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Transient neuronal suppression for exploitation
of new sensory evidence
Maxwell Shinn 1,2, Daeyeol Lee 3,4,5,6, John D. Murray 1,2,7,8✉ & Hyojung Seo 1,2,8✉

In noisy but stationary environments, decisions should be based on the temporal integration

of sequentially sampled evidence. This strategy has been supported by many behavioral

studies and is qualitatively consistent with neural activity in multiple brain areas. By contrast,

decision-making in the face of non-stationary sensory evidence remains poorly understood.

Here, we trained monkeys to identify and respond via saccade to the dominant color of a

dynamically refreshed bicolor patch that becomes informative after a variable delay. Animals’

behavioral responses were briefly suppressed after evidence changes, and many neurons in

the frontal eye field displayed a corresponding dip in activity at this time, similar to that

frequently observed after stimulus onset but sensitive to stimulus strength. Generalized drift-

diffusion models revealed consistency of behavior and neural activity with brief suppression

of motor output, but not with pausing or resetting of evidence accumulation. These results

suggest that momentary arrest of motor preparation is important for dynamic perceptual

decision making.
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Momentary evidence from sensory stimuli or memory
seldom provides sufficient information to choose the
most appropriate action. Rather, speed and accuracy of

choice behaviors in humans and animals are more consistent with
models of integrators or accumulators, such as the drift-diffusion
model (DDM), in which noisy evidence is temporally integrated
as a decision variable that triggers an action upon crossing a
threshold1,2. In addition, neural activity in multiple brain areas
might correspond to the trajectory of such decision variables3,4.
Yet, how this relatively simple strategy can be extended for time-
varying sensory stimuli5 remains poorly understood. While sev-
eral studies have utilized time-varying stimuli5–10, it is unknown
how moment to moment changes in sensory inputs impact evi-
dence integration. In the present study, we investigated how the
trajectory of neural activity related to evidence accumulation
might be adjusted by the subtle onset of sensory signals decoupled
from the onset of the stimulus itself.

We examined three different hypotheses regarding cognitive
strategies for how the detection of informative stimuli might
impact perceptual decision making. First, the neural activity
related to the decision variable, such as that observed in lateral
intraparietal cortex (LIP) and frontal eye field (FEF), shows a
temporary dip after stimulus onset11–16, and this has been
interpreted as the reset of an integrator for the decision variable.
According to this “reset” model, the decision variable and its
neural correlate might be fully or partially reset when the non-
informative sensory stimulus is replaced by an informative sti-
mulus. Second, rather than a reset, the decision variable might be
temporally frozen so that the incoming stream of evidence during
a volatile transition period can be ignored. Indeed, such a “pause”
model has successfully accounted for the reaction time (RT) data
during behavioral tasks, such as countermanding or double-step
saccade tasks, in which the subjects must adapt to sudden and
unpredictable changes in instructions17–21. Finally, decision
makers might adapt to the unpredicted arrival of new informa-
tion simply by suppressing their motor outputs22–24 without
modifying the state of decision variables, similar to models pro-
posed in other systems in humans17,25–27. Unlike the reset or
pause models, this “motor suppression” model predicts that even
motor outputs unrelated to the task, such as microsaccades, might
be suppressed.

We tested these three alternative hypotheses by analyzing the
behavioral data and neural activity recorded from the FEF in
monkeys performing a perceptual decision-making task in which
the stimulus onset was temporally decoupled from the onset of
informative stimulus evidence. After the onset of the informative
stimulus, we observed transient suppression in saccadic motor
output, as well as in FEF activity at a population and single-
neuron level. Moreover, suppression of motor output and FEF
activity was greater for stronger sensory signals, resulting in a
negative relationship of the RT distribution and FEF activity on
coherence. This is in contrast to the usual positive relationship of
coherence with these measurements. Formal model testing
showed that both behavioral and neural data were most con-
sistent with the motor suppression model compared to the reset
and pause models. These results suggest behavioral and neural
signatures of motor suppression as a cognitive mechanism for the
strategic use of changes in evidence during perceptual decision-
making.

Results
Immediate effect of a change in evidence on the RT distribu-
tion. We trained two rhesus monkeys to perform a two-
alternative forced-choice color-discrimination task (Fig. 1). The
stimulus for discrimination was a square patch consisting of blue

and green pixels, and the relative number of pixels between the
two colors, referred to as color coherence, determined the diffi-
culty of discrimination. To temporally dissociate the processes
associated with the detection of a change in the evidence from
those for the detection of the onset of the stimulus itself, stimulus
presentation was divided into two consecutive periods containing
an uninformative “presample” and informative “sample”.

During the variable presample period (0, 400, or 800 ms), there
were equal numbers of blue and green pixels displayed in the
stimulus, corresponding to a color coherence of zero. During the
sample period, color coherence of the stimulus changed to a non-
zero value, which was fixed for a single trial but randomly selected
from three values across trials. For comparison, we also included
a “zero-coherence” condition, in which an equal ratio of blue and
green pixels was maintained throughout the entire trial. No
explicit cue was presented to indicate the abrupt transition from
presample to sample, and pixels were rearranged at 20 Hz during
both periods to make this transition non-obvious. Reward cues
surrounded the saccade targets and indicated whether a correct
response to the designated target would result in a large or small
reward (see Methods). Only correct choices made after the
sample onset were rewarded. The animals’ performance in this
task changed with color coherence and presample duration. As
reported in detail previously28, choices were less accurate (Fig. 1c,
Supplementary Fig. 1a) and slower (Fig. 1d, Supplementary
Fig. 1b) during trials with a low coherence.

To gain a mechanistic understanding of how the monkeys
might be performing the task, we fit a generalized drift-diffusion
model (GDDM)29 to RT distribution data, a model previously
shown to explain both the reward bias and timing in our
dataset28. This model incorporated leaky integration, an urgency
signal, and two forms of reward bias. As reported previously28,
the GDDM predicts higher accuracy and shorter RT in trials with
higher color coherence, and this was confirmed in the data
(Fig. 1c, d; Supplementary Fig. 1a, b).

Despite the general success of the GDDM in accounting for the
complex behavioral patterns observed in the RT and choice data,
we found a behavioral feature immediately after an abrupt
change in evidence which cannot be explained by the model. To
examine the effect of changing evidence on the most rapid
responses, we focused on the RT during trials with the longest
presample duration, because trials with shorter presample
durations contained few responses within a 200-ms window after
sample onset (Fig. 2a, c), presumably related to fewer responses
driven by a slowly ramping urgency signal28–30. We found that,
despite an increase in evidence, a change to a higher coherence
resulted in a short-latency suppression of responses, visible as a
“dip” in the RT distribution (Fig. 2b, d). This RT dip was more
pronounced for larger changes in evidence, and its latency was
similar to the results reported previously23,31,32. The dip was
present for a wide range of bin sizes (Supplementary Fig. 2). The
coherence-dependence also implies it is not the result of
anticipating the change. This dip in the RT distribution is
inconsistent with the standard models of evidence accumulation
such as the DDM, as well as the GDDM, which all predict that
stronger evidence will shorten RTs without any dip in the RT
distribution (Fig. 2e).

