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30-year record of Himalaya mass-wasting reveals
landscape perturbations by extreme events
Joshua N. Jones 1,2✉, Sarah J. Boulton 2, Martin Stokes2, Georgina L. Bennett 3 &

Michael R. Z. Whitworth4

In mountainous environments, quantifying the drivers of mass-wasting is fundamental for

understanding landscape evolution and improving hazard management. Here, we quantify the

magnitudes of mass-wasting caused by the Asia Summer Monsoon, extreme rainfall, and

earthquakes in the Nepal Himalaya. Using a newly compiled 30-year mass-wasting inventory,

we establish empirical relationships between monsoon-triggered mass-wasting and monsoon

precipitation, before quantifying how other mass-wasting drivers perturb this relationship.

We find that perturbations up to 5 times greater than that expected from the monsoon alone

are caused by rainfall events with 5-to-30-year return periods and short-term (< 2 year)

earthquake-induced landscape preconditioning. In 2015, the landscape preconditioning is

strongly controlled by the topographic signature of the Gorkha earthquake, whereby high

Peak Ground Accelerations coincident with high excess topography (rock volume above a

landscape threshold angle) amplifies landscape damage. Furthermore, earlier earthquakes in

1934, 1988 and 2011 are not found to influence 2015 mass-wasting.
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In mountainous terrain, mass-wasting processes dominate
landscape evolution1–3 posing risk to life and socioeconomic
development4,5. Background rates of mass-wasting are driven

by tectonic uplift1,6 and climate7–9, though their relative con-
tributions over geological timescales are difficult to unravel10.
At shorter timescales, background mass-wasting rates are per-
turbed by low-frequency, high-magnitude drivers, including
extreme rainfall, earthquakes and floods11–14. Quantifying the
mass-wasting caused by diverse drivers is thus fundamental in
efforts to forecast and mitigate mass-wasting hazards in response
to environmental change.

Compilation and comparison of erosion rates measured over
different timescales can isolate the roles of different mass-
wasting drivers. Such approaches typically utilise proxies,
including cosmogenic nuclides or suspended sediment flux, to
establish long-term background erosion rates against which
shorter term perturbations captured by field sampling or remote
sensing can be measured2,12,13,15. However, these approaches are
inherently uncertain, with different methods over different
timescales producing significantly different results16. Instead, a
growing archive of remote-sensing data enables the compilation
of sufficiently long datasets of mass-wasting from which back-
ground rates can be established, and perturbations above the
background identified7,17. However, due to the time-consuming
nature of developing such long-term datasets, rarely have studies
successfully unravelled the relative impacts of interacting mass-
wasting drivers.

A region with a complex set of mass-wasting drivers, and one of
the highest rates of mass-wasting on Earth4 is the Himalayas. High
rates of tectonic uplift and the Asia Summer Monsoon (ASM)
drive high background rates of mass-wasting15,18–20, which are
perturbed by events including floods21, extreme rainfall22,23 and
earthquakes3,24,25. However, the relative impacts of these drivers
remains unquantified, as most studies focus on the impacts of
individual drivers only. Furthermore, whilst relationships between
precipitation intensity and short-term suspended fluvial sediment
flux in the Himalaya are well described15,19,26, an empirical rela-
tionship between ASM strength and ASM-triggered mass-wasting
in central-eastern Nepal remains elusive3. This is problematic, as
demonstrated by the 2015 Mw 7.8 Gorkha earthquake. As well
as triggering over 24,000 coseismic landslides24,27, the Gorkha
earthquake caused elevated rates of new monsoon-triggered mass-
wasting in the 2015 monsoon season This is likely linked to surface
damage caused by seismically induced ground motion3, an effect
termed earthquake preconditioning17,28. However, the timescale
and magnitude of this preconditioning perturbation remains
uncertain, as without empirical relationships between ASM pre-
cipitation and mass-wasting, it is challenging to distinguish whe-
ther mass-wasting from 2016 onwards was perturbed above the
rate expected given the ASM strength3. Accordingly, until
empirical relationships between ASM strength and mass-wasting
volume are defined, our ability to quantify mass-wasting pertur-
bations due to extreme events across central-eastern Nepal is
limited, thus impeding efforts to account for extreme events in
mass-wasting forecasts and time-dependent landslide susceptibility
models.

Here, we quantify the mass-wasting impacts of the ASM,
extreme rainfall and earthquake preconditioning in the Nepal
Himalaya. We use a new 30-year mass-wasting inventory for
central-eastern Nepal to establish empirical relationship between
metrics of ASM strength and mass-wasting, which are then
used to calculate ASM strength-normalised mass-wasting rates
between 1988 and 2018. These rates allow us to isolate and
quantify the magnitudes and timescales of mass-wasting pertur-
bations above that attributable to the ASM. As well as providing
insight into the processes controlling landscape evolution, this

permits further investigation into the characteristics and pro-
cesses of earthquake preconditioning in the Himalaya.

Results and discussion
Using visual inspection of Landsat 4/5/8 imagery, we mapped a
30-year inventory of rainfall-triggered mass-wasting over
~42,000 km2 of central-eastern Nepal between 1988 and 2018
(Fig. 1; 'Methods'). We mapped 12,920 moderate to large
(>1000 m2) mass-wasting events; 10,138 of which were new
failures and 2782 reactivations or remobilisations of previous
failures. Mapping occurred across 29 time slices, each encom-
passing a single monsoon season (May–September) plus a varying
number of months either side. The inventory does not include
new coseismic or anthropogenic mass-wasting, but does include
rainfall-induced reactivations/remobilisation of coseismic mass-
wasting.

Empirical relationship between the ASM and mass-wasting. To
quantify empirical relationships between the ASM and mass-
wasting, two measures of total mass-wasting for each time slice
are derived: (1) the volume of all mapped features, including new
landslides, reactivations, and remobilisations (‘New+ RR’); and
(2) the volume of new features only, with reactivations and
remobilisations removed (‘New Only’). These measures allow
isolation of new post-earthquake mass-wasting related to earth-
quake damaged bedrock (i.e. earthquake preconditioning) from
reactivations and remobilisations of coseismic and pre-existing
mass-wasting. For each measure, mass-wasting volumes were
calculated using global area–volume scaling relationships29, both
for estimated scar areas and total areas (combined scar, deposi-
tional, and runout zones) ('Methods').

