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Quantifying uncertainty in aggregated climate
change risk assessments
Luke J. Harrington 1✉, Carl-Friedrich Schleussner 2,3 & Friederike E. L. Otto4

High-level assessments of climate change impacts aggregate multiple perils into a common

framework. This requires incorporating multiple dimensions of uncertainty. Here we propose

a methodology to transparently assess these uncertainties within the ‘Reasons for Concern’

framework, using extreme heat as a case study. We quantitatively discriminate multiple

dimensions of uncertainty, including future vulnerability and exposure to changing climate

hazards. High risks from extreme heat materialise after 1.5–2 °C and very high risks between

2–3.5 °C of warming. Risks emerge earlier if global assessments were based on national risk

thresholds, underscoring the need for stringent mitigation to limit future extreme heat risks.

Extreme weather events are among the most pertinent perils of anthropogenic climate
change1. There already exists robust evidence that the impacts from changes in the
intensity and likelihood of extreme weather events are widespread2–4, with extreme heat

particularly affecting large fractions of the global population5–8. These changes are already visible
over the historical period, as robust increases in extreme weather indices over land can already be
observed at warming of only half a degree9. Recent research on compound10 and concurrent11

extreme events, together with the fact that relatively moderate extremes can lead to large
damages12,13, implies that fundamental limits to adaptation to extreme weather events may be
reached for parts of the world at lower warming levels than previously thought14.

Changing likelihoods and intensities of extreme weather events and their impacts are one of
five “Reasons for Concern” (RFCs) developed in the context of reports by the Intergovernmental
Panel on Climate Change (IPCC), to allow for an aggregated representation of changing climate
impacts with rising global temperatures15,16. First introduced in the third Assessment Report of
the IPCC16, subsequent reports including the Special Reports on Global Warming of 1.5 °C1

(SR1.5), and Oceans and Cryosphere in a Changing Climate17, included important updates to
the context (see Fig. 1 for an overview of the RFC framework). The RFC framework commu-
nicates scientific understanding about risks relating to varying levels of climate change, and in
doing so, represents a critical communication tool for the scientific community18,19. As with any
approach to aggregation and simplification, a range of challenges and shortcomings of the
concept have been discussed. Impacts of anthropogenic climate change are strongly modulated
by the vulnerability and exposure20 of a community, as well as how emerging climate hazards
themselves differ from region to region21. Recent reviews of the concept by O’Neill and et al.18

and Zommers et al.19 have further examined the important role of expert judgement, and the
need for improvements on how expert judgement is applied in a systematic fashion. These
studies identified a number of research needs to improve the literature base the RFCs depend
upon, and thus the RFCs themselves. Three aspects were highlighted: the scientific basis to assess
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the transitions between different risk levels, the integration of
vulnerability and adaptation, and the need for transparency
associated with uncertainty in expert judgement.

This perspective addresses these aspects by proposing a
transparent methodology to quantitatively identify crossing of
thresholds from one risk level to the next while explicitly taking
uncertainties from spatial heterogeneity and expert judgements
into account.

Problems with the current framework
In previous assessments, the categories to interpret different risk
levels in the RFCs are colour coded18: white represents negligible
risks; yellow denotes moderate risks, defined as detectable and
attributable with at least medium confidence; red denotes severe
and widespread impacts; while purple is associated with severe
impacts which are either irreversible or persistent, combined with
a limited ability to adapt to these impacts.

Two aspects of this framework promote ambiguity when
defining the transition between different risk categories. First, the
sequential introduction of exposure and vulnerability compo-
nents as being relevant only for the high and very high risk
categories, respectively, complicates the justification to transition
between any two risk levels. For example, the number of vul-
nerable people exposed to the impacts of extreme weather will not
instantaneously change from zero to many, when the risk cate-
gory changes from moderate to high or very high—rather, the
numbers will progressively increase as global temperatures con-
tinue to rise. Second, the aggregated nature of the different risk
categories (most commonly on the global level) do not allow for
consideration of different risk thresholds being crossed faster in
some regions of the world than others. A simple global risk
transition might give the impression that substantial impacts
associated with extreme weather suddenly emerge across a large
(or “widespread”) proportion of the global population simulta-
neously, which is not the case. Similarly, high risks at the regional
level might occur at lower levels of warming, well before an
equivalent transition is experienced globally.

