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A genome-wide association study of serum
proteins reveals shared loci with common diseases
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With the growing number of genetic association studies, the genotype-phenotype atlas has

become increasingly more complex, yet the functional consequences of most disease

associated alleles is not understood. The measurement of protein level variation in solid

tissues and biofluids integrated with genetic variants offers a path to deeper functional

insights. Here we present a large-scale proteogenomic study in 5,368 individuals, revealing

4,035 independent associations between genetic variants and 2,091 serum proteins, of which

36% are previously unreported. The majority of both cis- and trans-acting genetic signals are

unique for a single protein, although our results also highlight numerous highly pleiotropic

genetic effects on protein levels and demonstrate that a protein’s genetic association profile

reflects certain characteristics of the protein, including its location in protein networks, tissue

specificity and intolerance to loss of function mutations. Integrating protein measurements

with deep phenotyping of the cohort, we observe substantial enrichment of phenotype

associations for serum proteins regulated by established GWAS loci, and offer new insights

into the interplay between genetics, serum protein levels and complex disease.
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The identification of causal genes underlying common dis-
eases has the potential to reveal novel therapeutic targets
and provide readouts to monitor disease risk. Genome-

wide association studies (GWAS) have identified thousands of
genetic variants conferring risk of disease, however, the highly
polygenic architecture of most common disorders1 implies that the
genetic component of common diseases is largely mediated through
complex biological networks2,3. Identifying the causal mediators of
mapped phenotype-associated genetic variation remains a largely
unresolved challenge as majority of such variants reside in non-
coding regulatory regions of the genome4. In fact, disease risk loci
are enriched in regions of active chromatin involved in gene
regulation5,6. Thus, the integration of intermediate molecular
traits like mRNA7 or proteins8–12 with genetics and phenotypic
information may aid the identification of causal candidates and
functional consequences. Furthermore, the phenotypic pleiotropy
observed at many loci13 calls for a better understanding of the chain
of events that are introduced by disease-associated variants. Genetic
perturbations may for instance drive molecular cascades through
regulatory networks8, most of which have not yet been fully map-
ped, or as a consequence of their phenotypic effects. Such down-
stream effects of genetic variants can be reflected in the molecular
pleiotropy observed at some genetic loci, which could have sig-
nificant ramifications for drug development, including assessing
potential adverse effects14. For instance, many GWAS risk loci for
complex diseases regulate multiple proteins in cis and trans, which
often cluster in the same co-regulatory network modules8. Through
the serum proteome we can gain a broad and well-defined
description of the downstream effects of genetic variants, and their
complex relationship with disease-relevant traits.

The human plasma proteome consists of proteins that are
secreted or shed into the circulation, either to carry out their
function there or to mediate cross-tissue communications15.
Proteins may also leak from tissues, for example as a result of
tissue damage15. It has been noted that a large subset of cis-to-
trans serum protein pairs (i.e. proteins that are regulated by the
same genetic variant in cis or trans, respectively) have tissue-
specific expression but often involving distinct organ systems8,
indicating that proteins in circulation may originate from vir-
tually any tissue in the body. This suggests that system-level
coordination is facilitated to a considerable degree by proteins in
blood, which if perturbed may mediate common disease16. These
observations, together with the accessibility of blood compared to
other tissues, make circulating proteins an attractive source for
identifying molecular signatures of disease in large cohorts.

Recent technological advances now allow for high-throughput
quantification of circulating proteins, which has resulted in the
first large-scale studies8–12 of protein quantitative trait loci
(pQTLs) as recently reviewed17. Here, we present a large-scale
proteogenomic study revealing thousands of independent genetic
loci affecting a substantial proportion of the serum proteome,
highlighting widespread pleiotropic effects of disease-associated
genetic variation on serum protein levels. While our previous
work reported associations to a restricted set of loci8, this is the
first comprehensive GWAS for this number of serum proteins. A
systematic integrative analysis furthermore demonstrates exten-
sive associations between serum proteins and phenotypes that are
regulated by the same genetic signals, adding further support to
the therapeutic target and biomarker potential among proteins
regulated by established GWAS risk variants.

Results
Identification of cis and trans acting protein quantitative trait
loci (pQTLs). We performed a GWAS of 4782 serum proteins
encoded by 4135 unique human genes in the population-based

AGES cohort of elderly Icelanders (n= 5368, Supplementary
Data 1), measured by the slow-off rate modified aptamer
(SOMAmer) platform as previously described8,18. On average the
genomic inflation factor was low (mean λ= 1.045, sd= 0.033) and
of the 7,506,463 genetic variants included in the analysis (Supple-
mentary Fig. 1), 269,637 variants exhibited study-wide significant
associations (P < 5 × 10−8/4,782 SOMAmers= 1.046 × 10−11) with
2112 unique proteins, dubbed protein quantitative trait loci
(pQTLs). In a conditional analysis using GCTA-COJO19,20 and
validated using individual-level data (Supplementary Fig. 2), we
identified 4035 study-wide significant associations between 2024
independent genetic signals in 772 loci (defined as genetic signals
within 300 kb of each other) and 2091 unique proteins (Fig. 1a–c
and Supplementary Data 2–4). Here we defined a genetic signal as a
set of genetic variants in linkage disequilibrium (LD) that were
associated with one or more proteins. For each associated protein, a
genetic signal has a lead variant, defined as the genetic variant that
is most confidently associated with the protein and with the lowest
P-value (see Methods section for details). Among the 4035 inde-
pendent associations, those in cis (signal lead variant within 300 kb
of the protein-encoding gene boundaries, n= 1415) tended to have
larger effect sizes than those in trans (signal lead variant >300 kb
from the protein-encoding gene boundaries, n= 2620) (Supple-
mentary Fig. 3A). Protein-altering variants (PAVs) in the gene
encoding the protein target have the potential to alter the binding
affinity of any targeted assay. For 336 (23.7%) of the 1415 cis-
associations, the lead variant was, or was in LD (r2 > 0.8) with, a
PAV affecting the corresponding gene, thus potentially representing
epitope effects (Supplementary Data 3). We found that almost half
(966/2091= 46%) of all proteins with any independent genetic
associations had more than one signal (Fig. 1b). Of those, 576
proteins (60%) had more than one independent signal within the
same locus (Supplementary Fig. 3B) and 679 proteins (71%) had
signals in distinct locations in the genome. The proteins with
the largest number of associated loci were NOG (9 loci), TMCC3
(7 loci), and GRAMD1C, MANF and MMP7 (6 loci each).