We then correlate all measures of mass-wasting volume
for pre-Gorkha earthquake years with proxies for ASM strength
derived from two rainfall products: PERSIANN-CDR30,31 and
APHRODITE32 ('Methods'). For both PERSIANN-CDR and
APHRODITE, we use several reported proxies for ASM
strength3,33: total May to end-September (MJJAS) precipitation,
total precipitation from 15th July–end-September, total MJJAS
precipitation >25mm (sum of all precipitation days with total
rainfall values >25mm), and total precipitation >25mm from 15th
July–end-September (sum of all precipitation days within this time
period with total rainfall values >25mm). We avoid measures of
monsoon strength such as the SASMI34 as these are derived over
regional scales and do not capture local changes in monsoon
conditions. As previously observed in western Nepal33, for the
PERSIANN-CDR data, total MJJAS precipitation provides the best
fit to the mass-wasting data (Fig. 2a–d), while for APHRODITE, it
is total MJJAS precipitation >25mm (Fig. 2e–h; Supplementary
Figs. S1–3). Thus, from here onwards, the term ‘ASM strength’
refers to total MJJAS precipitation (mm/grid) for PERSIANN-CDR,
and total MJJAS > 25mm (mm/grid) for APHRODITE. Of the 24
pre-Gorkha earthquake years included in these correlations, we
find that mass-wasting volume per unit area increases with
total grid-averaged precipitation, with potential anomalies in
1989, 1993, 1995, and 2002 (R2= 0.69–0.83 for non-anomalous
years using PERSIANN-CDR (Fig. 2a–d) and R2= 0.56–0.67 for
non-anomalous years using APHRODITE (Fig. 2e–h)).

Following previous methodologies17 (see 'Methods'), we then
use the best-fit empirical relationships (Fig. 2a–h) to calculate the
predicted volumes of mass-wasting expected in each time slice
based on that year’s total grid averaged ASM strength. Then, for
all measures of volume, by taking the ratio of the actual mapped
volumes to the predicted volumes, we derived ASM strength-
normalised rates of mass-wasting for each of the 29 time slices
between 1988 and 2018. These rates show that, for both rainfall
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products, most time slices fall within a narrow band of mass-
wasting around the expected normalised value of one, with several
years perturbed above this. For the PERSIANN-CDR normal-
isation, there are perturbations above +1 SD of the normal in
1993, 2002 and post-2015 (Fig. 3a). For the post-2015 perturba-
tion, if coseismic reactivations and remobilisations are considered,
then 2015 and 2016 are perturbed above the expected monsoon
scaling. However, when considering only new failures, only 2015 is
perturbed, as reported previously3. For the APHRODITE normal-
isation, the years 1989, 1993, 2002 and 2015 are perturbed above
+1 SD of the normal, with another possible perturbation in 1995
(Fig. 3b).

As the ASM strength-normalised mass-wasting rate accounts
for variance in ASM precipitation, the perturbations should be
attributable to infrequent high-magnitude mass-wasting drivers
not accounted for by the metrics of ASM strength. However,
before assuming this, it should be confirmed that these
perturbations are not actually caused by a small number of
anomalously large landslide events. We achieve this using two
approaches ('Methods'). (1) Before correlating mass-wasting
with ASM strength, we removed the largest landslides of each
year if its scar area was greater than twice that of the second
largest. This ensures that large landslides influenced by
progressive failure across several monsoon seasons are not
incorrectly attributed to a single time slice3. (2) We fitted three-
parameter inverse-gamma distributions to the probability
density functions (PDFs) of mass-wasting area for all years
combined, all pre-2015 non-perturbed years, 1989, 1993, 1995,
2002, 2015 and all post-2015 years (Fig. 4a–h). If the inverse-
gamma distributions fitted to each subset have similar scaling
exponents (where a larger exponent indicates that larger mass-
wasting events are contributing proportionally less to the overall
area of that subset) and rollovers (the size above which power
law behaviour applies), then we can rule out that the observed

perturbations are caused solely by statistical anomalies in mass-
wasting size.

Scaling exponents fall between 1.8 and 2.2 for all subsets except
1995 and 2015, which had lower exponents of 1.6. Similarly, the
rollovers of most subsets fall between 2000 and 6000 m2, apart
from 1989 and 1993, which had rollovers of 6000 and 7000 m2.
Since the scaling exponents are similar above comparable cut-offs,
the area-frequency distributions can be described as scaled
versions of one another, though with 2015 and 1995 having
slightly higher proportions of relatively larger landslides. This
suggests that the observed perturbations are not solely attribu-
table to changes in mass-wasting size, but are due to physical
processes increasing the frequency of all sizes of mass-wasting.

Impacts of extreme rainfall. The ASM strength-normalised
rates identify mass-wasting perturbations in 1993, 1995 and
2002 that are not coincident with seismic activity >Mw 6.0
(Fig. 3a, b). If these perturbations are associated with rainfall,
we propose two explanations for their occurrence. One, they are
due to years of overall intense monsoon activity that are just
poorly predicted by the normalisation method. Or two, they are
due to significant rainfall events that occurred within the
monsoon seasons, but were too localised to be captured by the
monthly precipitation estimates. The time series of monthly
precipitation totals (Fig. 3a, b) show that the total monsoon
rainfall for these years was not anomalously high. However, the
perturbations in 1993 and 2002 were both coincident with
‘cloud-outburst’ extreme rainfall events. On 19–20 July 1993,
>540 mm of rainfall in 24 h fell across a 500 km2 region of
the Kulekhani watershed, 30 km southwest of Kathmandu,
causing over 1500 fatalities and triggering over 300 landslides22.
Similarly, on 23 July 2002, >300 mm of rainfall in 24 h fell
across a 14,000 km2 region of south-central Nepal, causing over
427 fatalities and triggering 73 debris slides35,36.

Fig. 1 Location of the study region and all 12,290 mapped monsoon-triggered mass-wasting features. This includes a detailed view of a smaller sub-
region demonstrating the detail of the mapped polygons. Also shown are the outlines of all Nepal Districts within the study region, including Kathmandu
city and the Gorkha earthquake epicentre. Elevation data are derived from the ALOS World 3D (AW3D30) DEM developed by and copyrighted to the
Japanese Aerospace Exploration Agency (JAXA).
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Fig. 2 Empirical relationships between measures of mass-wasting volume and monsoon strength across central-eastern Nepal. a–d Empirical
relationships between measures of mass-wasting volume (m3/km2) and PERSIANN-CDR total MJJAS precipitation for a total ‘New+ RR’ volume, b total
‘New Only’ volume, c scar ‘New+ RR’ volume and d scar ‘New Only’ volume. e–h Empirical relationships between measures of mass-wasting volume (m3/
km2) and APHRODITE total MJJAS precipitation >25mm for e total ‘New+ RR’ volume, f total ‘New Only’ volume, g scar ‘New+ RR’ volume and h scar
‘New Only’ volume. Where, in all cases ‘New+ RR’ refers to the combined volumes of both new failures and reactivations/remobilisations and ‘New Only’
refers to just the volumes of new failures, with reactivations and remobilisations excluded. The exponential best fits shown on these graphs apply to the
non-anomalous pre-2015 points only, with all anomalous points labelled individually. The post-2015 points are also shown for reference, as are the
±1 standard errors on the best-fit equations.
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This suggest that the 1993 and 2002 mass-wasting perturba-
tions were the result of short-lived, localised, extreme rainfall
events that were not captured in the measures of ASM strength.
This raises several questions. How extreme were the 1993 and
2002 events? Did similarly extreme rainfall events affect the other
perturbations? Have similarly extreme rainfall events occurred
without triggering significant mass-wasting? And what are their
periods?

