC xenografts are sensitive to PI3K
inhibitor Alpelisib. To further assess whether MAPK4 blockage
can sensitize TNBC tumors to PI3K inhibition, we examined how
MAPK4 knockout affects MDA-MB-231 cell and xenograft
growth and sensitivity to PI3K blockade. Consistent with the
MAPK4-knockdown data (Fig. 3f and Fig. 9b, d), MAPK4-KO
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MDA-MB-231 cells formed fewer colonies and were more sen-
sitive to PI3K inhibitors LY294002, Pictilisib, and Alpelisib in the
soft-agar assays (Fig. 10a). Ectopic MAPK4 expression both
promoted the anchorage-independent growth of these MAPK4-
KO cells and largely rescued their growth in the presence of PI3K
inhibitors (Fig. 10a).

We next performed xenograft studies in SCID mice using
parental and MAPK4-KO MDA-MB-231 cells. Consistent with our
above data from the MAPK4-knockdown MDA-MB-231 xeno-
grafts (Fig. 4a), knockout of MAPK4 also significantly repressed
MDA-MB-231 xenograft growth (Fig. 10b, c). The PI3K inhibitor

Alpelisib showed minimal effect on the growth of the parental
MDA-MB-231 xenografts. In contrast, Alpelisib significantly
inhibited the growth of MAPK4-KO MDA-MB-231 xenografts
(Fig. 10b, c), supporting that loss of MAPK4 sensitizes TNBC
tumors to PI3K inhibition in vivo.

Discussion
Profiling human tumors show that MAPK4 is highly expressed in
a large subset of TNBC. We estimate that this includes 30% or
more of basal-like BCa/TNBC, with lesser amounts in other
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subtypes. In accord with our earlier results in other cancers16,27,
MAPK4 knockdown or knockout in these MAPK4-high TNBC
cell lines greatly repressed AKT activation, cell growth, and
xenograft growth. In contrast, MAPK4 promoted cell migration
in the wound healing assay in only one out of four TNBC cell
lines tested (Supplementary Fig. 2). Therefore, unlike the growth-
promoting activity, MAPK4’s ability to promote cell motility
appears cell-context dependent.

Our previous results also showed that MAPK4 expression can
transform the normal prostate epithelial PNT1A cells into both

anchorage-independent growth in vitro16 and orthotopic xeno-
graft tumor growth in vivo (unpublished observation). Our cur-
rent results show that MAPK4 can transform normal human
mammary epithelial MCF10A cells into anchorage-independent
growth in vitro but failed to transform them into tumor growth
in vivo six months after initial inoculation into mammary fat pad
(Fig. 4e and unpublished observation). Overall, these data define
MAPK4 as a bona fide oncogene and indicate that the MAPK4-
high subset may represent a unique subtype of TNBC that would
be sensitive to MAPK4 inhibition. Interestingly, five out of the
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seven TNBC cell lines that we have tested are either PTEN-null
(HCC1395, HCC1937, and MDA-MB-468 cells with frameshift
mutation or homodeletion of PTEN) or PIK3CA (SUM159) or
PIK3R1 mutated (HS578T). We are investigating the detailed
molecular mechanism underlying the maintenance of the
MAPK4-addiction phenotype in these TNBC cells. Although
there are currently no identified specific MAPK4 inhibitors, the
current results provide further impetus for their development and
for future studies to critically examine their efficacy, either as

monotherapy or in combination with chemotherapy or radiation
therapy, in treating MAPK4-high TNBC.

MAP kinases (MAPKs) play critical roles in mediating cell
response to extracellular signals. In the canonical MAPK pathway,
MAPKs are phosphorylated at both S/T and Y residues in the con-
served T-x-Y motif and activated by MAPK kinases (MAPKKs), the
dual Ser/Thr and Tyr kinases. In MAPK4, this T-x-Y motif is
replaced by S-E-G (aa186–188), which lacks the key Y residue.
Therefore, there is no identified MAPKK to phosphorylate/activate
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MAPK4. Furthermore, MAPK4 phosphorylation was not associated
with extracellular stimuli or stress conditions examined26, leading to
a vague conception that MAPK4 activation is not subjected to such
conditions. In contrast, our study demonstrated that the MAPK4-