The majority of genetic signals were only associated with a
single protein (Fig. 1c), or 98% of cis signals and 73% of trans
signals, and can as such be considered specific for the given
protein based on a recently proposed classification of trans-
pQTLs11. Furthermore, we have previously shown that proteins
regulated in trans by the same genetic variant often cluster in the
same co-regulatory networks, sharing functionality and a disease
relationship, although they may often differ in tissue origin8.
However, as in previous studies8–11, we identified numerous
hotspots of trans protein associations, or more specifically 35
independent signals that were associated with 10 or more proteins
each at a study-wide significant threshold (Fig. 1a, c). The largest
of these trans hotspots represents the variant rs704, a missense
variant within the Vitronectin (VTN) gene, which was associated
with 595 proteins. Many of these trans hotspots are well
established as such, including the VTN, ABO, APOE, CFH, and
BCHE loci8–11. Other notable trans hotspots included for instance
variants in or near the Lipopolysaccharide Binding Protein (LBP)
and Metastasis-Associated 1 (MTA1) genes. LBP is involved in
the innate immune response to bacterial infections and MTA1
encodes a transcriptional coregulator upregulated in numerous
cancer types and associated with cancer progression21. Of the 35
trans hotspots, 14 also affected protein levels encoded by
proximal genes, thus acting in cis as well (Supplementary Data 3).

In contrast to the trans acting hotspots, we also observed
genetic regions with high density of independent signals, each of
which was not necessarily associated with many proteins. One
such region stood out on chromosome 3 (Fig. 1a), where 29
independent signals were observed for a total of 54 proteins
within a 300 kb window (Supplementary Fig. 4A), of which six
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proteins (ADIPOQ, AHSG, DNAJB11, FETUB, HRG, and
KNG1) were regulated in cis. Further analysis of this region
demonstrated a sparse LD structure (Supplementary Fig. 4A),
allowing for this high density of independent signals, and
revealing a subcluster of 15 genetic signals affecting 32 proteins
in various constellations (Supplementary Fig. 4B), that were
enriched for Toll Like Receptor 7/8 cascade (FDR= 4.8 × 10−3)
and MAP kinase activation (FDR= 4.8 × 10−3).

To define what proportion of the pQTLs identified in the
present study can be considered novel, we compared all study-
wide significant pQTLs with previously reported pQTL studies
(Supplementary Data 5), including the recent exome-array
analysis of the AGES cohort22. Of the 4035 independent
associations detected in the current study, 1452 (36%) are
considered novel based on this comparison (Supplementary
Note 1, Fig. 1e, and Supplementary Fig. 5). Of the 2,024
independent genetic signals, 760 (38%) are novel, in the sense
that they have not been reported to associate with any protein,
and we find new protein associations for 204 known signals. Out
of the 2091 proteins, 169 (8%) had no previously reported
genetic associations in the comparison and we identified new
genetic associations for additional 907 proteins.

We evaluated how well independent pQTLs reported by the
INTERVAL study9 (n= 3301) replicated in our results and found
75.6% to be both directionally consistent and nominally
significant (P < 0.05) (Supplementary Note 2 and Supplementary
Figs. 6 and 7). This proportion furthermore increased to 93.9%
when the NLRP12 locus was excluded, a reported trans hotspot

that did not replicate in the AGES cohort (Supplementary Note 2
and Supplementary Figs. 6 and 7). This locus has in fact recently
been identified as platform specific23 and was suggested to
be related to white blood cell lysis during sample handling. We
similarly performed a lookup of the independent study-wide
significant associations identified in our current study in
the INTERVAL study summary statistics (Supplementary Note 2
and Supplementary Fig. 8). Of 2690 associations with information
in the INTERVAL study we find that 94% are directionally
consistent and 83% were both directionally consistent and
nominally significant (P < 0.05). Of 645 associations defined as
novel in our study (Supplementary Note 1) and with information
available in the INTERVAL study, we again find a very high
directional consistency between the two studies, or 90% of
associations, and 64% are both directionally consistent and
nominally significant (P < 0.05) in the smaller INTERVAL study.

Finally, with more individuals genotyped we revisited the
GWAS of the serum protein co-regulatory network8, now
represented by the first two eigenproteins of each protein module,
and find that almost all the network modules are under strong
genetic control (Supplementary Note 3).

Characterization of proteins by genetic association profiles.
Taking advantage of the broad coverage of the protein mea-
surements in our study, to determine which protein character-
istics can provide additional insights into the observed differences
in genetic profiles for the measured proteins we compared
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Fig. 1 A summary of the findings for genetic associations to 4782 proteins in serum. a Circos plot showing every study-wide significant variant-protein
association from the protein GWAS (linear regression, n= 5368). The innermost layer shows links between independent signals (conditional and
joint analysis, GCTA-COJO)19,20 and trans gene locations of associated proteins. Trans hotspots are colored by the chromosome they originate from. The
second layer states the nearest genes to these trans hotspots. The third layer is a histogram of the distribution of the independent signals, where each bar
represents the number of independent signals within 300 kb from each other, values ranging from 1 to 38. The outermost layer is a Manhattan plot for all
proteins, P-values ranging from 1 × 10−11 to 1 × 10−300 (capped), colored by cis (pink), or trans (green). b Barplot showing number of proteins, binned by the
number of associated independent signals, colored by cis (pink), trans (green) or both (mustard). c Barplot showing number of independent signals, binned
by the number of associated proteins, colored by cis (pink), trans (green), or both (mustard). d Barplot showing the number of novel associations compared
to similar large-scale genotype-protein association studies.
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characteristics such as tissue-enhanced gene24 and protein25

expression and protein localization24 for proteins with genetic
signals to those without any detected genetic effect. Moreover, we
analyzed loss-of-function (LoF) intolerance26 and hub status in
two types of protein networks, i.e. the InWeb protein-protein
interaction (PPI) network27 and the serum protein co-regulatory
network8, but pathogenicity of DNA sequence variation and hub
status of proteins in biological networks are well-known features
used to study the extent of selection pressure in molecular
evolution28,29. We find that proteins with study-wide significant
genetic associations, especially those acting in cis, are generally
more likely to have tissue-enriched gene and protein expression
and are more often secreted compared to those with no detected
genetic signals (Fig. 2a and Supplementary Data 6 and 7). These
effects were slightly attenuated for cis-pQTLs tagging PAVs
affecting the protein target, although the enrichment of secreted
proteins and tissue-enriched gene expression remained significant
(Supplementary Fig. 9). These findings suggest that serum cis-
pQTLs, in part, mirror the regulation of protein secretion from

solid tissues, particularly those that do not affect protein struc-
ture, whereas serum levels of proteins without cis-pQTLs may be
influenced primarily by other mechanisms. By contrast, proteins
with trans only signals are enriched among transmembrane
proteins (Fig. 2a and Supplementary Data 6 and 7). Furthermore,
we find that proteins with cis signals, and especially those tagging
PAVs (Supplementary Fig. 9), generally have lower LoF intoler-
ance, that is they are more tolerant to deleterious mutations, and
they tend to have lower hub status in both PPI and co-regulatory
networks, indicating a more peripheral position of cis regulated
proteins in protein networks (Fig. 2b and Supplementary Data 6
and 7). Similarly, larger genetic effects on protein levels are
negatively correlated with LoF intolerance and hub status in both
the PPI and co-regulatory networks (Supplementary Fig. 10). This
suggests that selective pressure may to some extent explain the
lack of pQTLs for proteins that are encoded by housekeeping
genes, are network hubs and are intolerant to LoF mutations.