Regional disparities in risk emergence are not only the result of
different emergence of physical climate hazards but also need to
account for very different vulnerabilities and exposure that

contribute to the climate risk. Any efforts to evaluate risk across a
breadth of vulnerability profiles, whether between countries or
within them, requires particularly careful consideration. While
these differential distributions of impacts are explicitly addressed
in one of the categories of the RFC framework, RFC3, the ques-
tion of a meaningful aggregation of very different regional risks
remains an important one for all categories.

A consistent method to quantify the local risks of extreme
heat
To address these shortcomings, we present a method that com-
bines spatially resolved climate hazard, population (exposure)
and vulnerability indicators to derive local risk categories, before
considering how to assign the globally aggregate risk associated
with that RFC as a subsequent step. The key focus here is one of
the fastest emerging hazards, extreme heat; the number of people
exposed to extremely hot days; and the quality of governance and
institutions of a country, as a measure of both vulnerability and
the capacity for adaptation. Though knowledge about limits to
adaptation is still incomplete, governance has been identified as a
crucial measure for states to deal with adverse effects of extreme
weather, both in the direct aftermath of an extreme event hap-
pening as well as long term22,23. Clearly, this indicator does not
fully capture the multifaceted, multilevel nature of adaptation
including not only the state but also the community and house-
hold level. But for the aggregated analysis on country and global
level presented here, it represents a meaningful proxy for vul-
nerability and adaptive capacity bearing its limitations in mind.
And indeed, it is those states with a low governance index (GI)
where extreme weather events are regularly causing widespread
damages today24 and where new challenges emerging from a
changing climate are rarely anticipated25.

Characterising the risks associated with extreme weather events
would ideally require a multivariate assessment of multiple classes
of severe weather. However, to best characterise the geographic
signal of hazard changes in a warming climate, while minimising
uncertainty associated with the magnitude of future signals, we
focus only on emergent increases in extreme daily temperatures.
Since changes to extreme heat are emerging faster than other
types of weather-related hazards by orders of magnitude26, they

Fig. 1 The assessment of impacts and risks of climate change in IPCC Reasons for Concern framework. Reproduction from Fig. SPM2 of the IPCC Special
Report on the Global Warming of 1.5 °C (SR1.5)1.
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subsequently dominate the aggregate pattern of emergent hazards
that could be considered under the labelling of RFC2 (“extreme
weather events”). Discussing the implications of our approach for
all RFCs in related key risks goes beyond the scope of this con-
tribution. We note, however, that our proposed framework is also
amenable to the introduction of other hazards, and uncertainty
relating to the choice of metric is discussed further below.

Figure 2 presents an illustration of this method to quantify local
population exposure to the risks associated with extreme heat. For
each person in the world under a future scenario, the strength of
the governance structures in the country in which they live are
compared against the magnitude of projected changes in extreme
heat, with results for all members of the global population then
aggregated. Signal-to-noise (hereafter S/N) ratios in annual max-
imum daily maximum temperatures (TXx) are presented on the y
axis, with corresponding GI values on the x axis characterising
country-level governance as a score between 0 (poor) and 1
(excellent; see ref. 22 and “Methods” for further details).

The blue shaded contours in Fig. 2 show the population exposed to
the different risk categories under a “middle-of-the-road” (SSP2)
population scenario in 2050, and in response to global-mean tem-
peratures reaching 2 °C above early industrial levels (see “Methods”).
For simplicity, we hereafter focus on alternative socioeconomic out-
comes by the year 2050 only, but explore alternative outcomes for
2090 in Supplementary Information.

