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Age influences on the molecular presentation
of tumours
Constance H. Li1,2,3,4,5,6, Syed Haider 7 & Paul C. Boutros 2,3,4,5,6,8,9✉

Cancer is often called a disease of aging. There are numerous ways in which cancer epide-

miology and behaviour change with the age of the patient. The molecular bases for these

relationships remain largely underexplored. To characterise them, we analyse age-

associations in the nuclear and mitochondrial somatic mutational landscape of 20,033

tumours across 35 tumour-types. Age influences both the number of mutations in a tumour

(0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational

signatures are associated with age, reflecting differences in exogenous and endogenous

oncogenic processes such as a greater influence of tobacco use in the tumours of younger

patients, but higher activity of DNA damage repair signatures in those of older patients. We

find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-

associated frequencies, and these alter the transcriptome and predict for clinical outcomes.

These effects are most striking in brain cancers where alterations like SUFU loss and ATRX

mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show

that age shapes the somatic mutational landscape of cancer, with clinical implications.
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Cancer health disparities across different population strati-
fiers are common through a wide range of measures.
These include differences in incidence rates, mortality

rates, response to treatment, and survival between individuals of
different sexes1–6, races or ancestries7–11 and ages12–14, and these
differences have been described across a range of tumour-types.
Cancer disparities involving age are particularly well-known.
Aging is a leading risk factor for cancer, as it is associated with
increased incidence of most tumour-types9,15. Older age is also
typically associated with higher mortality and lower survival16,17.
The links between older age and increased cancer burden are such
that cancer is often described as a disease of aging18,19.

However, there are many nuances in the relationship between
aging and cancer. Paediatric cancers are an obvious exception, as
cancers arising in children have different molecular and clinical
characteristics9,20–22. Tumours arising in young adults (<50 years
of age) are often more aggressive: early onset tumours of the
prostate23, breast24, pancreatic25,26, colorectal27 and soft tissue
sarcomas28 are diagnosed at higher stages and associated with
lower survival. Molecular studies have described some striking
differences in the mutational landscapes of early onset vs. later
onset disease29–31, suggesting differences in the underlying
oncogenic processes driving cancer at different ages.

The mechanisms of how age shapes the clinical behaviour of
cancers have been subject to intense study. Many factors and
behaviours closely tied to aging have been implicated in observed
epidemiological and clinical cancer health disparities. For exam-
ple, higher age is associated with a greater burden of comorbid-
ities such as diabetes and cardiovascular disease32,33. Higher
prevalence of chronic disease, frailty and increased likelihood of
adverse drug reactions also influence the choices of clinical
interventions given to older cancer patients34–36. Nevertheless
differences remain even after accounting for these factors37.
Previous work associating somatic molecular changes with age
suggest differences in overall tumour mutation burden38, tran-
scriptional profiles39 and some mutational differences29–31. These
studies have focused on single tumour-types, relatively small
cohorts, or have only evaluated fractions of the whole-genome,
leaving the landscape of age-associated cancer mutations largely
unknown.

In this work, we perform a pan-cancer, genome-wide study of
age-associated molecular differences in 10,218 tumours of 23
tumour-types from The Cancer Genome Atlas (TCGA), 2562
tumours of 30 tumour-types from the International Cancer
Genome Consortium/TCGA Pan-cancer Analysis of Whole
Genomes (PCAWG) and 7259 tumours across 35 tumour-types
from the AACR Genomics Evidence Neoplasia Information
Exchange (GENIE) projects. We quantify age-associations in
measures of mutation density, subclonal architecture, mutation
timing, mutational signatures and driver mutations in almost all
tumour-types. These associations remain even after adjusting
for potential confounding factors such as sex and ancestry. Many
of these genomic age-associations are linked to clinical pheno-
types: in particular, we identify genomic alterations that are
prognostic in specific age contexts, suggesting the clinical utility
of age-informed biomarkers.

Results
Age associations in mutation density and timing. We investi-
gated TCGA, PCAWG and AACR GENIE datasets independently
and performed pan-cancer analyses spanning all TCGA, all
PCAWG, and all AACR GENIE tumours in separate analyses;
these were supplemented with tumour-type-specific analyses. We
used the recorded age at diagnosis (Table 1) and implemented a
two-stage statistical approach: we first used univariate methods to

identify putative age-associations, then further modeled these
putative hits with multivariate regression to evaluate age effects
after adjusting for confounding factors. Our multivariate mod-
eling accounted for a range of confounding variables for each
tumour-type including sex and genetic ancestry. We modeled
each genomic feature and tumour subtype based on available
clinical data, a priori knowledge, variable collinearity and model
convergence. Model and variable specifications, and results of
association tests between model variables and age are presented
in Supplementary Data 1. We performed two rounds of multi-
ple testing adjustment: once at the first univariate stage,
and again at the second multivariate stage, both using the
Benjamini–Hochberg false discovery rate (FDR) procedure. Our
findings must pass stacked FDR thresholds of 10% on top of 10%
after both stages of analysis, representing a stringent combined
threshold of 1%. Bonferroni-adjusted p values provided similar
support for our findings. FDR-adjusted p values were reported
unless otherwise noted. Both Benjamini–Hochberg and Bonfer-
roni, as well as unadjusted p values are provided in supplemen-
tary materials. We present the subset of statistically significant
results in Supplementary Data 2, and full results in Supplemen-
tary Data 3–7.

The accumulation of mutations with age is a well-known
phenomenon in both cancer and non-cancer cells40–47. To test
the robustness of our statistical framework in detecting age-
associated genomic events, we investigated age associations in two
measures of mutation accumulation: single nucleotide variant
(SNV) density and genome instability. Both SNV density and
genome instability have clinical relevance as they are associated
with poor outcome in some tumour-types48–50 and response to
immunotherapy in others51,52. We first identified univariate age-
associations in SNV density using Spearman correlation. Putative
age-associations identified at an FDR threshold of 10% were
further analysed by multivariate linear regression (LNR) models
to adjust for tumour-type-specific confounding effects (Supple-
mentary Data 1) and a second FDR threshold of 10% was used to
identify statistically significant age-associated events. We have
previously applied this statistical strategy successfully to identify
sex-associated somatic mutational features53,54.

As expected40,41, we identified significant associations between
age and the accumulation of SNVs across a range of tumour
contexts (Fig. 1A). There were pan-cancer positive correlations
between age and SNV density in TCGA (pan-TCGA: ρ= 0.31,
FDR-adjusted LNR p= 4.1 × 10−57, Bonferroni-adjusted LNR
p= 4.1 × 10−57) and PCAWG (ρ= 0.43, FDR-adjusted LNR
p= 1.6 × 10−26, Bonferroni-adjusted LNR p= 4.1 × 10−57) data.
Using TCGA and PCAWG data, we estimated that SNV density
increases at a rate of 0.077 mutations per megabase pair per year
(Table 2, Methods). We also identified positive associations in 11
TCGA, 14 PCAWG and six AACR GENIE tumour-types
(Fig. 1A). Of these, nine tumour-types showed consistent results
in two of three datasets (Supplementary Fig. 1, Supplementary
Data 2, Supplementary Data 3) including prostate cancer (TCGA:
ρ= 0.25, FDR-adjusted LNR p= 0.015, Bonferroni-adjusted LNR
p= 0.13; PCAWG: ρ= 0.48, FDR-adjusted LNR p= 1.2 × 10−4,
Bonferroni-adjusted LNR p= 8.7 × 10−4

, estimated 0.12 mut/
Mbp/year; Fig. 1B). Estimates for per year increase in mutation
density are given in Table 2 for the nine tumour-types with
consistent evidence in at least two datasets.

