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Metabolic drug survey highlights cancer cell
dependencies and vulnerabilities
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Interrogation of cellular metabolism with high-throughput screening approaches can unravel

contextual biology and identify cancer-specific metabolic vulnerabilities. To systematically

study the consequences of distinct metabolic perturbations, we assemble a comprehensive

metabolic drug library (CeMM Library of Metabolic Drugs; CLIMET) covering 243 com-

pounds. We, next, characterize it phenotypically in a diverse panel of myeloid leukemia cell

lines and primary patient cells. Analysis of the drug response profiles reveals that 77 drugs

affect cell viability, with the top effective compounds targeting nucleic acid synthesis, oxi-

dative stress, and the PI3K/mTOR pathway. Clustering of individual drug response profiles

stratifies the cell lines into five functional groups, which link to specific molecular and

metabolic features. Mechanistic characterization of selective responses to the PI3K inhibitor

pictilisib, the fatty acid synthase inhibitor GSK2194069, and the SLC16A1 inhibitor AZD3965,

bring forth biomarkers of drug response. Phenotypic screening using CLIMET represents a

valuable tool to probe cellular metabolism and identify metabolic dependencies at large.
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Cellular metabolism represents a dynamic network of
regulated pathways that is frequently reprogrammed in
cancer and has been recognized as an emerging

hallmark1,2. The first observations that transformed cells exhibit a
distinct metabolic program came from Otto Warburg almost
hundred years ago. The Warburg effect depicts the phenomenon
of cancer cells preferentially undergoing glycolysis and converting
carbon to lactate even in high oxygen conditions3. In cancer,
genetic events activate signaling pathways that subsequently
modulate cellular metabolism to satisfy the increased bioener-
getic, biosynthetic and redox demands4–6. Moreover, this sup-
ports cancer initiation and progression and is typically
accompanied with changes in expression of metabolic enzymes
and transporters, which has implications for nutrient uptake,
distribution of nutrients to pathways for biomass generation
ultimately affecting therapy response2,7,8. Therefore, cancer-
specific metabolic changes confer a selective advantage for sur-
vival, but also introduce metabolic liabilities that provide a unique
opportunity for therapeutic targeting.

Considering the matter closer, it becomes apparent that there
are different individual metabolic signatures of cancer cells.
Transformed cells display greater flexibility in catabolite utiliza-
tion, contingent on nutrient accessibility in the environment, cell
lineage or tissue of origin, and genetic events7,9,10. Hence, despite
glycolysis many more metabolic dependencies are altered to
support cancer cell proliferation2,8. A greater insight in the
metabolic differences between cancer and nonmalignant cells
may lead to development of improved cancer therapies and
ultimately patient outcomes. However, normal cells often phy-
siologically activate metabolic pathways that are upregulated in
cancer. Thus, identifying metabolic processes that offer sufficient
therapeutic window and patients most likely to respond to a given
therapy remains a challenge9,11.

Obtaining a collection of chemical agents affecting different
aspects of cancer metabolism would represent a toolbox allowing
to interrogate cell lines, primary samples and animal models in a
versatile mode and may suggest therapeutic strategies. Here, we
assembled a custom metabolic drug library covering 243 com-
pounds allowing to systematically identify metabolic dependen-
cies in high-throughput phenotypic screens. We focused on
myeloid leukemias as a model disease, as they are heterogeneous
clonal malignancies for which there is a need for comprehensive
understanding of disease-specific molecular mechanisms. Even
though, there has been substantial advancement in mapping the
genetic landscapes of AML, the first approvals for targeted agents
came only in the last few years12,13. While the hematologists
toolbox has increased, the survival of AML patients remains
poor14. Moreover, prior studies have illustrated metabolic
pe3culiarities in myeloid leukemias that can be exploited for
either the development of novel therapies or for particular stra-
tification rationales15–21. For instance, the development and
clinical utility of IDH1/2 inhibitors for IDH1/2 mutant AML22–25

as wells as BCL-2 inhibitors26 illustrates that untangling meta-
bolic changes could provide therapeutic avenues in AML. Here,
we profiled the metabolic drug library phenotypically in a panel
of 15 diverse myeloid leukemia cell lines for drug-induced effects
on cell growth and survival.

We functionally grouped the cell lines and drugs based on
metabolic drug efficacy patterns and associated them with distinct
genomic and metabolic attributes. Moreover, we identified a
number of differential vulnerabilities, such as the sensitivity to the
monocarboxylate transporter (MCT) SLC16A1 (also known as
MCT1) inhibitor AZD3965, that could be rationalized by differ-
ential expression as well as target essentiality. Our data provides a
primer for the use of a focused metabolic drug library in phe-
notypic screening platforms, thereby identifying metabolic

vulnerabilities and pinpointing that targeted metabolic pertur-
bations may provide promising new therapeutic strategies for
myeloid leukemias and beyond.

Results
Assembly and characteristics of the metabolic drug library. To
systematically study the consequences of metabolic perturbations in
healthy and disease-altered cell states, we assembled a comprehensive
metabolic drug screening collection (the CeMM Library of Metabolic
Drugs; CLIMET). While probing cellular metabolism could also be
achieved with genetic screening technologies such as CRISPR, com-
pound libraries are more readily applicable to challenging cell and
tissue samples including primary patient cells and provide rapid
result outputs. Furthermore, they can easily be combined with other
interventions (e.g. other drugs, metabolites, genetic lesions) for
higher-order perturbations27. CLIMET was compiled in a stepwise
fashion, starting from 8000 candidate compounds, after a survey of
public drug-target databases, and ending with 243 highly curated
compounds after extensive crosschecking for approval status, struc-
tural information, compound’s potency and selectivity for the
intended target, pathway/target redundancy, and commercial avail-
ability (Fig. 1a; Supplementary Data 1).

Eighty-eight (36.2%) compounds are clinically approved for
various disease indications allowing for rapid translation, roughly
half (113; 46.5%) are chemical probes, 10 in clinical trials and 25
either withdrawn or their clinical development discontinued (Fig. 1b).
CLIMET compounds target 191 different metabolic enzymes and/or
processes with the most common drug-target categories being
reductases, dehydrogenases, nonreceptor serine/threonine protein
kinases, glycosidases, acetyltransferases, and carboxylesterases
(Fig. 1c). The metabolic target space of these compounds was
categorized to eight different processes with the majority targeting
lipid and fatty acid (FA) (n= 84), protein and amino acid (n= 43),
and glycolysis/sugar metabolism (n= 39) (Fig. 1d).

Phenotypic characterization of CLIMET. To assess the potency
of CLIMET compounds, we screened the full collection against a
panel of myeloid leukemia cell lines (10 AML with different
disease-causing genetic alterations and 5 CML cell lines). Each
compound was tested for its effect on cell growth and survival
over a 10,000-fold concentration range (1 nM to 10 µM) enabling
the generation of dose–response curves and area under the curve
(AUC) calculation (Fig. 2a; Supplementary Data 2). From the 243
compounds, 77 (32%) markedly affected viability in at least one
tested concentration. These 77 hits covered the eight metabolic
processes, with autophagy (67%), nucleotide metabolism (52%),
and oxidative stress (50%) having the highest hits to category
process ratio (Supplementary Fig. 1a). We then ranked the
compounds based on mean AUC values across all cell lines
screened and found that among the top 25 most effective drugs
were antimetabolites (e.g., gemcitabine, topotecan, antifolates),
PI3K/mTOR pathway (e.g., rapalogs, Torin1, LY-294002), oxi-
dative stress (e.g., daporinad, STF-31, ML175), acid–base balance
(e.g., digoxin, digitoxigenin, indisulam), and energy homeostasis
inhibitors (e.g., rotenone, CPI-0610) (Fig. 2b).

The average drug sensitivity profiles between AML and CML
cell lines were highly concordant (r= 0.78), with the exception of
CML cells being more sensitive to Torin1 (mTOR inhibitor),
cytarabine (nucleoside analog), and rotenone (complex I
inhibitor) (Supplementary Fig. 1b). Hence, the disease subtype
did not play a significant role in the cell line clustering.

Metabolic vulnerabilities facilitate functional taxonomy of cells
and drugs. To assess differences in drug sensitivity profiles,
unsupervised hierarchical complete linkage clustering with
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Spearman correlation distance measure of AUC was applied
(Supplementary Fig. 2a). This facilitated grouping of cell lines
based on drug efficacy patterns across all viability affecting drugs
and taxonomy of compounds in terms of metabolic addictions in
the context of myeloid malignancies. While each cell line had a
unique metabolic vulnerability profile, the activity of 18 com-
pounds in particular stratified the cells lines into five robust and
distinct functional groups (Fig. 2c and Supplementary Fig. 2a, b).
Consequently, the pathways targeted by the drugs shared in a
specific group may shed light on the nature of the metabolic
dependency.