The shaded contours in the background of Fig. 2 illustrate how
risk is defined to factor in both differences in the slope of changes
in extreme heat, as well as regional differences in vulnerability. In
line with O’Neill et al.18, we have identified all hazard changes
smaller than +1σ as non-detectable (grey). For the transition
between moderate and high risk, we calibrated the threshold so

that it is reached when a country with very poor (excellent)
governance experiences a+ 2σ (+3σ) shift in TXx, using linear
gradients to interpolate across the GI space. Similarly, for the
threshold between high and very high risks, we assumed a+ 3σ
increase in TXx for the lowest GI thresholds, and gradients such
that TXx >+5σ represents a crossover into the “very high risk”
category for a country with excellent governance (GI of 1) in
2050. There are equally valid arguments to have a negligible
gradient for GI scores below 0.5, and stronger increases there-
after. However, given the main aim is to introduce a quantitative
methodology rather than presenting a perfect framework, we
chose the simpler option. The hazard risk thresholds represent
different classes of extreme event emergence linked to the
“severe” and “persistence” criteria for the RFC risk level transi-
tions. A+ 3σ increase in TXx is roughly equivalent to about a one
in hundred to thousand year extreme event, a highly unusual
extreme, whereas a+ 5σ increase equates to quasi-unprecedented
extremes being the new normal and thus the persistence of a new
climate regime27,28.

Under this scenario, which we also use as a baseline for sub-
sequent analysis, nearly 500 million people are exposed to “very
high” risks associated with local changes in extreme heat-related
hazards, while 2.9 billion and 5.4 billion people are exposed to
“high” and “moderate” risks, respectively.

Figure 3 further expands these results, showing the global
population exposed to each of the four risk categories by 2050
under five scenarios of socioeconomic development (shared
socioeconomic pathways, SSPs), and associated with different
prescribed thresholds of global temperature rise. The numbers in
Fig. 3 denote billions of people exposed to each of the risk
categories, while the background colours illustrate the fraction of
the global population in each category. Results show more than
two billion people are exposed to “very high” risks associated with
extreme heat after 2.5 °C of warming, irrespective of the SSP
scenario considered. However, the number of people exposed to
the “very high” risk category is estimated to be 50% higher under
the SSP3 scenario when compared with corresponding exposure
levels under the SSP1 scenario: this reflects the former being
described as a “rocky road” scenario typified by regional rivalries
and high population growth, while the latter is characterised by
lower levels of population growth and more sustainable devel-
opment pathways22,29.

It is noted that data from the socioeconomic scenarios in Fig. 3
remain fixed on values for the year 2050, while the warming
thresholds and associated changes in climate hazards are
extracted from different time slices of a high emissions scenario
throughout the 21st century (following ref. 30). The primary value
of this exercise is to systematically explore variability in the
people exposed to risk categories under a wide range of scenario
uncertainty31 rather than explicitly considering the viability of
these different combinations in the future, which has been done
elsewhere32.

Dimensions of uncertainty in aggregated risks
Threshold-based aggregation is subject to expert and value jud-
gements and we have introduced a set of well-justified but
nevertheless subjective criteria to define risk level transitions. In
order to allow for transparency on the implications of those
choices, a sensitivity analysis is in order to also provide estimates
for the overall uncertainty. Our approach, explicitly resolving
proxies for the climate hazard (TXx), exposure (population) and
vulnerability component (governance), offers an opportunity to
disaggregate the relative magnitude of these different dimensions
of uncertainty. To do so, we explore in Fig. 4 the dimensions of
uncertainty associated with the example presented in Fig. 2,

Fig. 2 Identifying the local exceedance of heat risk thresholds associated
with the “Reasons for Concern” framework. Heat maps here show the
range of country-level governance index (x axis) and the signal-to-noise
ratio of changes in the hottest day of the year (TXx, y axis) experienced by
different fractions of the global population under one future scenario of
warming and socioeconomic change. Population and governance index data
are presented for the year 2050 under a middle-of-the-road socioeconomic
scenario (SSP2) while the multimodel median exposure to extreme heat (y
axis) is shown in response to a global temperature rise of +2 °C above
early industrial levels. Coloured numbers above the panel denote the total
number of people within each of the four risk designations, which are
represented by shaded regions in the background of the main figure: purple
represents “very high” risks; red represents “high” risks; yellow denotes
“moderate” risks and grey denotes “low” risks.
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which we hereafter refer to as the “default” profile of risk. The
middle column of panels in Fig. 4 present a repeated sequence of
the same set of assumptions as in Fig. 2: S/N ratios of TXx using
the Coupled Model Intercomparison Project Phase 5 (CMIP5)
multimodel median response to 2 °C of warming, under 2050 and
a “middle-of-the-road” SSP2 scenario.