To answer these questions, it is necessary to define how
extreme the 1993 and 2002 cloud-outburst storm events were. To
do this, we exploit the daily APHRODITE precipitation record
(1951–2015) to calculate Z-score anomalies for every monsoon

season (MJJAS) day across each of the 84 APHRODITE grids that
encompass our study region. For each separate rainfall grid cell,
the mean and standard deviations of all monsoon season days
were calculated, and individual daily Z-scores obtained. A Z-score
anomaly defines how many standard deviations separate a given
observation from the mean of the population containing this
observation. Z-score anomalies were used as they are a commonly
used effective method for semi-quantitatively assessing changes in
environmental data37,38.

For the 1993 and 2002 events, peak Z-scores were ~12
(Supplementary Fig. S4) and 16–19, respectively. To identify
whether any similarly extreme rainfall events had occurred across
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Fig. 3 ASM strength-normalised rates of mass-wasting between 1988 and 2018. These rates are shown for a the normalisation using the PERSIANN-
CDR data and total MJJAS precipitation and b the normalisation using the APHRODITE data and total MJJAS precipitation >25mm. In both cases, most
years fall within a narrow window around the normal, with perturbations in 1993, 2002 and 2015 in (a), and 1989, 1993, 1995, 2002 and 2015 in (b). The
occurrences of historical Mw > 6.0 earthquakes are shown. Also depicted are the monthly grid-averaged PERSIANN-CDR (a) and APHRODITE (b)
precipitation totals across the study region between 1988 and 2018. The errors in the normalised rate include the standard error in the data points used to
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the mapped time period, we then extracted all days with Z-scores
exceeding thresholds of 12, 14 and 16, and correlated these with
the normalisation results from Fig. 3b (Fig. 5a). Only two other
years observed rainfall events with Z-scores >12: 1995, which also
experienced a minor mass-wasting perturbation, and 2004, which
did not. This suggests that a rainfall Z-score threshold of ≥12,
relative to the 1951–2015 mean, is required to induce a significant
mass-wasting perturbation. The perturbations in 2015 and 1989
do not coincide with any anomalously high rainfall, with neither
year observing days with Z-scores >10, suggesting that extreme
rainfall alone cannot explain these perturbations.

Interestingly, the 2004 monsoon season did not observe a
mass-wasting perturbation, despite experiencing eight cells
(across the entire region) with Z-scores >12 and three cells with
Z-scores >14. With the exception of 2002, this year observed the
most extreme rainfall between 1988 and 2015. Given that all eight
of the cells experiencing extreme rainfall in 2004 occurred after 15
June, the lack of a landslide response is unlikely to be attributable
to incompletely saturated hillslopes3,39. However, there are three
other potential explanations for why the 2004 rainfall did not
induce a mass-wasting response.

The first explanation relates to the temporal distribution of the
2004 extreme rainfall. Of the eight cells in 2004 that exhibited Z-
scores >12, none were in the same cell on consecutive days. This
is potentially important, as consecutive high-intensity rainfall
days will be more efficient at triggering landslides. However, a
lack of consecutive high Z-score days in 2004 is considered an
unlikely explanation, as of all the other perturbations, only one
cell in 2002 (cell 21; Fig. 6) experienced two consecutive days with
Z-scores >12.

The second potential explanation is that rainfall could have
induced less landsliding in 2004 because the landscape had yet to
recover from the landslide perturbation in 2002. This concept of
landscape recovery40 is the idea that a major exhumation event
will exhaust a landscape of soil material available to fail, thus
transiently limiting future landsliding until the landscape has re-
accumulated unstable regolith material. The 2004 rainfall event
was partially coincident with the 2002 event (Fig. 6) suggesting
that landscape recovery (or lack of) may explain the subdued
landslide response in 2004. If this is correct, then the cells
coincident with both the 2002 and 2004 events (cells 20, 21, 22
and 23; Fig. 6) would have less mass-wasting in 2004 relative
to their Z-scores than the cells that were only impacted in
2004 (cells 9, 10, 11, 12, 24). To test this hypothesis, the
percentage change in 2004 monsoon-triggered mass-wasting
relative to the non-perturbed mean for each cell was calculated
('Methods'). The 2004 event cells coincident with 2002 have

percentage mass-wasting changes of 20–435% in response to
Z-scores of 11–13. In comparison, the cells not coincident with
the 2002 event had percentage changes in mass-wasting of
220–700% in response to Z-scores of 12–16. As such, while the
non-coincident cells did observe more mass-wasting in 2004 than
the coincident cells, they also observed higher Z-scores. It thus
remains inconclusive whether a lack of landscape recovery can
explain why 2004 did not observe a mass-wasting perturbation.
Furthermore, the concept of landscape recovery is contradicted by
the observations shown here and in other studies for post-seismic
landsliding3,14,17,41, where landsliding actually increases immedi-
ately following a major exhumation event.

Third, the lack of landslide response could result from inaccuracy
and/or misallocation of the rainfall data. The APRHDOITE grid
cells are coarse (~30 km resolution), and the cells for the 2002 and
2004 events cross the boundary of the study region. Consequently,
the high 2004 Z-scores could be caused by rainfall located just
outside of the study region, and thus the observed landsliding may
have occurred in response to less extreme local rainfall than is
suggested by the larger-scale Z-score anomaly. In the absence of
higher resolution time series data, it is challenging to quantify
whether such inaccuracy exists, but it is an issue that should be
considered when interpreting the results.

Overall, while it remains unclear exactly why 2004 did not
observe a mass-wasting response, this analysis does show that the
1993, 1995 and 2002 perturbations all coincide with years that
experienced rainfall Z-scores >12, indicating that this is a threshold
for which significant mass-wasting can be induced. As such, it
would be useful to know the return periods of such events. From
the ASM-normalisations (Fig. 3a, b), two extreme rainfall-induced
mass-wasting anomalies occurred over a 30-year period, suggesting
that across the entire study region, such perturbations have ~15
year return periods. Furthermore, based on the full 64-year time
series of APHRODITE rainfall, the return periods across the entire
study region of rainfall events capable of causing these perturbations
(Z-scores >12 and >16) are 5–30 years (15 and 2 events recorded
over 64 years).