Group I (MV4-11 and MOLM-13) was selectively sensitive to a
cluster of compounds targeting processes and enzymes capable of
producing reactive oxygen species such as cytochrome P450
oxidases (econazole), NADPH oxidases (GKT-136901), mito-
chondrial complex II (3-nitropropionic acid), and phosphodies-
terases (PF-02545920) (Supplementary Fig. 2c). Moreover, Group
I exhibited selective sensitivity to 5-fluorouracil (Supplementary
Fig. 2d), lestaurtinib, GW 4064 (farnesoid X receptor agonist),
and PI3K/mTOR inhibitors (Supplementary Fig. 2e, f). Group II
(Mono-Mac-6, LAMA-84, KU-812, and KCL-22) exhibited no
response to the PI3K inhibitor LY-294002 but showed
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Fig. 2 Stratification of myeloid cancer cells by metabolic vulnerabilities. a Overview depicting the phenotypic characterization of the metabolic drug
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**Padj≤ 0.05; ***Padj≤ 0.01; ns not significant). d Measurement of oxygen consumption rate using Seahorse analyzer at basal level and after consecutive
injections of oligomycin (1 μM), FCCP (1 μM), and antimycin A/rotenone (1 μM) (n= 8 technical replicates for each cell line n= 15). Error bars indicate
mean ± SD of the data of cell lines falling in the same group. e XF PhenoGram profile of each of the myeloid leukemia cell lines is shown by plotting the
basal OCR and ECAR providing a snap-shot of the bioenergetics profiles of the cell lines. Cell lines are colored based on which group they fall in as shown in
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comparable sensitivity to rapalogs and the mTOR inhibitor
Torin1 as Group I and increased vulnerability to the ATP
synthesis disruptor FCCP. Group III (NOMO-1, ML-2, HEL, and
HL-60) displayed a similar profile with respect to mTOR
inhibitor sensitivity as Group I and II, albeit with lower intensity.
In addition to the PI3K/mTOR inhibitor sensitivity, Group IV
(KG-1, K-562, and BV-173) was characterized with selective
sensitivity to disulfiram (alcohol dehydrogenase) (Supplementary
Fig. 2g), the cholesterol biosynthesis inhibitor Ro 48-8071
fumarate, and the SLC16A1 inhibitor AZD3965. Group V
(SHI-1 and THP-1) had a largely lower sensitivity pattern in
comparison to all other groups with the exception of disulfiram,
but could be specifically distinguished by displaying no sensitivity
to NAMPT inhibitors STF-31 and daporinad (Supplementary
Fig. 2h).

Metabolic phenotypes of the myeloid cancer cell line panel. To
uncover the basis for these differences, we first decided to
investigate the basal metabolic profiles of our cancer cell line
panel. We determined the oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) as proxies for mitochon-
drial respiration and glycolysis, respectively, by performing the
Seahorse mitochondrial stress test (Supplementary Fig. 3a, b).
Generally, cell lines in Groups I, II, and IV were predominately
oxidative, whereas cell lines in Groups III and V were primarily
glycolytic as assessed by differences in basal OCR, maximum
respiration rate achieved, and the basal OCR/ECAR ratio (Fig. 2d;
Supplementary Fig. 3c). Comparison of overall metabolic profiles
(OCR vs. ECAR) showed that the examined cell lines have ana-
logous baseline metabolic phenotypes with few exceptions, sug-
gesting that the mitochondrial cell function as measured by
Seahorse analysis did not significantly influence the cell line
clustering (Fig. 2e). Evaluation of the spare respiratory capacity,
as an indication for cellular fitness or flexibility implied that
Group I and II had the highest energetic stress response capability
consistent with the comparable drug response profiles detected
(Supplementary Fig. 3d).

Since the mitochondrial stress test functionally evaluated basal
metabolic activity of cells, it is likely that it did not fully capture the
complete cellular metabolic profile. Thus, it is plausible to assume
that the test output had impact only on sensitivity of inhibitors
targeting energy metabolism and glycolysis. From the effective
compounds affecting cellular energetics, indisulam, digitoxigenin,
rotenone, and FCCP had a significant stronger effect in
predominantly oxidative cell lines (Groups I, II and IV) in
comparison to largely glycolytic cell lines (Groups III and V)
(Supplementary Fig. 3e). To gain a deeper understanding of the
metabolic wiring of the cell lines included in this study, we analyzed
a targeted metabolomics dataset from the Cancer Cell Line
Encyclopedia (CCLE) resource28. A liquid chromatography–mass
spectrometry (LC–MS) approach was applied on 225 metabolites in
928 cell lines from more than 20 different cancer types. Data were
available for 13 of the 15 cell lines and the levels of 57 metabolites
were found to be significantly different between at least two groups
using a two-way ANOVA analysis (Supplementary Fig. 4). The
abundance of specific metabolites could be linked to the drug
sensitivity defined groups, suggesting that the similarities in
functional phenotypes of the cell lines in our analysis may be
anchored to particular metabolic vulnerabilities.

Specifically, Group I had higher levels of several metabolites
involved in the pentose phosphate pathway, which is largely
responsible for generation of reducing equivalents such as
NADPH, and production of intermediates for nucleic and amino
acid synthesis. This is in accordance with the metabolic drug
sensitivity profile and the more oxidative phenotype detected.

Group II showed enrichment in metabolites involved in arginine
and proline metabolism and the urea cycle. The metabolites
defining Group III were primarily involved in tryptophan
metabolism, whereas alpha-glycerophosphocholine was the most
abundant metabolite in Group IV. Taken together, the identified
cell line groups have distinct metabolic phenotypes, which suggest
different nutrient acquisition dependencies that could be
associated to the drug sensitivity profiles.

Metabolic coregulation revealed by genotype to phenotype
associations. Next, we asked whether the metabolic phenotypes
of the cell lines tested within the study reflected their mutational
status. The most recurrent mutational events in the cell line panel
were collected from the Cancer Dependency Map portal29

(Fig. 3a). In addition, AML cell lines were annotated with the
French–American–British (FAB) classification system30. Group I
harbored activating mutations in FLT3, MLL fusions and are
classified as AML M5; Group II was enriched for loss of function
TP53 mutations and three of the four cell lines were CML and
thus had BCR-ABL1 fusions; Group III was characterized by
activating mutations in genes involved in growth factor signaling
such as RAS or JAK2, whereas no clear pattern was detected for
Group IV. Finally, Group V carried activating mutations in RAS,
inactivating mutations in TP53, MLL fusions, and are classified as
AML M5. The mutational status did not considerably drive the
functional stratification of the cell lines. Systematic comparison of
mutant vs. wild-type cases (where at least three mutant cell lines
could be identified), revealed statistically significant novel and
previously known correlations between FLT3 mutations and
sensitivity to 5-fluorouracil, lestaurtinib31,32, and PF-02545920.
Moreover, CREBBP mutations linked to sphingosine kinase
inhibitor (N,N-dimethylsphingosine) sensitivity, whereas RAS
and TP53 mutations conferred a resistance phenotype especially
to energy and lipid metabolism inhibitors such as PI3K/mTOR
and mitochondrial respiration inhibitors (Fig. 3b; Supplementary
Fig. 5a–p). Several of these associations could be confirmed in an
independent AML patient sample dataset33 (Fig. 3c). This ana-
lysis revealed metabolic and genotype relationships, which might
imply that cells adapt their metabolic programs driven by acti-
vation or inactivation of particular signaling events or, in a dif-
ferent causal relationship, that particular metabolic enzyme and
nutrient transporters are among the targets of oncogenic
pathways5,6,34,35.

