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A general fruit acid chelation route for eco-friendly
and ambient 3D printing of metals
Soo Young Cho 1,7, Dong Hae Ho1,7, Yoon Young Choi1, Soomook Lim2, Sungjoo Lee 3,4, Ji Won Suk2,4,5,

Sae Byeok Jo 6✉ & Jeong Ho Cho 1✉

Recent advances in metal additive manufacturing (AM) have provided new opportunities for

prompt designs of prototypes and facile personalization of products befitting the fourth

industrial revolution. In this regard, its feasibility of becoming a green technology, which is not

an inherent aspect of AM, is gaining more interests. A particular interest in adapting and

understanding of eco-friendly ingredients can set its important groundworks. Here, we

demonstrate a water-based solid-phase binding agent suitable for binder jetting 3D printing

of metals. Sodium salts of common fruit acid chelators form stable metal-chelate bridges

between metal particles, enabling elaborate 3D printing of metals with improved strengths.

Even further reductions in the porosity between the metal particles are possible through post-

treatments. A compatibility of this chelation chemistry with variety of metals is also

demonstrated. The proposed mechanism for metal 3D printing can open up new avenues for

consumer-level personalized 3D printing of metals.
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Additive manufacturing (AM), also known as three-
dimensional (3D) printing, is one of the most important
technologies in the fourth industrial revolution because it

can enable the personalization of products and rapid prototyping.
In an attempt to expand the boundaries of AM, numerous
researchers have focused on developing printable materials1–3

and corresponding techniques for 3D printing4–7. Consequently
developed advanced and sophisticated printable materials and 3D
printing techniques have accelerated the utilization of AM in
various industries, such as aerospace8,9, biomedicine10–12, and the
food industry13,14. Research on metal AM that can facilitate its
application to various industrial fields has also been actively
conducted15–18. However, unlike polymer AM, metal AM still has
applicability only at the industrial and academic scales because of
the demanding conditions of the printing environment, which
hinder realization of consumer-level desktop applications. Selec-
tive laser melting and electron beam melting have been proposed
as breakthrough technologies19–21, but printing processes
requiring high-power energy sources, inert gas atmospheres, and
high-temperature preheating have limited their application
range22.

Binder jetting metal 3D printing (BJM3DP) is a promising AM
technique that selectively jets a liquid binding agent onto metal
powder, which results in bond formation between particles23–25.
The technological challenges for the commercial adaptation of
BJM3DP still involve overcoming demanding conditions of metal
AM processes including materials handling, post-treatments, and
quality control. However, BJM3DP has particular advantages over
other metal 3DPs, stemming from its high feasibility toward
operationally low-cost, simple, and safe 3DP processes26. The
ambient conditions of initial printing process27–30, as well as the
possible use of commercially available ink cartridges constitute
high accessibility to this technology than others, which can
potentially facilitate consumer-level desktop applications. More-
over, as a groundwork for BJM3DP to become a more accessible
green technology adequate for both industrial and personalized
uses such as rapid prototyping, one of the important aspects to be
explored is adapting and understanding of environmentally
friendly ingredients including binder materials. The two most
commonly used hazardous binding agents, 2-butoxyethanol-
based solution and 2-pyrrolidone-based solution, have been
specifically considered to be responsible for such issues31,32.
Additionally, the recently developed metal-organic dispersion ink
composed of cupric formate and octylamine has also been found
to have an adverse environmental impact33,34. In the field of
ceramic BJ3DPs, especially for biomedical applications, there
already are various investigations regarding the use of non-
hazardous binder materials such as green-solvent-soluble poly-
mers, maltodextrin, sugar, and corn starch35–37. However, only a
few candidates for metal BJ3DP have been explored so far, and
the reported characteristics of printed objects such as the porosity
and mechanical strengths are far below the ones based on the
aforementioned common binder materials38. Therefore, it is now
imperative to broaden the technological horizon thorough
developing new green binding agents for metals that can be eco-
friendly as well as non-hazardous24,39–41, with prospects of
simultaneously achieving the desired properties of printed
objects.