AKT signaling cascade can be activated by both insulin and EGF, two
key factors regulating physiology and diseases, including cancers.
Further studies are needed to assess the detailed mechanism under-
lying how extracellular signals activate the MAPK4-AKT pathway.
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Fig. 9 MAPK4 profoundly affects the anchorage-independent growth of TNBC cells and their response to PI3K inhibitor treatments. Representative
images and quantification of soft-agar assay data of engineered a Dox-induced HCC1937-iNT and -ishMAPK4, b Dox-induced MDA-MB-231-iNT and
-ishMAPK4, and c wild type (WT) and MAPK4-knockout (KO, clone #2) SUM159 cells, as well as MAPK4-KO SUM159 cells with ectopic expression of
MAPK4 (KO-MAPK4). The cells were also treated with PI3K inhibitors LY294002, Pictilisib, Alpelisib at the indicated concentrations, or vehicle control
(DMSO). Representative images and quantification of soft-agar assay data of engineered d MDA-MB-231 cells with 4 µg/ml Dox-induced knockdown of
MAPK4 (iG2, iG4) or control (iNT), and e HCC1806 cells with 0.5 µg/ml Dox-induced overexpression of MAPK4 (iMAPK4) or control (iCtrl). The cells
were also treated with increasing dosages of Pictilisib at indicated concentrations. The right panels show quantification of colonies formed under each
treatment condition described/numbered in the left panels. Bar: 500 μm. Data are mean ± SEM (a–c) or mean ± SD (d, e). Adjusted P values determined by
two-way ANOVA followed by Sidak’s multiple comparisons. Data are representative of at least three independent experiments. Source data are provided
as a Source data file.
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Despite the success of the PI3K inhibitor Alpelisib in treating
hormone receptor-positive, HER2-negative, PIK3CA-mutated,
advanced or metastatic BCa, the therapeutic effect of PI3K inhi-
bitors in TNBC is limited11,12. Both intrinsic and acquired
resistance may be responsible for the lack of efficacy of PI3K
inhibition in TNBC. Our identified PI3K-independent MAPK4-
AKT signaling axis may provide a pathway for MAPK4-high
TNBC tumor intrinsic resistance to PI3K inhibitors. Indeed,
without exception, knockdown or knockout of MAPK4 in the
MAPK4-high MDA-MB-231, HCC1937, HS578T, as well as
MAPK4-medium SUM159 cells sensitized them to PI3K inhibi-
tion in vitro. Knockout of MAPK4 in the MDA-MB-231 xeno-
grafts both repressed their growth and sensitized them to
Alpelisib in vivo. These data support the prediction that inhi-
biting MAPK4 should sensitize MAPK4-high TNBC to PI3K
inhibition. Future studies are needed to test this prediction using
MAPK4-specific inhibitors in combination with PI3K inhibitors

in both pre-clinical and clinical settings. It will also be interesting
to assess whether MAPK4 expression/activity is induced in TNBC
that gain resistance to PI3K inhibition and whether targeting
MAPK4 will overcome this acquired resistance.