Finally, it is worth highlighting that all results presented here
pertaining to extreme rainfall should be interpreted cautiously, as
while high Z-scores generally coincide with a mass-wasting
perturbation, the specific relationship between Z-score magnitude
and mass-wasting perturbation magnitude is inconsistent. For
example, the 1993 mass-wasting perturbation is the largest, but has
smaller Z-scores than 2002 and 2004. This could be due to
inaccurate or misallocated rainfall data, as ~500mm of rainfall
reportedly fell in 24 h during the 1993 event22, but the
APHRODITE data show a combined daily total of only 274mm
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across the cells that observed a mass-wasting response. An
additional cause of uncertainty is the potential sub-optimal
quantification of the extreme. As mentioned above, the daily Z-
score approach is unsophisticated and does not consider anomalous
rainfall over shorter or longer timescales. As such, future work
could attempt to refine the relationships between extreme rainfall
and mass-wasting by considering Z-score anomalies across multiple
days or hours using higher temporal resolution rainfall products.

Impacts of earthquakes. There are two main processes by which
large (>Mw 6.0) earthquakes impact mass-wasting. First, they
trigger coseismic landslides that can be remobilised by subsequent
rainfall or other exhumation events41–43. Second, earthquake
ground motion can cause landscape damage that induces
enhanced rates of new post-earthquake mass-wasting3,17; a pro-
cess termed earthquake preconditioning28. Earthquake pre-
conditioning has been observed following earthquakes in different
geomorphic settings. For example, the 1999 Mw 7.7 ChiChi
earthquake, Taiwan, caused a 2–5 year factor of 10 increase in
subsequent new typhoon-triggered landsliding17. Similarly, the
2015Mw 7.8 Gorkha earthquake caused a factor of 4–8 increase in
new monsoon-triggered mass-wasting during the 2015 monsoon
season3. However, the full timescale of 2015 preconditioning
remains unconstrained as, until now, it has not been possible to
isolate the earthquake preconditioning impacts from the mon-
soon in 2016–2018.

Here, our normalisation using the PERSIANN-CDR data
(Fig. 3a) allows for the impacts of the 2015 earthquake and post-
2015 monsoon to be separated, providing new insight into the
magnitude and timescales of the 2015 preconditioning. Our
normalisation with both PERSIANN-CDR and APHRODITE
corroborates previous results3, showing that all measures of mass-
wasting were perturbed in 2015, with ‘New+ RR’ mass-wasting
(which comprises all landslides, including rainfall-induced
remobilisations of coseismic landslides) perturbed by a factor of
3.8–6.2 and ‘New Only’ mass-wasting (reactivations and
remobilisations excluded) perturbed by a factor of 2.4–4.6 (Fig. 3a,

b). In 2016, ‘New+ RR’ mass-wasting was still perturbed by a
factor of 2.4–2.7, but the ‘New Only’ rate was within +1 SD of the
normal (Fig. 3a). In 2017 and 2018, both ‘New+ RR’ and ‘New
Only’ rates were back within ±1 SD of the normal (Fig. 3a).

These results provide insights into remobilisation timescales of
coseismic material, and of earthquake preconditioning associated
with the Gorkha earthquake. For earthquake preconditioning,
enhanced rates of new mass-wasting are only observed in 2015,
with new mass-wasting in 2016 within +1 SD of that expected
given the monsoon strength. This suggests that Gorkha earth-
quake preconditioning lasted for 5–14 months, i.e., until the start
of the 2016 monsoon season. This timescale is slightly shorter
than the 2–5 year preconditioning period observed in Taiwan
following the ChiChi earthquake17, but similar to other observa-
tions in Nepal3,42 showing that rainfall induced debris flows and
landslides following the Gorkha earthquake were anomalous in
2015 only. For the remobilisation of coseismic material, enhanced
rates of mass-wasting when including remobilisations and
reactivations continues into 2016, but not 2017, suggesting a
recovery time of 17–24 months. This recovery time is shorter
than the 6–8 year period over which anomalous fluvial sediment
export was observed following the ChiChi earthquake41. This
timescale difference is likely because our approach only identifies
large-scale remobilisations and reactivations, whereas measures
of fluvial sediment export are more sensitive to small-scale
changes that would not be visible at the mapping resolution used
here. The APHRODITE-based normalisation also identifies a
perturbation in 1989. This was the first full monsoon season
following the 21/08/1988 Mw 6.9 earthquake. In this case, both
the earthquake preconditioning perturbation (‘New Only’ rate)
and increase in reactivations and remobilisations (‘New+ RR’
rate) are observed in 1989 only, suggesting a recovery period for
these processes of no more than 13–20 months, similar to that
observed for the Gorkha and ChiChi earthquakes.

While this study and others17 quantitatively constrain the
magnitudes and timescales of short-term earthquake precondition-
ing, the spatial distributions, processes, and causal mechanisms
remain under-investigated. It has been proposed that short-term

Fig. 6 The locations and IDs of the 84 APHRODITE rainfall grid cells across the study region. Maximum Z-scores from the 2004 monsoon seasons are
depicted alongside the 2004 mass-wasting. Also shown is the extent of the 2002 extreme rainfall, and the mass-wasting from 2002 across the study region.
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preconditioning occurs via near-surface earthquake damage that is
rapidly exploited by subsequent rainfall as new failures17. However,
while subsurface seismic velocities have been shown to track
coseismic damage and landscape recovery44, what controls the
spatial distributions of seismically induced landscape damage
remains uncertain. Therefore, to investigate the controls on
earthquake preconditioning damage, we combine our 2015
monsoon-triggered landslide inventory with Gorkha earthquake
USGS ground motion data45 to examine how the 2015 excess mass-
wasting relates to the Gorkha earthquake PGA and topographic
factors. To do this we need to move from regional-scale analysis to
localised, grid-scale analyses. Accordingly, we divided our study
region into the same 84 grid cells as used for the Z-score analysis
(Fig. 6). Then, we calculated ('Methods') for each grid cell the
percentage change in 2015 monsoon-triggered mass-wasting
relative to that grids non-perturbed mean, and the summed
maximum PGA from both the Mw 7.8 Gorkha earthquake main
shock and Mw 6.3 aftershock for each grid cell with <10% snow
cover (Fig. 7). Surprisingly, this analysis shows no correlation
between 2015 mass-wasting and PGA (Fig. 8a). Therefore, does
PGA alone induce earthquake preconditioning? As seismic ground
motion undergoes amplification when travelling across topographic
excesses46–48, earthquake preconditioning may preferentially occur
where high PGA is coincident with high excess topography, where
excess topography is defined as the volume of rock mass above a
landscape’s threshold angle49.