Co-occurring drug sensitivities and mutual exclusivity. Co-
occurring and mutually exclusive drug sensitivities were detected
by pair-wise Spearman’s correlation analysis of the 77 active
drugs (Fig. 4a). Inhibitors with related mode of action in general
correlated highly, such as antimetabolites, mTOR, inosine-5′-
monophosphate dehydrogenase, NAMPT, and FA metabolism
inhibitors (Supplementary Fig. 2a; Fig. 4a) demonstrating the
robustness and reproducibility of the obtained dataset. Never-
theless, we also observed unforeseen correlations with the
response to Bmh-21, a DNA-directed RNA polymerase I subunit
inhibitor. Bmh-21 inversely correlated with the response to two
inhibitors targeting different aspects of mitochondrial respiration,
3-nitropropionic acid and MKT 077 (that positively correlated
among each other). Conversely, the sensitivity to the FA synthase
(FASN) inhibitor GSK2194069 correlated with sensitivity to CP-
640186 (targeting acetyl-CoA carboxylase (ACC) also involved in
FA synthesis), pictilisib (PI3K inhibitor), and as1949490 (target-
ing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2
(SHIP2)). This suggested convergence on the FA synthesis and
PI3K pathways. Moreover, the drug sensitivity profile of rosigli-
tazone (peroxisome proliferator-activated receptor gamma
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agonist) matched the effect of zinterol hydrochloride (β2-adre-
noceptor agonist; triggers arachidonic acid release) and dorso-
morphin (AMPK inhibitor). These findings imply that the activity
of these compounds in the setting of myeloid malignancies could
be functionally related.

To investigate the identified drug interactions further we
performed drug combinatorial screens in four different cell lines
(HL-60, Mono-Mac-6, BV-173, and MV4-11) that best captured the
significant drug–drug correlations. The results showed that in

majority of cases combinatorial effects were observed as hypothe-
sized (Fig. 4b and Supplementary Fig. 6). However, there were a few
drug combination pairs (e.g., lestaurtinib and 5-fluorouracil, and
dorsomorphin and rosiglitazone) that exhibited marked single agent
activity but an antagonistic combinatorial effect. Taken together this
analysis could facilitate elucidation of the context-specific molecular
mechanisms of action and foster a rationale for context-dependent
drug combinations, though alternative bases for the observed
interactions should also be contemplated.
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Functional linkage of PI3K signaling and de novo FA synth-
esis. To identify cell line-specific metabolic drug sensitivities, we
compared the AUC scores in each individual cell line with the
average AUC score per drug (selective AUC; sAUC) (Fig. 5a). For
instance, HL-60 cells showed strong selective response to the pan-
PI3K inhibitor (higher potency toward α and δ isoforms)

pictilisib (Fig. 5b) in line with data from the Genomics of Drug
Sensitivity in Cancer portal (GDSC1)36, where pictilisib was tes-
ted across 937 cell lines and HL-60 scored as 20th most sensitive
cell line (Supplementary Fig. 7a). However, among AML
and CML cell lines, HL-60 was one of the most sensitive lines
(Supplementary Fig. 7b). Exploration of genome-wide CRISPR
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dropout screening results37 revealed that HL-60 cells are depen-
dent on PIK3C2A (Fig. 5c). This is in accordance with previous
genome-wide RNAi screens assessing cancer cell line genetic
dependencies estimated using the DEMETER2 model38. Here,
among 648 cell lines, HL-60 was one of the cell lines most
dependent on PIK3C2A (Supplementary Fig. 7c). Comparison of
publicly available gene expression data of class I and II PI3K
family members, showed that with the exception of PIK3CB and
PIK3CD, HL-60 cells had an overall lower expression level of
PI3K family members (Fig. 5d). Thus, we initially hypothesized
this to likely explain the vulnerability of HL-60 cells to PI3K
inhibition as pictilisib is not effective in inhibiting PIK3C2A39.

To explore determinants to pictilisib sensitivity, we over-
expressed the different class I PI3K isoforms in HL-60 and MV4-
11 cells, which have a comparable expression pattern of those
genes. Pictilisib sensitivity was enhanced in HL-60 cells over-
expressing PIK3CA, PIK3CB or PIK3CD in comparison to HL-60
cells lentivirally transduced with an empty vector (Supplementary
Fig. 7d). In contrast, we detected a moderate increase in pictilisib
sensitivity in PIK3CA and PIK3CG MV4-11 overexpressing cells,
while there was no difference in sensitivity in PIK3CB and a
minor loss in sensitivity in PIK3CD overexpressing cells
(Supplementary Fig. 7e). These findings suggest that our original
postulate was incorrect and that there may not be one specific
PI3K isoform that influences sensitivity to pictilisib in these cells.
Rather, it is likely that the combined activity of several isoforms
may determine pictilisib susceptibility. Comparison of gene
essentiality37, gene expression40, reverse phase protein array
(RPPA)29, and drug sensitivity data36 in HL-60 cells and cluster I
cell lines (MV4-11 and MOLM-13) revealed that HL-60 cells
exhibit higher dependency and activity on the MAPK pathway
and mTORC2 complex signaling resulting in reduced sensitivity
to AKT and mTOR inhibitors (Supplementary Fig. 7f–i). These
features corresponded with lower gene expression and RPPA
signal of several mTORC1 complex members and its downstream
effectors, suggesting that mTORC1 activation status influences
sensitivity to pictilisib as shown previously in the context of
breast cancer41,42.

Besides the susceptibility to pictilisib, HL-60 cells were also
selectively sensitive to GSK2194069 (Fig. 5e). While no specific
genetic dependency on the FASN gene could be established, HL-
60 cells appear to rely on a number of genes involved in lipid
metabolism and FA metabolism (Supplementary Fig. 8a; data37).
Varied gene expression analysis identified 49 most differently
expressed genes in relation to the gene expression profile of the
remaining 13 cell lines (Fig. 5f). Nine genes were upregulated and
enriched in alpha-defensins and neutrophil degranulation
(Fig. 5g), whereas 40 genes were downregulated and primarily
involved in FA metabolism and biosynthesis of unsaturated FA
(Fig. 5h; Supplementary Fig. 8b). Although, C75 and orlistat, first
generation FASN inhibitors, did not show an effect in the original
drug screen, retesting of the respective compounds at an
increased dose led to a viability reduction, whereas stearoyl-
CoA desaturase 1 inhibitors exhibited limited activity in HL-60

cells (Supplementary Fig. 8c). We, further, detected a combina-
torial effect of pictilisib and GSK2194069 in HL-60 cells
(Supplementary Fig. 6). Moreover, pictilisib exposure led to a
dose-dependent reduction of FASN expression (Supplementary
Fig. 8d). Taken together, our data illustrate that HL-60 are
dependent on PI3K signaling and de novo FA synthesis and
conceivably these pathways and processes are functionally linked
in this cellular and disease context.

The sensitivity AZD3965 is dependent on differential expres-
sion of SLC16A1 and SLC16A3. Two CML cell lines, K-562 and
BV-173, exhibited a unique vulnerability to the SLC16A1 trans-
porter inhibitor AZD3965 (Fig. 6a). Genome-wide CRISPR
dropout screening data43,44 revealed that SLC16A1 was essential
in K-562 cells, while HEL, MOLM-13, MV4-11 or THP-1 cells
were not affected by genetic SLC16A1 inactivation (Supplemen-
tary Fig. 9a, b). Comparison of SLC16A1 and SLC16A3 expression
levels indicated that K-562 and BV-173 cells had markedly lower
expression of SLC16A3 mRNA (Fig. 6b). Thus, inhibition of
SLC16A1 by AZD3965 may provide additional selective pressure,
raising the possibility that this dependency on SLC16A1 may
represent a proper Achilles’ heel for these cells. Hence, changes in
the expression of SLC16A1 and its paralog SLC16A3 should differ
in their modulatory ability on AZD3965 action.

We first overexpressed SLC16A1 or SLC16A3 in K-562 and BV-
173 cells and tested AZD3965 sensitivity (Fig. 6c and Supplementary
Fig. 9c). While overexpression of SLC16A3 conferred resistance to
AZD3965, overexpression of SLC16A1 did not impact the sensitivity
to AZD3965 (Fig. 6d; Supplementary Fig. 9d). We also performed the
opposite experiment and genetically inactivated SLC16A1 or
SLC16A3 using CRISPR technology in previously insensitive cell
lines, MV4-11 (Fig. 6e) and LAMA-84 (Supplementary Fig. 9e).
Knockout of SLC16A3 re-sensitized MV4-11 and LAMA-84 cells
partially to AZD3965, whereas knockout of SLC16A1 did not have
any effect (Fig. 6f; Supplementary Fig. 9f). These experiments
illustrated the selective targeting of SLC16A1 by AZD3965 and the
synthetic lethal relationship between SLC16A1 and SLC16A3.
Evaluation of differentially expressed genes in the AZD3965 sensitive
and not sensitive cell lines identified 17 genes that were significantly
upregulated and 12 genes that were significantly downregulated
including SLC16A3 (Fig. 6g). Analysis of SLC16A1/SLC16A3
expression ratio in 205 hematological cancer cell lines, identified 44
cell lines, primarily of lymphoid origin, that are predicted to be
sensitive to AZD3965. This cutoff was made as K-562 cells, shown
here to be sensitive to AZD3965, had the lowest SLC16A1/SLC16A3
expression ratio among those 44 cell lines (Methods; Fig. 6h and
Supplementary Fig. 9g).