We previously demonstrated that AKT activation is essential
for mediating the tumor growth-promoting effects of MAPK416.
Our current data further confirmed the indispensable role of AKT
activation in mediating MAPK4 activity in promoting TNBC
growth. This leads to the question of whether MAPK4-high
expression status, independent of PIK3CA/PTEN/AKT1 altera-
tion, will define TNBC tumors with a better response to AKT
blockade. This is particularly important since a recent phase 3
IPATunity130 trial testing the AKT inhibitor ipatasertib (GDC-
0068) plus paclitaxel in patients with PIK3CA/AKT1/PTEN-
altered TNBC did not significantly improve progression-free
survival when compared with placebo plus paclitaxel treatment
group28. We are actively pursuing this research direction.
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Fig. 10 Knockout of MAPK4 sensitizes MDA-MB-231 cells and xenografts to PI3K inhibition. a Soft-agar assays for anchorage-independent growth of
wild type (WT) and MAPK4-knockout (KO, clone #3) MDA-MB-231 cells, as well as MAPK4-KO MDA-MB-231 cells with ectopic expression of MAPK4
(KO-MAPK4), in the presence of PI3K inhibitors LY294002, Pictilisib, Alpelisib, or vehicle control (DMSO). Bar: 500 μm. The right panels show
quantification (mean ± SEM) of colonies formed under each treatment condition described/numbered in the left panels. Adjusted P values determined by
two-way ANOVA followed by Sidak’s multiple comparisons. Data are representative of at least three independent experiments. b The weekly measurement
of the growth (sizes) of wild type (WT) andMAPK4-knockout (KO) MDA-MB-231 xenograft tumors with 3-week continuous treatments of Alpelisib (daily
oral gavage at 20mg/kg) or Vehicle. Week 0 indicates the initial time point when measurable xenografts were detected. Arrow indicates beginning of
Alpelisib treatment one week after tumor detection. c Xenograft tumors and tumor weights at collection. Xenograft tumor data are representative of two
independent experiments. Data are mean ± SEM. P values determined by unpaired two-tailed Student’s t test. Source data are provided as a Source
data file.
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Methods
Reagents and antibodies. The antibodies against p-AKT T308 (Catalog 13038),
p-AKT S473 (Catalog 4060), AKT (Catalog 9272), GSK3β (Catalog 9315), and
p-GSK3β S9 (Catalog 9336) were from Cell Signaling Technology. Other antibodies
used include Anti-DYKDDDDK (Agilent, Catalog 200474), anti-MAPK4 (Abcepta,
Catalog AP7298b), anti-BrdU antibody (MilliporeSigma, Catalog B2531), and anti-
β-ACTIN (Abclonal, Catalog AC026 or MilliporeSigma, Catalog A1978). The
kinase inhibitors used include PI3K inhibitors LY294002 (MilliporeSigma, Catalog
L9908), Alpelisib/BYL-719 (MedChemExpress, Catalog HY-15244), Pictilisib/
GDC-0941 (Selleckchem, Catalog S1065), and AKT inhibitors MK2206 and
GSK2141795 (Selleckchem, Catalog S1078 and S7492). LipoD293 (Catalog
SL100668) was purchased from SignaGen.

Plasmids. LentiCRISPR v2 (Addgene plasmid 52961) was a gift from Feng Zhang
at MIT, Cambridge, Massachusetts. The pInducer10 vector was provided by
Thomas Westbrook at Baylor College of Medicine, Houston, Texas. The
pInducer20-YF vector and the pInducer20-YF and pInducer10 based constructs
with Dox-inducible overexpression or knockdown of MAPK4 were described
previously16.

Cell culture, transfection, lentivirus infection. Cancer cell lines were obtained
from the American Type Culture Collection (ATCC). For lentivirus-mediated gene
delivery, lentiviral constructs were transfected into 293FT cells (Thermo fisher,
Catalog R70007) using the LipoD293 transfection reagent (SignaGen, Catalog
SL100668) together with the packaging mix of vectors pMD2.G and psPAX2.
Viruses were harvested and applied for cell infection as described before16. The
established cell lines were then expanded and stocked for further assays. The
pInducer10 based constructs were used for lentivirus-mediated Dox-inducible
knockdown of MAPK4 (iG2 and iG4) or control (iNT). The cells were induced
with up to 4 μg/ml Dox for at least 3 days to obtain significant knockdown of
MAPK4. The pInducer20-YF based constructs were used for lentivirus-mediated
Dox-inducible overexpression of MAPK4 (iMAPK4) or control (iCtrl). The cells
were treated with up to 1 μg/ml Dox for at least 2–3 days for ectopic overexpression
of MAPK4.

The MAPK4-knockout (KO) SUM159 and MDA-MB-231 cell lines were
created using a similar protocol as we described previously16. Knockout of MAPK4
in each single clone was verified by genomic sequencing and western blots. The
pCDH based lentiviral constructs were used for lentivirus-mediated stable
overexpression of MAPK4 in the MAPK4-KO cell as described before16.

Western blot. Cell lysates were prepared in RIPA buffer and protein concentra-
tions were quantified using a Pierce BCA protein assay kit. An equal amount of
protein (5–20 μg) was used in western blot analysis.

Cell proliferation assays. We used three approaches to assess cell proliferation,
including direct cell counting, crystal violet staining–based cell proliferation assay,
and BrdU incorporation assay as previously described16. When applicable, the
kinase inhibitor(s) or vehicle control was added during the initial setup and
replenished in fresh media every 3 days.