Here, we introduce a binding mechanism for BJ3MDP that is
based on the use of a chelator composed of salts of naturally
available fruit acids as an eco-friendly binding agent. Metal-
chelate bridges between metal particles are successfully formed
via ink-jetting of water onto a powder composed of a uniform
mixture of the metal particles and chelator. This metal-organic
complexing mechanism is thoroughly analyzed by Fourier
transform infrared (FT-IR) spectroscopy, X-ray photoelectron

spectroscopy (XPS), and scanning electron microscopy (SEM).
Then, compression tests are performed on the metal 3D-printed
object to confirm the dependence of its mechanical strength on
the type of chelator. Subsequently, the mechanical strength is
further improved by post-treatments as well as optimizing the
distribution of particle sizes and compositions. Finally, objects of
various shapes are printed using various metals, which demon-
strates that the proposed chelator-assisted BJM3DP technique is
not only useful for the realization of complex and sophisticated
architectures but also applicable to a wide range of metal pow-
ders. The environmentally friendly chelator presented herein is
expected to promote greener metal 3D printers adequate for both
industrial and consumer-level scale applications.

Results
Eco-friendly BJM3DP. Figure 1a shows the 3D scheme of the
BJM3DP system, which has four main components: an inkjet
cartridge, powder gantry boxes, a roller, and x- and y-axes stages.
Prior to the 3D printing process, the powder and inkjet cartridge
were prepared as follows (see Supplementary Fig. 1 for photo-
graphic images of each component). First, the metal powder was
mixed with the chelator. Here, the nozzle clogging issue from the
precipitation of binding agents inside inkjet cartridge was avoided
since the chelator functions as a solid-phase binding agent pre-
mixed with metal particles, which also is one of the commonly
adopted approaches in biomedical fields35–37,42. Next, two gantry
boxes were filled with the mixture of the metal powder and
chelator; for the purpose of this work, Al powder was utilized.
Each of these gantry boxes has a different purpose. One is the
builder gantry box in which objects are 3D-printed, and the other
is the feeder gantry box that stores and supplies the powder to the
builder gantry box. Then, the inkjet cartridge was filled with
deionized (DI) water, which activated the chelation reaction.
After the preparation process, the printing cycle was initiated
through the deposition of a powder layer on top of the builder
gantry box. During the printing process, the builder platform
moved one step downward to provide space for one powder layer
and the feeder platform simultaneously moved one step upward
to push up the powder. Then, the roller module positioned at the
feeder gantry box moved toward the builder gantry box to supply
powder and flatten powder protruding on top of the latter box, as
shown in Fig. 1b. Once a powder layer was deposited, the module
returned to its original position. Subsequently, DI water was
jetted from the inkjet cartridge onto the powder layer deposited
on top of the builder gantry box at programmed positions
(Fig. 1c). This cyclic process was repeated until the uppermost
layer of the designed 3D object was deposited. Upon completion
of the printing cycle, the 3D-printed object was removed from the
pile of metal powder and the unchelated powder was subse-
quently removed through air blowing. Photographic images of the
overall metal 3D printing process are shown in Supplementary
Fig. 2. As a safety disclaimer, the Al powder is classified with ST3
explosive ratings, which can pose a potential danger for Al
powder-based systems. Furthermore, a plausible reaction between
water and Al could also generate combustible hydrogen during
the process, thus a proper ventilation and an equipment of
hydrogen detectors are required for the safe operation. In our
experimental system (capable of jetting 250 ml of water over 6 h),
193 ppm/hour of hydrogen generation was observed, which
would indeed pose danger over 200 h of continuous printing in a
completely closed system by reaching the lower explosive limit of
the hydrogen (41,000 ppm)43.

As binding agents, nature-based chelators, which are crucial to
ensure eco-friendliness of metal 3D printing, were used. Unlike
polymer binding agents, which are hazardous, the chelators
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utilized here are food-grade organic materials because they are
salts of nature-based fruit acids (e.g., of fruits such as lemons,
cherries, and grapes)44. For example, citric acid derived from
citrus fruits has three carboxyl groups, and it transforms into
sodium citrate upon replacement of the hydrogens in these
groups with sodium ions through a salt-formation reaction
(Fig. 1d)45. Here, the carboxyl group of sodium citrate plays an
important role in the metal chelation reaction. Upon wetting of
the uniform mixture of the metal powder and chelator (Fig. 1e),
metal chelation occurs on the surface of the metal particles, which
induces the formation of metal-chelate bridges between the
particles. Figure 1f and Supplementary Fig. 3 show the chemical
structure of metal-chelate bridges formed on metal particle
surface and the change in the microstructure of Al powder.
Successful chelation imparts structural integrity to the 3D-printed
object and its architecture is consequently maintained, as a result
of which the object has a precise and sophisticated shape, as
shown in Fig. 1g.