Coherence-dependent dip in FEF population activity. Activity
in cortical areas such as FEF and LIP is often hypothesized to
represent the accumulation of relative evidence favoring a parti-
cular behavioral response. According to this hypothesis, an
increase in evidence favoring the target in the response field of a
neuron should lead to an increase in the neuron’s firing rate. As
in the analysis of RT data, we focused on FEF activity during the
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Fig. 1 The color-discrimination task. a The temporal sequence of trial events in the color-discrimination task. Inset in the lower left are cues which indicate
a large or small reward. b Schematics for the time course of color coherence throughout the trial for each presample duration. Gray indicates zero
coherence, and colors indicate non-zero coherence. The thin gray horizontal lines denote the fixation period. c Psychometric function showing the mean
probability of a correct response for Monkey 1. Error bars representing standard error of the mean are hidden beneath the markers and are based on 28,378
trials. d Chronometric function showing the mean RT as the function of coherence for Monkey 1. Error bars representing standard error of the mean are
hidden beneath the markers and are based on 28,378 trials.

Fig. 2 Transient effect of changes in evidence on RT. The RT distribution for all trials, aligned to the presample onset, for Monkey 1 (a) and Monkey 2 (c).
The RT distribution centered around the onset of the sample during trials with 800-ms presample for Monkey 1 (b) and Monkey 2 (d). e Predictions from a
generalized drift-diffusion model (GDDM) for the portion of the RT distribution shown in (b, d). The black bar indicates significance (p < 0.05, one-tailed
test for a decrease in the mean, bootstrapping across trials). Shaded regions represent bootstrapped 95% confidence interval of the mean. RT distributions
are smoothed for visualization only, with significance tests performed before smoothing.
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period immediately following sample onset, and examined mean-
normalized activity averaged across all FEF neurons separately for
each presample duration and coherence level.

During the trials with 400- or 800-ms presample duration, we
found that FEF neurons showed a robust coherence-dependent
reduction in their activity, such that higher coherence resulted in
larger reduction in activity (Fig. 3c, d, g, h). The latency of this
“evidence dip” in FEF activity was comparable to that of the dip
in the RT distribution. Consistent with previous findings, a dip in
FEF activity was also seen immediately after the onset of the
stimulus itself in trials without a presample period (0-ms
presample duration). In comparison to the evidence dip, we
refer to this as the “stimulus dip”, because unlike the evidence dip
observed after the presample, the magnitude of the stimulus dip
was largely independent of the color coherence of the stimulus
(Fig. 3b, f). Similar to the behavioral results, the presence of the
evidence dip is not predicted by models of evidence

accumulation. If FEF activity exclusively represents the total
accumulated evidence, then it should not decrease when stronger
evidence becomes available. Likewise, the mean trajectory of the
decision variable simulated with the GDDM did not show a
reduction in activity at any point in the first 300 ms after sample
onset (Fig. 3i-k).

Coherence-dependent dip in individual FEF neurons. We next
examined whether the evidence dip could be detected at the
single-neuron level. We first used a linear regression model to
determine how single-neuron activity was modulated by the
experimental variables such as evidence (color coherence),
reward, and choice, at the onsets of the presample, sample, and
saccade (Eq. (1)). We found that reward magnitude significantly
modulated the activity of almost all neurons at all three time
points, and that the animal’s choice significantly modulated
neural activity at the time of saccade onset (Supplementary

Fig. 3 Transient effect of changes in evidence on population FEF activity. The normalized population activity for all trials, aligned to the presample onset,
for Monkey 1 (a) and Monkey 2 (e). b–d, f–h Highlighted is activity centered around the onset of the sample during trials with a 0- (b, f), 400- (c, g), and
800-ms (d, h) presample duration for Monkey 1 (b–d) and Monkey 2 (f–h). The black bar indicates significance (p < 0.05, one-tailed test for a decrease in
the mean, bootstrapping across neurons). Shaded regions represent bootstrapped 95% confidence interval of the mean. Predictions from a drift-diffusion
model decision variable (DV) are shown below for the 0- (i), 400- (j) and 800-ms (k) presample durations. Light gray indicates no prediction within the
model’s non-decision time. Activity is smoothed for visualization only, with significance testing performed before smoothing.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27697-4

4 NATURE COMMUNICATIONS |           (2022) 13:23 | https://doi.org/10.1038/s41467-021-27697-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 3). In addition, at the sample onset, but not at the presample
or saccade onset, neural activity was significantly modulated by
coherence, such that the mean firing rate decreased with coher-
ence, consistent with the dip we described above.

To explore whether this early modulation by coherence after
the sample onset took the form of a dip, we fit a time-resolved
regression model to the instantaneous firing rate of each neuron
(Eq. (2)). Our model included multiple kernels aligned to the
sample onset, presample onset, and saccade onset. Consistent
with the results from the analysis of the mean activity
(Supplementary Fig. 3), we made the presample-aligned kernel
sensitive to reward magnitude, the sample-aligned kernel to
coherence, and the saccade-aligned kernel to choice (Fig. 4a).
Here, we focus on the sample-aligned kernel scaled by coherence
(referred to as evidence kernel) and the presample-aligned kernel
(referred to as stimulus kernel). Thus, the evidence kernel
represents the time course of coherence-dependent neural activity
after the transition from presample to sample, and the stimulus
kernel represents mean neural activity after stimulus onset,
corresponding to the evidence dip and stimulus dip respectively,
as described for the population activity. The evidence kernel
allowed us to examine the effect of coherence immediately after
the onset of the sample independently of saccadic activity.

During the sample period, neural activity reflecting the value of
the decision variable should increase with coherence, namely, the
evidence kernel should always be non-negative. Contrary to this
prediction, we found that for many FEF neurons, activity
immediately after sample onset tended to decrease more for
larger increases in the coherence of the sample stimulus favoring
the action towards the neuron’s response field, resulting in a
negative evidence kernel. Some neurons show dip-like activity
traces (Fig. 4b, Supplementary Fig. 4b), and their evidence kernels
were negative between 100 and 200ms after the sample onset
(Fig. 4c, Supplementary Fig. 4c). Across the population, many
more neurons show significant negative evidence kernel during
the same period. For example, in the interval 150–175 ms after
the sample onset, 39% vs. 0% of neurons for Monkey 1, and 52%
vs. 9% of neurons for Monkey 2, show significant negative vs.
positive evidence kernel, respectively (p < 0.05, one-tailed t test;
Fig. 4d, Supplementary Fig. 4d). The fraction of neurons with
significantly positive evidence kernel eventually began to increase
about 200 ms prior to the saccade onset. Consistently, the average
evidence kernel across all neurons also shows a significant dip in
this time interval (Fig. 4e, Supplementary Fig. 4e).