Colony formation assay. 1000–2500 single cells were suspended and seeded into
each well of 6- or 12-well plates. The cells were then treated with the indicated
inhibitors or vehicle control in triplicates for 10–21 days. Cells were then fixed with
10% (w/v) formaldehyde for 15 min and stained with 0.05% (w/v) crystal violet
supplemented with 10% ethanol and 10% methanol for 20 min at room tem-
perature. After a final wash of three times with distilled water, the plates were air-
dried and scanned using a Canon scanner. The cell colonies were quantified either
using ImageJ (area%) or by directly measuring absorbance (570 nm) of the solved
crystal violet in 10% acetic acid. In the latter case, a background reading of 0.10
(the average OD reading of stained empty wells from multiple independent
experiments using the same protocol) was reduced from all data points to remove
background noises.

Soft-agar colony formation assay. Soft-agar colony formation assays were per-
formed as described before16. 4 μg/ml or up to 1 μg/ml Dox were used for inducing
knockdown or overexpression of MAPK4 in the indicated engineered cells. When
applicable, PI3K inhibitors LY294002, Alpelisib, or Pictilisib at the indicated
concentrations were added during the initial setup and replenished in fresh media
every week. The colony numbers were counted and quantified after 3–4 weeks.

Mammosphere formation assay. A quantity of 1 × 104 single cells in 2 ml phenol
red-free DMEM/F12 (Gibco, 21041025) containing B27 supplement (no vitamin A;
Invitrogen, 12587) and SingleQuot™ (Lonza, 11645500) were added into each well
of ultralow attachment 6-well plates pre-coated with Polyhydroxyethylmethacrylate
(pHEMA). Five to ten days later, spheres were imaged under a microscope.

Scratch wound healing assay. Scratch wound healing assays were performed to
evaluate cell migration on 6-well plates (100,000 cells/well). Cell monolayers at
confluency were scratched with a 200 μl tip. Wound closure was analyzed at 8 and
24 h after scratch.

Xenograft tumor models. Female SCID/beige mice at 8–10 weeks old from
Envigo were used in the xenograft studies. Mice were housed in a pathogen-free
facility at Baylor College of Medicine. MDA-MB-231 and HCC1937 cells
(2 × 106) with Dox-inducible knockdown of MAPK4 (ishMAPK4) vs. control
(iNT) were injected into mammary fat pads (iNT, left side; ishMAPK4, right
side). SUM159 cells with Dox-inducible expression of MAPK4 (iMAPK4) or
control (iCtrl) were similarly injected. Mice began receiving 4 mg/ml (for
inducible knockdown) or 0.5 mg/ml (for inducible overexpression) Dox in
1–10% sucrose in drinking water on the day of tumor injection and throughout
the studies. Tumors were monitored/measured every week, and tumor volumes
were calculated as Vol= 0.52 × abc (a, b, c: the maximum length of each
dimension of the tumor). The wild type and MAPK4-KO MDA-MB-231 cells
(1 × 106) were similarly used in the Alpelisib treatment studies. When tumors
reach significant sizes (average of 100–200 mm3), Alpelisib (20 mg/kg) was
delivered to mice daily through oral gavage. Tumors were similarly monitored,
and tumor volume calculated every week. All tumors were harvested as indicated
and weighed. Average tumor weight was compared among different groups for
statistical relevance using the unpaired two-tailed Student’s t test. P < 0.05 is
considered statistically significant.

Study approval. All animal studies were approved by the Institutional Animal
Care and Use Committee of Baylor College of Medicine.

Statistics. TCGA RNA-seq data were obtained from the Broad Institute’s Firehose
data portal (https://gdac.broadinstitute.org). P value was calculated by two-sided
t test on log2-transformed expression values. The statistical relevance in the cell-
culture studies and xenograft tumor studies was analyzed using the unpaired two-
tailed Student’s t test. When multiple comparisons were made, one-way or two-way
ANOVA followed by Dunnett’s multiple comparisons test or Sidak’s multiple
comparisons test was performed using GraphPad Prism, 9.3. P < 0.05 was con-
sidered significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.
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