Formation of metal-chelate bridges between metal particles.
Figure 2a shows the mechanism of chelate complex formation
between Al particles and the underlying chemical reaction. When
water droplets are jetted onto Al powder, water permeates between
the particles and gradually dissolves the chelator. Then, the ionized
chelator solution preferentially attacks intrinsic defects in the Al
particles, consequently producing Al-chelate compounds, which
results in the bridging of the Al particles. Figure 2b shows FT-IR
spectra of Al objects printed using the following proposed chela-
tors: sodium salts of citrate (NaCit), tartrate (NaTar), succinate
(NaSuc), and ascorbate (NaAsc). These four chelators have three,
two, two, and one coordinate donor sites, respectively, and the

difference in the number of coordination sites affects the formation
of metal-chelate bridges. In the spectra of the carboxyl-based
chelators (NaCit, NaTar, and NaSuc), two major bands, which
originate from the asymmetric stretching vibration (νas(COO−))
and symmetric stretching vibration (νs(COO−)) of the carboxylate
group (COO−), are present in the frequency ranges of
1540–1720 cm−1 and 1320–1470 cm−1, respectively46. In the
spectra of NaCit, νas(COO−) at 1592 cm−1 and νs(COO−) at
1393 cm−1 are blue-shifted by 4 cm−1 and red-shifted by 11 cm−1,
respectively, after chelation. The increase in the molecular mass
due to the chelation of the carboxylate group and Al causes a
change in the vibration frequency, which results in a band shift47.
The peak shifts of νas(COO−) and νs(COO−) thereby indicate the
formation of the chelate complex on the Al particle surface (the
FT-IR spectrum of pristine Al powder in the same frequency range
is shown in Supplementary Fig. 4). The separation of peaks
(Δν= νas− νs) was further analyzed to identify the difference in
the types of coordination between Al and the carboxyl-based
chelators48. Because NaCit, NaTar, and NaSuc chelated with Al
have a lower value of Δν(COO−) than do the chelators themselves
(Supplementary Table 1), these chelators coordinate with Al in the
bidentate chelating form, which enables a single metal atom to
have two bonds with a carboxylate group, as illustrated in the left
panel of Fig. 2b. Unlike with these carboxylate-based chelators,
NaAsc forms only a single bond with the Al atom, as indicated by
the non-split νC=O, the band broadening of νC−O, and the
decreased intensity of the hydroxyl group after chelation49.

The XPS spectra of chelated Al provide information about the
extents of chelate complex formation when the different
chelators are used. The left panel of Fig. 2c and Supplementary
Fig. 5 show the Al 2p and O 1s spectra of the chelated and
pristine Al powders, respectively. The deconvoluted Al 2p
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spectra have three distinct components: Al 2p3/2 (71.6 eV), Al
2p1/2 (72.0 eV), and Al‒O (74.2 eV). The Al‒O peak originates
from the oxides and hydroxides formed on the Al surface50. As
depicted in Fig. 2d, the four types of chelated Al show a larger
Al‒O/Al‒Al atomic ratio than the pristine Al particles.
Furthermore, the atomic ratio increases as the number of
coordination bonds increases. These results indicate that the
chelators play a pivotal role in Al‒O formation, and greater the
number of coordination bonds, higher is the thickness of the Al‒
O layers formed on the Al particle surface, as observed in the
SEM images (right panel of Fig. 2c). This tendency of formation
of a thicker Al‒O layer is also confirmed from the O 1s spectra.
The O 1s peak has three components, which correspond to O‒
Al, HO‒Al, and the chemisorbed water and are positioned at
530.7, 531.8, and 532.4 eV, respectively51. As can be seen from
the plot in Fig. 2d, the relative amount of O‒Al increases as the
number of coordination bonds increases; this trend reveals that
a chelator with more coordination sites is favorable for the
formation of the Al-chelate complex. The promoted chelation
results in stronger bonding between the metal particles, and
therefore, increases the mechanical strength of the 3D-printed
objects (Fig. 2e). The object printed using NaCit has the highest
compressive strength (0.88 MPa) and compressive modulus
(40.66 MPa). The improved mechanical properties of 3D-

