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Entropy-based metrics for predicting choice
behavior based on local response to reward
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For decades, behavioral scientists have used the matching law to quantify how animals

distribute their choices between multiple options in response to reinforcement they receive.

More recently, many reinforcement learning (RL) models have been developed to explain

choice by integrating reward feedback over time. Despite reasonable success of RL models in

capturing choice on a trial-by-trial basis, these models cannot capture variability in match-

ing behavior. To address this, we developed metrics based on information theory and applied

them to choice data from dynamic learning tasks in mice and monkeys. We found that a

single entropy-based metric can explain 50% and 41% of variance in matching in mice and

monkeys, respectively. We then used limitations of existing RL models in capturing entropy-

based metrics to construct more accurate models of choice. Together, our entropy-based

metrics provide a model-free tool to predict adaptive choice behavior and reveal underlying

neural mechanisms.
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How do we distribute our time and choices between the
many options or actions available to us? Around 60 years
ago, Richard Herrnstein strived to answer this question

based on one of the key ideas of behaviorism; that is, the history of
reinforcement is the most important determinant of behavior. He
proposed a simple rule called the matching law stating that the
proportion of time or responses that an animal allocates to an
option or action matches the proportion of reinforcement they
receive from those options or actions1. The matching law has been
shown to explain global choice behavior across many species2

including pigeons3–6, mice7–9, rats10–12, monkeys13–18, and
humans19–24, in a wide range of tasks, including concurrent variable
interval, concurrent variable ratio, probabilistic reversal learning,
and so forth. A common finding in most studies, however, has been
that animals undermatch, corresponding to selection of the better
stimulus or action less than it is prescribed by the matching law.
Such deviation from matching often corresponds to suboptimal
behavior in terms of total harvested rewards, pointing to adaptive
mechanisms beyond reward maximization.

The matching law is a global rule but ultimately should emerge
from an interaction between choice and learning strategies, resulting
in local (in time) adjustments of choice behavior to reinforcement
obtained in each trial. Accordingly, many studies have tried to
explain matching based on different learning mechanisms.
Reinforcement-learning (RL) models are particularly useful because
they can simulate changes in behavior due to reward feedback.
Consequently, many studies on matching have focused on develop-
ing RL models that can generate global matching behavior based on
local learning rules14,15,25–32. These RL models are often augmented
with some components in addition to stimulus- or action-value
functions to improve fit of choice behavior on a trial-by-trial basis.
For example, the models could include learning the reward-
independent rate of choosing each option15, adopting win-stay
lose-switch (WSLS) policies27,28, or learning on multiple timescales31.
Although these models all provide compelling explanations of the
emergence of matching behavior, it remains unclear how they
compare in terms of fitting local choice behavior and the extent to
which they replicate observed variability in matching behavior. This
could result in misinterpretation or missing important neural
mechanisms underlying matching behavior in particular and adap-
tive behavior more generally33,34. Therefore, after decades of research
on matching behavior, it is still not fully understood how such a
fundamental law of behavior emerges as a result of local response to
reward feedback.

In this work, we propose a set of metrics based on information
theory that can summarize trial-by-trial response to reward feedback
and predict global matching behavior. To test the utility of our
metrics, we apply them to large sets of behavioral data in mice and
monkeys during two very different dynamic learning tasks. We find
that in both mice and monkeys, our entropy-based metrics can
predict deviation from matching better than existing measures.
Specifically, we find the strongest link between undermatching and
the consistency of choice strategy (stay or switch) in response to
receiving no reward after selection of the worse option in both spe-
cies. Finally, we use shortcomings of purely RL models in capturing
the pattern of entropy-based metrics in our data to construct mul-
ticomponent models that integrate reward- and option-dependent
strategies with standard RL models. We show that these models can
capture both trial-by-trial choice data and global choice behavior
better than the existing models, thus revealing additional mechanisms
involved in adaptive learning and decision making.

Results
Mice and monkeys dynamically adjust their behavior to
changes in reward probabilities. To study learning and decision

making in dynamic reward environments, we examined choice
behavior of mice and monkeys during two different probabilistic
reversal learning tasks. Mice selected between two actions (licking
left and right) that provided reward with different probabilities,
and these probabilities changed between blocks of trials without
any signal to the animals9 (Fig. 1a; see Methods for more details).
Block lengths were drawn from a uniform distribution that
spanned a range of 40 to 80 trials. Here, we focused on the
majority (469 out of 528) of sessions in which two sets of reward
probabilities (equal to 0.4 and 0.1, and 0.4 and 0.05) were used. We
refer to these reward schedules as 40/10 and 40/5 reward schedules
(1786 and 1533 blocks with 40/5 and 40/10 reward schedules,
respectively). Rewards were baited such that if reward was assigned
on a given side and that side was not selected, reward would
remain on that side until the next time that side was selected. Due
to baiting, the probability of obtaining reward on the unchosen
side increased over time as during foraging in a natural environ-
ment. As a result, selecting the worse side (side with lower base
reward rate) occasionally can improve the overall total harvested
reward. In total, 16 mice performed 469 sessions of the two-
probability version of the task for a total of 3319 blocks and
189,199 trials.