Our findings show that the combined expression of SLC16A1
(high) and SLC16A3 (low/no) may serve as an actionable
biomarker for AZD3965 response in hematological malignancies.
To explore the potential clinical value of this biomarker, we
turned to The Cancer Genome Atlas (TCGA) gene expression
dataset accessed via the UCSF Xena project45. Utilizing the gene
expression profiling interactive analysis server (GEPIA2)46, we

Fig. 4 Co-occurring drug sensitivities reveal metabolic coregulation. a Corrplot visualization of Spearman’s correlation analysis of each drug against each
other plotted onto a clustered heatmap, exposing drugs with similar or dissimilar patterns of sensitivity. This analysis revealed metabolic processes and/or
targets that were highly concordant (red) and ones that are quite discordant (blue). The size and color of the dots is based on the Spearman correlation
coefficient. Significant positive and negative correlations were identified after correcting for multiple testing at FDR of 10% and are marked with thick black
border. Targets of compounds exhibiting significant drug–drug associations are shown to the right. b Heatmap showing the deviation from Bliss
independence score for each tested combination and cell lines. Synergy is denoted in red while antagonism is shown in blue. Analysis was performed using
the SynergyFinder tool82,83. The individual drug sensitivity is shown within the heatmap squares per cell line with + indicating sensitivity; +/− indicating
moderate sensitivity, and − indicating no sensitivity. The first sign refers to the sensitivity of the first listed drug of the combination and the second sign to
the sensitivity of the second drug.
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assessed the expression pattern of SLC16A1 and SLC16A3 in
cancer patients in comparison to normal samples (TCGA-
matching and the Genotype-Tissue Expression project47) (Fig. 7a,
b). For instance, SLC16A1 is significantly upregulated in diffuse
large B-cell lymphoma (DLBCL) and downregulated in AML,
while the opposite is true for SLC16A3. Moreover, the expression
of SLC16A1 and SLC16A3 is negatively correlated on a pan-
cancer and AML-specific level (Fig. 7c–e), indicating that in a
subset of cancer patients the expression pattern of these MCTs is
divergent and suggestive of eligibility for AZD3965 therapy or

other inhibitors specific for one of the two transporters. Thus, this
case study demonstrates that functional drug testing with
metabolic modifiers is a powerful approach to identify metabolic
vulnerabilities without the need of gene editing technologies and
facilitate uncovering of disease-specific drug mode of action.

Metabolic vulnerabilities can be altered by chemical pertur-
bation. To determine whether metabolic vulnerabilities can be
influenced by drug exposure we re-tested the entire drug library
in HL-60 cells in the presence of vehicle (DMSO) or 100 nM

0.2

BV-173

HEL

HL-60

K-562

KCL-22

KG-1

KU-812
LAMA-84

THP-1

ML-2

MOLM-13

MV4-11

Mono-Mac-6

NOMO-1

SHI-1

AZ
D

39
65

Pr
ed

ni
so

lo
ne

C
yt

ar
ab

in
e

Cl
ad

rib
ine

CB
-8

39

Fl
ud

ar
ab

ine
Ralt

itre
xe

d

Pe
m

et
re

xe
d

LY
-2

94
00

2

Pictilisib
GSK2194069

as1949490

Daporinad
AZD3965MF-438

Everolimus
Temsirolimus

Prednisolone

Temsirolimus

Everolimus

Rotenone

Pem
etrexed

LY-294002
Daporinad

D
isulfiramMF-438

Everolim
us

Te
msir

oli
musLestaurtinib 5-FUMK-8245

Methotrexate
Lestaurtinib

LY-294002
IndisulamSTF-31

Daporinad

Rosiglitazone
Zinterol hydrochloride 

Temsirolimus
Dorsomorphin

Lestaurtinib

LY-294002Daporinad

Disulfiram

Disulfiram

0.1

0.3

0.4

0.5

0.6

sAUC

LY
-2

94
00

2

5-FU

a

c

d

b

-9 -8 -7 -6 -5
0

20
40
60
80

100
120

Log Conc (M)

%
 S

ur
viv

al

Pictilisib
PI3K inhibitor MOLM-13

MV4-11
K-562
HL-60
SHI-1
HEL
KCL-22
KG-1

ML-2
KU-812
LAMA-84
NOMO-1
BV-173
Mono-Mac-6
THP-1

MOLM
-13

MV4-1
1

HL-6
0

PIK3CA
PIK3CB
PIK3CD
PIK3CG

PIK3C2A
PIK3C2B
PIK3C2G

PIK3C3

**

*

-Log10
P dropout
  * P <0.05

** FDR <10%
0
1

3
2

-9 -8 -7 -6 -5
0

20
40
60
80

100
120

Log Conc (M)

GSK2194069
Fatty acid synthase inhibitor

MOLM-13
MV4-11
K-562
HL-60
SHI-1
HEL
KCL-22
KG-1

ML-2
KU-812
LAMA-84
NOMO-1
BV-173
Mono-Mac-6
THP-1

f

 -3
.0

0 
 -2

.0
0 

 -1
.0

0 
 0

.0
0 

 1
.0

0 
 2

.0
0 

 3
.0

0 

Z-score

g

h

Upregulated genes enrichment analysis

Downregulated genes enrichment analysis

e

%
 S

ur
vi

va
l

H
L-

60

M
V4

-1
1

M
O

LM
-1

3

M
on

o-
M

ac
-6

LA
M

A-
84

KU
-8

12

KC
L-

22

N
O

M
O

-1

H
EL

KG
-1

K-
56

2

BV
-1

73

SH
I-1

TH
P-

1

0
1
2
3
4
5
6
7
8

Lo
g2

(T
PM

+1
)

Expression of PI3K family members
PIK3CA
PIK3CB
PIK3CD
PIK3CG
PIK3C2A
PIK3C2B

 H
L-

60
 

 M
O

LM
-1

3 
 M

V4
-1

1 
 S

H
I-1

 
 B

V-
17

3 
 T

H
P-

1 
 N

O
M

O
-1

 
 K

G
-1

 
 M

on
o-

M
ac

-6
 

 H
EL

 
 K

U
-8

12
 

 L
AM

A-
84

 
 K

-5
62

 
 K

C
L-

22
 

 DEFA1B 
 DEFA3 
 RASAL1 
 ANO7 
 DEFA1 
 COL17A1 
 SLPI 
 DEFA4 
 CLEC5A 
 LGALS1 
 H2AFJ 
 SORBS3 
 MEF2C 
 ACSF2 
 FADS2 
 ACOT2 
 PCCA 
 CD37 
 MYO15B 
 IGF2BP2 
 PLEKHG2 
 GAMT 
 AKR1B1 
 IFITM1 
 PIM1 
 CTNNA1 
 IFITM3 
 NT5C3B 
 LTBP4 
 FADS3 
 SOCS2 
 FXR2 
 PYCR1 
 PCK2 
 FADS1 
 HK1 
 ISYNA1 
 CKB 
 MIER2 
 APOC1 
 APOBEC3B 
 SERPINH1 
 SULT1A1 
 ZDHHC8 
 SPINDOC 
 KANK2 
 HSPB1 
 ACAA2 
 SAT2 

0 2 4 6 8 10 12
-Log10 (P)

R-HSA-6798695: Neutrophil degranulation
R-HSA-1462054: Alpha-defensins

GO:0031669: cellular response to nutrient levels
GO:2001234: negative regulation of apoptotic signaling pathway
GO:0006644: phospholipid metabolic process
GO:0097164: ammonium ion metabolic process
GO:0048638: regulation of developmental growth
GO:1901657: glycosyl compound metabolic process
hsa04910: Insulin signaling pathway
GO:0034655: nucleobase-containing compound catabolic process
GO:0006790: sulfur compound metabolic process
GO:0071407: cellular response to organic cyclic compound
GO:0008610: lipid biosynthetic process
GO:0046596: regulation of viral entry into host cell
hsa01040: Biosynthesis of unsaturated fatty acids
hsa00330: Arginine and proline metabolism
GO:0006631: fatty acid metabolic process

0 1 2 3 4 5 6 7 8
-Log10 (P)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27329-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7190 | https://doi.org/10.1038/s41467-021-27329-x | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


AZD3965, pictilisib, or GSK2194069 for 72 h (Fig. 8a, b). Even
though HL-60 do not exhibit sensitivity to AZD3965 at baseline,
treatment with AZD3965 resulted in reduced sensitivity to the
mitochondrial complex I inhibitor rotenone and increased sen-
sitivity to antifolates, PI3K pathway and oxidative stress inhibi-
tors. This finding suggests that upon SLC16A1 inhibition the cells
undergo a metabolic switch thereby becoming more reliant on
glycolysis for their metabolic needs and SLC16A3 for lactate
transport. Moreover, in response to pictilisib exposure we
detected an increased sensitivity to a number of inhibitors tar-
geting lipid metabolism (TOFA, Ro 48-8071 fumarate, perhexi-
line, caffeic acid phenethyl ester, SKI II, lestaurtinib) and
nucleotide metabolism (cladribine and cytarabine). While we did
not observe any pronounced difference in drug sensitivity in
response to FASN inhibition, these results indicate that drugs can
modify the metabolic phenotype of cells and this could serve as a
plausible mechanism of drug resistance.