To investigate this, we calculate the average excess topography
of each grid cell for five landscape threshold angles (25°, 30°, 35°,
40°, 45°; Methods). For each threshold of excess topography, we
calculate for every grid cell the product of maximum summed
Gorkha earthquake PGAs and average excess topography, and
plot weighted ‘PGA-Excess Topography’ values against each grid
cells 2015 percentage mass-wasting change. This results in a
significant improvement of fit compared to using PGA alone,
with R2 increasing from 0.08 to 0.71 for a 45° threshold (Fig. 8b).
This is consistent across all excess topography thresholds
(Supplementary Figs. S5 and S6), but with a slight increase in
R2 as the threshold increased from 25° to 45°. This was also
consistent when only summing PGAs >0.1 and 0.2 g, though with
lower R2 values (Supplementary Figs. S7 and S8). These PGA
values have been identified as possible thresholds which must be
exceeded for landslides to be induced50,51; however, these new
results suggest that lower PGA values can still contribute to
preconditioning, even if they do not directly trigger coseismic
landslides.

Additionally, topographic slope angle has been shown to be
critical in controlling landscape susceptibility to coseismic
landsliding52,53. Therefore, we repeated the above analysis but with
average slope values per grid cell instead of average excess
topography. However, the combination of slope and PGA does
not exhibit a strong relationship with excess mass-wasting
(Supplementary Fig. S9), suggesting that excess topography is a

Fig. 7 The locations of the epicentres of the 2015 Mw 78 Gorkha earthquake main shock, the 2015 Mw 7.3 largest aftershock, the 2011 Mw 6.9 Sikkim
earthquake, the 1988Mw 6.9 Bihar earthquake and the 1934Mw 8.0 Nepal–Bihar earthquake. Also shown are the USGS estimated PGA distributions for
the 2015 Gorkha main shock, and the 1988 and 2011 events45,84,85 and the location of possible outlier grid cell 76.
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better metric for predicting post-seismic landscape preconditioning.
However, it should be caveated here that the R2 increase gained
from using PGA to PGA combined with excess topography is
strongly controlled by one outlier in grid-cell 76 (see Figs. 6 and 7).
This grid cell had the highest PGA-excess topography values as this
was one of the few cells of its latitude (where high excess
topography values are widespread) to overlap with the greatest
Gorkha earthquake PGAs. This cell also had the highest 2015 mass-
wasting increase, as it experienced 3.6 × 106m3 of landsliding
(including one landslide >220,000m2), whereas in the preceding 25
years this cell experienced >1.0 × 106m3 of landsliding in only three
other years.

Overall, our analyses suggest that short-term earthquake
preconditioning damage is concentrated where PGA and high
excess topography coincide. This noteworthy result could allow
for more accurate predictions of where and how much
preconditioning should be expected in a landscape following a
given magnitude earthquake. However, a similar relationship was
not observed for the 1988 earthquake (Supplementary Fig. S10).
Reasons for this could be: (1) the 1988 earthquake had lower
PGAs than 2015 (maximum 0.28 g in 1988 compared to >0.74 g
in 2015); (2) the region impacted by the 1988 event was to the
south of our study region, where excess topography values are
low, or (3) the 1989 perturbation was actually caused by rainfall.
Despite not having Z-scores as high as observed in 1993 or 2002,
1989 did observe higher Z-scores than 2015 (scores of 10,
compared to 8). However, rainfall has already been discounted as
a causative mechanism due to the relatively low Z-scores in
1989 compared to 2002 and 1993. Accordingly, we suggest that
no single explanation can explain the 1989 perturbation and that
it could be caused by a combination of the earthquake and
rainfall, or an artefact arising from imperfect rainfall data and
normalisation (e.g. Fig. 3a, b).

This analysis provides insight into short-term preconditioning17,
but does not consider decadal-scale preconditioning. For example,
coseismic landslides associated with the 1968 Mw 7.1 Inangahua
(New Zealand) earthquake occurred at higher rates where the
landscape was impacted by the earlier 1929 Mw 7.7 Buller
earthquake, suggesting that lasting landscape damage due to the
earlier event was compounded by the second event. Here, we
investigate whether the 2015 monsoon-triggered perturbation was
similarly affected by long-term damage from earlier earthquakes in
1934 (Mw 8.0), 1988 (Mw 6.9) and 2011 (Mw 6.9) (Fig. 7). To test
this, we repeat our PGA-excess topography correlations, but this
time cumulatively summing the maximum PGA observed per grid
cell from the 2015, 2011, 1988 and 1934 earthquakes. These results,
with PGA alone and PGA multiplied by excess topography at a
threshold of 45°, are shown in Fig. 8c–h (for correlations of PGA
with other excess topography thresholds see Supplementary Figs. S5
and S6). If earlier earthquakes had a damage legacy that
significantly compounded the Gorkha earthquake damage, the
inclusion of their PGA should improve the observed fit between the
percentage change in 2015 ASM-triggered mass-wasting and 2015
PGA-excess topography. However, the inclusion of 2011 PGA
causes no significant improvement (R2 increase from 0.71 to 0.72;
Fig. 8d), while including the PGA from 1988 and 1934 worsens the
fit (Fig. 8f–h). There is thus no evidence that past earthquakes
contributed to elevated ASM-triggered mass-wasting in 2015. There
are several potential explanations: (1) the time since the events in
1988 and 1934 is too long, and thus the landscape damage caused
by them has already been exploited. The 1934 event was 81 years
before Gorkha, over twice the time between the two earthquakes
observed to induce preconditioning in New Zealand. (2) The
magnitudes of the 2011, 1988 and 1934 events were too small to
induce widescale damage. This explanation is possible, as while the
1934 event was of comparable magnitude to 2015, the 2011 and

1988 magnitudes were lower. (3) The 1988 and 1934 events were
located too far from the region impacted by Gorkha for any
significant damage to overlap. This is the most likely explanation, as
despite being of magnitudes that should be capable of inducing
landscape damage, both the 1934 and 1988 events occurred in
southern Nepal, with no PGAs >0.2 g in 1988 overlapping
with PGAs >0.1 g in 2015 (Fig. 7). The 2011 event also had
no overlap with 2015 at PGAs > 0.1 g, potentially explaining why
this event also had no impact on 2015 excess monsoon-triggered
mass-wasting.