We select two alternatives to these default scenarios, termed
the “optimistic” and “pessimistic” variants, for each of the dif-
ferent dimensions of uncertainty: (1) that which relates to the
spread in CMIP5 model outcomes; (2) uncertainty related to
future socioeconomic development (using the SSPs); and (3)
“vulnerability” uncertainty, which we propose relates to how local
risk thresholds vary in response to both the GI and severity of the
climate hazard found in a given location.

All of these uncertainty sources yield variations in the number
of people associated with each of the four risk categories, albeit to
differing extents and for different reasons. For example, when
considering the multimodel 10th (Fig. 4a) and 90th (Fig. 4c)
percentile of CMIP5 TXx changes at each grid cell, the number of
people locally exposed to the “very high” risk category changes
significantly, from an estimated half a billion under the default
profile of risk to as few as 1.3 million (models with small changes
in extremes) or as many as 2.47 billion people (models with large
changes in extremes), signifying a fivefold increase from the
default profile in the latter case. These differences in the “high”
and “very high” risk category counts between the median and
pessimistic outcomes related to model uncertainty are compar-
able to those found when 3 °C of global warming is experienced
by 2050, instead of only 2 °C (Fig. 3).

When comparing across different SSP scenarios (middle row of
Fig. 4), the change in population counts associated with each risk
category are less prominent. While the bulk of the global popu-
lation live in countries with poorer levels of governance under
SSP3, relative to SSP1, the numbers of people falling within the
“moderate” or “high” risk thresholds nevertheless remain similar

to the default profile of risk under SSP2. However, these differ-
ences do become more pronounced if the same levels of warming
are assumed to be reached only in 2090 instead of 2050, as the
total global population diverges substantially across the three
scenarios later in the 21st century, resulting in much greater
changes in subsequent exposure to the different risk categories
(Supplementary Fig. 2).

In addition, these SSP-driven differences would become even
more pronounced if the considerable uncertainty underpinning
the assumptions used to quantify “vulnerability” are taken into
account. In fact, when other ways to quantify local risk as a
function of GI and TXx are assessed in isolation (bottom row of
Fig. 4), the differences in risk exposure between the optimistic
and pessimistic vulnerability assumptions are comparable to
those associated with climate model or emissions-related scenario
uncertainty.

From local to global risk aggregation
Another layer of expert judgements needs to be introduced to
aggregate from local risk assessments to a global level. Here, we
choose to define transitions in aggregate risks as a function of the
number of people within each of the risk categories. To reveal
how these aggregation thresholds represent a further source of
uncertainty in quantifying a final risk category, we again consider
a range of three equally plausible options. For the “risk-averse”,
“risk-neutral” and “risk-tolerant” variants, we arbitrarily select
the number of people locally exhibiting the “very high” risk cri-
teria to respectively exceed 0.75, 1.5 or 3 billion people, for the
overall risk to be classed at this highest level. Failing this, the
aggregate risk will instead be classed as “high” if the number of
people exceeding the high or very high risk threshold, exceeds the
same thresholds. Similarly, if these criteria are not satisfied, then
the aggregate risk will be classed as “moderate” if the number of
people with local risks classed as moderate or worse, exceed the
same thresholds.