Proteins with trans acting signals had higher hub status in the
co-regulatory network compared to those proteins having no

Fig. 2 Enrichment analysis comparing characteristics between proteins classified by types of genetic association signals. See Methods for definitions.
a Fisher’s exact test (two-sided) for comparing two classifications. Odds ratio estimates are presented with 95% confidence intervals. b Wilcoxon’s rank-
sum test (two-sided) for comparing classifications with continuous traits. Estimates of the median of the difference between values from the two classes
are presented with 95% confidence intervals. P-values (two-sided) for significant enrichment of protein-phenotype associations are provided to the right.
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genetic signals (Fig. 2b). However, trans signals were not
associated with hub status in the PPI network or influenced by
LoF intolerance (Fig. 2b). Complementing this observation, we
find that hub proteins in co-regulatory networks are generally
connected to more proteins through the same genetic variants
(Supplementary Fig. 10). As the co-regulatory network is derived
from protein correlations, these results highlight how its structure
is to some extent shaped by genetic variants affecting multiple
proteins, the majority of which are trans regulated8 (Supplemen-
tary Note 3). These results elucidate key differences between
the PPI and the serum protein co-regulatory networks, i.e., while
hubs in both types of networks are depleted for cis-pQTLs,
only those in the co-regulatory network were more likely
trans-regulated proteins.

Colocalization of pQTLs with GWAS risk loci. Genetic effects
on serum proteins may offer novel insights into mechanisms
underlying the genetics of common disease and relevant traits.
Therefore, we examined the overlap between pQTLs and GWAS
loci. We obtained GWAS summary statistics for 81 diseases and
clinical traits (Supplementary Data 8) and identified all genome-
wide significant (P < 5 × 10−8) GWAS loci overlapping with a
study-wide significant pQTL from our results. Of note, the
number of significant loci for each of the tested phenotypes is
highly dependent on the original study size (Supplementary
Fig. 11). GWAS signals for different phenotypes were considered
to belong to the same locus if the lead variants were within 300 kb
of each other. By this criteria, 1335 GWAS loci for 76 phenotypes
were found to be in the vicinity of a study-wide significant pQTL
and were tested for colocalization. Of those, 218 GWAS loci
(associated with 69 phenotypes) had high support (PP4 > 0.8) for
colocalization with 1045 proteins (Fig. 3 and Supplementary
Data 9 and 10). Additionally, medium support (0.5 < PP4 <= 0.8)
was found for colocalization between 171 proteins and 84 loci
associated with 49 phenotypes (Fig. 3, Supplementary Data 9 and
10). In a secondary analysis (see Methods), we found that 84% of
the protein-phenotype pairs with high support (PP4 > 0.8) for
colocalization remained so with a more stringent coloc prior
selection (Supplementary Data 10 and Supplementary Fig. 12). Of
the 772 loci associated with protein levels, 206 (27%) colocalized
with at least one GWAS phenotype and the same was true for
1083 (51%) of the 2112 proteins with a study-wide significant
pQTL. We found almost all (69/76 or 91%) of the phenotypes
tested to have a genetic signal colocalizing with at least
one protein, with an average of 9 (11%) colocalized loci per
trait (Supplementary Fig. 13). GWAS loci with cis-pQTLs were
more likely to colocalize (medium or high support) with any
protein than those without (22.3% vs 10.4%, Fisher’s exact test
P= 7.5 × 10−8). For a given phenotype, we observed that its
associated loci involved a median of 17 serum proteins (Supple-
mentary Fig. 14). Thus, even a limited proportion of associated
loci for a given phenotype generally associates with numerous
proteins in serum and consequently implicate multiple affected
molecular pathways. To account for multiple independent signals
within a given locus, we additionally ran a conditional colocali-
zation analysis for loci that had more than one independent
signal per protein, thus including 549 GWAS loci that overlapped
with pQTLs for 546 proteins. Here we observed 178 instances of
colocalization with medium or high support, of which 51
(involving 19 loci, 14 phenotypes, and 40 proteins) were not
captured in the initial colocalization analysis (Supplementary
Data 11 and 12).

Colocalized cis-acting pQTLs can point to causal genes at
GWAS loci. We found 237 and 49 trait-locus-cis-protein
combinations with high or medium support, respectively. For

102 of 203 (50.2%) unique pairs of GWAS lead variants and
colocalized cis-pQTLs, the protein was different than that
encoded by the nearest gene to the GWAS lead variant
(Supplementary Data 10). For example, a GWAS signal for
waist-to-hip ratio in the gene LRRC36, colocalizes with a pQTL
for the serum levels of Agouti-related protein encoded by a
nearby gene, AGRP (Supplementary Fig. 15), a neuropeptide that
increases appetite and decreases metabolism30. A related
example involves two loci associated with BMI, located 5 Mb
apart on chromosome 20, both of which colocalize with serum
levels of the Agouti signaling protein (ASIP) (Supplementary
Fig. 16), known to promote obesity via the melanocortin receptor
(MC4R)31. These two associations are 2.2 Mb and 7.6 Mb
upstream of the ASIP gene, respectively, however, the colocaliza-
tion with serum levels of ASIP suggests this may in fact be the
causal candidate mediating their effects. Among neurological
phenotypes, colocalized cis-pQTL examples include a GWAS
signal for bipolar disorder on chromosome 2, which colocalizes
with the serum levels of the protein encoded by LMAN2L
(Supplementary Fig. 17A), and a signal for major depression
disorder on chromosome 7 colocalizing with TMEM106B
(Supplementary Fig. 17B), adding support for these being the
causal genes at these loci, both of which are also the nearest gene
to the GWAS lead variant.