In conclusion, by quantifying a previously unknown empirical
relationship between ASM strength and total mass-wasting we
have isolated and investigated mass-wasting perturbations due to
extreme rainfall and 2015 Gorkha earthquake landscape pre-
conditioning. We find that: (1) extreme, 5–30-year return period
rainfall events can induce mass-wasting perturbations. (2) The
2015 perturbation is controlled by short-term Gorkha
earthquake-induced landscape preconditioning. (3) The signature
of landscape preconditioning is controlled by the coincidence of
PGA and excess topography. (4) Earlier large magnitude earth-
quakes in 1934, 1988 and 2011 did not compound the 2015
preconditioning, suggesting that longer-term preconditioning
damage was not a major driver of landsliding here.

These results have implications for mass-wasting hazard and
susceptibility modelling. First large uncertainties remain in
predicting how climate change may affect landsliding over the
Himalaya23. These results assist reducing this uncertainty since the
empirical relationships between ASM strength and mass-wasting
can provide quantitative assessments of expected changes in ASM-
triggered mass-wasting across the Himalaya when combined with
possible future ASM strength scenarios54–58. Furthermore, if future
climate change scenarios suggest an increase in the occurrence of
5–30-year return period rainfall events59,60, then mass-wasting
perturbations such as those in 1993 and 2002 will become more
frequent and pose an increasingly pervasive hazard. Second, existing
mass-wasting susceptibility models are typically time-independent,
implicitly assuming that the conditions that produced past mass-
wasting will remain the same in the future61,62. However, our
results show that earthquake preconditioning can cause transient,
time-dependent mass-wasting perturbations. This suggests that
post-earthquake rainfall-triggered landslide susceptibility modelling
should account for the transient topographic signature of earth-
quakes. The finding that preconditioning is controlled by the
product of PGA and excess topography is especially useful, since it
provides a framework for which preconditioning-induced mass-
wasting can be modelled.

Methods
Mass-wasting mapping. Mass-wasting events were mapped using Landsat ima-
gery. Landsat products were selected as they provide the longest continuously
acquired space-based archive of the Earth’s surface and are the only product to
contiguously cover Nepal over the 30-year time period we aimed to map. At the
time of writing, Landsat imagery is freely available via the USGS Earth Explorer
platform63. Mapping was conducted using Landsat 4/5 in years 1988–1999 and
2004–2010, Landsat 7 in years 2000–2003, and Landsat 8 in years 2013–2018.
Landsat 7 could not be used for years 2004–2012 because it lost its scan-line
corrector in 2003, with >35% imagery data loss64. This was insufficient for map-
ping, so we reverted to Landsat 4/5 imagery until Landsat 8 imagery became
available in 2013. Consequently, 2011 and 2012 were not mapped as this period
was only covered by Landsat 7 imagery. 2013 was mapped as normal using Landsat
8 pre-post monsoon imagery (i.e., landslides from 2011 and 2012 were excluded
from the inventory, with only new landslides occurring post-2012 mapped).
Landsat products have a 16-day temporal resolution. However, in Nepal, with
cloud cover pervasive throughout the year, pre- and post-ASM images were
acquired between start October and end April, i.e., either side of the
May–September monsoon season. Note that the post-imagery used to map a given
time slice was typically used as the pre-imagery for the next time slice, thus
ensuring that mapping was continuous, with no significant time gaps. The name
and date of the satellite imagery used to map each year, as well as a summary of
each year’s mass-wasting data, are shown in the Supplementary Materials
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(Table S1). Landsat 4/5 has a spatial resolution of 30 × 30 m, while Landsat 7/8 was
pansharpened with panchromatic imagery to 15 × 15 m. Thus, the minimum
mappable feature size was ~1000 m2.

Mass-wasting features were identified by visual comparison between pre- and
post-imagery for a given year. Images were viewed as false RGB images with red
band= infrared, green band= green and blue band= blue. This combination was
used because the reflectivity differences strongly highlighted vegetated areas relative
to bare earth. If a new bare-earth feature appeared in the landscape between the
pre- and post-imagery and had the typical shape and location of a mass-wasting
event it was delineated as a polygon. All types of rainfall-triggered landslides65 were
included in the inventory, i.e., landslides were not differentiated by type. Care was
taken to avoid mapping features related to land clearance, such as deforestation and
cut-and-fill practices, including features due to undercutting by roads or channels.
All mapped mass-wasting events included the combined scar, runout and
depositional zones, as these were not distinguishable at the spatial resolution of the
imagery. Steps were taken to avoid mass-wasting amalgamation, i.e. separation of
mass-wasting events whose runouts combined to form one single deposit, as this is
known to impact mapping results66. Mass-wasting events that scarred or disturbed
vegetation/material within the boundary of a previous landslide were recorded as
reactivations (failures involving the displacement of previously undisturbed
material that initiated from or intersected with the boundary of a previous failure),
although image resolution may mean some of these could have been
remobilisations (movements of previously disturbed material only) rather than
reactivations. In total, 12,920 moderate to large (~1000 m2) mass-wasting events
were mapped across 29 separate time slices from 1988 to 2018 (see Supplementary
Data 1 for the geometric and satellite information of each mapped feature).

Each time slice included a given year’s monsoon season (May–September) plus
a varying number of non-monsoon months either side. The variation in the
number of October–April months included in each time slice was an unavoidable
consequence of extensive cloud cover across the Himalayas. However, since our
time slices had varying lengths, both between time slices and within time slices
(as several tiles were required to map the entire study region, and invariably these
tiles had different acquisition dates and cloud cover), it is necessary to consider the
effect of this on our results. Our analysis of ASM- and extreme rainfall-triggered
mass-wasting assumes that all mass-wasting was triggered during a given time
slice’s monsoon season. As these time slices include months outside of the
monsoon period, it is possible that some rainfall-triggered events did not occur
during the monsoon. However, it is known that this region experiences little
rainfall-triggered landsliding outside of the monsoon period5,67. Indeed, we find no
correlation between the number of non-monsoon months within a time slice and
number of mass-wasting events mapped (Supplementary Fig. S11). Furthermore,
we find no correlation between the total rainfall in the non-monsoon months
between time slices and the deviation of a time slice from the normalisation in
Fig. 2b (Supplementary Fig. S12). This suggests, as expected, that variable time slice
length cannot explain the normalisation results. To further reduce error in
mapping procedure, we applied a 20% assumed error to all mapped mass-wasting
areas. This incorporation should account for variability in mapped mass-wasting
caused by including non-monsoon months, as well as for any erroneously included
mass-wasting events attributable to non-rainfall dominated processes such as
undercutting by river channels or earthquakes. Note that road-associated and
coseismic mass-wasting events were explicitly not included in this inventory,
though rainfall induced reactivations and remobilisations of coseismic mass-
wasting are included. Coseismic mass-wasting events in 2015 were identified and
avoided using the dataset of Roback et al.24. Furthermore, possible coseismic events
triggered by an Mw 6.9 event that occurred midway through the 1988 monsoon
season and affected a small portion of the study region were identified and avoided
based on their slope position52,68.