Fig. 3 Socioeconomic and emissions scenario uncertainty in local heat risks. Each panel shows the number of people locally exposed to each of the four
risk categories designated in Fig. 2, using population data from five socioeconomic scenarios (SSPs) in the year 2050, and calculating exposure levels for a
range of specified global warming thresholds. The numbers in the boxes denote billions of people associated with that risk category; the corresponding
shading denotes the fraction of the global population associated with that risk category for that particular SSP scenario.
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When exploring the full range of plausible future risks asso-
ciated with extreme heat (Fig. 5a–c), we find a breadth of out-
comes that are consistently worsening with additional warming.
Figure 5d presents results for the three different aggregation
thresholds, after necessarily reducing uncertainty in the rela-
tionship between GI and the emergence of local risks to a “best-
guess” estimate. A transition from moderate to high risks occurs
in all but the “risk-tolerant” case between 1.5 and 2 °C, similar to
the expert assessment presented for RFC2 in the IPCCs SR1.5
report1. Furthermore, our approach also allows for a categorisa-
tion of a transition to the “very high” risk category that,
accounting for the SSP and threshold uncertainty dimension, can
occur after as little as 2 °C, or as much as 3.5 °C of warming.

Our approach allows for a transparent quantification of risks,
while at the same time provides for traceability of transition
ranges between risk levels to different dimensions of uncertainty:
in this case, risk thresholds and socioeconomic scenario devel-
opment representing changes in dimensions linked to exposure
(population) and vulnerability (GI). This allows to not only
provide a best estimate for risk transition but also to inform the
risk transition ranges (Fig. 5e). When based on a transparent
methodology like in the case presented here, the transition ranges
linked to RFCs can be efficiently utilised to integrate information
about socioeconomic dependencies and other sources of uncer-
tainties of risk transitions. Our approach also allows to illustrate
RFCs following a precautionary approach. If, e.g., the upper 90th
quantile of climate model uncertainty is considered, “high” risks

would be reached already today at 1 °C of warming, with the
transition to “very high” risks above 1.5 °C (compare Fig. 5b, c).

Regional or national risk assessments can be instructive when
interpreting these global thresholds. Figure 5f provides an illustration
of such risks for different countries downscaling the global popula-
tion thresholds set for the global assessment provided in Fig. 5e. It
illustrates how high and very high risks for vulnerable tropical
countries emerge at lower levels of warming than the global average,
while developed countries spread over temperate and subtropical
climate zones like the USA would experience high risks of extreme
heat only at and above 3 °C of warming following the global
threshold setting applied here. This might be partly due to the choice
of the climate hazard indicator used here, which is sensitive to
regional differences in temperature variability. As natural variability is
higher in temperate regions compared to tropical regions, emergence
of 3σ and 5σ will occur later at higher latitudes33.

National level risk assessments may differ from such an
approach. Specifically, recent heat extremes experienced in wes-
tern North America34, as well as at the Arctic Circle provided a
stark reminder of the risks posed by extreme heat in mid and high
latitudes. Based on these observed extremes occurring at around
1.2 °C of warming, a regionally informed global assessment of
risks can be perceived that assesses “high risks” being reached at
1.5 °C for the USA. Such an assessment is illustrated in Fig. 5f,
based on a pessimistic vulnerability assumption and setting the
aggregate risk exposure threshold to 5.5% of each country’s 2050
population under SSP2. Risks for other countries and the global

Fig. 4 Examining the individual dimensions of uncertainty affecting local risk estimates. As with Fig. 2, the background colours represent the four risk
categories (grey is negligible; yellow is moderate; red is high; purple is very high) associated with different thresholds of extreme heat hazards, and
governance index thresholds. Panels in the middle column (b, e, h) represent the same scenario as for Fig. 2: the median CMIP5 estimate of the number of
people exposed to each of the four risk categories in the year 2050 under SSP2, when global temperatures are 2 °C above early industrial levels. a and c
explore variations in these results due to climate model uncertainty; d, f explore variations due to alternative SSP scenarios; and g and i consider differences
arising from uncertainty in the vulnerability threshold (as designated with variations of local risk thresholds in the background). The four coloured numbers
above each panel denote billions of people within each of the four risk categories.
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level are assessed using the same methodology. The common
framework allows to translate such regionally informed threshold
selections to other regions and the global level. Such an RFC
threshold selection would greatly bring forward the time to risk
exceedance everywhere. We find “high risks” for most developing