We observed several highly pleiotropic loci, where multiple
phenotype signals colocalized with multiple protein signals
(Fig. 4a). In fact, among the high (PP4 > 0.8) and medium
confidence (PP4 > 0.5) colocalization results, the number of
associated proteins per GWAS locus was positively correlated
with the number of associated phenotypes (Spearman’s rho=
0.50, P= 9.9 × 10−17). These pleiotropic loci included for
example the ABO locus, best known for its role in determining
the ABO blood groups, which was found to harbor eight
independent protein signals within a 28 kb region (chr 9,
136,127,268–136,155,127) (Supplementary Data 4), where pQTLs
for 63 proteins colocalized with 17 phenotypes, predominantly
cardiometabolic and hematopoietic (Fig. 4a and Supplementary
Data 10). The complex genetic architecture at this locus gives rise
to a wide range of downstream consequences, as indicated by the
distinct sets of proteins associated with each independent genetic
signal defined here and consistent with previous reports10, and
most traits associated with the locus are affected by more than
one of those signals. The 63 proteins in the ABO locus were
enriched for gene ontology terms and pathways such as
“transmembrane signaling receptor activity” (FDR= 2.7 × 10−6),
“regulation of cell migration” (FDR= 2.5 × 10−4), and “Hippo-
Merlin signaling dysregulation” (FDR= 1.2 × 10−3). Another
example of a pleiotropic locus is a 46 kb window (chr 19,
49,206,108–49,252,151), harboring variants adjacent to or within
FUT2 that are associated with diverse traits (Fig. 4b and
Supplementary Data 10), including immune (Crohn’s disease
and type 1 diabetes), anthropometric (waist-to-hip ratio and
offspring birth weight), cardiometabolic (blood pressure, LDL,
and total cholesterol) and renal (BUN and UACR). FUT2 encodes
for fucosyltransferase-2 that synthesizes the H antigen in body
fluids and the intestinal mucosa, while a nearby gene, FGF21, is
an important metabolic regulator32, acting for example through
its effects on sugar intake33. We find that the genetic signals for
10 phenotypes in this region colocalize with 19 proteins that are
collectively enriched for elevated gene expression24 in the
intestine (FDR= 1.4 × 10−6), salivary gland (FDR= 1.7 × 10−6),
and stomach (FDR= 8.9 × 10−3) (Fig. 4b, c) and include proteins
involved in carbohydrate digestion (LCT), taste perception (LPO,
PIP) or humoral immunity (CCL25). The proteins regulated
by this locus thus suggest downstream effects across different
parts of the gastrointestinal tract. Finally, the shared genetic
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architecture of immune disorders has been well documented in
the literature and is mirrored in multiple colocalized pQTLs
shared between various immune diseases (Supplementary Fig. 18).
In particular, the SH2B3 locus on chromosome 12 stands out in
this regard, with GWAS signals for seven immune disorders
colocalizing with three trans-regulated proteins (THPO, ICAM2,
CXCL11), all involved in positive regulation of immune system
processes (GO:0002684).

In some cases, we observed more than one colocalized trans-
pQTLs converging on the same protein for a given phenotype.
For example, HDL-associations in the LIPC (chromosome 15)
and APOB (chromosome 2) loci both colocalized with the serum
levels of the sodium-coupled transporter SLC5A8 (Supplemen-
tary Fig. 19), involved in the transport of monocarboxylates such
as lactate and short-chain fatty acids. Similarly, variants in the
GALNT2 (chromosome 1) and GCKR loci (chromosome 2) both
regulate the serum levels of NRP1, colocalizing with GWAS
signals for triglyceride levels (Supplementary Fig. 20). A more
extreme example is a network of 12 loci with GWAS signals for
platelet counts that colocalize with serum levels of 24 proteins
(Supplementary Fig. 21). These proteins include noggin (NOG)
and cochlin (COCH), colocalizing with platelet count signals in
five and four loci, respectively.

Associations of proteins with phenotypes in the AGES cohort.
Taking advantage of the deep phenotyping of the AGES cohort,
we examined direct associations between colocalized proteins
and 37 phenotypes that were measured in the AGES cohort
(Supplementary Data 13). For a quarter (10/37) of the phenotypes
tested we observed a significant enrichment of phenotype asso-
ciations among the sets of colocalized proteins compared to

randomly sampled proteins (Fig. 5, Supplementary Fig. 22, and
Supplementary Data 14), demonstrating more generally that
GWAS loci for complex phenotypes regulate serum proteins that
themselves are often directly associated to the phenotype itself. At
a more relaxed genome-wide significant (P < 5 × 10−8) threshold
for pQTLs, the proportion of phenotypes with significant
enrichment of protein associations increased to 45% (18/40
phenotypes, Supplementary Fig. 23), likely due to an increase in
statistical power with more colocalized proteins per phenotype at
this threshold and indicating that more associations between
proteins regulated by GWAS-loci and the respective phenotypes
can be expected to be identified as sample sizes for proteogenomic
studies increase. Among the diseases and clinical traits with
the strongest enrichment for direct protein-trait associations, we
found age-related macular degeneration (AMD) (14% of coloca-
lized proteins associated compared to an average of 7% for ran-
dom proteins, P < 0.001), total cholesterol (67% vs 35% for
random, P < 0.001), Alzheimer’s disease (21% vs 1% for random,
P= 0.001), and type 2 diabetes (60% vs 40% for random,
P= 0.017). In some cases, this enrichment was driven by proteins
regulated from a few trans loci, as evident by the loss of sig-
nificance when the analysis was repeated without pleiotropic loci
regulating five or more proteins, leaving on average 17 proteins
per trait (Fig. 5 and Supplementary Data 14). This was particu-
larly evident for Alzheimer’s disease, where the enrichment was
entirely driven by the associations of proteins regulated by the
APOE locus (Supplementary Data 13). In other cases, the removal
of proteins regulated by pleiotropic loci resulted in an enhanced
enrichment of phenotype associations, such as for HbA1c, mean
platelet volume and diastolic blood pressure (Supplementary
Fig. 22 and Supplementary Data 14).