Scar area and volume derivations. As stated, the satellite imagery resolution
allowed mass-wasting features to be mapped with combined scar, runout and
depositional zones. Since total areas with long runouts can cause large over-
estimates in subsequent volume derivations, corrections for runout are needed by
estimating landslide scar areas3. This was achieved using the procedure of Marc
et al.69. First, mass-wasting widths were calculated for each mapped feature using
their perimeters, areas and the assumption that each feature can be approximated
by an elliptical shape66,69. Second, assuming that mass-wasting scars have an aspect
ratio of 1.5 (ref. 70) for a wide range of landslide sizes, scar areas can be calculated
from As= 1.5 ×W2, where As is scar area (m2) and W is feature to width (m).

Mass-wasting volumes were then estimated for both total areas and scar areas
using the scaling relationships of Larsen et al.29, V= α.Aγ, where V is the volume
(m3), A is the area (m2), and α and γ are constant scaling parameters. For scar
areas, appropriate values for α and γ reported by Larsen et al. are: γ= 1.262 ± 0.009
and log10α=−0.649 ± 0.021 for scar areas <10,000 m2 and γ= 1.41 ± 0.02 and
log10α=−0.63 ± 0.06 for scar areas >10,000 m2. For total areas, we used the ‘all
landslide’ parameters reported by Larsen et al.29, where γ= 1.332 ± 0.005 and
log10α=−0.836 ± 0.015. Note that since these area–volume scaling relationships
are designed for landslide events, they may overestimate the volumes of any
remobilisations in our inventory, thus leading to potential overestimates in our
overall ‘New + RR’ rate. However, any errors should be accommodated by the 20%
error applied to all mapped features and thus unlikely to impact the overall results.

Precipitation data. We use two precipitation products: PERSIANN-CDR and
APHRODITE. The product properties and use justifications of these are outlined in
the following paragraphs.

The PERSIANN Climate Data Record (CDR) product has a spatial resolution of
0.25° × 0.25° and temporal resolution of 3 h to 1 month over the period
1983–present30. This record is developed using the PERSIANN algorithm on
GridSat-B1 IR satellite data. The algorithm is trained using hourly stage IV
precipitation data from the National Centres for Environmental Prediction (NCEP)
and then adjusted using the Global Precipitation Climatology Project (GPCP)
dataset30. This product was selected as it is one of only a few accessible
precipitation products with a spatial resolution of at least 0.25° × 0.25° that fully
spans our time period of 1988–2018 (ref. 31). Daily precipitation totals (mm) for
May–September were obtained from the CHRS data portal71 for our study region
for all PERSIANN-CDR grid tiles that were at least 50% within our study region.
Standard GIS tools were used to extract the various ASM strength metrics used.

PERSIANN-CDR is a widely used and comprehensively evaluated product (e.g.
ref. 72). It was found to perform excellently when evaluated against 1400 ground
stations for capturing the spatial and temporal patterns of rainfall in the monsoon-
regions of eastern China73, and outperformed the TMPA (TRMM Multi-satellite
Precipitation Analysis) dataset in its ability to capture the overall characteristics of
Hurricane Catrina72. Furthermore, PERSIANN-CDR was found to have lower
monthly mean variance compared to other satellite products, showing particularly
small variance with the GPCP1DD product74,75. Similarly, despite being slightly
outperformed by other products, the PERSIANN-CDR dataset was capable of
capturing inter-annual monsoon precipitation in Pakistan, with high (0.8) R values
when compared to in situ data76. However, PERSIANN-CDR has some limitations.
First, as with all satellite products, it can struggle to capture orographic effects77.
However, a benefit of PERSIANN-CDR is that it is designed specifically for use in
longer-term studies30,78 and is considered one of the most temporally
homogeneous products. Accordingly, unlike other satellite products whose
methodologies could introduce temporal variance, any errors in the PERSIANN-
CDR product introduced by orographic effects should be more systematic through
time, and so not significantly bias our time series. This is important for this study,
which requires a homogeneous rainfall series to ensure that any normalised
perturbations are due to physical process changes, rather than changes in rainfall
data collection methodology. Second, PERSIANN-CDR is reported to have a
tendency to under-predict values of extreme precipitation73,78. Thus, to ensure that
any under prediction of rainfall by PERSIANN-CDR does not impact our
normalisation, and to allow for a more robust consideration of daily extreme
precipitation, we also make use of the APHRODITE Asian Precipitation Highly
Resolved Observational Data Integration Towards Evaluation of water resources)
product32.

APHRODITE has the same spatial resolution as PERSIANN-CDR
(0.25° × 0.25°) across monsoon-Asia, with daily coverage across the study region
for 1951–2015. APHRODITE is based on rain gauge data from 5000 to
12,000 stations and is designed to optimise representation of orographic
precipitation patterns. The temporal coverage of APHRODITE has advantages and
disadvantages for this study. The disadvantage is that it does not allow us to assess
the post-2015 earthquake preconditioning (a key aim of the study, and why the
PERSIANN-CDR data are used to assess the entire time series). The advantage of
the temporal coverage is that with a 64-year time series, robust analysis of extreme
events and recurrence intervals are possible. APHRODITE is also considered as
one of the most accurate products over the Himalaya32,79, making it a logical
product to corroborate the results of our normalisation undertaken with
PERSIANN-CDR. In summary, PERSIANN-CDR is used obtain a time-stable
assessment of the entire time series, including the key post-2015 period (which
APHRODITE cannot give without blending it with another dataset), while
APHRODITE is used to corroborate the PERSIANN-CDR data and provide an
unbiased comparison between the ASM strength analysis and extreme daily rainfall
analysis.

ASM strength-normalised mass-wasting rate. Empirical relationships between
ASM strength and mass-wasting can be used to predict how much background
mass-wasting is expected to occur each year based on that years ASM strength.
Four previously investigated proxies of ASM strength3,33, for both the PERSIANN-
CDR and APHRODITE data, were correlated with each measure of mass-wasting
volume (total and scar volumes (m3/km2) of new and reactivated/remobilised
landslides [‘New+ RR’] and of only new landslides [‘New Only’]). These were total
grid-averaged MJJAS precipitation, total grid-averaged MJJAS precipitation
>25 mm, total grid-averaged precipitation from 15 June to September, and total
grid-averaged precipitation >25 mm for 15 June–September. The ASM strength
proxies which provided the best fit to the mass-wasting data were total MJJAS
rainfall for the PERSIANN-CDR data, and total MJJAS rainfall >0.25 mm for the
APHRODITE data (see Fig. 2 for best-fit results and Supplementary Figs. S1–S3 for
all other correlations).