We next asked whether there were differences in the timing of
when these SNVs occurred during tumour evolution and
leveraged data describing the evolutionary history of PCAWG
tumours55. We first investigated polyclonality, or the number of
cancer cell populations detected in each tumour. Monoclonal
tumours, or those where all tumour cells are derived from one
ancestral cell, are associated with better survival in several
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tumours types56–58. While there were intriguing univariate
associations between age and polyclonality in non-Hodgkin
lymphoma and prostate cancer, these were not significant in
multivariable modeling (Supplementary Fig. 1, Supplementary
Data 3). We then focused on polyclonal tumours and asked
whether there were associations in mutation timing: we
investigated whether SNVs, indels or structural variants (SVs)
occurred more frequently as clonal mutations in the trunk or as
subclonal ones in branches.

We identified several significant associations between age and
mutation timing. In pan-PCAWG analysis, we found positive
associations between age and proportion of clonal SNVs
(ρ= 0.20, FDR-adjusted LNR p= 1.4 × 10−3, Fig. 1C) and
proportion of clonal indels (ρ= 0.14, LNR p= 0.013, Supple-
mentary Data 3). Age was also associated with increasing clonal
SNV proportion in two tumour-types: stomach cancer (Stomach-
AdenoCA: ρ= 0.44, FDR-adjusted LNR p= 0.028, Bonferroni-
adjusted LNR p= 0.11), and medulloblastoma (CNS-Medullo:
ρ= 0.34, FDR-adjusted LNR p= 2.5 × 10−3, Bonferroni-adjusted
LNR p= 5.1 × 10−3, Fig. 1C). Positive correlations in these
tumour-types indicate tumours arising in older individuals
accumulated a greater fraction of SNVs earlier in tumour
evolution. In contrast, we identified the inverse trend in
melanoma, where tumours of younger patients accumulated
more subclonal than clonal SNVs (ρ=−0.47, FDR-adjusted LNR
p= 7.8 × 10−3, Bonferroni-adjusted LNR p= 0.023). Differences
in the proportion of clonal mutations suggest differential
mutation timing over the tumour evolution and could be caused
by mechanisms such as differences in mutational processes or
driver mutation frequency.

We next focused on genome instability, a measure of copy
number aberration (CNA) burden and approximated by the
percent of the genome altered by CNAs (PGA). Analogous to
SNV density measuring the burden of point mutations, PGA
measures the density of copy number alterations. We found that
in pan-cancer analysis, PGA increased with age in PCAWG
(ρ= 0.19, FDR-adjusted LNR p= 0.022, Bonferroni-adjusted
LNR p= 0.068) and AACR GENIE (ρ= 0.041, FDR-adjusted
LNR p= 0.050, Bonferroni-adjusted LNR p= 0.16) (Fig. 1D) and
estimate that PGA increased at 0.010% per year (Table 2). We
also identified positive correlations in six TCGA, three PCAWG,
and three AACR GENIE tumour-types. Again, prostate cancer
showed consistent age-PGA associations, this time in all three
datasets (TCGA: ρ= 0.17, FDR-adjusted LNR p= 6.7 × 10−5,
Bonferroni-adjusted LNR p= 1.8 × 10−4; PCAWG: ρ= 0.27,
FDR-adjusted LNR p= 3.0 × 10−3, Bonferroni-adjusted LNR
p= 4.4 × 10−3; AACR GENIE: ρ= 0.11, FDR-adjusted LNR
p= 0.050, Bonferroni-adjusted LNR p= 0.20, increase of 0.2%/
year; Fig. 1E). Age was associated with PGA in stomach cancer
data in TCGA with an estimated increase of 0.19% per year
(ρ= 0.11, FDR-adjusted LNR p= 0.011, Bonferroni-adjusted
LNR p= 0.011) and AACR GENIE (ρ= 0.38, FDR-adjusted
LNR p= 0.041, Bonferroni-adjusted LNR p= 0.083), and while
other age-PGA correlations were not statistically significant
across multiple datasets, they showed similar effect sizes
(Supplementary Fig. 1). Intriguingly, we detected negative age-
PGA associations in TCGA lung adenocarcinomas (Fig. 1D), and
correspondingly negative associations in PCAWG (ρ=−0.13)
and AACR GENIE lung tumours (ρ=−0.099) (Supplementary
Fig. 1). Estimates for per year increase in PGA are given in

Table 1 Summary of age data per tumour-type.

Tumour type TCGA age PCAWG age GENIE-MSK age

Bladder Cancer 34–90 (69) 34–84 (65) 26–90.1 (67)
Breast Carcinoma 26–90 (59) 30–89 (56) 19–90.1 (55)
Biliary Cancer – 37–84 (64) 24–85.1 (64)
Cervical Cancer 20–88 (46) 21–58 (39) 26–72 (48)
Colorectal Cancer 31–90 (68) 31–89 (67.5) 18–90.1 (56)
Glioblastoma 21–89 (62) 21–76 (59) 18–90.1 (60)
Medulloblastoma – 18–49 (26) 28–72 (46)
Pilocytic Astrocytoma – 20–50 (24) 29–44 (36.5)
Head and Neck Carcinoma 19–90 (61) 19–76 (53) 28–90.1 (59)
Clear Cell Renal Cell Carcinoma 26–90 (61) 38–84 (60) 31–85.1 (60)
Chromophobe Renal cell Carcinoma 26–86 (50) 28–86 (47.5) 30–73 (56)
Papillary Cell Renal Cell Carcinoma 28–88 (61) – 36–77.1 (60)
Non-Hodgkin Lymphoma – 18–85 (62) 29–84.1 (60)
Chronic Lymphocytic Leukaemia – 40–86 (61) 44–72 (67)
Acute Myeloid Leukaemia 18–88 (58) 35–75 (50) –
Myeloid-MPN – 27–85 (54) –
Lower Grade Glioma 18–87 (41) 21–62 (42) 21–81.1 (48)
Hepatocellular Carcinoma 18–90 (61) 23–89 (67) 18–90.1 (63)
Lung Adenocarcinoma 38–88 (67) 41–81 (65.5) 22–90.1 (68)
Lung Squamous Cell Carcinoma 40–85 (68) 47–83 (68) 30–90.1 (68)
Ovarian Cancer 26–89 (59) 39–81 (60) 26–84.1 (59)
Pancreatic Cancer 35–85 (66) 34–90 (67) 32–90.1 (67)
Pancreatic Endocrine Cancer – 20–81 (59) 36–85.1 (58)
Pheochromocytoma 19–83 (46) – 26–59 (41.5)
Prostate Cancer 41–78 (61) 38–80 (59) 43–90.1 (65)
Sarcoma 20–90 (60) – 18–84.1 (52)
Melanoma 18–87 (55.5) 19–87 (57.5) 24–90.1 (64)
Stomach Adenocarcinoma 34–90 (67) 36–90 (65) 18–85.1 (59.5)
Esogapheal Carcinoma 27–90 (61) 44–87 (70) 18–88.1 (59)
Thyroid Cancer 18–89 (46) 18–85 (51) 22–88.1 (63)
Thymic Tumour 31–84 (61) – 20–83.1 (59.5)
Endometrial Carcinoma 33–90 (63) 35–90 (69) 42–90.1 (60)
Pan-cancer 18–90 (60) 18–90 (62) 18–90.1 (60)
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Table 2 for the five tumour-types with consistent evidence in at
least two datasets.