Fig. 3 Overview of colocalization between protein and phenotype associations across the genome. Each dot represents a genetic locus (genomic
location on x-axis) that is associated with a phenotype (y-axis), where the size of the dots indicates the number of colocalized proteins (color PP4 > 0.5).
Phenotype abbreviations are available from Supplementary Data 8.
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By evaluating each individual locus separately, we identified six
loci with significant phenotype-association enrichment among its
linked proteins that colocalized with GWAS signals for the
respective phenotype, thus demonstrating specific examples of
genetic variants whose molecular and phenotypic consequences

are linked within the same cohort (Supplementary Data 15). Here
the APOE locus stood out in terms of number of enriched
phenotypes, with its regulated proteins being enriched for
associations with Alzheimer’s disease, AMD, and numerous
cardiometabolic traits including coronary artery disease. The 641

Fig. 4 An overview of independent genome-wide significant genetic signals. a Genetic signals (orange nodes), using conditional and joint analysis
(GCTA-COJO)19,20, annotated by the SNP with the strongest protein association, at the ABO locus (chr 9, 136,127,268–136,155,127) and their links to
proteins (gray nodes) and phenotypes (purple nodes). Edges between genetic signals and proteins indicate primary (dark edges) and secondary (light
edges) independent signals from the conditional analysis. Edges between genetic signals and traits indicate that any of the lead pQTL SNPs within that
signal reaches P < 5 × 10−8 (two-sided) in GWAS summary statistics for the given trait, and the primary signal is assigned for the trait based on the lowest
P-value. b An overview of the independent genome-wide significant genetic signals (orange nodes), annotated by the SNP with the strongest protein
association, at the FUT2 locus (chr 19, 49,206,108–49,252,151) and their links to proteins (gray nodes) and the phenotypes they colocalize with (purple
nodes). The background color indicates tissue-elevated expression in the salivary gland, intestine or stomach. c Enrichment (Fisher’s exact test, two-sided)
of tissue-elevated expression among the 19 proteins regulated by the FUT2 locus where Benjamini–Hochberg FDR < 0.05 is considered significant (red).
Here 4016 proteins with available data in the Human Protein Atlas were included. Odds ratio estimates are presented with 95% confidence intervals.
Phenotype abbreviations are available from Supplementary Data 8.
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proteins regulated by all seven independent signals in the VTN
locus on chromosome 17 were also enriched for associations with
AMD. The PSRC1-CELSR2-SORT1 locus, best known for its
associations with coronary artery disease and cholesterol levels,
showed enrichment for protein associations with bone mineral
density. Proteins regulated by the ABO locus on chromosome 9
and the UGT gene family cluster on chromosome 8 were enriched
for associations with total cholesterol and finally the proteins
regulated by the ZFPM2 locus on chromosome 8 were enriched
for associations with basophil counts.

Other examples of colocalized proteins showing significant
associations with the respective phenotype include the inhibin
beta subunit B (INHBB) protein, which has a cis-pQTL on
chromosome 2 and a trans-signal on chromosome 12, near the
INHBC gene that encodes another subunit of the same protein
complex, both of which colocalize with GWAS signals for
estimated glomerular filtration rate (eGFR), a marker of renal
function (Fig. 6a–c). The INHBB protein itself is associated with
eGFR in the AGES cohort in a directionally consistent manner
(Fig. 6c, d). Thus, the associations of these genetic variants
affecting different components of the same protein complex
together with the consistent association between the protein itself
and eGFR indicate a possible role for the inhibin/activin proteins
in renal function. Another example is the colocalization between
a GWAS signal for type 2 diabetes with the missense lead variant
rs738409 in the PNPLA3 gene, a well-established locus for non-
alcoholic fatty liver disease34, and a trans-pQTL for ADP
Ribosylation Factor Interacting Protein 2 (ARFIP2) (Fig. 6e),
which is strongly downregulated in type 2 diabetes patients in
AGES (Fig. 6f)18. These observations raise several questions, for
example how a missense variant in PNPLA3 leads to a change in
the circulating levels of ARFIP2, if ARFIP2 provides some sort of
readout of PNPLA3 function and finally how ARFIP2 relates to
type 2 diabetes, i.e., if it mediates any of the risk associated with
this locus or if it is merely a bystander. Thus, the links discovered
here between genetic loci, proteins, and disease risk can be used to
derive new hypotheses for future research.

Discussion
To the best of our knowledge, this is the largest genome-wide
association study of serum protein levels in terms of protein cov-
erage to date, and it demonstrates a significant increase in existing
knowledge in terms of the number of significant genetic associa-
tions to proteins in circulation. We furthermore provide a sys-
tematic evaluation of protein-phenotype associations in the context
of established risk loci for numerous diseases and clinical traits.

The current study expands on our previous work8 by
increasing the number of genetic variants included in the ana-
lysis (from cis-regions only to a genome-wide analysis), thus
increasing the search space, but also enhancing statistical power
for identifying genetic associations by increasing the sample size
in genetic analyses from 3219 previously to 5368 participants in
the current study. Here, we identified study-wide significant
genetic signals for half of the measured proteins and up to 13
independent genetic signals for a given protein. Thus, as for any
other traits, the expected number of genetic associations for
serum proteins can only be expected to increase with larger
sample sizes, as has been demonstrated for CRP35. Large-scale
meta-analyses across cohorts and biobanks will with time pro-
vide a more complete understanding of the genetic regulation of
individual circulating proteins and their networks, including the
effect of variability between different tissues on serum protein
levels. The majority of cis and trans acting pQTLs detected in
serum and plasma can be readily replicated across different
populations, as shown in the current study, and different pro-
teomic platforms8,9,17,23. However, a recent cross-platform
comparison has shown that a subset of pQTLs are platform-
specific and may in some cases represent epitope effects or other
technical factors23. Thus, meta-analyses across platforms will still
need to consider differences in analytical approaches and in cases
where protein quantifications obtained by orthogonal methods
differ, cis-pQTLs and mass spectrometry validation of probe
targets may be good indicators of platform specificity36.

We demonstrate that proteins that are secreted, tissue-enri-
ched, more tolerant to LoF variants and with few connections in
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protein networks were most likely to be genetically controlled.
This pattern was mainly driven by cis acting signals and not as
apparent for the trans effects on protein levels, illustrating
that cis- and trans-signals for serum proteins arose by different
means and may differ in evolutionary properties. Our results
are consistent with the notion that evolutionary important, and
likely disease-relevant, genes undergo a negative selection against

genetic cis-variants, which has been proposed as an explanation of
the extreme polygenicity of complex traits37. The observed
depletion of cis-variants among network hubs in our study are
furthermore in line with the recently proposed omnigenic
model2, which suggests that core disease genes are rarely affected
directly by GWAS variants but rather through a multitude of
smaller effects mediated through cis-regulation of peripheral
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genes in regulatory networks. Thus, while our results provide a
map of cis-regulatory effects for 812 proteins, linking many of
these to disease signals from GWAS studies, those without cis-
effects may be even more important in the context of disease and
should be studied further by other means. While hubs in the PPI
network were depleted for any genetic signal, trans-affected
proteins showed higher degree of connectivity in the co-
regulatory network compared to those with no detectable
genetic signal. These findings demonstrate that the structure of
the co-regulatory network is to some extent driven by genetic
variants affecting multiple proteins. We also note that unlike PPI
networks constructed in solid tissues, the serum protein net-
works are composed of protein members synthesized across
different tissues of the body and as such may reflect cross-tissue
regulation8 or factors that affect the levels of circulating proteins
independently of their origin.