To confirm that the mean evidence kernel reflects the temporal
pattern of a dip across single neurons, we computed the best
rank-one approximation of the kernels, the first singular vector
(Fig. 4f, Supplementary Fig. 4f). We found that the temporal
profile of weights for the first singular vector is highly correlated
with the mean evidence kernel (Monkey 1 r= 0.970, Monkey 2
r= 0.998). This singular vector has a predominantly positive
factor scores across neurons (Monkey 1, 89% neurons, Monkey 2,
100% neurons; Fig. 4g, Supplementary Fig. 4g), indicating that the
dip exhibited by the mean kernel is representative of the kernels
of individual neurons. The presence of the dip in the evidence
kernel suggests that the evidence dip is coherence-dependent. To
confirm this is the case, we performed the above analysis on the
coherence-independent sample-aligned kernel and found no
evidence of a dip (Supplementary Fig. 5).

We also tested whether the evidence dip in FEF activity might
be confounded by saccade-related activity, using three different
types of analyses. First, we extended the time-resolved regression
model to increase the lengths of the saccade and evidence kernels
and make the saccade kernel sensitive to coherence (Eq. 3;
Supplementary Fig. 6a). We found that the evidence dip was still
present in this extended regression analysis (Supplementary
Fig. 6b, h). This extended model revealed a broad dip of different
form and timing than the evidence dip in its coherence-
dependent saccade kernel (Supplementary Fig. 6c, i), which is

Fig. 4 Evidence dip in individual FEF neurons for Monkey 1. a A schematic
of the regression model showing alignment of the kernels to the presample,
sample, and saccade. b Smoothed firing rate for two example neurons
across conditions. Colors are the same as in Figs. 2–3. c Evidence kernel for
the example neurons in (b). Error bars indicate 95% confidence interval of
the regression coefficient. d For each point in time, the number of neurons
in the population with significantly positive (top) or negative (bottom)
evidence kernel is shown (p < 0.05, one-tailed t test). e Mean evidence
kernel across neurons. Error bars indicate 95% confidence interval of the
mean. f The first singular vector of the evidence kernels is shown, along
with (g) the corresponding factor scores of each neuron. Analyses are
based on 57 neurons.
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expected from a broader RT distribution and FEF activity that
builds up more slowly during trials with low coherence.

Second, we also tested how the timing of the evidence dip was
related to RT. We divided trials into RT quintiles, and determined
the timing of the evidence dip for each quintile (see Methods). If
the evidence dip were saccade-related, there would be a positive
correlation between evidence dip latency and RT quintile. We
found that the timing of the evidence dip did not vary
significantly with RT (Kendall tau=−0.10 for Monkey 1 and
0.02 for Monkey 2, p > 0.05; Supplementary Fig. 6d, f, j, l). We
also tested whether the saccade-aligned kernel might show a dip,
and examined how the timing of this saccade-related dip might be
related to RT. For Monkey 2, the saccade-related kernel did not
show a robust dip (Supplementary Fig. 6k). For Monkey 1, we
reliably detected a dip in the saccade kernel, and the latency of
this dip showed a negative correlation with RT (Kendall
tau=−0.79, p < 0.001; Supplementary Fig. 6e, g), suggesting that
its timing was largely locked at the sample onset.

Third, we examined whether the pattern of neural activity
associated with the dip is correlated across neurons with the
pattern associated with other task elements, such as motor
response or reward bias. We computed the Spearman correlation
between the non-time-resolved regression coefficients from
Supplementary Fig. 4. If these patterns covary across FEF
neurons, we would expect a significant positive or negative
correlation between the coefficient for coherence at sample onset
and either the coefficient for choice at saccade onset or reward at
presample onset. However, there was no significant correlation
with motor (Spearman r=−0.11, p= 0.34) or reward (Spearman
r=−0.20, p= 0.07). These results demonstrate that the evidence
dip is unlikely to reflect pre-saccadic activity.

Coherence-dependent and -independent dips are correlated.
Previous studies have reported a dip in neural activity in LIP and
FEF when the stimulus, such as randomly-moving dots, is first
presented. Indeed, we found a similar dip in FEF activity
immediately after the stimulus was first presented regardless of
whether it was presample or sample, e.g., in the 0-ms presample

condition (Figs. 3b, f; 5a, Supplementary Fig. 7a). We examined
whether this stimulus dip might show the same properties, in the
same neurons, as the coherence-dependent evidence dip. First, we
found that ~100–200 ms after presample onset, many FEF neu-
rons exhibited a significantly negative stimulus kernel but very
few neurons exhibited positive stimulus kernel (p < 0.05, one-
tailed t test; Fig. 5b, Supplementary Fig. 7b). For example, during
the interval 100–125 ms after stimulus onset, 49% vs 5% of
neurons for Monkey 1, and 35% vs 17% of neurons for Monkey 2,
showed a significant negative vs positive kernel. There was also a
dip in the mean stimulus kernel (Fig. 5c, Supplementary Fig. 7c,
brown). To determine whether individual neurons exhibited a
similar dip, we computed the first two singular vectors of the
stimulus kernels. While the first singular vector showed a
monotonic ramp (Fig. 5d, Supplementary Fig. 7d, pink), the
second singular vector resembled a dip (Fig. 5d, Supplementary
Fig. 7d, purple) which had high correlation with the mean sti-
mulus kernel (Monkey 1 r= 0.856, Monkey 2 r= 0.499) and
predominantly positive factor scores on individual neurons
(Monkey 1, 82%, Monkey 2, 83%; Fig. 5e, Supplementary Fig. 7e),
demonstrating that individual neurons showed a stimulus dip.

Next, we compared the stimulus dip to the evidence dip. The
timing of the stimulus dip was slightly earlier than the evidence
dip (Fig. 5c, Supplementary Fig. 7c), with a significantly earlier
minimum of the mean stimulus kernel than the mean evidence
kernel (50 ms, p < 0.0001 for Monkey 1, 100 ms, p < 0.0001 for
Monkey 2, bootstrapped two-tailed confidence interval across
neurons). We then compared the magnitudes of these two dips by
establishing a standardized index to quantify the dip magnitude
for individual neurons. The stimulus (evidence) dip index was
computed by z-scoring each stimulus (evidence) kernel, and then
finding the mean value at the time points in the interval
100–150 ms (125–175 ms) (see “Methods”). As expected, this
index showed a strong correlation with the factor scores on the
dip-like singular vectors (Supplementary Fig. 8). We found that
the evidence and stimulus dip indices were significantly
correlated across FEF neurons (p < 0.01 in both monkeys) (Fig. 5e,
Supplementary Fig. 7e), demonstrating that FEF neurons with a
strong evidence dip were likely to show a strong stimulus dip.