To better understand why lung cancers of younger patients
might have higher genomic instability, we investigated tobacco
use. Tobacco exposure is a well-known risk factor in lung cancers.
Our multivariable lung cancer regression models do account for
tobacco use, but we supplemented our analysis with a more
focused study of the relationship between PGA, age and tobacco

history. Age was associated with tobacco history (Kruskal–Wallis
p= 1.6 × 10−12, Fig. 1F, top), where current smokers were
diagnosed with lung cancer at younger ages than never and
reformed smokers (difference in location=−6.0, 95% CI=
−8.0–−4.0, Wilcoxon rank sum test p= 1.2 × 10−7). PGA was
also associated with smoking history (Kruskal–Wallis
p= 1.6 × 10−12, Fig. 1F, bottom) where tumours arising in
current smokers had higher PGA (difference in location= 5.0,
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95% CI= 1.2–9.2, Wilcoxon rank sum test p= 1.0 × 10−3). We
then examined the associations between age and PGA within each
tobacco use category and found no association in never and
reformed smokers ≥15 years (Spearman correlation p ≥ 0.1,
Fig. 1G). In contrast, tumours of current and reformed smokers
<15 showed statistically significant negative correlations, indicat-
ing the negative association between age and PGA are dependent
on current or recent tobacco use. These mutation density results
demonstrate nuances in the relationship between aging and the
accumulation of mutations: there are differences by when
mutations occur throughout tumour evolution, and by how they
occur through different mutational processes.

Age-associated mutational signatures. We continued exploring
mutational processes through mutational signatures data. Clin-
ical data on exposures such as tobacco use history and frequency
are self-reported by the patient and may be inaccurate, mis-
recorded or not described. Moreover, clinical data often do not
include information on exposures such as second-hand smoke,
which is also a known cancer risk factor59. We leveraged the
COSMIC mutational signatures, which can be applied to
deconvolve distinctive mutational patterns from genomic
sequencing60. Each mutational signature is thought to represent
a specific oncogenic process—for instance, single base signature
(SBS) 4 represents tobacco exposure. Using mutational sig-
natures, we can not only detect the influence of oncogenic pro-
cesses within a tumour, but we can also quantify the number of
mutations attributed to that process and assess its relative
activity compared with the activity of other mutational processes
active within the tumour.

Focusing on the tobacco smoking signature SBS4, we stratified
TCGA lung adenocarcinoma tumours into SBS4-postive (SBS4+ )
and -negative (SBS4−) groups. SBS4+ tumours were detected
more frequently in younger patients (Wilcox p= 1.1 × 10−5) and
had higher PGA (Wilcox p= 1.0 × 10−3, Fig. 2A left). We also

found that the number of mutations attributed to SBS4 was
negatively correlated with age (Spearman’s ρ=−0.12, p value=
0.086) and positively correlated with PGA (Spearman’s ρ= 0.31,
p value= 2.9 × 10−6, Fig. 2A centre). These findings show that a
greater burden of tobacco-associated mutations occurred in lung
tumours of younger patients and was associated with increased
genomic instability. When considering SBS4-attributed SNVs as a
fraction of total detected SNVs, we found that while age remained
negatively correlated with SBS4 relative activity (Spearman’s
ρ=−0.16, p value= 0.017), there was no association with PGA
(Spearman’s ρ= 0.082, p value= 0.23, Fig. 2A right): i.e. while
smoking-attributed mutations accounted for a greater percentage
of mutations in younger patients, this relative activity was not
associated with a change genomic instability. Also, when
examining the relationships between age and PGA separately in
SBS4+ and SBS4− tumours, we found significant negative
correlations in both groups (Fig. 2B), suggesting additional factors
beyond SBS4-attributed mutations may contribute to increased
PGA in lung tumours diagnosed in younger patients.

We repeated this analysis in TCGA lung squamous cell cancers
and detected a similar negative correlation between age and PGA
in SBS4- tumours (Spearman’s ρ=−0.17, p value= 5.8 × 10−3,
but no association in SBS+ tumours (Spearman’s ρ=−0.0069,
p value= 0.94, Supplementary Fig. 2). SBS4 activity was also
negatively associated with age in PCAWG lung adenocarcinomas
(Lung-AdenoCA: ρ=−0.50, adjusted LNR p= 0.025, Supple-
mentary Fig. 2). Indeed, SBS4 and age were consistently
negatively associated across both subtypes of lung cancer and
both datasets, though not all associations were statistically
significant after multiple testing adjustment. This supports
previous findings that tobacco has a larger tumorigenesis role
in younger patients, with tobacco-associated mutations contri-
buting to a greater portion of the mutational landscape of
tumours derived from younger individuals61.

The PCAWG project updated the COSMIC signatures v3 to a
set of 49 single base substitution, 11 doublet base substitution

Fig. 1 Mutation density and timing are associated with age at diagnosis. Summary of associations between age and (A) SNV density and (D) percent
genome altered (PGA) in TCGA, PCAWG and AACR GENIE tumours. The dot size and colour show the Spearman correlation, and background shading
indicate adjusted multivariate p value. Only tumour-types with at least univariately significant associations are shown. Associations between (B) SNV
density and (E) PGA with age in prostate cancer across the three datasets (nTCGA= 492, nPCAWG= 199, nAACR-GENE= 582 biologically independent
samples). Univariate Spearman correlation, FDR-adjusted correlation p value and FDR-adjusted multivariable linear regression p values shown.
C Correlations between age and proportion of SNVs occurring in the truncal clone in four PCAWG tumour contexts (Spearman correlation and linear
regression FDR-adjusted p values). F In TCGA lung adenocarcinoma (n= 497 biologically independent samples), age and PGA are associated with smoking
history (Kruskal–Wallis test), and (G) the negative association between PGA and age remains significant in current smokers and recently reformed
smokers (≤15 years; Spearman correlation p values). From top to bottom: never smokers (yellow), current reformed smokers >15 years (green), current
reformed smokers≤15 years (light blue), current smokers (dark blue). Tukey boxplots are shown with the box indicating quartiles and the whiskers drawn
at the lowest and highest points within 1.5 interquartile range of the lower and upper quartiles, respectively. Source data are provided as a Source Data file.

Table 2 Estimates of per year increase in mutation density.

Tumour-type ΔMut/Mbp per year (95% CI) ΔPGA per year (95% CI)

Breast Carcinoma 0.064 (0.029–0.95) –
Glioblastoma 0.018 (−0.020–0.056) –
Head and Neck Carcinoma 0.14 (0.071–0.21) –
Clear Cell Renal Cell Carcinoma 0.018 (0.0084–0.027) –
Lung Adenocarcinoma – −0.17 (−0.24–0.10)
Hepatocellular Carcinoma 0.069 (0.032–0.11) –
Ovarian Cancer – 0.61 (0.41–0.81)
Prostate Cancer 0.12 (0.034–0.20) 0.2 (0.13–0.27)
Sarcoma 0.044 (−0.0091–0.098) –
Stomach Adenocarcinoma 0.31 (0.14–0.49) 0.19 (0.064–0.31)
Thyroid Cancer 0.0082 (0.0066–0.0097) 0.067 (0.036–0.098)
Pan-cancer 0.077 (0.049–0.10) 0.010 (−0.01–0.030)
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(DBS) and 17 small insertion and deletion (ID) signatures62. We
extended our analysis of SBS4 to all 77 mutational signatures in
PCAWG data and to SBS signatures in TCGA data. We did not
investigate mutational signatures in AACR GENIE data due to
smaller mutation numbers resulting from the limited genome
coverage of the MSK-IMPACT panel. Like our analysis of SBS4,
we examined both the proportion of signature-positive tumours
as well as relative mutation activity. Previous studies of
mutational signatures describe the correlations between age and

signature-attributed mutations but ignore the other aspects of
signature detection and relative activity. By comparing signature
detection rates, we identified mutational processes that are more
likely to be active in younger vs. older patients and vice versa. By
analysing signature-attributed mutations as a proportion of total
mutations per tumour, we derived information about that
signature’s contribution to the overall mutational spectrum. For
example, SBS1 is well-known as being ‘clock-like’ and its number
of attributed mutations increase with age60,62. However, because
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SBS1 is detected almost universally, it is equally likely to occur in
tumours of younger vs. older patients; when analysed as a
proportion of total mutations, we found that the proportion of
SBS1 mutations did not change with age, suggesting that its
relative activity is stable with age (Spearman’s correlation p > 0.1).