Among proteins with genetic associations, we find that many
have multiple genetic signals, both across different loci
throughout the genome but also within a given locus as revealed
by conditional analysis, indicating that allelic heterogeneity is
common in loci regulating serum protein levels. Widespread
allelic heterogeneity has been described for gene expression38 and
complex traits in general39. For serum proteins, this may reflect
the complex regulation and diverse origin of proteins in circu-
lation, as these proteins may arise from almost any tissue of the
body. Furthermore, cis-pQTLs show a roughly 40% overlap
with gene expression QTLs8,9, suggesting that a large fraction
of the genetic effect is mediated through any of the many
post-transcriptional steps involved in protein maturation.

The integration of well-established genetic associations for
81 diseases and disease-related traits revealed a profound overlap
with the genetic signals affecting protein levels in our study,
where a third of the identified loci regulating serum protein
levels colocalized with at least one GWAS phenotype. We
identify examples of disease-associated loci colocalizing with
many proteins, especially loci that also exhibit pleiotropic phe-
notype associations. Thus, it seems likely that the more complex
the molecular consequences of a variant, the more likely it is to
be associated with many different phenotypes, which has also
been observed at the transcriptomic level40. The serum protein
changes associated with any given disease signal can shed new
light on the underlying pathways that are affected either before
or after the onset of disease. The deep phenotyping of the AGES
cohort allowed for an integrative analysis of genetic variants,
serum protein measurements and phenotypes within the same
population. For proteins regulated by loci linked to a given
disease-relevant phenotype, we observed an enrichment for
associations to the same phenotype measures in our cohort, thus
pointing to many novel candidate proteins that may play a role
in regulating or responding to these phenotypes. However, it
should be noted that while a pQTL that colocalizes with a signal
for a disease or clinical trait may implicate causal candidates
for mediating the genetic risk, it may just as well indicate

downstream events or even unrelated parallel effects of a pleio-
tropic variant. Furthermore, the plasma proteome has been
shown to change in waves throughout the human lifespan41, with
a large proportion of proteins changing in old age. Thus, some of
the associations observed in the elderly AGES cohort may not be
directly transferable to a younger population but may at the same
time shed light on the physiological relevance of circulating
proteins in the aging process. Our study provides genetic
instruments for further studies of causal relationships for specific
examples, however mechanistic and experimental studies are
warranted for determining the underlying chains of events
behind these complex associations. Our results offer an in-depth
inventory of information regarding the interconnections between
genetic variants, serum proteins, and disease-relevant traits,
which may encourage discoveries of therapeutic targets and fluid
biomarkers, providing a robust framework for understanding the
pathobiology of complex disease.

Methods
The AGES cohort. Cohort participants aged 66 through 96 were included from
the AGES-Reykjavik Study42, a prospective study of deeply phenotyped indivi-
duals of Northern European ancestry (Supplementary Data 1). Blood samples
were collected at the baseline visit after overnight fasting and serum lipids,
glucose, HbA1c, insulin, uric acid, and urea were measured using standard
protocols. LDL and total cholesterol levels were adjusted for statin use, with an
approach similar to what has previously been described43. Hypertension medi-
cation use was accounted for by adding 15 mmHG to systolic blood pressure and
10 mmHG to diastolic blood pressure44. Serum creatinine was measured with
the Roche Hitachi 912 instrument and estimated glomerular filtration rate
(eGFR) derived with the four-variable MDRD Study equation45. Type 2 diabetes
was defined from self-reported diabetes, diabetes medication uses or fasting
plasma glucose ≥7 mmol/L. Type 2 diabetes patients were excluded from all
analyses for fasting glucose, fasting insulin, and HbA1c. The presence of cor-
onary artery disease was determined using hospital records and/or data from the
cause of death registry. A coronary artery disease event was any occurrence of
myocardial infarction, ICD-10 codes: I21–I25, coronary revascularization (either
CABG surgery or percutaneous coronary intervention (PCI)) or death from
CHD according to a complete adjudicated registry of deaths available from the
national mortality register of Iceland (ICD-10 codes I21–I25). The prostate
cancer diagnosis was obtained from medical records (ICD-10 code C61).
Information on migraine, Parkinson’s disease, eczema, and thyroid disease were
obtained from questionnaires. Alzheimer’s disease was determined with a con-
sensus diagnosis based on international guidelines was made by a panel that
includes a geriatrician, neurologist, neuropsychologist, and neuroradiologist and
defined according to the criteria of the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA), as previously described46. Hospital-
and mortality data were also used to identify cases according to the ICD-10 code
F00. Age-related macular degeneration (AMD) in the AGES-Reykjavik study has
been previously described47, but in short was defined by the presence of any soft
drusen and pigmentary abnormalities (increased or decreased retinal pigment)
or the presence of large soft drusen ≥125 µm in diameter with a large drusen area
>500 µm in diameter or large ≥125 µm indistinct soft drusen in the absence of
signs of late AMD. The maximum grip strength of the dominant hand was
measured by a computerized dynamometer, as previously described48. Bone
mineral density was estimated from a CT scan of the femur49. The AGES-
Reykjavik study was approved by the NBC in Iceland (approval number VSN-
00-063), and the National Institute on Aging Intramural Institutional Review
Board, and the Data Protection Authority in Iceland. All participants provided
informed consent.