Fig. 5 Comparison of evidence and stimulus dips for Monkey 1. a Mean FEF activity is plotted for each presample and coherence condition at presample
(400 or 800ms presample) or sample (0 ms presample) onset. b The fraction of neurons at each point in time with significantly positive (top) or negative
(bottom) stimulus kernel (p < 0.05, one-tailed t test). c Mean stimulus kernel is shown with overlaid evidence kernel. Time is given as time since the
sample (evidence kernel) or presample (stimulus kernel). Error bars indicate 95% confidence interval of the mean. d The first (SV1) and second (SV2)
singular vector of the stimulus kernels are shown, along with (e) the corresponding factor scores for each neuron on SV2. f Evidence dip index is plotted
against stimulus dip index. Spearman correlation and two-tailed p-value is inset. Analyses are based on 57 neurons.
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However, we found no consistent association of evidence or
stimulus dip index with other neuronal properties, including
mean firing rate, directional selectivity index, visuomovement
index, or spike width (Supplementary Fig. 8).

Evidence dip and motor suppression. In order to understand the
relationship between the evidence dip observed in FEF activity
and the RT dip, we examined three potential mechanisms
through which changes in evidence might influence behavior
during perceptual decision-making. For all three mechanisms, it
is assumed that a change can be detected quickly, and that the
detection event triggers a downstream change in the relatively
slower evidence integration pathway. We also assume that the
ability to detect a change in evidence is probabilistic, with a
probability of detection increasing linearly with coherence. First,
in the “pause model” (Fig. 6a), when a change is detected, the
stream of evidence is briefly interrupted, or “paused”. This
mechanism can be thought of as blocking volatile information in
order to focus on a more stable evidence signal. Second, in the
“reset model” (Fig. 6b), the change elicits a partial “reset” of the

decision variable back towards its initial value. This mechanism
effectively discards any noise which may have been integrated
during the presample period. Finally, in the “motor suppression
model” (Fig. 6c), motor output is temporarily blocked, thereby
suppressing responses during this period without impacting the
decision variable. This mechanism ensures slow cognitive pro-
cesses have sufficient time to integrate new information before
making a choice. This strategy is effective because it reduces the
fraction of responses occurring during the first 200 ms, which are
close to chance (Supplementary Fig. 1c). For each strategy, we
extended the generalized drift-diffusion model (GDDM) descri-
bed previously and fit parameters to RT distributions (see
Methods).

First, we show the motor suppression model provided the best
fit to the RT distribution. Each of the models considered was able
to fit the coherence-dependent behavioral dip in the RT
distribution (Fig. 6e-h, Supplementary Fig. 9e-h). Therefore, we
evaluated the fit of each model to the data using Bayesian
information criterion (BIC). For comparison, we evaluated the
BIC of the model without any dip mechanism present. The

Fig. 6 Comparison of computational models of the dip. Schematic of the (a) pause model, (b) reset model, and (c) motor suppression model across
stages of the decision-making process. d The fit of each GDDM to the RT distribution, as quantified by BIC, is shown for each of the three models. The
simulated RT distribution for 800ms presample at the time of evidence onset is shown for the (e) pause, (f) reset, and (g) motor suppression models.
h The RT distribution for Monkey 1 in 800ms presample trials at the time of evidence onset. For each coherence, presample, and reward condition, the
difference in mean RT and accuracy, with and without the dip mechanism, are plotted for the (i) pause, (j) reset, and (k) motor suppression models. Neural
predictions of the (l) pause model, (m) reset model, and (n) motor suppression model, based on the mean decision variable or motor-decision variable
(see Methods) for inside (in-RF, black) and outside (out-RF, red) the response field on correct high-coherence trials for models fit to the RT distribution of
Monkey 1. o Population activity from FEF neurons in Monkey 1 for correct responses inside (gray) and outside (red) the response field for high-coherence,
800-ms presample trials.
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improvement in the fit of the model to the monkey’s behavior can
be quantified by the difference in BIC between the model with
and without the dip mechanism (ΔBIC). We found that the
improvement in fit is greatest for the motor suppression model
(Fig. 6d, Supplementary Fig. 9d). In addition, the motor
suppression model is able to capture the psychometric and
chronometric functions (Supplementary Fig. 1a,b). Therefore, the
motor suppression model is best able to explain the dip present in
the RT distribution.

Next, we show that the motor suppression model exhibits a
speed-accuracy tradeoff for all conditions in the task. All three
models showed a speed-accuracy tradeoff when considering mean
performance in the task as a whole, resulting in increased mean
accuracy but slower mean RT (Fig. 6i-k, Supplementary Fig. 9i-k,
black cross). However, a general mechanism for decision-making
should ideally not slow RT in environments where it does not
improve accuracy. We examined this by considering each task
condition separately. All three models showed the strongest
improvement in accuracy for 800 ms presample trials, for which
the animal is making the most random guesses, as indicated by
the elevated responses in the zero-coherence condition
(Fig. 2a, c). In addition, the motor suppression model resulted
in slower RT only for conditions where it also improved accuracy
(Fig. 6k, Supplementary Fig. 9k). By contrast, the pause and reset
models slowed RT in some conditions without improving their
accuracy (Fig. 6i, j, Supplementary Fig. 9i, j). This shows how the
motor suppression model can serve as an efficient general
mechanism for increasing accuracy without creating a generalized
deficit in speed.

A comparison of the FEF population activity with the FEF
activity predicted by each model also suggests that neural activity
might be most consistent with the motor suppression model. For
this analysis, we focused on the trials expected to show the
strongest dip and the highest probability of detecting the change
in evidence, namely, those with 800-ms presample duration, high
coherence, and the large reward target in the neuron’s response
field (Supplementary Fig. 10). The pause model assumes that
incoming evidence is briefly disregarded, and that the decision
variable should remain fixed at its present value. Thus, it predicts
a flattening of the decision variable trace and hence a flattening of
FEF activity, followed by an increase for trials with the chosen
target inside the response field and a decrease for those with the
chosen target outside the response field (Fig. 6l, Supplementary
Fig. 9l). This is inconsistent with the evidence dip in FEF. By
contrast, the reset model predicted that the decision variable and
population FEF activity should initially decrease in all trials but
increase again only when the chosen target is in the neuron’s
response field (Fig. 6m, Supplementary Fig. 9m). However,
population FEF activity decreased and then increased in all trials,
before it eventually decreased in trials where the animal chose the
target away from the neuron’s response field, resulting in a small
activity bump (Fig. 6n, Supplementary Fig. 9n).