Across all 2562 PCAWG tumours, we identified twelve
mutational signatures with age-associated detection frequency
(Fig. 2C, left) and ten with age-associated relative signature
activity (Fig. 2, left). For example, tumours arising in older
patients were more likely to be SBS3-positive (marginal log odds
change= 0.0085, 95% CI= 0.0024–0.015, adjusted LGR
p= 0.075), but in these SBS-positive tumours, the proportion
of SBS3-attributed mutations decreased with age (ρ=−0.20,
FDR-adjusted LNR p= 3.2 × 10−3, Bonferroni-adjusted LNR
p= 0.013). SBS3 mutations are thought to be caused by defective
homologous recombination-based DNA damage repair. These
results imply that while tumours derived from older individuals
were more likely to harbour defective DNA damage repair, its
relative impact on the burden of SNVs was lower compared with
tumours derived of younger individuals. A similar relationship
was seen for ID8, associated with defective non-homologous
DNA end-joining (marginal log odds change= 0.024, 95%
CI= 0.020–0.028, FDR-adjusted LGR p= 3.4 × 10−3,
Bonferroni-adjusted LNR p= 0.021; ρ=−0.099, FDR-adjusted
LNR p= 3.7 ×10−5, Bonferroni-adjusted LNR p= 3.7 × 10−5)
and ID1, associated with slippage during DNA replication
(marginal log odds change= 0.013, 95% CI= 0.0059–0.020,
FDR-adjusted LGR p= 0.018; ρ=−0.059, FDR-adjusted LNR
p= 0.048). Like our results for SBS4, we identified associations
between age and other tobacco-related signatures DBS2 and ID3.
Conversely, tumours arising in older individuals were less likely
to exhibit defective base excision repair (SBS36). All mutational
signatures findings are in Supplementary Data 3.

These pan-cancer differences persisted across individual
tumour-types. We identified 23 age-associated signatures across
eleven tumour-types, including six significant signatures in
melanoma. In this tumour-type, tumours arising in older patients
were preferentially SBS2-positive (marginal log odds change=
0.051, 95% CI= 0.013–0.095, adjusted LGR p= 0.029, Fig. 2C),
attributed to APOBEC cytidine deaminase activity63. Melanomas
arising in younger patients were more likely to be positive for
signatures related to UV damage (SBS 7a, b, d, Fig. 2C,
Supplementary Data 3). The proportion of mutations attributed
to UV damage was also higher in younger patients (DBS1,
ρ=−0.29, FDR-adjusted LNR p= 0.019, Fig. 2D), while the
proportion of mutations attributed to slippage during DNA
replication was higher in older patients (ID1, ρ= 0.27, FDR-
adjusted LNR p= 0.019, Fig. 2D). These results suggest that

melanomas in younger patients more frequently involve UV
exposure and damage, while melanomas in older patients were
more influenced by endogenous sources of mutation.

Leveraging data describing SBS signatures in TCGA data, we
repeated this analysis to identify age-associations in signatures
derived from whole exome sequencing (WXS) data. Across pan-
TCGA tumours, we detected five signatures that occurred more
frequently in older individuals, and three that occurred more
frequently in younger individuals (Fig. 2C). We also identified five
signatures with higher relative activity in younger patients (Fig. 2D).

There was moderate agreement between TCGA and PCAWG
findings: while the results in one dataset never contradicted those
of the other, some signatures were associated with age exclusively
in either TCGA or PCAWG data. Other signatures, such as SBS1
and SBS5 were associated with age in detection and relative
activity across a range of tumour-types in either dataset. There
was complete agreement in only some signature like SBS2 and
SBS4. We hypothesised that this was due to differences in
signature detection rates between WXS and whole genome
sequencing (WGS) data and compared how frequently each
signature was detected across all samples (Fig. 2E). Signatures
with high agreement between datasets had similar detection rates,
as observed for SBS2 (detection difference= 1.5%) and SBS4
(detection difference= 1.1%). Signatures where findings did not
replicate had vastly different detection rates, as was seen for SBS1
(detection difference= 7.2%) and SBS5 (detection difference=
10%). We further examined this by comparing signatures data
from non-PCAWG WGS and non-TCGA WXS data. Differences
in signature detection rates between PCAWG and TCGA data
were reflected in non-PCAWG WGS and non-TCGA WXS data
(Supplementary Fig. 3). We also looked specifically at identified
age-associations and found high agreement in data generated by
the same sequencing strategy (Supplementary Fig. 2). These
findings suggest high confidence in age-associations detected in
both WGS and WXS data, and that additional study is needed in
independent WXS and WGS data to validate TCGA- and
PCAWG-specific findings.

CNA differences associated with transcriptomic changes. Glo-
bal mutation characteristics such as genome instability are fea-
tures of later stages in a tumour’s evolutionary history. In
contrast, the early stages are often driven by chromosome- or
gene-specific events such as loss of specific chromosomes55.
CNAs usually affect broad genomic segments containing many
genes, but not all these genes confer a selective advantage; algo-
rithms such as GISTIC64 identify targeted oncogenes and tumour
suppressors and have been used to describe catalogues of CNA
drivers65. We therefore narrowed our focus to 87 known CNA

Fig. 2 Age-associated mutational signatures suggest differences in underlying mutational processes. A In TCGA lung adenocarcinoma adenocarcinoma
(LUAD; n= 497 biologically independent samples), age (top plots) and PGA (bottom plots) are associated with the tobacco-associated signature SBS4
(left; two-sided Wilcoxon rank sum test). Yellow and blue dots indicate SBS4− and SBS4+ tumours, respectively. The absolute number of SBS4-attributed
mutations is also associated with age and PGA (middle; Spearman correlation). The relative proportion of SBS4-attibuted mutations is negatively
associated with age and has no significant relationship with PGA (right; Spearman correlation). B The negative association between PGA and age in LUAD
remains significant in both SBS4+ (blue) and SBS4− (yellow) groups (Spearman correlation). C Summary of associations between age and the proportion
of signature-positive tumours, where dot size shows the marginal log odds from logistic regression and background shading show adjusted multivariate
p values. PCAWG data is on left and TCGA on right. D Similarly, the summary of associations between age and relative signature activity, with dot size
showing Spearman correlations and background indicating adjusted linear regression p values. E Comparison of PCAWG and TCGA signature detection
frequency. Filled in and open circles indicate comparisons where the differences are statistically significant (proportion test FDR-adjusted p < 0.05) and
not, respectively. Proposed SBS signature aetiologies are as indicated. Proposed DBS and ID aetiologies are: DBS1: UV, DBS2: tobacco, DBS5: platinum
chemotherapy, DBS7: defective MMR, ID1: slippage during DNA replication, ID2: slippage during DNA replication, ID3: tobacco, ID6: defective homologous
recombination, ID8: non-homologous end joining, ID13: ultraviolet radiation. Tukey boxplots are shown with the box indicating quartiles and the whiskers
drawn at the lowest and highest points within 1.5 interquartile range of the lower and upper quartiles, respectively. Source data are provided as a Source
Data file.
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cancer driver genes as described by COSMIC66. We applied our
statistical framework to identify putative age-associated copy
number driver gains and losses using univariate logistic regres-
sion, and those passing a FDR threshold of 10% were modeled
using multivariable logistic regression to account for confounding
factors. We further used Pearson’s Χ2 tests to evaluate all driver
CNAs as an orthogonal measure to minimise false positive hits:
we took only results that pass the two stacked 10% FDR
thresholds from our statistical framework and the 10% FDR
threshold on Chi-squared p values to be significant. We applied
these analyses to PCAWG, TCGA and AACR GENIE datasets
separately to characterise pan-cancer and tumour-type-specific
associations. We assessed our statistical approach with p value
Q–Q plots as presented in Supplementary Fig. 4.