Comparison of metabolic pharmacological profiles between
myeloid cell lines and patient samples. To evaluate the repre-
sentativity of the myeloid cell lines of primary patient cells
(n= 15; Supplementary Table 1), we first assessed differential
drug responses of 70 metabolic inhibitors (Supplementary
Data 3). We detected significantly higher efficacy of numerous
nucleotide metabolism inhibitors in the cell lines (Fig. 9a), likely
as a result of higher cell proliferation during the drug screening
assay as compared to the primary patient cells. In contrast,
patient samples were more susceptible to several lipid and FA
metabolism drugs (Fig. 9a). Overall, the metabolic vulnerability
profiles between patient samples and cell line were comparable
(Spearman’s r= 0.5716) with ~64% of compounds not exhibiting
a differential response (Fig. 9a, b). These included 14 (77.8%) out
of the 18 inhibitors that strongly contributed to the metabolic
functional stratification of the cell lines depicted in Fig. 2c
(Fig. 9b).

Unsupervised hierarchical clustering of the metabolic drug
responses in the 15 different patient samples, also stratified the
patient samples in five different functional groups (Fig. 9c). The
patient sample groupings were not generally driven by age,
diagnosis, or mutational status. Analogously to the cell line
grouping, the clustering gave an indication of drug-target
distinctiveness or relatedness (e.g., clustering of digoxin and
digitoxigenin, nucleotide analogs, rapalogs, PI3K, or oxidative
stress inhibitors). From the 70 screened compounds, only 5 did
not exhibit a response in any of the patient samples, whereas 4
(Bmh-21, lestaurtinib, daporinad, and STF-31) were active in
all cases. Thus, the majority of compounds exhibited sample/
group selective responses, suggesting associations with particular
metabolic dependencies. Taken together, these data show
that metabolic drug response profiling may decode disease-
relevant biology and targeting cellular metabolism may be a

complementary therapeutic strategy for a subset of myeloid
leukemia patients.

Discussion
We describe the generation and functional characterization of a
custom, focused metabolic drug library, CLIMET, as a powerful
tool to identify cell-specific metabolic dependencies. While pre-
vious efforts to functionally profile cancer cell vulnerabilities,
such as the CCLE48 and GDSC36,49, have primarily focused on
assessing the sensitivity to growth factor signaling, epigenetic, and
cell cycle inhibitors, our study provides a new layer by specifically
characterizing metabolic drug responses. Very few previous stu-
dies have presented a broad pharmacologically focused char-
acterization of metabolic dependencies of cancer cells28,50. The
availability of clinical and preclinical metabolism-modifying
agents provides an opportunity to functionally profile cancer
cells and uncover metabolic liabilities that could be of high
therapeutic value.

Cellular metabolism, while plastic in nature, cannot be escaped
and must be considered in the development of treatment strate-
gies. However, one of the biggest questions for modern cancer
drug development is how to select the patients most likely to
benefit to a given therapy. Here, we illustrated the use of the
CLIMET metabolic perturbation library for the identification of
metabolic susceptibilities, grouping of cancer cells based on
metabolic dependencies, and understanding context-dependent
mechanism of drug action. Drug screening represents an ortho-
gonal approach to genetic methods in assessing cellular vulner-
abilities and provides the opportunity to target whole enzyme
groups that can circumvent cellular redundancy, often an issue in
CRISPR/Cas9-based genetic screens. The metabolic drug sensi-
tivity profiles generated in a panel of myeloid leukemia cell lines
highlight several effective metabolic modifiers such as
GSK2194069, AZD3965, and PI3K/mTOR inhibitors that could
be clinically explored for a subset of myeloid leukemia patients.

The tested cell lines were functionally grouped in five taxo-
nomic groups that could further be associated with somatic
mutational patterns as well as cellular metabolic profiles. For
instance, cell lines harboring activating mutations in the RAS
genes (groups III and group V) were predominantly glycolytic
and displayed lack of sensitivity to mTOR and mitochondrial
respiration inhibitors in line with previous reports that RAS-
mutated cancers display a Warburg effect phenotype exemplified
by increased glucose utilization and lactate production, and
upregulation of the glucose transporter SLC2A151–54. While some
genotype to phenotype links were identified, for the majority of
drug responses no clear genotype associations could be estab-
lished, in accordance to prior studies showing a better association
between multiple molecular datasets and drug sensitivities49,55,56.

The sensitivity of the PI3K inhibitor pictilisib could be asso-
ciated with lower activation of the mTORC1 complex, as

Fig. 5 Determinants of sensitivity to pictilisib and GSK2194069. a Spider plot summarizing the selective responses to metabolic modifiers in each cell
line by comparing the average AUC values to ones detected in each individual cell line (sAUC). Identified hits are ranked according to sAUC value
(cutoff≥ 0.16), which is also represented with bubble size and color intensity. b Average dose–response data of pictilisib in the myeloid leukemia cell lines
expressed as percentage survival (n= 15 biologically independent cell lines in technical duplicate of each concentration). The sensitivity of pictilisib in HL-
60 cells is highlighted in red. Error bars indicate SD. c Depletion of PI3K family member genes in MOLM-13, MV4-11, and HL-60 cells highlighting that HL-
60 cells are dependent on PIK3C2A. Data (P values and FDR-based multiple testing corrections) was retrieved from Tzelepis et al. 37. d Level of gene
expression (expressed as log2 transcripts per million (TPM+1)) of PI3K family members in publicly available datasets from the Dependency Map
Portal29,80. e Average dose–response data of GSK2194069 expressed as percentage survival (n= 15 biologically independent cell lines in technical
duplicate of each concentration). The sensitivity of GSK2194069 in HL-60 cells is highlighted in red. Error bars indicate SD. f Clustering of the most
variedly expressed genes in HL-60 cells (Z score normalized expression values) in comparison to the remaining 13 cells lines for which gene expression
data were available in the Dependency Map Portal. g, h Pathway and process gene set enrichment analysis of the upregulated and downregulated genes in
HL-60 cells. P values were derived with a hypergeometric test and Benjamini–Hochberg P value correction algorithm with Metascape84.
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mTORC1 activation has been described to be a crucial event in
the resistance to PI3K inhibitors in many tumor types41,42. A
recent study found that signaling models based on multiplex
single-cell mass cytometry data were more predictive of pictilisib
sensitivity than gene expression alone in breast cancer cell lines57.
We, further, detected a significant positive correlation between
the FASN inhibitor, GSK2194069, and pictilisib, which also
showed a combinatorial effect. This finding suggests a functional
link between PI3K signaling and de novo FA synthesis. In breast
cancer cells synergistic responses between rapamycin and FASN
inhibition have been reported58. The PI3K/AKT pathway could
stimulate the expression of enzymes necessary for FA synthesis

and promote activation of ATP-citrate lyase, an enzyme that
catalyzes the production of acetyl-CoA from cytoplasmic
citrate59,60. PI3K signaling in known to induce lipogenic enzymes,
including FASN61. Cancer cells with upregulated PI3K signaling
have been linked to increased FASN expression levels and
enhanced glucose uptake thus fulfilling the increased need for
membrane synthesis of rapidly dividing cells62,63.