countries as well as the global level already present at 1 °C of
warming and global and developing country “very high risks”
emerging at 1.5 °C (compare Fig. 5f). Similar arguments could be
made based on other risk assessments for India, where potentially
deadly heat stress could become commonplace above 1.5 °C35.
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Towards increased transparency of climate risks
assessments
Communicating the many dimensions of uncertainty while still
providing useful information about the risks of future climate
change, represents an enduring challenge for scientists31,32,36.
The objective of the RFC framework, to distil the evolution of
complex climate change signals down to a singular colour-coded
scale, extends this communication challenge even further. In
particular, the transparent integration of uncertainty dimensions
affecting relevant risk thresholds—particularly non-climate fac-
tors, like socioeconomic scenarios or expert judgements—is key.

However, uncertainty does not always create barriers to the
provision of useful, actionable information for decision
makers37—particularly if that uncertainty is well-understood, and
its drivers separated38. While this is rarely the case for current
applications of risk assessments—commercial users often rely on
“black box” approaches39—any efforts to identify drivers of
uncertainty and highlighting their respective size would sig-
nificantly improve the wider value of climate risk analytics.

By amending the classification framework to first quantify the
localised exposure to the four different RFC risk categories, our
analysis has introduced a method to systematically assess how
different forms of uncertainty affect the subsequent estimates of
aggregate risk associated with extreme future heat. Table 1 pre-
sents seven dimensions of uncertainty which have been subse-
quently identified as relevant, not just for the examination of
RFC2, but for all RFCs under the framework employed by the
IPCC. The first five uncertainty sources have been explored in
Figs. 3–5 and are discussed above, while the issues associated with
the spatial patterns of hazard emergence and how the speed of
warming affects adaptive capacity are addressed further
within Supplementary Information. The rate of change of the
climate hazard versus socioeconomic development requires par-
ticular consideration, as substantial improvements in adaptive
capacity may take well into the second half of the 21st century
even under optimistic scenarios of development22,40. Risks posed
by large near-term increases in climate hazards are therefore
substantially higher than if the same hazard level is reached later
in the century. Even under the most optimistic scenarios of
socioeconomic development globally, and without considering
climate-imposed development setbacks, it seems implausible that
development can outpace unabated climate change41.

When qualitatively ranking these difference sources of uncer-
tainty on the basis of their relative influence, several clear results
emerge. While well-studied factors like climate model uncertainty
are of course present, the uncertainties which have fewer quan-
titative constraints and are often overlooked, dominate. Of par-
ticular note, the uncertainty relating to vulnerability—or
quantifying what combination of TXx emergence and GI score
should be associated with each local risk category—remains not
only substantial but also difficult to meaningfully reduce in a
globally uniform assessment. However, the final decision of how
to aggregate highly heterogeneous regional experiences into a
singular global risk classification remains the most subjective, and
therefore uncertain, element of the risk assessment. This is illu-
strated by the very different outcomes resulting from global or
nationally-informed threshold settings used in the examples in
Fig. 4f, g. Similar examples could be found by accounting for the
intergenerational dimensions of exposure to climate risk42.

Even though these expert judgements related to the RFC
aggregation process are subject to irreducible uncertainties, they
can nevertheless be examined both systematically and with
transparency (Figs. 4 and 5). Similar principles could equally
apply to selecting the RFC categories themselves. For example, if
the “extreme weather events” RFC actually considered tempera-
ture- and precipitation-related extremes independently, the

corresponding risk assessments would likely appear very differ-
ent, with arguably more useful information being conveyed as a
consequence.

The RFC framework communicates scientific understanding
about risks relating to varying levels of climate change, and in
doing so, represents a critical communication tool for the scien-
tific community18. However, any efforts to summarise the mul-
tidimensional risk profile of a warming world must confront
trade-offs between the simplicity, usefulness and scientific accu-
racy of this messaging. By presenting a method to systematically
evaluate the uncertainties associated with the RFC process, this
analysis provides a more rounded understanding of how expert
judgements are made, and why subjective choices remain una-
voidable when synthesising climate change risks. Our results
strengthen claims that “high” risks for extreme heat emerge above
1.5 °C of warming, while showing that exceeding 2 °C would
bring the world close to “very high risks” posed by extreme
heat43. This framework thus substantiates the urgent need for
stringent mitigation efforts to limit the risks of extreme heat in
the 21st century.