In pan-cancer analysis of TCGA data, we identified 20 driver
genes that were more frequently lost (Fig. 3A) and eight driver
genes that were more frequently gained in in tumours of older
individuals (Fig. 3B). Age-associated loss of FANCA (marginal log
odds change= 0.015, 95% CI= 0.012–0.018, FDR-adjusted MLR
p= 3.2 × 10−9, Bonferroni-adjusted MLR p= 5.9 × 10−9) was
also statistically significant in AACR GENIE data (marginal log
odds change= 0.051, 95% CI= 0.036–0.066, FDR-adjusted MLR
p= 0.011, Bonferroni-adjusted MLR p= 0.011). Other age-
associated loss and gain events were statistically significant in
one dataset and corroborated by similar effects in at least one
other (Supplementary Data 4–5). There were also age-associated
CNAs in specific tumour-types: we detected age-associated gains
with evidence in at least two datasets in five tumour-types
(Fig. 3B), and losses in six tumour-types (Fig. 3A), most notably
in ovarian cancer (Supplementary Data 5). Most of these
associations were positive, indicating these CNA drivers were
more likely to occur in tumours of older patients.

We next asked whether age-associated CNA drivers might lead
to downstream transcriptomic changes by investigating TCGA
tumour-matched mRNA abundance data. We used linear models
with age, copy number status and their interaction as predictors.
These terms tell us when the CNA event itself is significantly
associated with mRNA abundance (Fig. 3C top), when mRNA
differs by age (Fig. 3C middle) and when the effect of the CNA on
mRNA depends on age (Fig. 3C bottom). We adjusted for tumour
purity (as estimated by study pathologists) in all mRNA analyses.
Of 43 age-associated CNAs with mRNA data, we found 17 were
significantly associated with changes in mRNA abundance
(Fig. 3C top, Supplementary Data 6). Intriguingly, CDKN2A loss
in sarcoma was not itself significantly associated with a change in
mRNA, but did significantly interact with age (Fig. 3C bottom).
There was a greater decrease in CDKN2A mRNA in sarcomas
derived of older than younger individuals (adjusted mRNA-
CNA-age p= 0.024, Fig. 3E).

To investigate potential clinical significance of these age-
associated CNAs, we performed survival analysis to identify
prognostic events. We used Cox Proportional-Hazards (Cox PH)
models with 5-year overall survival as the end point. Like our
mRNA models, we used predictors including copy number status,
age and their interaction. In glioblastoma, age itself is a known
prognostic feature with older patients having poorer outcome
(HR= 2.1, 95% CI= 1.7–2.6, Wald p= 1.4 × 10−13). We found
that loss of SUFU was not prognostic, but incorporating age
revealed that younger individuals with no SUFU loss had the best
outcome (HR= 0.42, 95% CI= 0.30–2.3, adjusted Wald
p= 5.5 × 10−6). Also, SUFU loss stratified younger individuals
into two groups with distinct trajectories, but had no such
prognostic value in glioblastomas of older individuals (Fig. 3E).
We repeated these mRNA and survival analyses for all TCGA
tumour-types with age-associated CNAs and present all results in
Supplementary Data 6.

SNVs differences associated with functional changes. Finally,
we investigated gene-level SNVs for age-associations. In PCAWG
analysis, we used a predefined set of genomic driver and mito-
chondrial genes67. In TCGA analysis, we focused on a set of 679
COSMIC driver genes66 and applied a recurrence threshold to
filter out genes mutated in <1% of tumours. We used AACR
GENIE data generated using MSK-IMPACT targeted sequencing
of up to 468 cancer genes, and filtered with a recurrence threshold
of 1%. We included SNV density in our multivariate models in
addition to other confounding factors.

In pan-cancer analysis, we identified 102 age-associated genes
in TCGA, nine age-associated genes in AACR GENIE, and one in
PCAWG data (Supplementary Data 7). CREBBP-frequency was
associated with age in both TCGA (marginal log odds change=
0.030, 95% CI= 0.024–0.040, FDR-adjusted LGR p= 0.049)
and PCAWG (marginal log odds change= 0.027, 95%
CI= 0.0089–0.047, FDR-adjusted LGR p= 8.7 × 10−3, Fig. 4A,
Supplementary Data 7). In AACR GENIE, the positive association
between CREBBP-status and age was not significant after multiple
testing correction (marginal log odds change= 0.011, 95%
CI= 0.0047–0.022, FDR-adjusted p > 0.1). KDM6A and RBM10
were more likely to have SNV in tumours derived of older
patients in TCGA and AACR GENIE but were not recurrently
mutated in PCAWG data and not analysed in that dataset
(Fig. 4A, Supplementary Data 7). 35 other genes found to be
associated with age in TCGA data showed similar effect sizes in
either PACWG or AACR GENIE data, but without reaching
statistical significance.

There were also tumour-type specific age-associations in SNV
frequency in TCGA, PCAWG and AACR GENIE. We identified
three tumour-types with consistent and significant age-associated
SNVs in at least two datasets, and five tumour-types with
associations that were significant in one dataset and showed the
same effect in one other (Fig. 4B, Supplementary Data 7). SNVs
in FOXA1 occurred more frequently in breast and prostate
tumours derived of older individuals. SPOP was also positively
associated with age in prostate tumours (PCAWG adjusted LGR
p= 0.099, AACR GENIE adjusted LGR p= 0.03). In melanoma,
SNVs in NF1 were more frequent in tumours of older individuals,
while BRAF SNVs were more frequent in tumours of younger
individuals. We also confirmed known associations between age
and mutations in tumour suppressors IDH1- and ATRX- in both
high grade glioblastoma and lower grade gliomas, IHD1- and
ATRX- were more frequent in tumours derived of younger
individuals (Fig. 4C, Supplementary Data 7). Other age-associated
SNVs included positive associations in cervical and head and
neck cancer, and negative associations in colorectal cancer
(Supplementary Data 7).