We also observed a differential sensitivity pattern to AZD3965,
which could be rationalized by dependency on SLC16A1 in sen-
sitive cell lines due to near or complete absent expression of the
functionally related transporter SLC16A3. Hence, inhibition of
SLC16A1 in cells lacking SLC16A3 led to cell death due to the
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synthetic lethal relationship of these transporters and functional
redundancy64. Similar observations have been made in small cell
lung cancer, DLBCL, and Burkitt lymphoma65,66. The MCTs are
bidirectional and execute proton-linked transport of lactate,
pyruvate, and ketone bodies across the plasma membrane thereby
playing a crucial role in preventing intracellular acidification67,68.
Importantly, several cancers use lactate as a metabolic energy
source69,70 and MCTs have been reported to impact cancer cell
growth and survival71. Thus, as our data also show, MCTs
represent attractive potential therapeutic cancer targets. Several
SLC16A1-specific inhibitors have been developed72 with
AZD3965 being in phase I clinical trials for advanced cancers
(NCT01791595). The structural basis for its specificity and mode
of action was also recently identified73. Our study illustrates that a
relatively small percentage of myeloid malignancies (10–13%)
would be susceptible to SLC16A1 inhibition, but highlights
phenotypic drug screening as attractive means of identifying
responding cells/patients harboring metabolic dependencies.

While the genetic diversity of cancers is substantial, changes in
numerous oncogenes and tumor suppressor genes stimulate a
limited number of metabolic changes converging on a metabolic
phenotype. In fact, previous studies have linked lack of drug
response or the presence of drug resistance to specific intrinsic
molecular and/or metabolic cellular properties21,74, that could
guide the exploitation of novel metabolic vulnerabilities by
alternative chemical agents. Nonetheless, any therapy success of
metabolic inhibitors would be contingent on an adequate inte-
grative patient stratification. Several limitations of our study
should be contemplated for future metabolic drug profiling
efforts. First, the inactivity of roughly 70% of CLIMET com-
pounds might be due to the concentration range used as some
compounds are known to have activity in higher concentrations.
Second, we may have missed out on interesting compounds that
affect cellular metabolism by not impacting cell viability. Third,
we envisage a wider collection of metabolic inhibitors would
create insights into larger array of metabolic pathways/processes.
Lastly, the composition of cell culture media is likely distinct from
in vivo settings and in future, this parameter would need to be
assessed more carefully. Nonetheless we uncovered functional
and clinically relevant determinants of metabolic drug response.
In-depth characterization of cancer metabolic dependencies and
differences between normal and cancer cells will be a crucial step
toward translating metabolic inhibitors to the clinic.

Methods
Cell lines and cell culture. MOLM-13, MV4-11, Mono-Mac-6, KG-1, SHI-1, ML-
2, NOMO-1, HEL, LAMA-84, KU-812, KCL-22, and BV-173 were obtained from

DSMZ, K-562 and HL-60 from NCI 60 panel and THP-1 from ATCC. All cell lines
were maintained in RPMI 1640 medium (Gibco) with 10% fetal bovine serum
(Gibco), penicillin (100 U/mL), and streptomycin (100 μg/mL). Cell lines were
authenticated with STR profiling and mycoplasma tested by PCR prior to
the study.

Assembly of metabolic drug library. Information on metabolic enzymes and
drug-target annotations were integrated from publicly available databases such as
Kyoto Encyclopedia of Genes and Genomes (KEGG), the Small Molecule Pathway
Database (SMPDB) and ChEMBL target database (filtering on compounds with
potency < 5 μM kD or IC50) together with PubChem commercial chemical vendor
records, which led to initial 8000 compound candidates (Fig. 1a). We then nar-
rowed down this list to 600 by selecting compounds in order of preference for
approved drugs, compounds in pre/clinical investigation, compounds tested in cell-
based assays, and compounds tested in biochemical assays. The compound with the
highest activity with drug-like structure was taken (1–3 leads per target). The
compound list was further refined by literature evidence for biophysical interaction
(X-ray, SPR, etc.), in vitro activity on isolated enzyme, in vitro activity in cell-based
systems, in vivo activity in animal models, clinical activity, and number of PubMed
publications, which gave us 300 candidate compounds. We then cross-referenced
our candidates with the Fox Chase Cancer Center Cellular Metabolic library,
metabolic inhibitors outlined by Martinez-Outschoorn et al.9, and commercial
vendor records to the final list of 243 compounds. The compounds were manually
annotated with CHEMBL IDs, database/literature-reported target information,
target CHEMBL IDs, approval status, the metabolic process they inhibit or sti-
mulate, molecular weight, and SMILE (simplified molecular-input line-entry sys-
tem) information. The target annotation was performed by collecting information
from publicly available databases (e.g., DrugBank, KEGG) and additional manual
curation. The compounds were ordered via the Sigma-Aldrich Marker Select ser-
vice and sourced at 10 mM concentration in DMSO directly on Echo 384-well
plates (LP-0200; Labcyte). In addition, we obtained 1 mL of 10 mM stock in vials
for future use. The detailed description of the compounds is depicted in Supple-
mentary Data 1.

Phenotypic characterization of the metabolic drug library. The optimal cell
number per well for each cell line was assessed for cell viability analysis in 384-well
plates (Corning 3764). Briefly, cells were suspended in RPMI 1640 and seeded in
increasing concentrations in triplicate (500 cells/well to 25,000 cells/well) and cell
viability was assessed with CellTiter-Glo® Luminescent Cell Viability Assay (Pro-
mega) after 72 h incubation at 37 °C according to the manufacturer’s instructions.
The highest cell number at which the growth curve was in linear range was chosen
for drug testing. The compounds were printed on tissue culture-treated 384-well
plates (Corning) using Echo 550 (Labcyte Inc.) in five different concentrations in
duplicate in tenfold dilutions encompassing a 10,000-fold concentration range
(1–10,000 nM). Twenty-five microliters of single-cell suspension were seeded to
each well with a Multidrop Combi peristaltic dispenser (Thermo Scientific). The
plates were incubated at 37 °C and 5% CO2 for 72 h after which cell viability was
measured using CellTiter-Glo in a multilabel plate reader (EnVision, PerkinElmer).
Data were normalized to DMSO wells serving as negative controls and 10 μM
bortezomib wells (a proteasome inhibitor; effectively killing all cells at this dose)
serving as a positive control. A four-parameter log-logistic model was fit for each
compound’s dose–response data using the drc75 R package and corresponding
AUC values calculated for each compound using the compute AUC function of the
PharmacoGx76 R package. Unsupervised hierarchical clustering of the active
compounds (ones that had an effect on viability in at least one tested concentration;
n= 77) was performed with Gene Cluster 3.0 software (complete linkage method
and Spearman (drugs) and Euclidean (cell lines) distance measures). The resulting

Fig. 6 Differential expression of SLC16A1 and SLC16A3 determines sensitivity to AZD3965. a Average dose–response data of AZD3965 expressed as
percentage survival (n= 15 biologically independent cell lines in technical duplicate of each concentration). The sensitivity of AZD3965 in the two sensitive
CML cell lines, K-562 and BV-173, is highlighted in red. Error bars indicate mean ± SD. b Level of gene expression of SLC16A1 and SLC16A3 in publicly
available datasets from the Dependency Map Portal29,80. c Immunoblot analysis of SLC16A1 and SLC16A3 expression in K-562 cells lentivirally transduced
with empty vector, SLC16A1 or SLC16A3-cDNA. Data are representative of two independent experiments. d Average response to AZD3965 in K-562 wild
type, empty vector, and SLC16A1 or SLC16A3 overexpressing cells. Error bars indicate standard deviation of the mean of technical triplicates. Data are
representative of two independent experiments. e Expression of SLC16A1 and SLC16A3 in MV4-11 AML cells transduced with the indicated sgRNAs. Data
are representative of two independent experiments. f Average response to AZD3965 in MV4-11 wild type, sgRen control infected cells, and SLC16A1 or
SLC16A3 deficient cells. Error bars indicate standard deviation of the mean of technical triplicates. Data are representative of two independent experiments.
g Volcano plot showing differences in gene expression between AZD3965 sensitive (K-562 and BV-173) and nonsensitive lines (the remaining 12 for which
gene expression data were available). Each point represents one gene. An unpaired two-sample, two-sided t-test was performed for each gene. The y-axis
corresponds to FDR adjusted P values (using Benjamini–Hochberg correction). The horizontal red dotted line signifies the 5% FDR cutoff. h A correlation
plot of SLC16A1 and SLC16A3 expression in the 205 hematological cancer cell lines covered by the Dependency Map from the Broad Institute (expression
data 20Q2)40. The diagonal dotted line indicates an SLC16A1/SLC16A3 expression ratio of 3 or higher highlighting cell lines predicted to be sensitive to
AZD3965 (n= 44) that are annotated per lineage and disease subtype. BV-173 and K-562 are labeled for reference. The names of the remaining cell lines
and the corresponding SLC16A1/SLC16A3 expression ratio are shown in Supplementary Fig. 9g.
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Fig. 7 Gene expression pattern of monocarboxylate transporters in cancer patients. a, b Comparison of SLC16A1 and SLC16A3 expression in cancer
patient and normal samples (derived from matching TCGA or Genotype-Tissue Expression (GTEx) project47. The analysis was performed with the gene
expression profiling interactive analysis (GEPIA2) server46 utilizing RNA-Seq datasets based on the UCSC Xena project45 (http://xena.ucsc.edu), which
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Fig. 8 Metabolic inhibitors can alter metabolic dependencies. a Spearman correlation of drug responses in HL-60 cells in response to 72 h 100 nM
AZD3965, 100 nM pictilisib, or 100 nM GSK2194069 treatment quantified as AUC values. Drugs that showed a reduced sensitivity in response to drug
treatment are marked in blue, whereas drugs that showed an increased sensitivity are marked in red. b Dose–response curves of the drugs highlighted in
a as percentage survival. Black curves are baseline and red curves are in response to the respective drugs. Error bars indicate standard deviation of the
mean of technical duplicates.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27329-x