For each measure, the ASM strength-normalised rate of each year is then
calculated by taking the ratio of the actual mass-wasting mapped for that year to
that predicted by the equations in Fig. 2. A value of one indicates that the actual
observed mass-wasting in a year is what would be expected given the ASM
strength, while a value significantly above one indicates that there was more
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mass-wasting than expected given the ASM strength, implying perturbation above
the background by some other event. Errors in the normalised rate include the
standard error in the data points used to calculate the prediction equations, an
assumed standard deviation of 20% in mass-wasting area to account for variability
in mapping period and any mapping error, and the standard deviations reported in
the area–volume conversion parameters. Assuming that these errors are
uncorrelated, they were combined using standard Gaussian propagation of error to
obtain the uncertainties for each measure (Fig. 3a, b).

Furthermore, prior to correlating mass-wasting with ASM strength, we removed
the largest landslide from a given monsoon season if it had a scar-volume twice as
large as the second largest landslide3. This approach is designed to remove any
landslides that are anomalously large for the monsoon season in which they
occurred, and thus likely caused by progressive failure across multiple monsoon
seasons (e.g., the Jure landslide3,80). By removing these events, we can be confident
that any identified perturbations are not due to a single anomalously large
landslide. Accordingly, 12 events were removed from the analysis, one event in
each of 1988, 1996, 2000, 2003, 2004, 2005, 2014 and 2017, and two events in both
2009 and 2015.

Three-parameter inverse-gamma distributions. To further confirm that the
identified perturbations are not due to stochastic variation in landslide size, we fit
three-parameter inverse-gamma distributions to the PDF of landslide area for
several subsets of our inventory (all years, all pre-2015 non-perturbed years, 1989,
1993, 1995, 2002, 2015 and 2016–2018). The PDF of landslide area p (AL) is given
by Eq. (1)43:

pðALÞ ¼
1

NLT

∂NL

∂AL
ð1Þ

where NLT is the total number of landslides in the subset, AL is landslide area, δNL

is the number of landslides with areas between AL and AL+ δAL. The three-
parameter inverse-gamma distribution fitted to the PDFs is defined by Eq. (2)43:

pdf ðAljα; η; λÞ ¼
λ2α

ΓðαÞ

� �
1

x þ η2

� �ðαþ1Þ" #
exp � λ2

x þ η2

� �
ð2Þ

where α controls the exponent of the inverse power law (i.e., the steepness of the
right tail of the PDF), η controls the steepness, or bend, of the left tail of the PDF,
and λ controls the position of the rollover. The position of the rollover indicates the
landslide area below which the inverse power law decay observed for medium and
larger landslides no longer applies. The PDFs and three-parameter inverse-gamma
distribution were fitted to each subset using the LAMPRE software81, which utilises
Maximum Likelihood Estimation (MLE) to optimise the parameters of the PDF
and a bootstrapped (here with 1000 simulations) Kolmogorov–Smirnov (K–S) test
to estimate parameter uncertainty and overall goodness of fit of the inventory data
to the fitted distribution.

The exponent, α, of the inverse power law describes the rate at which the
probability of getting larger landslides decreases. A larger exponent indicates that
the probability of getting larger events is decreasing quickly, and thus that larger
landslides are contributing less to each inventory. Conversely, a smaller exponent
indicates that the probability of getting larger events is decreasing more slowly, and
thus that larger landslides are contributing more to each inventory. Thus, if the
exponents of the distributions fitted to each subset are similar above comparable
cut-offs, then we can be confident that a perturbation is caused by some physical
process that causes an increase in landslides of all sizes, rather than a small number
of anomalously large landslide events.

Note that our rollover values (see main text) are larger than the values obtained
for the Gorkha coseismic landslides (2500 m2)24 and previously mapped monsoon-
triggered landslides (1200 m2)3. This is likely because of differences in mapping
resolution, with the minimum possible size feature that could be mapped for the
coseismic and previous mapped landslides an order of magnitude smaller than
could be mapped here3,24. However, our rollover values are comparable to similar
studies using imagery with 30–15 m resolution imagery82, suggesting that our
inventory is as substantially complete as would be expected given the resolution of
the satellite imagery. Our scaling exponents are also slightly smaller than the value
of ~2.47 obtained for higher resolution inventories of both monsoon-triggered and
earthquake-triggered landslides in Nepal3,24. Again, this is likely an artefact of
imagery resolution, and that we are under-sampling the smallest events.

Percentage change in mass-wasting. To calculate the percentage change in 2015
mass-wasting, we divided the study region into 84 grid cells (Fig. 6). For each grid
cell, we calculated the mean mass-wasting (based on scar volumes) observed across
all unperturbed monsoon seasons (i.e., all years except 1988, 1989, 1993, 1995, 2002
and 2015). We then calculated the percentage change in 2015 monsoon-triggered
mass-wasting for each grid relative to that grid’s mean. By only calculating each
cell’s average with the non-perturbed years, we obtain an approximation of average
mass-wasting expected per grid in a typical monsoon season without extreme
rainfall. This will not consider monsoonal forcing in the detail it was on the
regional scale. However, since we know that 2015 was not impacted by any extreme
rainfall, each grid’s 2015 percentage change in monsoon-triggered mass-wasting
should approximately reflect the ‘above average’ or excess mass-wasting

experienced in 2015 due to the earthquake compared to an average non-perturbed
monsoon season. The same method was used to assess the percentage change in
mass-wasting in 2002 and 2004.

Excess topography. Excess topography, a measure of the total volume of rock
mass above a specified threshold hillslope angle49, was extracted from the Japanese
Aerospace Exploration Agency (JAXA)-copyrighted ALOS World 3D DEM using
the ‘excesstopography’ function in the Matlab TopoToolbox83. Excess topography
was calculated at five threshold angles: 25°, 30°, 35°, 40° and 45°. The average excess
topography at each threshold across each grid cell was then extracted using stan-
dard ArcGIS zonal statistics tools.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw mass-wasting data used within this manuscript are provided as a.text file
(Supplementary Data 1) that includes the geometries (areas, volumes), centroid coordinates
and satellite data used to map each individual feature. A polygon shapefile of the landslide
inventory on which these data are derived can be freely accessed from the National
Geoscience Data Centre (NGDC) repository (item ID 166966): https://webapps.bgs.ac.uk/
services/ngdc/accessions/index.html?simpleText=landslide%20nepal#item166966.
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