Like the nuclear genome, the mitochondrial genome is
frequently mutated in cancer68. We leveraged mitochondrial
SNV (mtSNV) data from PCAWG WGS and identified age
associated mtSNVs in pan-cancer analysis and in ovarian cancer
(Fig. 4D, Supplementary Data 7). All significant age-associations
were mtSNVs that occurred more frequently in tumours of older
patients, even after controlling for the number of mitochondria
copies in each tumour. Implicated mitochondrial regions
included MT-CYB, which encodes a cytochrome b and the D-
loop, a noncoding region that controls replication and
transcription69,70 (Fig. 4E). We also examined whether the
number of tumour mitochondria copies was associated with age
by investigating the foldchange compared with normal mito-
chondria copies. There was indeed a significant association
between mitochondria copy increase and age in pan-cancer
analysis and three tumour-types (Fig. 4F, Supplementary Data 7).
In these tumour contexts, tumours of older patients gained more
mitochondria copies than tumours of younger patients.
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As with the age-associated CNAs, we evaluated the impact of
SNVs on mRNA abundance and survival in TCGA data. We
identified significant associations between age-associated SNVs
and mRNA abundance for ATRX and IDH1 in lower grade
glioma (Supplementary Data 6). Mutations in ATRX and IDH1
were associated with lowered mRNA abundance in both genes.
There was also a significant interaction between age and IDH1-
frequency (adjusted p= 2.1 × 10−4, Fig. 4G) indicating an age-
dependent effect on mRNA abundance: mutated IDH1 was

associated with a greater mRNA decrease in tumours arising in
younger patients. Interestingly, this difference was due to a
change in baseline IDH1 mRNA: older patients had higher IDH1
mRNA abundance than younger, and mutated IDH1 resulted in
equalised mRNA levels. IDH1 encodes isocitrate dehydrogenase
1, a component of the citric acid cycle: differences in its baseline
abundance may be due to differences in metabolism in younger
and older brains71. In contrast while there was no interaction
between age and mutation status on mRNA abundance (adjusted
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p= 0.36, Fig. 4G), ATRX and age were synergistically associated
with outcome, stratifying lower grade glioma patients into four
groups (Fig. 4H).

The lower grade glioma tumour-type is comprised of
astrocytoma and oligodendroglioma subtypes. IDH1 mutation is
intrinsically linked to glioma subtype as oligodendroglioma is
diagnosed based on the presence of both the 1p/19q co-deletion

and mutation of either IDH1 or IDH272. While our multivariable
models adjust for tumour subtype, we investigated age-
associations of ATRX and IDH1 SNV mutation frequency in
lower grade gliomas in greater detail. We stratified the TCGA
lower grade tumours into astrocytoma, oligodendroglioma and
oligoastrocytoma subtypes and repeated the SNV, mRNA and
survival analyses in each group. We found TP53 and ATRX SNV
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mutations occurred more frequently in tumours derived of
younger individuals across all three subtypes (Supplementary
Fig. 5). ATRX SNV mutation frequency was associated with
decreased mRNA abundance in all three subtypes, and we
also found a significant age-ATRX interaction in astrocytoma,
where ATRX- was associated with a greater decreased in
mRNA abundance in tumours of older individuals than younger
(interaction p= 0.016, Supplementary Fig. 5). IDH1 SNV
mutation frequency was negatively associated with age in
astrocytoma (Wilcox p= 1.3 × 10−8) and oligoastrocytoma
(Wilcox p= 0.041), but not oligodendroglioma (Wilcox
p= 0.19), and we found significant age-IDH1 interactions in
mRNA abundance analysis for oligodendroglioma (interaction
p= 0.038) and oligoastrocytoma (interaction p= 6.2 × 10−3).
Finally, we found significant age-dependent associations of ATRX
SNV status in astrocytoma but not oligodendroglioma or
oligoastrocytoma: ATRX SNVs were associated with improved
survival in older patients, but with worse survival in younger
patients.

Discussion
Despite modest statistical power, suboptimal study designs and
limited clinical annotation, we identified myriad age-associated
differences in cancer genomes. Age-associated genomic features
occur at the pan-cancer level and across almost all individual
tumour-types. Combined with similar reports of sex- and
ancestry-associated differences in cancer genomes53,54, these data
reveal a set of host influences on the mutational characteristics of
tumours. Indeed, a study by Chatsirisupachai et al. describes
corroborating evidence of age-associated differences in the gen-
ome and transcriptome, as well as age-specific differences in
methylation and gene expression control73. Together, we find that
characteristics of the tumour host appears to influence all aspects
of the tumour molecular profile and that some of these lead to
age-specific transcriptomic and clinical impacts. We note that
most of the age-associated findings in this study survive
Bonferroni-adjustment as well as FDR-adjustment which is
standard in our field.

The mechanisms for these genomic associations are largely
unknown. Our data suggest some endogenous or exogenous
mutational processes preferentially occur in individuals of dif-
ferent age groups. Some of these mutational processes are related
to aging-associated phenomena such as declining DNA damage
repair74,75, somatic mosaicism and the accumulation of muta-
tions over time60,76,77. However, other processes related to
immune surveillance, evolutionary selection, disease aetiology
and epigenetics are also likely involved78–80. Pathogenic germline
variants such as those in BRCA1/2 or TP53 also lead to earlier
presentation of cancer. While our results remain unchanged on
removing tumours with detected known pathogenic variants81, it

is likely there remains hereditary confounders that we have not
accounted for.

In addition to such biological factors, lifestyle and socioeconomic
considerations like diet82 and microbiome composition83 can
continuously shape tumour evolution from its earlier steps. Many of
these factors are deeply linked to not only an individual’s age, but
other fundamental characteristics over which we have limited
control, such as ancestry or sex. For example, we found that tobacco
exposure is closely linked to the negative correlation between age
and PGA. It is possible that tobacco exposure leads to earlier pre-
sentation of mutation-dense lung cancers. However, it is also likely
that there are other variables and interactions that influence the
relationship between age and mutation density. Moreover cohort
effects, where individuals born in one time period experience dif-
ferent risk exposures from those born in another, can greatly
influence the somatic profile of tumours. Our analyses do not
consider such cohort effects, and some described age-associations
may instead be attributed to differences across time. A tumour’s
mutational history therefore reflects a complex interplay of biolo-
gical, lifestyle and healthcare factors, and we have little under-
standing of how these diverse processes interact to produce
molecular phenotypes.

Most tumour-types in our study showed some association
between age and genomic alterations. Prostate cancer showed
persistent associations in all three datasets across multiple mea-
sures of genomic alterations. These were all positive age-
associations where mutation density, driver CNA frequency,
and SNV frequency of SPOP and FOXA1 all increased with age.
The strong association of age with alterations in prostate cancer
may be related to its typically slow-growth and low mutation
burden. Moreover, known exogenous risk factors, including diet
and endocrine disrupting chemicals are thought to converge on
hormone regulation, which then acts on the prostate84. In con-
trast, tumours types with negative age-associations such as lung
and liver cancers have exogenous risk factors that impact cells
through multiple indirect and direct mechanisms such as viral
infection, mutagenesis and inflammation85.