14 NATURE COMMUNICATIONS |         (2021) 12:7190 | https://doi.org/10.1038/s41467-021-27329-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


heatmap was visualized with Java Tree View software Version 1.1.6r4. Reprodu-
cibility of the clustering was assessed with the bootstrap resampling method using
the Pvclust R package77. Similarity of drug sensitivity was evaluated by SD of AUC
values for a particular compound within a cluster with SD ≤ 0.05 indicating con-
cordance. The results were visualized with Venn diagrams with the Venn webtool
from the University of Gent (http://bioinformatics.psb.ugent.be/webtools/Venn/).
For detecting selective drug sensitivities in each cell line, the average AUC per drug

was subtracted from the AUC value of the drug in each individual cell line and
visualized with a spider plot using R statistical environment.

Evaluation if metabolic inhibitors can alter metabolic vulnerabilities was
performed by rescreening the entire drug library as described above (each drug
tested in five different concentrations in duplicate) in HL-60 cells in the presence of
either DMSO, 100 nM AZD3965, 100 nM pictilisib, or 100 nM GSK2194069. Data
analysis was the same as for the original screen with overall drug response profiles
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being compared with a Spearman correlation analysis performed in GraphPad
Prism 9.

Cellular metabolic (Seahorse) analysis. To assess basal cellular metabolic
activity, we utilized the Seahorse XF Cell Mito Stress Test Kit (Agilent) according to
the manufacturer’s instructions. Briefly, cells suspended in Seahorse XF base
medium, supplemented with glucose (10 mM), sodium pyruvate (1 mM) and
L-glutamine (2 mM), were plated at 150,000 cells per well in XF 96-well cell culture
microplates (Agilent). After 1 h of incubation at 37 °C the plate was loaded into the
XF96 Extracellular Flux Analyzer (Agilent) and the Seahorse XF Cell Mito Stress
Test was performed using oligomycin (1 µM), FCCP (1 µM) and rotenone
(0.5 µM).

Metabolomics analysis. Publicly available targeted metabolomics dataset from the
CCLE28 was utilized for assessment of the metabolic profiles of the cell lines
included in this study. A LC–MS approach was used to measure 225 metabolites in
928 cell lines from more than 20 cancer types. For analysis the imputed batch-
corrected dataset with log10-transformed values (clean data) was used. To deter-
mine metabolite levels that were significantly different between at least two groups,
a two-way ANOVA analysis and multiple testing correction with false discovery
rate (FDR) of 10% was performed with GraphPad Prism version 9. The results were
normalized with a Z score for a heatmap visualization. Metabolite enrichment and
pathway analysis was performed with MetaboAnalyst78,79.

Genotype to phenotype correlation. Somatic mutation data for the cell lines
included in this study was obtained from The Cancer Dependency Map portal
(DepMap; 19Q3 data release)29,80. For each recurrent mutation in at least three cell
lines an unpaired two-sided parametric Student’s t test was performed to identify
significant associations between mutations and drug response. FDR was computed
using the Benjamini–Hochberg method over all drugs (an FDR of 10% was deemed
statistically significant).

Drug response correlations. Co-occurring and mutually exclusive drug sensi-
tivities were identified by pair-wise Spearman’s correlation analysis using the
corplot81 R package. The analysis was applied for the 77 active drugs and the
Spearman’s correlation coefficient of each drug was plotted onto a clustered
heatmap visualized with a correlogram. Positive correlations are showed in red and
negative in blue. The intensity of the color and size of the circles are proportional to
the correlation coefficients. The significant drug–drug correlations were identified
after correcting for multiple testing with Benjamini–Hochberg at FDR of 10% and
highlighted with thick black border.

Drug combination screens. The significant drug–drug interactions identified in
Fig. 4a were evaluated by drug synergy screens in four different cell lines HL-60,
Mono-Mac-6, BV-173, and MV4-11. Briefly, 8 × 8 synergy matrices were tested for
each drug combination and cell lines with majority of drugs being tested at 5, 10,
50, 100, 500, 1000, and 5000 nM concentration with the exception of rosiglitazone
and lestaurtinib that were tested at 1, 5, 10, 50, 100, 500, and 1000 nM con-
centration. The experimental procedure and readouts were as described above for
single agent screening. Combinatorial effects were evaluated and visualized using
the SynergyFinder82,83 web portal (https://synergyfinder.fimm.fi) using the Bliss
independent model.

Gene expression analysis. Gene expression data for the cell lines included in this
study were obtained from The Cancer Dependency Map portal (DepMap; 19Q3
and 20Q2 data release)29,40,80 as log2 (TPM+1). Data were available for 14 of the
15 cell lines included in this study. Genes that were not expressed in any of the cell
lines of interest (expression level log2 (TPM) < 1) were excluded from further
analysis. Most variedly expressed genes in HL-60 cells were identified by assessing
the SD between gene expression levels in HL-60 in relation to the average gene
expression across the remaining 13 cell lines. Moreover, genes for which the SD
was above 1.7 were considered and additionally filtered for unique expression

pattern in HL-60 cells. Pathway and process gene set enrichment analysis was
performed with Metascape84.

Differentially expressed genes in AZD3965 sensitive and nonsensitive cell lines
were identified by performing an unpaired two-sample, two-sided t-test for each
expressed gene. The resulting P values were adjusted with a Benjamini–Hochberg
correction with FDR of 5% deemed significant. A volcano plot was generated with
Prism 8. Biological process and molecular function gene annotation was retrieved
from the gene ontology resource85,86. An SLC16A1/SLC16A3 expression ratio of 3
or higher was considered predictive of AZD3965 sensitivity, as K-562 cells were
tested to be sensitive in this study but had the lowest SLC16A1/SLC16A3 expression
ration of 3.1 among the 44 cell lines deemed sensitive to AZD3965. Thus, the
threshold cutoff was placed at SLC16A1/SLC16A3 expression ratio of 3. Lineage
and disease subtype of the cell lines was retrieved from the DepMap portal (20Q2
data release).

Plasmid cloning. SLC16A1 and SLC16A3 deficient cells were generated by
CRISPR/Cas9 technology as previously described87 using the pLentiCRISPRv2
vector (Addgene plasmid #52961)88. In brief, guide RNAs (sgRNA) were designed
using CHOPCHOP89 and sgRNA designer tools90, oligonucleotides harboring
BsmBI restriction site-compatible overhangs were annealed, phosphorylated and
ligated into pLentiCRISPRv2 by standard cloning methods and sequences were
confirmed by Sanger sequencing. An sgRNA targeting the Renilla luciferase coding
sequence:

sgRen.208 (F: CACCGGTATAATACACCGCGCTAC; R:
AAACGTAGCGCGGTGTATTATACC) was used as a negative control. Three
different sgRNAs per gene were used and the sequences are provided bellow:

sgSLC16A1.530 (F: CACCGGGATATCCATGACACTTCGC; R:
AAACGCGAAGTGTCATGGATATCCC)

sgSLC16A1.777 (F: CACCGTTTCTACAAGAGGCGACCAT; R:
AAACATGGTCGCCTCTTGTAGAAAC)

sgSLC16A1.1291 (F: CACCGATGGTAGCCCGACCATCTAT; R:
AAACATAGATGGTCGGGCTACCATC)

sgSLC16A3.381 (F: CACCGTGCCGGCCCGTCATGCTTGT; R:
AAACACAAGCATGACGGGCCGGCAC)

sgSLC16A3.384 (F: CACCGCGGCCCGTCATGCTTGTGGG; R:
AAACCCCACAAGCATGACGGGCCGC)

sgSLC16A3.1059 (F: CACCGTCTACGGCGGGCGACTACGG; R:
AAACCCGTAGTCGCCCGCCGTAGAC).