Methods
Hazard data. To calculate the hazard, we extract daily temperature data over the
period 1861-2100 from the first ensemble member (r1i1p1) of 23 models con-
tributing to the CMIP5 44, with “Historical” and “RCP8.5” simulations from each
model concatenated together. The annual maxima of all daily maximum tem-
peratures (hereafter TXx) are then calculated for each location, consistent with
recommendations from the Expert Team on Climate Change Detection Indices45.

Following previously published methods6,21,46, we focus on S/N ratios of change
in TXx with future warming, which requires normalising the magnitude of future
change against an estimate of internal variability calculated from historical
simulations. Using S/N ratios instead of percentages or absolute measures of
change is particularly useful to demonstrate when unfamiliar climates and events
are realised, a key component of the RFC framework and crucial for adaptation.

Following ref. 21, the signal of TXx at each grid cell is calculated as the mean
over a running 21-year time window, relative to the mean over the period
1861–1880. The noise term is calculated for each grid cell within each model as the
standard deviation over 1901–2000, using “Historical” model simulations
detrended with a simple linear fit. Corresponding S/N ratios are calculated for each
model at their native resolution first, before being interpolated to a common
2.5° × 2.5° grid thereafter.

The corresponding estimate of global-mean temperature anomalies for each
model is also calculated using a 21-year running mean and 1861–1880 baseline.
Here, global-mean temperatures refer to the area-weighted average of near-surface
air temperatures over all land and ocean regions in each model, with no masking to
specific regions with high observational coverage.

Since understanding the risks associated with specific global warming
thresholds has been a focus of recent efforts in the climate science community47–50,
we next identify the 21-year period for which a global warming anomaly of X °C is
exceeded within each individual model, and remains exceeded until the end of the
time-series (2100). We focus on specified half-degree thresholds of warming,
X= {1.0, 1.5, 2.0, 2.5, 3.0, 3.5}, with corresponding S/N ratios of TXx then extracted
for that same 21-year time period.

Population data. To calculate exposure we obtain spatially explicit population data
for the year 2015 from the Center for International Earth Science Information
Network database51. Preserving the population data at the 0.25° × 0.25° spatial
resolution provided, we separate the population of each of 224 separately detectable
countries into individual arrays.

We then obtain country-level population projections for each future decade
from the SSPs29. Because the 2015 population within the SSPs do not actually
match observed values, we have to obtain spatially explicit estimates of future
population for individual countries in a slightly more complex way: we first
calculate the fractional increase in country-level population between 2015 and the
future year of interest within the SSP-based model framework, and then multiply
each element of the individual gridded arrays of observed 2015 population data by
this amplification ratio, for each country.

GI data. As a measure of vulnerability, we use corresponding GI data for each
country taken, as is, from Andrijevic et al. See their paper22 for further details on
the calculations.

We chose to only consider countries which had future country-level projections
of both population and the GI under the SSP scenarios. This reduced the
population under consideration (in 2015) from 7.2 billion people to 7.03 billion
people.
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Once this processing was complete, and we had individual arrays of future
population for each individual country, we then aggregated the population data up
to the coarser 2.5° × 2.5° resolution of the model data, and then found population-
weighted estimates of TXx S/N ratios, for each individual country.

Data availability
The CMIP5 model data used to calculate projected global temperature changes in this
analysis are available at https://esgf-node.llnl.gov/search/cmip5/. Precomputed extreme
temperature indices from the CMIP5 archive are available at https://climate-
modelling.canada.ca/climatemodeldata/climdex/. Present-day population data are
available at https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/. Future population
scenario data are available at https://tntcat.iiasa.ac.at/SspDb. The data to generate the
figures used in this analysis can be found at https://git.geo.vuw.ac.nz/harrinlu/
NComms2021analysis.

Code availability
The code to generate the figures used in this analysis can be found at https://
git.geo.vuw.ac.nz/harrinlu/NComms2021analysis.
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