printed object based on NaCit than other chelators in our study
can be explained by the fact that coordinate donor sites
contribute to the strength of the 3D-printed object. Changes in
the atomic ratio and mechanical properties with the type of
chelator because of the difference in the number of coordination
groups are depicted in Supplementary Fig. 6. NaCl was
subsequently added to release more metal ions from the
intrinsic defects in the Al particles and increase the binding
strength of the printed object. Upon the addition of NaCl, the
chloride ions attacked the Al defects to form Al ions, which, in
turn, promoted chelation on the surface of the metal particles in
an aqueous environment (Supplementary Fig. 7)52. The
enhancement of chelation through NaCl addition was also
confirmed by SEM, FT-IR spectroscopy, and XPS (Supplemen-
tary Figs. 8 and 9), all of which revealed numerous metal-chelate
bridges. The increase in the density of metal-chelate bridges, in
turn, led to an increase in the compressive modulus to
68.36 MPa; this is a 1.7-fold increase compared to that of the
3D-printed object not treated with the NaCl additive, as shown
in Supplementary Fig. 10. Further enhancements in the
mechanical strengths can very well be acquired through post-
treatments as well as optimizing the distribution of particle sizes
and compositions (Supplementary Fig. 11), which are described
in the following section.
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Fig. 2 Formation of metal-chelate bridges between metal particles. a Schematic illustration of mechanism of metal chelation on metal particle surface.
b Chemical structures of chelators and their coordination with metal particle surface (left) and FT-IR analysis with identified vibration peaks (right).
c Deconvoluted XPS peaks (left) and cross-sectional SEM images of chelated metal particle surface (right) (scale bar: 100 μm). d Al–O/Al–Al atomic ratio
(integrated areas of peaks in Al 2p spectra) and O–Al/O atomic ratio (integrated areas of peaks in O 1s spectra) for various chelators. e Compressive
strength and modulus of objects 3D-printed by BJM3DP using various chelators. Data are presented as mean values ± standard deviations. The inset shows
a photographic image of compression testing of the 3D-printed object.
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Applicability of NaCit chelator for 3DP of metal objects. To
demonstrate the capability of our developed BJM3DP system in
producing elaborate objects, we designed and 3D-printed various 3D
structures, as shown in Fig. 3a and Supplementary Fig. 12. For the
industrial applications of BJM3DPs, various aspects should be taken
into accounts, including the bleeding effect, stair-stepping effect,
liquid-powder imbibition effect, as well as sensitive processing
parameters such as powder size distribution, powder layer con-
sistency, and layer shifting during drying53,54. Those aspects criti-
cally determine the resolution and mechanical strengths of 3DP
objects. As a first step, testing and securing the microstructural
integrity of 3D printed objects were considered in the fabrication of
objects with sophisticated geometries, such as a gyroid cell, an
impeller, an ammonite shell, and a skull. In addition, the bleeding
issue—a phenomenon in which the binding agent solution adversely
flows out of the printed object due to the capillary forces—was
addressed to ensure high printing quality24. The use of water as a
jetting fluid for the initial printing process as well as a for the post-
treatment enabled a partial mitigation of this issue: it has higher
vapor pressure than conventional binding agent solutions, because
of which it evaporates faster and therefore reduces the solution from
flowing out of the prescribed structure, especially at elevated printing
temperatures used in our study (Fig. 3b and Supplementary Fig. 14).
A post-treatment step of the humidification then ensures the
completion of the remnant chelation reaction between metal parti-
cles without causing adversary bleeding (discussed in the following
section). Consequently, the dimensional accuracy of the 3D-printed
objects as shown in Fig. 3c can be acquired. Figure 3d and Sup-
plementary Fig. 15 show the rendered images and extracted void
ratios of the printed object from computed 3D X-ray micro-
tomography (3D µCT) analyses. A good packing density (defect
volume ratio of 4.92%) of the green body based on coarse Al powder
(<355 μm) by itself not only enables the 3D object to retain its shape
but also promotes the solidification of the structure during the