The motor suppression model predicts that information about
accumulated evidence should be maintained during the dip, but it
also predicts that crossing the decision boundary should not
trigger a saccade during the motor suppression interval. Thus, we
hypothesized that FEF activity in this model might represent a
“motor-decision variable”, a version of the decision variable
which is scaled-down by a constant factor during the suppression
interval. The motor-decision variable encapsulates within a DDM
framework the idea that the FEF combines information from
accumulated evidence with signals linked to motor output. A
saccade is triggered when the motor-decision variable, not the
decision variable, crosses the boundary. Unlike the pause or reset
models, this can account for the rebound in the FEF activity
observed regardless of whether the chosen target is inside or

outside the response field (Fig. 6o, Supplementary Fig. 9o).
Therefore, the motor suppression model can parsimoniously
account for the FEF population activity as well as the RT dip.

Furthermore, the motor suppression model makes another
unique prediction about behavior, namely, that motor suppres-
sion triggered by the presample onset might affect other ongoing
motor activity, such as microsaccades. As before, the magnitude
averaged across trials should be proportional to the probability of
detecting a change, and hence, to the coherence. To test this
prediction, we examined the microsaccade rate over time for each
coherence and presample condition (Fig. 7a, e). We indeed found
that for the longest presample duration, there was a coherence-
dependent reduction in microsaccade rate, such that high
coherence changes elicited a greater reduction in microsaccade
rate (Fig. 7d, h). For one monkey, this difference in microsaccade
rate was also significant for the 400 ms presample duration
(Fig. 7c), and was reduced for the 0 ms presample duration
despite an overall increase in microsaccade rate at this time
(Fig. 7b). The other monkey had a very low microsaccade
rate during the first 600 ms of the task, making it difficult to
observe such a reduction (Fig. 7e-g). This dip in microsaccade
rate demonstrates that saccadic motor output is inhibited even
when it does not involve a response to a target. Thus, four lines of
evidence support the motor suppression model: it provides the
best fit to the RT distribution, it has a desirable speed-accuracy
tradeoff, it uniquely explains both the dip and rebound in FEF
activity, and it predicts the dip in microsaccade rate. These
converging results of behavior and neural activity provide
confidence that motor suppression is an important strategy for
changing evidence in perceptual decision-making.

Discussion
In the present study, we found that changes in evidence strength
during a perceptual decision-making task led to a transient sup-
pression of three separate measures, including RT distribution,
population and single-neuron FEF activity, and microsaccade
rate. Larger changes in evidence elicited a larger dip in all three
measures, an observation that goes against classic models in
which more evidence always shortens RTs and increases FEF
activity for the corresponding behavioral response. By fitting
models of three potential cognitive strategies to the behavioral
data, we found that transiently suppressing motor output after
change detection explains our observations. Critically, it also
explains the observations which motivated the other two strate-
gies we examined13,16,21,33–35. While the motor suppression
mechanism is sufficient to explain our observations, we cannot
exclude the possibility of additional mechanisms acting in par-
allel. Causal experiments which induce a transient suppression of
FEF activity could clarify the relationship between evidence
integration, motor suppression, and the behavioral and neural
dips. However, our results hold regardless of whether the dip in
FEF activity causes motor suppression, or whether it simply
reflects its presence.

Motor suppression is a general strategy for improving perfor-
mance in behavioral tasks. Upon observing a change in the
environment, briefly suppressing motor activity allows extra time
for slower cognitive processes to utilize the new information
before committing to a motor action36. Changes in the environ-
ment are most likely to be observed in our task during trials with
high coherences, leading to the observed negative coherence-
dependent dip. The mechanisms which drive our model may also
explain similar visual phenomena in humans, such as saccade
inhibition17,23,37 and the remote distractor effect24. Motor inhi-
bition may be a general mechanism used by humans to deal with
surprising stimuli21,25–27,32,38.
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Our results suggest that FEF does not directly encode the
decision variable, but rather, it encodes a mixture of the decision
variable and a motor signal. This means that FEF might not be
directly responsible for integrating evidence, a conclusion sup-
ported by causal experiments39,40 and by the fact that evidence
presented during the dip period can still be integrated13,16,41. The
classic DDM is a one-dimensional model, and we preserved this
unidimensionality in our implementation of motor suppression
by modeling a motor-decision variable in FEF. While this sim-
plification aids in our analysis, in reality, FEF activity is not one-
dimensional, and the mechanisms of motor suppression may
show little overlap with those for evidence integration, despite
both receiving representation within FEF. For instance, motor
suppression appears to mask an independent evidence integration
signal. While this work could not address the neurobiological
source of motor inhibition, one possibility is that ascending
excitatory input synapses onto an inhibitory subpopulation
within FEF, providing non-specific lateral inhibition across FEF.
The presence of such an inhibitory population within FEF is
supported by microstimulation studies, which show that sub-
threshold stimulation of regions of FEF outside of the response

field prevents task-related saccades during the stimulation
period42,43, and by experiments showing that cooling FEF leads to
increases in the duration of microsaccade suppression39. The
transient suppression of FEF may be mediated by the release of
inhibition44–47.

Alternatively, motor suppression might arise from reduced
ascending input, perhaps mediated by the subthalamic nucleus48,49,
which is common to many regions of the brain. In addition to FEF, a
stimulus dip has been observed in LIP12,50,51, superior colliculus52,53,
visual areas V1 and V254, and striatum55–57. Similar dips in neural
activity have also been observed in FEF during a countermanding
task58 and striatum during an anti-saccade task56, two tasks which
may require motor suppression. In behavioral experiments, the RT
dip occurs even after task-irrelevant changes in the visual field31,
after both high contrast changes and isoluminant changes31, and
across the visual field17,59,60. These studies collectively suggest that
the dip, and motor inhibition more generally, are not localized
exclusively to FEF or limited to our specific task, but may be a more
general mechanism for dealing with a changing environment. Thus,
dips caused by motor suppression may serve more broadly as a
marker for attentional shifts or perception of stimulus changes, such

Fig. 7 Dips in microsaccade rate.Microsaccade rate is shown for all trials, aligned to the presample onset, for Monkey 1 (a) and Monkey 2 (e). Highlighted
are the microsaccade rates centered around the onset of the sample during trials with 0ms (b, f), 400ms (c, g), and 800ms (d, h) presample for Monkey
1 (b–d) and Monkey 2 (f–h). The black bar indicates significance (p < 0.05, one-tailed test for a decrease in the mean, bootstrapping across neurons).
Shaded region represents bootstrapped 95% confidence interval of the mean.
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as through the orienting reflex61–63. We showed that the neural
mechanisms of motor suppression do not significantly overlap with
those of motor activity or reward bias. However, the neural
mechanisms of motor suppression may not be fully independent of
other cognitive processes, so it is possible that there is overlap in the
implementation of motor suppression with other processes unre-
lated to our task. Our results also raise caution about experimental
design and interpretation in tasks with changing evidence5–10: rather
than assuming accumulated or instantaneous evidence correspond
directly to brain activity, we must also consider transient effects
resulting from the changes in evidence.