The TCGA, PCAWG and AACR GENIE datasets sometimes
identified different molecular associations, highlighting the dif-
ferences between the three datasets. TCGA and AACR GENIE
patients were largely North American while PCAWG had a
greater international component. While the ages represented in
all three datasets were similar (Table 1), the cohorts differ in other
host and clinical characteristics. For instance, the representation
of ancestry groups is dissimilar, with many tumour-types differ-
ing vastly in ancestry proportions (Supplementary Data 1). Fur-
thermore, differences in sequencing targets also contributed to
variation in our results, most conspicuously in the detection rates
of some mutational signatures. We customised our analyses to
take advantage of the contrasting strengths of each dataset: WGS
in PCAWG allowed us to interrogate a greater breadth of

Fig. 4 Age-associations in nuclear and mitochondrial SNVs reveal ATRX as an age-associated prognostic biomarker in lower grade glioma. A Summary
of age- associated nuclear driver SNVs for (A) pan-cancer and (B) tumour-type specific analyses across three datasets. Dot size shows the magnitude of
the association as the difference in proportion and the background shading shows FDR-adjusted multivariate regression (MV) p values. Left covariate in (B)
indicates relevant tumour-type. C TCGA lower grade glioma (n= 515 biologically independent samples) age-associations in driver mutation frequency with
adjusted multivariate p values, marginal log odds changes for 10-year age increment, and age of tumours compared between those with (red) and without
(grey) the mutation. D Summary of age-associated mitochondrial SNVs in PCAWG with specific examples from ovarian cancer data (n= 110 biologically
independent samples) shown in (E). F Mitochondrial copy number foldchange is also associated with age in four tumour contexts. G In TCGA lower grade
glioma (n= 515 biologically independent samples): mRNA abundance changes for IDH1 and ATRX when the gene is mutated (red) or not (black) compared
by median-dichotomised age. Adjusted SNV-age interaction p values are shown. H ATRX mutation interacts with age to stratify lower grade glioma patient
prognosis into four groups. Log-odds p value is shown. Tukey boxplots are shown with the box indicating quartiles and the whiskers drawn at the lowest
and highest points within 1.5 interquartile range of the lower and upper quartiles, respectively. For (C and E): tumours with indicated mutation shown in red,
without in grey, and coefficient estimate from linear modeling and 95% confidence intervals shown. Source data are provided as a Source Data file.
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mutation types, while the larger sample size and clinical anno-
tation of TCGA data improved statistical power and controls for
confounders. The focused panel used to generate AACR GENIE
data facilitated the validation of age-associations in cancer genes.
Also, while we were able to identify more age-associations in
TCGA data, many of these findings were reflected in PCAWG
and AACR GENIE data by similar effects that did not reach our
statistical significance threshold. More sequencing data reflecting
greater and more balanced diversity is needed to distinguish those
age-associations that are intrinsic to differences in biology, and
those that are tied to differences in lifestyle and geography.

Our findings have wide-reaching implications for both basic
and translational cancer research. Since cancer host character-
istics like age, ancestry and sex widely shape the somatic cancer
landscape, we cannot consider discovery genomics complete they
are explicitly considered. Elderly individuals are underrepresented
in cancer sequencing studies and clinical trials39,86,87: better
inclusion is needed to identify somatic changes specific to older
individuals and to leverage these changes to improve clinical care.
In our analysis, we found that some age-associated genomic
differences associate with transcriptional and clinical changes, but
many do not—identifying the functional consequences and
mechanisms of these will be a long-term challenge. Finally, these
epidemiological factors should be considered and controlled for
in personalised therapy strategies. Indeed, every type of analysis
from driver-discovery to biomarker-development should expli-
citly test for and model the powerful influence of patient biology
and behaviour on tumour evolution.

Methods
Data preprocessing. For TCGA mRNA abundance, Illumina HiSeq rnaseqv2 level
3 RSEM normalised profiles were converted to log2 scale. Genes with >75% of
tumours having zero reads were removed from the respective dataset. TCGA
GISTIC 2.064 level 4 data was used for somatic copy-number analysis. mRNA
abundance data. Mutational profiles were based on TCGA-reported MutSig v2.0
calls. Genetic ancestry imputed by Carrot-Zhang88 et al. was incorporated.

We used TCGA data describing 10,212 distinct TCGA tumour samples across
23 tumour-types and 2562 distinct PCAWG samples across 29 tumour-types.
Tumour-types with no age annotation were excluded from analysis. Age is treated
as a continuous variable for both TCGA and PCAWG analyses. We matched
tumour-types between datasets as described in Supplementary Data 1. Source data
are provided with this paper.

AACR GENIE-MSK data was generated by the custom hybridisation-based
capture panel MSK-IMPACT, which includes up to 410 genes. Preprocessed gene-
wise SNV and CNA calls were obtained through the GDC Data Portal. We filtered
6841 metastatic tumours and matched on tumour-types included in the TCGA and
PCAWG datasets (Supplementary Data 1) for better comparison across datasets.
The final pan-cancer AACR GENIE cohort consisted of 7259 tumours across 35
tumour-types.

General statistical framework. For each genomic feature of interest, we used
univariate tests first followed by FDR adjustment to identify putative age-
associations of interest (q < 0.1). We used two-sided non-parametric univariate
tests to minimise assumptions on the data. For putative age-associations, we then
follow up the univariate analysis with multivariate modeling to account for
potential confounders using bespoke models for each tumour-type.

Model variables for each tumour context are presented in Supplementary
Data 1 and were included based on availability of data (<15% missing), sufficient
variability (at least two levels) and collinearity (as assessed by variance inflation
factor). Discrete data was modeled using logistic regression (LGR). Continuous
data was first transformed using the Box-Cox family and modeled using LNR. The
Box-Cox family of transformations is a formalised method to select a power
transformation to better approximate a normal-like distribution and stabilise
variance. We used the Yeo-Johnson extension to the Box-Cox transformation that
allows for zeros and negative values89.

FDR adjustment was performed for p values for the age variable significance
estimate and an FDR threshold of 10% was used to determine statistical
significance. Statistically significant findings must therefore pass two rounds of
FDR-adjustment: one at the univariate stage and the second at the multivariate
stage. More detail is provided for each analysis below. A summary of all results is
presented in Supplementary Data 1 and the subset of all significant results is in
Supplementary Data 2. We present 95% confidence intervals for all tests.

Mutation density. Performed for both TCGA, PCAWG and AACR GENIE data.
Overall mutation prevalence per patient was calculated as the sum of SNVs across
all genes on the autosomes and scaled to mutations/Mbp. Coding mutation pre-
valence only considers the coding regions of the genome, and noncoding pre-
valence only considers the noncoding regions. TCGA mutation density reflects
coding mutation prevalence. AACR GENIE mutation density reflects the targeted
sequences of the 341-, 410- or 468-gene MSK-IMPACT panel used for each
sample. Mutation density was compared age using Spearman correlation for both
pan-cancer and tumour-type specific analysis. Comparisons with univariate q
values meeting an FDR threshold of 10% were further analysed using LNR to adjust
for tumour subtype-specific variables. Mutation density analysis was performed
separately for each mutation context, with pan-cancer and tumour subtype p values
adjusted together. Full mutation density results are in Supplementary Data 3.

Per year increase in SNV density was estimated by combining TCGA, PCAWG
and AACR GENIE data: for tumour-types with evidence of age-associated SNV
density in at least two datasets, we merged those datasets with evidence of age-
associations. We fit a LNR model with formula SNV density ~ age+ project and
took the coefficient estimate for age as the per year increase in SNV density value.

Genome instability. Performed for TCGA, PCAWG and AACR GENIE data.
Genome instability was calculated as the percentage of the genome affected by copy
number alterations. The number of base pairs for each CNA segment was summed
to obtain a total number of base pairs altered per patient. The total number of base
pairs was divided by the number of assayed bases to obtain the percentage of the
genome altered (PGA). Genome instability was compared using Spearman corre-
lation for both pan-cancer and tumour-type specific analysis. Comparisons with
univariate q values meeting an FDR threshold of 10% were further analysed using
LNR to adjust for tumour subtype-specific variables. Genome instability analysis
was performed separately for each mutation context, with pan-cancer and tumour
subtype p values adjusted together. Full mutation density results are in Supple-
mentary Data 3. Per year increase in PGA was estimated similarly to the estimation
for SNV density: we fit a LNR model with formula PGA ~ age+ project and took
the coefficient estimate for age as the per year increase in PGA. We provide this
estimate for tumour-types with evidence of age-associated PGA in at least two
datasets.