subsequent post-treatment process, thereby providing structural
integrity. On the other hand, to illustrate prospects of further
enhancing the mechanical strengths of BJM3DP objects, we opti-
mized the distribution of the powder sizes and compositions55,56. In
regards to overcoming the low intrinsic porosity of BJM3DP objects
(30–60% in general) and reducing microscopic void ratios, we used a
bimodal powder distribution based on 10 and 75 μm metal particles
(Supplementary Fig. 16). The improved packing of the metal pow-
ders from the filling of interstitial voids with fine particles (Sup-
plementary Figs. 15 and 17) thus led defect volume ratios to be
critically reduced (1.55 and 0.30% for green and sintered body,
respectively). As a result, greatly improved mechanical strengths and
compressive modulus of green body up to 6.06MPa and
218.43MPa, respectively, were obtained. After completing thermal
debinding and sintering processes for printed green bodies (Fig. 4a),
the values could further be improved to 29.59MPa and 1.49 GPa,
respectively (Fig. 4b). These results are indeed much superior than
the values acquired in previous reports on green-solvent-soluble
binders, and are even comparable to the Al (or Al alloy)-based metal
objects printed by other much more sophisticated 3DP methods
based on high powered lasers (Fig. 4c and Supplementary Fig. 18).

Post-treatment process and several 3D-printable metals. The
post-treatment process performed for strength improvement in
the standard metal BJM3DP technique can also be applied to the
chelation-based metal 3D printing technique proposed herein.
The post-treatment consists of a two-step process: humidification
followed by thermal sintering. First, the unreacted chelator
between particles was fully reacted through humidification (see
Supplementary Fig. 19 for the SEM image of the humidified 3D-
printed object). Since we chose to use a marginal water droplet
size (33 pL) at elevated evaporation conditions (builder/nozzle
temperature of 70 °C) to minimize the bleeding effect (see

c

a

dT = 10 T = 80 b

defect volume ratio : 1.55 %

Fig. 3 Various objects 3D-printed using NaCit chelator. Photographic images of a 3D-printed Al objects having various shapes. b Demonstration of the
minimization process for bleeding effects by using different initial printing conditions. The temperature of builder was gradually increased from 10 to 80 °C.
c Photographic images of representative 3D-printed objects, which depict their high dimensional accuracy. d Rendered image and defect volume ratio from
µCT analyses for green body based on metal particles with a bimodal powder distribution based on 10 and 75 μm metal particles. The scale bar on the
images is 10 mm. Three-dimensional model data for the ammonite shell (thing: 1611970), moai statue (thing: 3905999), octopus (thing: 159217), gyroid
cube (thing: 757884), skull (thing: 11953), hexagon stair sculpture (thing: 46966), and faceted cup (thing: 414252) were acquired from the open-source
website www.thingverse.com. Other 3D models were designed by the authors using Fusion 360 software.
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Supplementary Fig. 14 for details), an additional step of the
humidification can complete the reaction between surplus che-
lator and particles, and indeed boosts the strengths of the printed
objects without sacrificing the printing resolution. Subsequent
thermal debinding and sintering (see Supplementary Fig. 20 for
detailed procedure) caused solid-state diffusion of metal particles,
which led to a decrease in the interparticle porosity, as shown in
Supplementary Fig. 21. In other words, the metal particles came
into closer contact with their neighboring particles, as shown in
Fig. 4a. Consequently, the compressive strength and compressive
modulus of the thermally sintered 3D-printed objects are greatly
improved, compared to those in the as-printed state (Fig. 4b).

These strategies are expected to contribute to improvement in
the mechanical properties of printed objects through minimiza-
tion of the void ratios and porosity in final products. Figure 4d
shows objects 3D-printed using copper (Cu), iron (Fe), and a
titanium–aluminum–vanadium alloy (Ti–6Al–4V). The printed
objects showed structural integrity that cannot be acquired
through jetting of water alone without our solid-phase binder

mixed with metal particles (Supplementary Fig. 22). Furthermore,
FT-IR spectra of all printed metal objects exhibit noticeable shifts
in Δν(COO−) (188 cm−1 for Cu, 187 cm−1 for Fe and 189 cm−1

for Ti−6Al−4V) compared to pure NaCit (198 cm−1), which
agree with the trend we observed in Al-based printed objects
(Fig. 4e). Changes in ionic compositions between pure and
BJM3DP-printed metals were also observed, wherein Cu2+, Fe3+,
and Al3+ can preferentially chelate with COO− of citrate ions
(Supplementary Fig. 23). These results demonstrate that our
chelator is feasible for forming chelation bridges between metal
particles of other metals, and thus can be applied as a binder for
BJM3DPs of various metals and alloys than just Al alone.