Our results suggest that motor suppression is effective because
it prevents choices made using outdated evidence. During the task
used in our study, the animal’s performance was largely at chance
level during the first 200 ms after sample onset, in line with the
non-decision time in our model, and has comparable timing to
the end of the dip in the RT distribution and in FEF activity.
Unlike the other models, the motor suppression model slows RTs
only in task conditions where it also improves accuracy. We
interpret this to mean that motor suppression uses a fast process
to halt saccades which were planned using the noisy evidence
provided during the presample period, rather than the new
higher-coherence evidence. This finding is in line with experi-
ments showing that microstimulation after the onset of saccade
planning but before saccade onset slows the resulting saccade64.
From a normative perspective, this means that the dip mechan-
ism offers the ability to reject planned saccades which were made
from incomplete information. By chance, half of these premature
saccades will be correct and half will be incorrect. Those that are
by chance correct will have a slightly increased RT. Those that
would have been by chance incorrect will have an opportunity to
be corrected within the motor suppression window. The utility of
motor suppression, therefore, is to prevent erroneous responses
from being made based on the integrated noise prior to evidence
onset. Thus, by interrupting saccade planning for choices based
on noise, motor suppression can serve as a general mechanism for
increasing accuracy during decision-making in light of new
evidence.

Methods
Behavioral task. Two rhesus monkeys, 1 and 2, were trained to perform a two-
alternative forced-choice color-discrimination task (Fig. 1) described in Ref. 28. In
each trial of this task, a central square stimulus was presented consisting of a
20 × 20 grid of green and blue pixels that rearranged randomly at 20 Hz. The
animal indicated its choice by shifting its gaze to one of two flanking choice targets,
one green and one blue. The location of one target was chosen based on the
response field of the neuron recorded in that session, determined through a
memory saccade task, and the other target was opposite to the first. The trial was
rewarded via juice delivery if the selected target color corresponded to the majority
color of pixels in the sample. Reward cues were displayed surrounding the saccade
targets which indicated whether a large or small reward would be delivered for a
correct response to the corresponding target. Reward cues were randomly assigned
to a target on each trial. 3 (2) drops of juice were given for the large (small) reward
condition for Monkey 1, and 3-5 (1-2) drops for Monkey 2.

Stimulus presentation was divided into two consecutive periods containing an
uninformative “presample” followed by an informative “sample”. There was always
an equal number of blue and green pixels displayed during the presample period.
Task difficulty was manipulated by parametrically varying the difference in the
fraction of pixels of each color in the sample, which we refer to as color coherence.
A coherence of 0 indicated equal numbers of both colors, whereas 1 indicated a
solid color. No explicit cue was presented to indicate the transition from presample
to sample, and the change was instantaneous. The presample duration was selected
randomly from three possible time intervals—0, 400 or 800 ms—with equal
probability. Animals were allowed to direct their gaze to a choice target any time
after the onset of the sample. Eye movements were tracked at 225 Hz with a high
speed eye tracker (ET49; Thomas recording). A premature choice before the
sample onset aborted the trial, and was punished by a 2-s timeout. In a small
fraction of trials (5%), the sample was identical to the presample and maintained
zero color coherence throughout the trial. On these trials, animals were allowed to
respond at any point during stimulus presentation. The ratio of pixels in the high,
medium, and low coherence trials for Monkey 1 were 70:30, 60:40, and 53:47, and

for Monkey 2 were 63:37, 58:42, and 52:48, respectively. We also included a zero-
coherence condition for each monkey, for which the ratio was 50:50. The zero-
coherence condition therefore did not include a clearly-defined transition from
presample to sample. We analyzed 28,378 trials from Monkey 1 and 19,514 trials
from Monkey 2. All procedures used in this study were approved by the
Institutional Animal Care and Use Committee at Yale University, and conformed
to the Public Health Service Policy on Human Care and Use of Laboratory Animals
and the Guide for the Care and Use of Laboratory Animals.

Reaction time distribution and behavioral functions. The reaction time (RT)
distribution and psychometric function were calculated using all the trials in which
the monkey successfully completed a saccade to one of the two choice targets. This
included the trials with incorrect choices, the trials with choices during the pre-
sample period, and the trials in which the animal failed to maintain fixation on the
chosen target. The RT histogram was constructed using 20-ms bins and smoothed
with an order 1 Savitzky-Golay filter of width 5. We estimated 95% confidence
intervals in each coherence condition for visualization by bootstrapping across
trials. We performed 10,000 resamplings with replacement from all trials with the
given coherence across all sessions, computed the smoothed histogram of each
resample, and then found the 2.5% and 97.5% quantiles at each time point.

Statistical significance for the difference in RT histogram at each point in time
was determined using a separate bootstrapping procedure which compared the
highest and lowest coherence conditions. This consisted of performing 10,000
resamplings with replacement from the highest and the lowest non-zero coherence
trials, computing the confidence interval for mean RT difference between the two
conditions at each point in time. One-tailed tests were performed to test the null
hypothesis that neural activity specifically showed a reduction and not an increase.
The lowest non-zero coherence was used instead of zero-coherence trials due to the
limited number of zero-coherence trials. The chronometric function was calculated
using only correct choices made after the sample onset.

Analysis of microsaccades. We detected microsaccades using the method of
Ref. 33. Briefly, the time of microsaccade was determined as the center of an
interval in which the eye velocity exceeded six times a robust estimator of the
standard deviation. Large saccades, such as the saccades to choice targets and those
resulting in fixation breaks, were excluded. The microsaccade rate was calculated in
successive 20-ms bins aligned at the presample onset, and then smoothed using an
order-1 Savitzky-Golay filter of width 3. One-tailed tests were used to test for a
reduction in microsaccades.

Visualization of population and single-neuron activity. We recorded from 57
neurons in the frontal eye field (FEF) of Monkey 1 and 23 neurons from FEF in
Monkey 2. Neurons were sorted online and tracked throughout the experiment.
For each neuron, we constructed a mean spike density function for a given
experimental condition by calculating mean spike counts in successive 20-ms bins
aligned at the onset of the presample or sample, and smoothing with an order 1
Savitzky-Golay filter of width 3. This was then normalized by subtracting the mean
firing rate of each neuron during the presample period of the trials with an 800 ms
presample duration for all conditions. These spike density functions were averaged
across all neurons together to obtain the population activity. Confidence intervals
for visualization of the population activity were estimated by bootstrapping across
neurons. We performed 10,000 resamplings with replacement from all neurons
across all sessions, computed the smoothed spike counts of each resample, and
then found the 2.5% and 97.5% quantiles at each time point. Confidence intervals
for statistical significance for the mean difference in spike count between highest
and lowest coherence conditions were obtained from a separate bootstrapping
procedure, where a sampling distribution of mean spike difference was formed
from 10,000 resamplings with replacement of neurons for both conditions. One-
tailed tests were used to test for a reduction in neural activity.