Fig. 6 Colocalization between GWAS signals for eGFR and INHBB and INHBC. a Colocalization between GWAS signals (linear regression) at the INHBB
locus on chromosome 2 and b the INHBC locus on chromosome 12 and eGFR. The PP4 value indicates the posterior probability for colocalization obtained
from colocalization analysis. c A schematic diagram showing the convergence of genetic effects on serum levels of INHBB at the INHBB locus in cis and
INHBC locus in trans. Variants in the INHBC locus furthermore affect INHBC serum levels in cis, albeit not reaching study-wide significance (P= 8.5 × 10−8,
two-sided). Serum levels of INHBB and INHBC are positively correlated (Pearson’s r= 0.32, P= 3.4 × 10−130, two-sided), while both are negatively
associated (linear regression) with eGFR (beta=−4.52, SE= 0.23, P= 1.3 × 10−82, two-sided, and beta=−2.62, SE= 0.22, P= 5.4 × 10−32, two-sided,
respectively). d Boxplot showing INHBB serum levels in the AGES cohort (n= 5457) by eGFR quartiles. e Colocalization between a GWAS signals for T2D
and a trans signal for ARFIP2 at the PNPLA3 locus on chromosome 22. f Boxplot showing ARFIP2 serum levels in the AGES cohort by T2D status
(nT2D= 658, nCTRL= 4799). Boxplots in d and f indicate median value, 25th and 75th percentiles. Whiskers extend to smallest/largest value no further
than 1.5× interquartile range. Outliers are shown.
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Protein measurements. Serum levels of 4135 human proteins, targeted by 4782
SOMAmers50, were determined at SomaLogic Inc. (Boulder, US) in samples from
5457 AGES-Reykjavik participants as previously described8. A few SOMAmers are
annotated to more than one gene, for example when the target is a protein com-
plex, thus the 4782 SOMAmers are annotated to a total of 4118 unique targets
(annotated as one or more Entrez gene symbols) in the most up to date inhouse
annotation database, which was used in all analyses. Sample collection and pro-
cessing for protein measurements were randomized and all samples were run as a
single set. The SOMAmers that passed quality control had median intra-assay and
inter-assay coefficient of variation (CV) < 5% similar to that reported on variability
in the SOMAscan assays51. In addition to multiple types of inferential support for
SOMAmer specificity towards target proteins including cross-platform validation
and detection of cis-acting genetic effects8, direct measures of the SOMAmer
specificity for 779 of the SOMAmers in complex biological samples was performed
using tandem mass spectrometry8. Previous studies have shown that pQTLs
replicate well across proteomics platforms8,9. While a recent comparison of protein
measurements across different platforms showed a wide range of correlations23,36,
cis pQTLs and validation by mass spectrometry were predictive of a strong cor-
relation across platforms and are likely good indicators of platform specificity when
protein concentrations obtained by orthogonal methods differ36. Hybridization
controls were used to correct for systematic variability in detection and calibrator
samples of three dilution sets (40%, 1%, and 0.005%) were included so that the
degree of fluorescence was a quantitative reflection of protein concentration. In the
main text the results are described at a protein level instead of SOMAmer level, to
avoid overcounting as some proteins are targeted by more than one SOMAmer that
were selected to different forms or domains of the same protein. Thus, when we
refer to a protein having a genetic signal, this indicates that any of the protein’s
SOMAmers are associated with that genetic signal.

Genotyping and imputation. Within the AGES cohort, 3219 individuals were
genotyped with the Illumina hu370CNV array, and 2,705 individuals genotyped
with the Illumina Infinium Global Screening Array. Data from both genotype
arrays underwent quality control procedure, separately, removing variants with
call rate <95% and HWE P-value < 1 × 10−6. Both arrays were imputed against
the Haplotype Reference Consortium imputation panel r1.1 with the
Minimac3 software52. Post-imputation quality control consisted of filtering out
variants with imputation quality R2 < 0.7, MAF < 0.01, as well as monomorphic
and multiallelic variants for each platform separately. Genotypes for remaining
variants, with matching location and alleles between platforms, were merged to
create a dataset with 7,506,463 variants for 5656 individuals (268 individuals
were genotyped on both platforms, with a 99% match of genotypes for the final
set of variants between platforms). The quality control procedure was performed
using bcftools (v1.9)53 and PLINK 1.954. All positions are based on genome
assembly GRCh37.

GWAS and conditional analysis. Data processing and statistical analysis were
performed using R (v3.5.1 & 4.0.1) and Rstudio (v1.1.456), unless otherwise spe-
cified. Box-Cox transformation was applied on the protein data55 and extreme
outlier values were excluded, defined as values above the 99.5th percentile of the
distribution of 99th percentile cutoffs across all proteins after scaling, resulting in
the removal of an average 11 samples per SOMAmer, as previously described18.
Within the AGES cohort, 5368 individuals had both genetic data and protein
measurements. With that sample set, 7,506,463 variants were tested for association
with each of the 4782 SOMAmers separately, in a linear regression model with age,
sex, 5 genetic principal components, and genotyping platform as covariates using
PLINK 2.0. To obtain independent genetic signals, we performed a stepwise con-
ditional association analysis for each SOMAmer separately with the GCTA-COJO
software19,20. We conditioned on the current lead variant, defined as the variant
with the lowest P-value, and then kept track of any new lead variants with study-
wide-significant associations. Variants in strong LD (r2 > 0.9) with previously
chosen lead variants were not considered for joint analysis to avoid multi-
collinearity. The independent signals defined by GCTA-COJO were subsequently
subjected to a validation analysis where the joint models were tested using
individual-level data in AGES and those remaining study-wide significant retained.
Associations with independent lead variants within 300 kb window of the gene
boundaries of the protein-coding gene were defined as cis-signals, and otherwise in
trans. To compare independent signals between SOMAmers, we define any signals
with lead variants in strong LD (r2 > 0.9) as the same signal. Due to the complex
LD structure and high pleiotropy of the MHC region56 (chr.6, 28.47–34.45 Mb) we
collapsed all signals within that region to a single signal. To define loci harboring
independent signals, we defined a 300 kb window around each independent signal
(150 kb up- and downstream of lead variants) and collapsed all such intersecting
windows. Therefore, the definition of loci is solely based on physical distances
while the definition of independent signals is solely based on LD structure. Variants
were annotated using the Ensembl Variant Effect Predictor57 (v104, “per_gene”
option), where PAVs affecting the corresponding protein target were defined as
those with the following consequences: splice acceptor variant, splice donor variant,
splice region variant, stop gained, stop lost, start lost, frameshift variant, missense
variant or frameshift variant. The GWAS results were visualized using Circos58.
Pathway enrichment was performed using gProfiler59, using the full set of

measured proteins as background and considering Benjamini–Hochberg FDR <
0.05 as statistically significant. Enrichment of tissue-elevated gene expression was
performed using data from the Human Protein Atlas24 with a Fisher’s exact test,
considering Benjamini–Hochberg FDR < 0.05 as statistically significant.