Discussion
An eco-friendly chelator-based binding mechanism for BJM3DP
was proposed and the feasibility of achieving an effective 3D printing
system was demonstrated in this study. In the field of BJM3DPs, a
few candidates for green-solvent-soluble binders have been reported
so far, such as polyvinyl alcohol (PVA)37,42,57, polyacryl amide
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Fig. 4 Post-treatment process and several 3D-printable metals. a Cross-sectional SEM images of powder (left), as-printed 3D object (middle) and
sintered 3D object (right) (scale bar: 100 μm). b Comparison of compressive strength and modulus of as-printed 3D object and sintered 3D object. Data
are presented as mean values ± standard deviations. c The recent technological progress in BJM3DP techniques, with respect to the mechanical strengths
of printed green bodies based on various binder materials. d Photographic images of objects 3D-printed using Cu (left), Fe (middle), and Ti–6Al–4 V alloy
(right) (scale bar: 10mm). e The FTIR spectra and corresponding peak separation (Δν(COO−)) of 3D printed Cu, Fe, and Ti−6Al−4V objects compared to
the one for pure NaCit.
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(PAM)58, polyvinyl pyrrolidone (PVP)59, and maltodextrin37, some
of which were adopted from successful demonstrations in the field of
ceramic BJ3DPs for biomedical applications58. However, the
mechanical properties of the printed metal objects based on them,
even with highly tough Ti−6Al−4V alloy, were mostly rather less
competitive for broad applications compared to the ones based on
common binder materials developed without considerations for eco-
friendliness. Among them, dextrin, a liquid-based binder, has shown
promises that can provide meaningful mechanical properties to the
printed green bodies of Al/alumina (Fig. 4c). As a solid-phase bin-
der, PVA has been adopted but the mechanical properties achieved
was abysmal57 contrary to previous demonstrations of reasonable
binding properties in ceramic (hydroxyapatite)37 BJ3DPs. In com-
parison, results in this work demonstrated that the citric acid, as an
another solid-phase green binder that only requires the jetting of
pure water for the structural formation, can endorse prospects of
simultaneously achieving desired mechanical properties of printed
objects as well as the eco-friendly and facile printing processing. By
using citric acids as binders, the structural integrity of the 3D-
printed objects can be achieved through the efficient formation of
metal-chelate bridges between metal particles. A combination of
optimized powder size distribution and the efficient binding prop-
erties of citric acid, therefore, enabled high packing densities for both
green and sintered body of printed Al (1.55 and 0.30% defect volume
ratios, respectively). The optimized packing then led to the achieved
good mechanical strengths (~30MPa in compressive strength) for
Al objects, which were comparable to or even higher than the ones
printed by other sophisticated metal 3DPs based on high powered
lasers (Supplementary Fig. 18). The porosity of the green body, on
the other hand, still has a room for enhancements, even though the
value (41%) itself is well within the previous reports (30–60%)60–62.
Furthermore, the resolution of the 3D printed objects, which is
another important aspect along with mechanical strengths, can be
enhanced by controlling the evaporation of jetted water. The
inevitable liquid-powder imbibition could be reduced by elevating
the builder temperature near evaporation point (70 °C) of water, of
which the plausible insufficiency in the metal bridging from the fast
evaporation was compensated by using an additional step of the
humification that completes the remnant chelation process between
metal particles and citrates (Supplementary Fig. 19). The whole
printing process based on citric-acid-based BJM3DP can be com-
pleted through the thermal treatments of green bodies, where the
debinding and sintering result in the merging of metal particles and
thus provides an abrupt enhancement in the mechanical strengths. In
order to minimize the rapid shrinkage and maintain the structural
integrity during the initial debinding process, the optimization of
debinding temperature and duration is required to remove an
appropriate amount of chelation bridges at mild rate. Since the citric
acid thermally decomposes above 175 °C, which is far lower than that
of other water-soluble polymeric binders such as PVP, it is necessary
to choose lower debinding temperature. A fine adjustments and
optimizations are out-of-scope for this work and would require
further study, but our choice of conditions (350 °C for 3 h) did not
sacrifice the structural integrity. This work also demonstrated that,
the chelation chemistry of citric acid observed in Al could be
expanded to various metals such as Cu, Fe, and Ti−Al6−4V alloy.
Based on these aspects, the proposed facile approach of using
environmentally friendly chelators is expected be a cornerstone for
promoting the development of the highly approachable, low-cost,
and safe consumer-level desktop metal 3D printing systems.