Activity shown for individual neurons was computed similarly to the
population activity, but smoothed using an order 1 Savitzky-Golay filter of width 5
for visualization, and no normalization was applied.

Single-neuron regression analysis. In order to understand how task events and
experimental conditions modulated the firing rate of each neuron over time, an
ordinary least squares regression model was used to analyze the activity of indi-
vidual neurons. Spike counts were predicted during three 100-ms intervals: the
presample interval (0 < t < 100 ms), the sample interval (Pi þ 100< t < Pi þ 200
ms), and the saccade interval (Si � 50< t < Si þ 50 ms), where t is the time since
presample onset, Pi is the presample duration on trial i, and Si is the time of the
saccade on trial i. For each interval I, we predicted spike counts as

xiI ¼ β0 þ β1Ci þ β2Ri þ β3Fi ð1Þ
where Ci is the color coherence on trial i, Ri is whether the large or small reward
target was in the response field (Ri ¼ 1 or �1, respectively), and Fi is whether or
not the choice was into or out of the response field (Fi ¼ 1 or �1, respectively).

To explore the change in spiking activity in response to task events, we
implemented a time-resolved ordinary least squares regression analysis. Spikes
were counted using 25-ms bins (Δt = 25). Spike counts xit at time t (measured from
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the presample onset) for trial i was predicted as

xit ¼ kPt þ kPRt Ri þ kEt�Pi
þ kECt�Pi

Ci

� �
δPi≠0

þ kSt�Si
þ kSFt�Si

Fi ð2Þ

where, for trial i, Pi is the presample duration, Si is the time of the saccade, Ci is the
color coherence, Ri is whether the large or small reward target was in the response
field (Ri ¼ 1 or �1, respectively), Fi is whether or not the choice was into or out of
the response field (Fi ¼ 1 or �1, respectively), and δ is the indicator function. The
k values correspond to kernels aligned to different events; kj0 is the bin containing
the given event for kernel j, and kjt is the bin t ms relative to the event, where

t 2 Tj
start ;T

j
start þ Δt; ¼ ;Tj

end

n o
and kjt ¼ 0 if t < Tj

start or t > Tj
end . Each kernel is

identified by a short string, where the first letter indicates the alignment (“P” to
presample, “E” to sample or evidence onset, and “S” to saccade) and subsequent
letters indicate any conditions (“R” for reward magnitude, “C” for coherence, and
“F” for the response field location). Presample-aligned kernels cover the entire trial
duration, while sample-aligned kernels and saccade-aligned kernels span a short
period surrounding or following the event for sample-aligned and saccade-aligned
kernels, respectively. Since here we focus on the effect of evidence change (e.g.
transition from presample to sample) on neural modulation, we estimated evidence
kernel only for the trials where presample duration was not zero (δPi≠0). The six
kernels in the equation above have constants given in Table 1.

In the main text, we focus our analysis on the coherence-dependent evidence-
aligned EC kernel and the presample-aligned P kernel, which are expected to reflect
transient reductions, or dips, in FEF activity. Thus, we use the term “evidence
kernel” to refer to the EC kernel, and the term “stimulus kernel” to refer to the P
kernel minus a baseline, chosen as the mean value of the P kernel in the interval 0-
100 ms.

To control for the dip as an artifact of saccadic activity, we fit a separate
regression model which differed only in the kernels used (Supplementary Fig. 6a).
This model includes extended saccade kernels scaled by the coherence. To
distinguish the kernels in this model from those of the previous model, we
appended a “*” suffix. The full model is

xit ¼ kP*t þ kPR*t Ri þ kE*t�Pi
þ kEC*t�Pi

Ci

� �
δPi≠0

þ kS*t�Si
þ kSC*t�Si

Ci

þ kSI*t�Si
þ kSIC*t�Si

Ci

� �
Si

ð3Þ

The kernels used for this analysis are shown in Table 2. Likewise, the “evidence*
kernel” is defined as the EC* kernel, and the “stimulus* kernel” is defined as the P*
kernel minus the mean of the P* kernel in the interval from 0 to 300 ms.

Analysis of transient activity. To examine whether the dips in the mean popu-
lation kernels were representative of kernels at the single neuron level, singular
value decomposition (SVD) was performed on the evidence and stimulus kernels
across neurons. SVD is a standard technique in linear algebra which is similar in
principle to principal component analysis (PCA), but does not normalize the
single-neuron kernels by subtracting the mean kernel across the population at each
time point. Briefly, for a matrix of kernels M, the singular vectors are defined to be
the eigenvectors vi of the matrix MTM, sorted by decreasing eigenvalue. Likewise,

the factor scores for the i’th singular vector are defined as the projection of the data
onto these singular vectors, namely Mvi. Stimulus kernels were first truncated to
the interval from 0 to 300 ms after stimulus onset before performing SVD.

To confirm that the dip in FEF activity was not confounded by pre-saccadic
activity, we analyzed the timing of the dip separately for the trials of different RT
quintiles. FEF population activity for each RT quintile was computed similarly to
the FEF spike density function described previously by using a first-order Savitzky-
Golay filter of width 5 (Supplementary Fig. 6d-g, j-l). Fifteen resamplings of the
mean spike density function were computed, and the first local minimum for each
condition in each resampling was detected by a simple local minimum detection
algorithm. The algorithm stepped through the timeseries until encountering a value
exceeding the observed minimum value by a fixed tolerance determined empirically
to be 0.12 spikes per second. Kendall’s tau was used for correlation and statistical
tests due to the limited temporal resolution and limited number of quantiles
resulting in several ties.

'To understand the difference in latency between the dip in the evidence kernel and
the dip in the stimulus kernel, we analyzed the mean of each of these kernels. We
determined the minimum as the median of the three lowest values in the kernel within
300ms from the sample or presample onsets for the evidence or stimulus kernels,
respectively. We tested whether the minimum of the evidence kernel was later than the
stimulus kernel by bootstrapping across neurons. We performed 10,000 resamplings
with replacement from all evidence or stimulus kernels, computed the minimum of the
mean using the procedure described above, and tested whether the minimum of the
stimulus kernel was earlier than that of the evidence kernel.

The reduction in neural activity following sample or presample onset was
quantified using the evidence and stimulus dip indices. These were used to provide
a direct comparison between the evidence and stimulus dips, and to compare them
to other physiological data. Dip indices were computed by z-scoring the kernel and
then taking the mean z-scored evidence or stimulus kernel value from an interval I.
We determined I separately for the evidence and stimulus dip indices by finding
the two time points with the largest fraction of significant kernels (Figs. 4d, 7b,
Supplementary Figs. 4d and 7b). For the evidence dip, we found I=[125,175] ms
for both monkeys. For the stimulus dip index, we found I=[100,150] ms using the
same procedure for Monkey 1. The two minimum time points were not
consecutive for Monkey 2, so we used the same interval as in Monkey 1.