Generation of cells overexpressing SLC16A1, SLC16A3, PIK3CA, PIK3CB,
PIK3CD, and PIK3CG was performed by lentiviral cDNA delivery experiments.
SLC-encoding cDNAs were obtained as codon-optimized versions from Genscript
and transferred into pDONR221 entry vector using BP reaction gateway cloning
(Invitrogen). PI3K isoform cDNAs were ordered from Addgene (#81736, #82221,
#82222, and #81843).

In the case of Addgene plasmid #81843 the stop codon was removed by site
directed mutagenesis to enable C-terminal tagging (E0554S, New England Biolabs,
Ipswich, USA). Constructs were subsequently transferred into lentiviral expression
vectors LEgwSHIB (pRRL-EF1a-gwSH-IRES-BlastR)87 or LE3FgwIP (pRRL-EF1a-
3xFLAG-gw-IRES-PuroR) using LR reaction-based gateway cloning (Invitrogen).
Cells infected with a corresponding empty lentiviral expression vector LEIB (pRRL-
EF1a-IRES-BlastR) or LEIP (pRRL-EF1a-IRES-PuroR) served as negative control.

Lentiviral cell line generation. For lentivirus production, HEK293T cells were
transiently transfected with psPAX2 and pMD2.G packaging plasmids (Addgene)
and corresponding expression vectors. Media were changed 24 h post transfection
and replaced with the target cell line-specific media. After 48 h the supernatant
(containing virus) was collected, filtered through a 0.45 μm filter supplemented
with 8 μg/mL protamine sulfate (Sigma-Aldrich) and added to subconfluent target
cells. Cells were then spinfected at 2000 rpm for 45 min at room temperature. After
24 h the media were exchanged with fresh media and 24 h later the media were
complemented with selection antibiotic for 5–7 days to select infected target cells.
Knockout and overexpression efficiency was evaluated by immunoblot analysis.

Fig. 9 Metabolic drug sensitivity profiles are generally comparable between myeloid cancer patient samples and cell lines. a A volcano plot depicting
the comparison of 70 drug responses between 15 myeloid cancer patient samples and 15 myeloid cancer cell lines. Each point represents one drug and
statistical significance was assessed by Mann–Whitney test for each drug. The log2 AUC (fold change) is plotted on the x-axis and negative log10 of the
adjusted P values (using the two-stage step-up Benjamini, Krieger, and Yekutieli correction) is plotted on the y-axis. The horizontal dotted line signifies the
5% significance cutoff. Colored dots indicate drugs that exhibit higher sensitivity in either patient samples (red) or cell lines (blue). b Spearman correlation
of drug response profiles between myeloid leukemia patient samples and cell lines. Drugs that were highlighted to strongly contribute to the cell line
grouping are marked in green. c Heatmap of metabolic drug sensitivity profiles expressed as AUC in 12 AML and 3 CML patient samples. Clustering was
performed with the complete linkage method and Spearman (drugs) and Euclidean (patient samples) distance measures. The color bars to the left and
above show sample annotations with gray box depicting data not available and white box depicting no mutation detected. Drug AUC distribution (min to
max) box plot is shown on the right side of the graph with the black line in the middle of box depicting the median (the mean is indicated with a + sign).
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Immunoblotting. Cells were centrifuged, washed once with cold PBS and subse-
quently lysed in Nonidet-40 lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl,
5 mM EDTA, 1% NP-40, 1 mM PMSF and one tablet of Roche EDTA-free protease
inhibitor cocktail (Sigma-Aldrich) per 50 mL) for 10 min on ice. Lysates were then
centrifuged (13,000 rpm, 10 min, 4 °C) and proteins were quantified with the
Bradford assay using γ-globin as a standard (Bio Rad). Cell lysates were separated
by SDS-PAGE and transferred to nitrocellulose membranes Protran BA85 (GE
Healthcare). The membranes were incubated with α-SLC16A1 (Santa Cruz Bio-
technology; sc-365501 mouse mAb 1:500 dilution), α-SLC16A3 (Santa Cruz Bio-
technology; sc-376140 mouse mAb 1:500), α-FLAG (Sigma-Aldrich; F1804 mouse
mAb 1:1000), α-HSP90 (BD Biosciences; 610418 purified mouse Ab 1:2000) or α-
AKT (Cell Signaling Technologies; #4685 rabbit mAb 1:1000) and visualized with
goat-anti-mouse IgG (115-035-003) or goat-anti-rabbit IgG (111-035-003) horse-
radish peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch;
1:5000) utilizing the ECL western blotting system (Thermo Fisher Scientific).

Primary patient cells drug profiling. Vitaly frozen mononuclear cells (MNCs) from
patients with AML (n= 13) and CML (n= 3) after written informed consent were used
for this study. Ethical approval was granted by the Ethics Commission of the Medical
University of Vienna (Ethik Kommission 1676/2016). Patient characteristics are
described in Supplementary Table 1. MNCs from bone marrow aspirates and peripheral
blood were purified using Ficoll density gradient (Lymphoprep; STEMCELL Tech-
nologies). Upon thawing cells were maintained in RPMI 1640 medium (Gibco) with
10% fetal bovine serum (Gibco), penicillin (100U/mL), and streptomycin (100 μg/mL).
Patient cells were thawed, counted, and 10,000 cells per well were seeded onto pre-
drugged 384-well plates. Drug screening and analysis were performed as described for
the cell lines, with 70 drugs being tested in the patient samples. Mutational data were
extracted from patient charts and referral reports where available.

Reverse transcription quantitative PCR. Total RNA was extracted using Trizol
according to the manufacturer’s protocol (Gibco). Quantification of FASN mRNA
in response to pictilisib treatment and GADPH expression in HL-60 cells was
performed using high-capacity RNA-to-cDNA kit and SYBR qPCR Green PCR
Master Mix (Applied Biosystems). The following primers were used:

FW primer GAPDH GAGTCAACGGATTTGGTCGT
RV primer GAPDH AATGAAGGGGTCATTGATGG
FW primer FASN AGCAGTTCACGGACATGGAG
RV primer FASN ATGGTACTTGGCCTTGGGTG

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Information on metabolic enzymes and drug-target annotations are available from publicly
accessible databases such as KEGG (https://www.genome.jp/kegg/), SMPDB (https://
smpdb.ca), ChEMBL (https://www.ebi.ac.uk/chembl/), PubChem (https://
pubchem.ncbi.nlm.nih.gov), and DrugBank (https://www.drugbank.ca). The manually
curated CLIMET compound annotations are provided as Supplementary Data 1. Drug
screening data generated in this study are provided as Supplementary Data 2 and 3. The
Genomics of Drug Sensitivity in Cancer publicly available drug sensitivity data used in this
study are available on the GDSC portal (https://www.cancerrxgene.org; GDSC1 data
release). The DepMap cell line annotations (DepMap Public 20Q2; sample_info.csv), CCLE
cell line targeted metabolomics (CCLE_metabolomics_20190502.csv; expressed as log10-
transformed values cleaned up data), somatic mutation (DepMap 19Q3 Public. figshare.
Dataset. https://doi.org/10.6084/m9.figshare.9201770.v1. (2019)), gene expression (DepMap
19Q3 Public. figshare. Dataset. https://doi.org/10.6084/m9.figshare.9201770.v1. (2019); and
DepMap 20Q2 Public. figshare. Dataset. https://doi.org/10.6084/m9.figshare.12280541.v4.
(2020)) expressed as log2 (TPM+1)), RNAi (D2_combined_gene_dep_scores.csv), and
RPPA (CCLE_RPPA_20181003.csv expressed as log2 RPPA signal) data used in this study
are available from the Broad DepMap portal (https://depmap.org/portal/download/). Other
gene dependency datasets used are available from the Supplementary Information of the
original publications (Tzelepis et al. 37, Wang et al. 43, and Wang et al. 44). Patient sample
gene expression data from TCGA can be accessed via the UCSC Xena project (http://
xena.ucsc.edu) visualized with the GEPIA server (http://gepia.cancer-pku.cn/index.html).
AML patient sample drug sensitivity data used in this study are available at http://
www.vizome.org/aml/. Complete immunoblot scans are available in the source data file. All
other data generated in this study and/or supporting the findings of this study are available
within the paper, its supplementary information files and the source data accompanying the
paper. Source data are provided with this paper.
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