Methods
Materials. The four chelator powders were prepared by grinding sodium ascorbate
(≥99%, Sigma-Aldrich), sodium succinate (≥99%, Sigma-Aldrich), sodium tartrate
(≥99%, Sigma-Aldrich), and sodium citrate (≥99%, Sigma-Aldrich). Al powder was
purchased from Henan Yuanyang Powder Technology Co., Ltd (FLPN10 for 10 µm),

from Korea Powder Co.,(CAS#: 7429-90-5 for 75 µm powders) and from Changsung
(≤40 mesh, 355 µm). The size distribution was confirmed by using ISO 13320 laser
diffraction method (Beckman Coulter LS-13-320), as presented in Supplementary
Fig. 16. Then, each chelator powder was uniformly mixed at a concentration of 20% (w/
w) with Al powder (≤40 mesh, Changsung) and then sieved through a mesh. Sodium
chloride (≥99%, Sigma-Aldrich) with a concentration of 5% (w/w) was used as an
additive. The preparation procedure of the other three metal powders (Cu (≤40 mesh,
Sigma-Aldrich), Fe (≤325 mesh, Duksan), and Ti–6Al–4V (≤325 mesh, Grade 5, Korea
Powder)) was the same as that of the metal chelator mixture.

BJM3DP process. The desktop printer for BJM3DP was assembled using a fusion
deposition modeling 3D printer kit (Geeetech I3 Pro, Shenzhen Getech Co., Ltd.). An
acrylic gantry box add-on set (Colorpod, Spitstec, Netherlands) was mounted on the
assembled metal 3D printer. BJM3DP was performed in an environment in which
room temperature (~25 °C) and 20% relative humidity were maintained. An inkjet
cartridge (HP45, Hewlett-Packard) was filled with 30mL of DI water. The printing
speeds was fixed at 2000mmmin−1. The temperature of both the builder platform and
the inkjet nozzle was maintained at 70 °C to control the evaporation rate of water
during the 3D printing process. The process parameters are summarized in the Sup-
plementary Table 2. After the 3D printing process, the printed object was humidified by
exposing it to a humidifier spraying water at a rate of 35mL h−1 in a cylindrical
chamber for 30min. Subsequently, the printed object was thermally sintered in a tube
furnace (LHA-12/300, Lenton) under vacuum (0.03 torr). The heat treatment profiles
are shown in Supplementary Fig. 20. 3 cycles of the following heat treatment profile are
conducted: (Debinding) Heating from RT to 350 °C by 10 °C/min followed by 350 °C
treatment for 3 h. (Sintering) Heating from 350 to 620 °C by 10 °C/min followed by
620 °C treatment for 15 h. (Cooling) Cooling from 620 °C to RT by −10 °C/min.

Characterization. The formation of a metal-chelate complex between the Al particles
in the 3D-printed objects was confirmed by FT-IR spectroscopy (VERTEX 70, Bruker
Corporation, Germany) and XPS analysis (ESCALAB 250Xi, Thermo-Scientific, USA).
The 3D-printed objects were visualized by SEM (JEOL-7800F, JEOL, Ltd., Japan). For
compression tests, objects were 3D-printed according to the ASTM E9 standard.
Compression tests were performed using a universal testing machine (QC-506M2F,
Cometech) with a compression rate of 8mm s−1. Data are presented with mean
values ± standard deviations (s.d.). The bulk density and porosity of printed objects
were acquired by using 3D computed tomography (µCT, Nikon XTH 320) with the
voxel size of 1 µm at X-ray beam energy of 210 kV. Voxel analysis and 3D visualization
were performed by using VGSTUDIO MAX (Volume Graphics Pte. Ltd). The inter-
particle porosity of the 3D-printed objects was measured by mercury intrusion por-
osimetry (PM33GT, Quantachrome).

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary Information files).
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