Generalized drift-diffusion model. The reaction times were modeled using the
generalized drift-diffusion model29 (GDDM), which extends the standard drift-
diffusion model1 by allowing the model parameters to be arbitrary functions of
time. The form of the GDDM used here is one of the models considered in Ref. 28,
and was previously found to have excellent performance during the task used in the
present study. The model includes several extensions on the standard DDM to
accommodate the temporal and reward structure of the task. For the task’s tem-
poral structure, the model includes leaky integration, as well as a delayed linear
increase in gain during each trial. For the task’s reward structure, the model
includes a baseline offset— impacting both starting position and the value to which
leaky integration decays—and a “mapping error” in which the high reward choice
is sometimes chosen after integrating sufficient evidence for a low reward choice.

Table 1 Constants defining the regression kernels.

Kernel (j) Event aligned to Scaling variable Kernel start time (ms) (Tj
start) Kernel end time (ms) (Tj

end)

P Presample −500 2500
PR Presample Large reward in response field (Ri) −500 2500
E Sample 0 300
EC Sample Coherence (Ci) 0 300
S Saccade −200 200
SF Saccade Choice in response field (Fi) −200 200

Table 2 Constants defining the regression kernels for the modified regression model.

Kernel Event aligned to Scaling variable Kernel start time (ms) (Tj
start) Kernel end time (ms) (Tj

end)

P* Presample −500 2500
PR* Presample Large reward in response field (Ri) −500 2500
E* Sample 0 400
EC* Sample Coherence (Ci) 0 400
S* Saccade −800 200
SI* Saccade Choice in response field (Si) −800 200
SC* Saccade Coherence −1000 200
SIC* Saccade Choice in response field and coherence (Ci × Si) −1000 200
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The GDDM is given by the equation

dx ¼ �l x þmtð Þdt þ It>DΓ tð ÞCs dt þ Γ tð ÞdW ð4Þ

where s is the signal-to-noise ratio, l is the leak constant, m is the strength of the
time-dependent reward bias, C is the coherence, D is the duration of the presample,

W is a Wiener process, and Γ tð Þ ¼ γ0; t < t0
γ0 þmγ t � t0

� �
; t ≥ t0

�
.

This GDDM model was fit to each monkey separately. It was fit using
maximum likelihood on the full distribution through differential evolution29. For
robustness, fitting was performed using an exponential distribution mixture model
with a rate and mixture strength fit to data28. The model was simulated by solving
the Fokker-Planck equation with a timestep of 5 ms and a space discretization
of 0.005.

Modified GDDM to test potential mechanisms underlying the dip. In order to
understand the relationship between the evidence, stimulus, and RT dips, we
constructed modified GDDMs, implementing three potential cognitive mechan-
isms. The pause model was implemented by setting the drift rate and noise to 0
within an interval, [tstart , tstop] ms. The reset model was implemented by setting the
leak l to a fixed value ldip within an interval, [tstart , tstop] ms, where ldip is fit to the
data. The motor suppression model was implemented by introducing a motor-
decision variable x′ such that, for decision variable x,

x0 ¼ cx; tstart ≤ t ≤ tstop
x; otherwise

�
ð5Þ

where 0 < c < 1. Here, we arbitrarily set c = 0.2. We assume that, while the decision
variable x continues to track integrated evidence, we only trigger a decision when
the motor-decision variable x′ crosses the boundary. The motor-decision variable
combines two separate processes – evidence integration and motor suppression
– into a single decision variable to produce predicted FEF activity. In the neural
implementation of motor suppression, it is likely that the integration process and
the motor suppression process would evolve independently of each other, and are
only combined into the motor decision variable in the final stage. For the purpose
of efficient simulation, we use an equivalent formulation whereby the bound is
increased by a factor of 1/c during the interval from [tstart , tstop] ms. In order to
mitigate numerical artifacts caused by the abrupt change in bound, the change in
bound height was implemented to be a smooth increase and decrease in the form of
the probability density function of the Beta(3,3) distribution.

We assume that these dips were more likely to occur in trials with a higher color
coherence, with a probability determined by a saturating sigmoidal curve with a
fixed scale which was fit to the data. The probability of detecting the change on any
given trial (and therefore invoking the given dip mechanism) was

pdetect ¼ 2= 1þ exp �λCð Þ� �� 1 ð6Þ

where C is the color coherence ranging from 0 for an equal pixel ratio to 1 for a
solid color. A total of three additional parameters were fit for the pause and motor
suppression models, and four additional parameters for the reset model. Four
GDDMs were constructed, one for each of the three dip mechanisms described
above, and one baseline containing none of the dip mechanisms. Parameters were
fit for each model by simulating with the Crank-Nicolson (pause and reset) or
implicit (motor suppression) method, using differential evolution to optimize the
likelihood over the full probability distribution29. Measurements of model BIC
were computed using this full distribution likelihood. To compute ΔBIC, we
subtracted each modified GDDM’s BIC from the BIC of the unmodified GDDM.

To gain insights into the potential function of the dips in perceptual decision-
making, we evaluated the impact of each dip mechanism on the RT and accuracy
by comparing the RT and accuracy of each of the modified GDDMs to those from
the same modified GDDM but with the modification disabled, i.e. keeping the same
parameters for all other aspects of the model.

Predicted FEF activity was determined by transforming the decision variable
trace. For each model, we simulated the monkey’s highest coherence when the
correct response was inside or outside the response field, with an 800-ms presample
and the large reward target inside the response field. We recorded the time
evolution of the decision variable distribution, and took the mean at each point in
time to obtain a deterministic prediction of the decision variable value. For the
motor suppression model, while we simulated by increasing the integration
bounds, we interpret this equivalently as a temporary multiplicative suppression of
the decision variable by the corresponding amount. As a result, FEF activity was
predicted by dividing the decision variable value by the height of the bound.
Finally, to simulate the spike density functions, decision variable traces were
thresholded at 0 and filtered with a Gaussian kernel. Predicted RT distributions
were likewise determined by computing the first passage time of the GDDM and
smoothing with a Gaussian kernel.

Simulations were performed using the PyDDM package29 on Python 3.
Stimulus presentation was controlled by custom software designed for our
experimental setup.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GDDMs from this study, including online demos, are available in the PyDDM
documentation at: https://pyddm.readthedocs.io/en/latest/cookbook/papers/dip.html.
Other datasets generated during and/or analyzed during the current study are available
from the corresponding author by request. Source data are provided with this paper.

Code availability
All code used to generate the figures in this paper is available at https://github.com/
mwshinn/figures_from_dip_paper.
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