Comparison with previous proteogenomic studies. To evaluate the novelty of
the genetic associations identified in the current study, we compared our results to
20 previously published proteogenomic studies (Supplementary Data 5), including
the protein GWAS in the INTERVAL study9, our previously reported genetic
analysis of 3,219 AGES cohort participants8, and a recent Illumina exome-array
analysis in 5,343 AGES participants22. In a previous proteogenomic analysis of
AGES participants8, one cis variant was reported per protein using a locus-wide
significance threshold, as well as cis-to-trans variants at a Bonferroni corrected
significance threshold, whereas the more recent exome-array analysis22 reported
results at a study-wide significant threshold (P < 1 × 10−10). Due to these differ-
ences in reporting criteria, we only considered the associations in previous AGES
results that met the current study-wide P-value threshold (P < 1.046 × 10−11). For
all other studies, we retained the pQTLs at the reported significance threshold. In
addition, we performed a lookup of all independent pQTLs from the current study
available in summary statistics from the INTERVAL study, considering them
known if they reached a study-wide significance in their data. We calculated the LD
structure between the reported significant variants for all studies, using 1000
Genomes v3 EUR samples, but using AGES data when comparing to previously
reported AGES results. We considered variants in LD (r2 > 0.9 for consistency for
defining signals across SOMAmers described above but results for r2 > 0.5 are
additionally shown in Supplementary Note 1) to represent the same signal across
studies. Comparison was performed on protein level, by matching the reported
Entrez gene symbol from each study.

Enrichment analysis. We grouped the proteins into three categories derived from
our GWAS results; (a) proteins with at least one cis signal, (b) proteins with no cis
signals and at least one trans signal, and (c) proteins with no genetic signal. From
our data we also derived three continuous traits for a given protein; (a) a number of
associated independent signals, (b) highest absolute beta coefficient of all associated
signals, and (c) the number of proteins that share genetic signals with the given
protein, which is essentially a quantitative representation of whether a protein is a
part of a trans hotspot. We fetched publicly available data regarding; (a) tissue-
elevated gene expression, where “tissue-enriched” in our analyses refers to the
“Tissue Enriched”, “Tissue Enhanced” or “Group Enriched” categories defined by
Uhlen et al.24, (b) tissue-elevated protein expression, where “tissue-enriched” in
our analyses refers to the “Tissue Enriched”, “Tissue Enhanced” or “Group Enri-
ched” categories defined by Wang et al.25, (c) annotation of secreted and trans-
membrane proteins, classifying proteins as secreted or transmembrane if it was
predicted so by at least one method or one segment, respectfully24, (d) gene-level
loss-of-function intolerance26, and (e) network degree in the InWeb protein-
protein interaction network27. Furthermore, we estimated hub status of proteins
within the serum protein co-regulation network derived from the AGES cohort8.
Protein classifications were compared using a Fisher’s exact test, where the estimate
is the odds ratio. Continuous parameters were compared between protein classes
using the Wilcoxon rank-sum test and for the estimate we calculated the median of
the difference between values from the two classes, so the size of the estimate is
dependent on the scale of the values. For comparing two continuous traits we used
Spearman’s Rho correlation. We report 95% confidence intervals of all estimates.

GWAS colocalization analysis. We included 81 phenotypic traits including major
disease classes in the colocalization analysis, for which GWAS summary statistics
were publicly available from consortium websites and the GWAS catalog60. We
restricted the study selection to those with study sample sizes of n > 10 K, of
primarily European Ancestry (to match the AGES cohort’s LD structure), having at
least one genome-wide significant association (P < 5 × 10−8) and selecting one
study per phenotype (Supplementary Data 8). For each trait, significant loci were
defined by identifying all genome-wide variants (P < 5 × 10−8) at least 500 kb apart,
defining a flanking region of 1Mb around each lead variant, and finally merging
overlapping regions. For each GWAS locus, all SOMAmers with a study-wide
significant association (cis or trans) within the given region were tested for colo-
calization, if at least 50 SNPs in the region had complete information from both
trait and protein GWAS and the overlapping set of SNPs included at least one SNP
with a genome-wide significant (P < 5 × 10−8) phenotype association and at least
one SNP with a study-wide significant (P < 1.046 × 10−11) protein association.
When the MAF was not available for a given GWAS, the 1000 Genomes EUR MAF
was used instead. Colocalization analysis was performed with coloc (v.3.2-1)61,
using the coloc.abf function with default priors. In a secondary analysis we repeated
the analysis with a more stringent prior selection, p12= 5 × 10−6, as recently
proposed62. High and medium colocalization support was defined as PP.H4 > 0.8
and PP.H4 > 0.5, respectively. Conditional colocalization analysis was performed
using coloc 4.0–462, using the “allbutone” option and restricted to loci harboring
more than one independent signal per protein. Unlike the primary coloc analysis,
the conditional analysis requires the GWAS effect size to be included, thus the
phenotypes AMD, ATD, and PD were excluded from this analysis which did not
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have this information available in the GWAS summary statistics. Results were
visualized with LocusCompare63.

Phenotype associations. For each GWAS phenotype with a corresponding
measurement in AGES and well represented at the population level (Supplemen-
tary Data 8), the colocalized proteins were tested for association with the pheno-
type in all AGES participants with protein data available (n= 5,457, see n missing
per phenotype in Supplementary Data 1), in a linear or logistic regression model
adjusted for age and sex. The SOMAmer with the lowest P-value was chosen for
each protein, and P-values were subsequently adjusted for the number of proteins
tested for each trait by Benjamini-Hochberg FDR. For each phenotype with at least
five colocalized proteins, the proportion of significantly associated proteins
(FDR < 0.05) was compared to that obtained by 1000 randomly sampled protein
sets of the same size, again choosing the SOMAmer with the lowest P-value per
protein, and an empirical P-value calculated. The analysis was repeated by
excluding proteins originating from loci where five or more proteins colocalized
with the same phenotype. The same enrichment analysis was additionally per-
formed for each individual locus where five or more proteins colocalized with the
same phenotype.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The custom-design Novartis SOMAscan is available through a collaboration agreement
with the Novartis Institutes for BioMedical Research (lori.jennings@novartis.com). Data
from the AGES-Reykjavik study are available through collaboration
(AGES_data_request@hjarta.is) under a data usage agreement with the IHA. All access to
data is controlled via the use of a subject-signed informed consent authorization. The
time it takes to respond to requests varies depending on the nature and circumstances of
the request, but it will not exceed 14 working days. The protein GWAS summary
statistics data from this study were deposited in the GWAS catalog database with
accession IDs for each summary statistics dataset based on unique SOMAmers, as listed
in Supplementary Data 16. SNP correlations at protein-associated loci from the AGES
cohort are available from zenodo.org (https://doi.org/10.5281/zenodo.5711426). All other
data supporting the conclusions of the paper are presented in the main text and freely
available as a supplement to this manuscript (Supplementary Information and
Supplementary Data).
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