Clonal structure and mutation timing analysis. Performed for PCAGW data
only. Subclonal structure data was binarized from number of subclonal clusters per
tumour to monoclonal (one cluster) or polyclonal (more than one cluster). Putative
age-associations were identified using univariate logistic regression and putative
associations were further analysed using multivariate logistic regression. A multi-
variate q value threshold of 0.1 was used to determine statistically significant age-
associated clonal structure.

Mutation timing data classified SNVs, indels and SVs into clonal (truncal) or
subclonal groups. The proportion of truncal variants was calculated for each
mutation type (Number truncal SNVs

total SNVs , etc.) to obtain proportions of truncal SNVs, indels
and SVs for each tumour. These proportions were compared using Spearman
correlation. Univariate p values were FDR adjusted to identify putatively age-
associated mutation timing. Linear regression (LNR) was used to adjust for
confounding factors and a multivariate q value threshold of 0.1 was used to
determine statistically significant age-a mutation timing. The mutation timing
analysis was performed separately for SNVs, indels and SVs. All results for clonal
structure and mutation timing analyses are in Supplementary Data 3.

Mutational signatures analysis. Performed for TCGA and PCAWG data. For
each signature, we compared the proportion of tumours with any mutations
attributed to the signatures (“signature-positive”) using logistic regression to
identify univariate age-associations. Signatures with putative age-associations were
further analysed using multivariable logistic regression.

We also compared relative signature activity using the proportions of mutations
attributed to each signature. The numbers of mutations per signature were divided
by total number of mutations for each tumour to obtain the proportion of
mutations attributed to the signature. Spearman correlation was used. Putative age-
associated signatures were further analysed using multivariable LNR after Box-cox
adjustment.

Signatures that were not detected in a tumour subtype was omitted from
analysis for that tumour subtype. All results for clonal structure and mutation
timing analyses are in Supplementary Data 3.

Genome-spanning CNA analysis. Performed for TCGA, PCAWG and AACR
GENIE data. The copy number profiles for COSMIC driver CNA genes were
extracted. Copy number calls were collapsed to ternary (loss, neutral, gain)
representation by combining loss groups (mono-allelic and bi-allelic) and gain
groups (low and high). Logistic regression was used to identify univariate age-
associated CNAs. After identifying candidate pan-cancer univariately significant
genes, multivariate logistic regression was used to adjust ternary CNA data for
tumour-type-specific variables.

We also used Chi-squared tests to evaluate all driver CNAs in all tumour-types.
We tested the association of gains/losses with median dichotomised age. Significant
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age-associations must pass the two 10% FDR thresholds from our statistical
framework and the 10% threshold on FDR-adjusted Chi-squared p values.
Bonferroni adjusted p values are also presented in Supplementary Data 2, 5–6. The
genome-spanning analysis was performed separately for losses and gains for each
tumour subtype.

Driver SNV analysis. Performed for TCGA, PCAWG and AACR GENIE data. We
focused on driver events described by the PCAWG consortium67 and by
COSMIC66. For TCGA and AACR GENIE, we also applied a 1% recurrence filter.
Driver mutation data was binarized to indicate presence or absence of the driver
event in each patient. Proportions of mutated genes were compared using uni-
variate logistic regression. A q value threshold of 0.1 was used to select genes for
further multivariate analysis using binary logistic regression. SNV density was
included in all models. FDR correction was again applied and genes with significant
age terms were extracted from the models (q value < 0.1). Driver event analysis was
performed separately for pan-cancer analysis and for each tumour subtype. All
SNV and driver event analysis results are in Supplementary Data 7.

mRNA functional analysis. Performed for TCGA data. Genes in bins altered by
age-associated CNAs and SNVs after multivariate adjustment were further inves-
tigated to determine functional consequences. Tumour purity was included in all
mRNA models. Tumours with available mRNA abundance data were matched to
those used in CNA analysis. For each gene affected by an age-associated loss, its
mRNA abundance was modeled against age, copy number loss status, an age-copy
number loss interaction term and tumour purity. The interaction term was used to
identify genes with age-associated mRNA changes. FDR adjusted p values and fold-
changes were extracted for visualisation. A q value threshold of 0.1 was used for
statistical significance. For genes affected by age-associated gains, the same pro-
cedure was applied using copy number gains. mRNA modeling results for age-
associated CNAs and SNVs are in Supplementary Data 6–7.

Survival analysis. Performed for TCGA data. Genes found to have significant
(FDR threshold of 10%) age-associated CNAs and SNVs were also analysed using
Cox proportional hazards modelling after checking proportional hazards
assumption. Cox proportional hazard regression models incorporating age, CNA/
SNV status, and an age-CNA/SNV group interaction were fit for overall survival
after checking the proportional hazards assumption. Age was treated as a con-
tinuous variable for modeling, but median dichotomised into ‘low age’ and ‘high
age’ groups for visualisation. FDR-adjusted interaction p values and log2 hazard
ratios were extracted for visualisation. A q-value threshold of 0.1 was used to
identify genes with sex-influenced survival. Survival modeling results for age-
associated CNAs and SNVs are in Supplementary Data 6 and 7.

Statistical analysis & data visualisation software. All statistical analyses and
data visualisation were performed in the R statistical environment (v3.2.1) using
the BPG90 (v5.9.8) and Survival (v2.44-1.1) packages, and with Inkscape (v0.92.3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Cancer Genome Atlas datasets were downloaded from Broad GDAC Firehose
(https://gdac.broadinstitute.org/), release 2016-01-28. Open access TCGA data was used
in this study.
Pan-cancer Analysis of Whole Genomes whole genome sequencing molecular profiles

can be downloaded from the PCAWG consortium through the ICGC Data Portal at
[https://dcc.icgc.org/releases/PCAWG]: consensus SNV and indels [https://dcc.icgc.org/
releases/PCAWG/consensus_snv_indel], consensus copy number data [https://
dcc.icgc.org/releases/PCAWG/consensus_cnv], subclonal reconstruction https://
dcc.icgc.org/releases/PCAWG/subcloncal_reconstruction], and mutational signatures
data [https://dcc.icgc.org/releases/PCAWG/mutational_signatures] are available
alongside clinical and histology annotation [https://dcc.icgc.org/releases/PCAWG/
clinical_and_histology]. PCAWG data is controlled access and administered by dbGaP
and ICGC Data Access Compliance Office. Information on accessing the data, including
raw read files, can be found at [https://docs.icgc.org/pcawg/data/]. In accordance with the
data access policies of the ICGC and TCGA projects, most molecular, clinical and
specimen data are in an open tier that do not require access approval. To access
potentially identification information, such as germline alleles and underlying sequencing
data, researchers will need to apply to the TCGA Data Access Committee (DAC) via
dbGaP for access to the TCGA portion of the dataset, and to the ICGC Data Access
Compliance Office (DACO) for the ICGC portion. To access somatic single nucleotide
variants derived from TCGA donors, researchers will also need to obtain dbGaP
authorisation. Researchers may apply for access at [https://docs.icgc.org/download/data-
access/].
Controlled access AACR GENIE data was downloaded from AACR Project GENIE for

the MSK project91. [https://portal.gdc.cancer.gov/projects/GENIE-MSK]. Researchers
may apply for access to AACR GENIE from dbGaP under accession number

phs001337.v1.p1 and at [https://gdc.cancer.gov/access-data]. Source data are provided
with this paper.
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