In a different experiment, monkeys selected between pairs of
stimuli (a circle or square with variable colors) via saccades and
received a juice reward probabilistically35 (Fig. 1b; see Methods
for more details). In superblocks of 80 trials, the reward
probabilities assigned to each stimulus reversed randomly
between trials 30 and 50, such that the more-rewarding stimulus
became the less-rewarding stimulus. We refer to trials before and
after a reversal as a block. Monkeys completed multiple
superblocks per each session of the experiment wherein the
reward probabilities assigned to the better and worse stimuli were
equal to 0.8 and 0.2, 0.7 and 0.3, or 0.6 and 0.4, which we refer to
as 80/20, 70/30, and 60/40 reward schedules. In contrast to the
task used in mice, rewards were not baited. Here, we only analyze
data from the 80/20 and 70/30 reward schedules as they provide
two levels of reward uncertainty similar to the experiment in
mice. In total, 4 monkeys performed 2212 blocks of the task with
the 80/20 and 70/30 reward schedules for a total of 88,480 trials.

We found that in response to block switches, both mice and
monkeys rapidly adjusted their choice behavior to select the
better option (better side or stimulus in mice and monkeys,
respectively) more often (Fig. 1c, d). However, the fraction of
times they chose the better option fell below predictions made by
the matching law, even at the end of the blocks (Fig. 1e, f). More
specifically, the relative selection of the better option (i.e., choice
fraction) was often lower than the ratio of reward harvested on
the better option to the overall reward harvested (i.e., reward
fraction), corresponding to undermatching behavior. Therefore,
we next explored how undermatching depends on choice- and
reward-dependent strategies.

Mice and monkeys exhibit highly variable undermatching
behavior. To better examine matching behavior, we used the
difference between the relative choice and reward fractions for
each block of trials to define “deviation from matching” (see
Eqs. 1, 2 in Methods; Fig. 2a, d). Based on our definition, negative
and positive values for deviation from matching correspond to
undermatching and overmatching, respectively. Undermatching
occurs when the relative choice fraction is smaller than the
relative reward fraction for reward fractions larger than 0.5, or the
relative choice fraction is larger than the relative reward fraction
when the latter is smaller than 0.5. Overmatching occurs when
the relative choice fraction is larger than the relative reward
fraction for reward fractions larger than 0.5, or the relative choice
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fraction is smaller than the relative reward fraction when the
latter is smaller than 0.5. Undermatching could happen because
the animal does not detect the more-rewarding stimulus or
action, poor credit assignment, or due to too much stochasticity
in choice. In contrast, overmatching is characterized by selecting
the better option more frequently than is prescribed based on
perfect matching. In the task used in monkeys, overmatching was
not possible by design (except due to random fluctuations in
reward assignment) and harvested rewards could be maximized
by selecting the better stimulus all the time, corresponding to
matching. In contrast, overmatching was possible in the reversal
learning tasks with baited rewards (e.g., task used in mice).

Consistent with previous studies on matching behavior, we
found significant undermatching in mice in both the 40/10 and
40/5 reward schedules (Wilcoxon signed-rank test; 40=10:Z ¼
�31:2; p ¼ 1:53 ´ 10�213; 40/5:Z ¼ �35:0; p ¼ 8:75 ´ 10�269;
Fig. 2b, c). Similarly, we found significant undermatching in
monkeys in both the 70/30 and 80/20 reward schedules

(Wilcoxon signed-rank test; 70/30:Z ¼ �27:02; p ¼
9:74 ´ 10�161; 80=20: Z ¼ �27:06; p ¼ 3:06 ´ 10�161; Fig. 2e,
f). In addition, average undermatching for mice was significantly
larger in the 40/5 reward schedule than the 40/10 reward
schedule, whereas average undermatching for monkeys was not
significantly different in the 70/30 and 80/20 schedules (two-sided
independent t test; Mice: p ¼ 7:93 ´ 10�36; d ¼ 0:44; Monkeys:
p ¼ 0:19; d ¼ 0:06; Supplementary Fig. 1f). More importantly,
undermatching was highly variable in both reward schedules for
both mice and monkeys (Fig. 2b, c, e, f). To understand the
nature of this variability, we examined whether existing
behavioral metrics and RL models can predict the observed
deviation from matching.

Existing behavioral metrics only partially explain variability in
matching. To examine the relationship between existing beha-
vioral metrics and undermatching, we first performed stepwise
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Fig. 1 Schematic of the experimental paradigms in mice and monkeys and basic behavioral results. a, b Timeline of a single trial during experiments in
mice (a) and monkeys (b). To initiate a trial, mice received an olfactory go cue (or no-go cue in 5% of trials) (a), and monkeys fixated on a central point
(b). Next, animals chose (via licks for mice and saccades for monkeys) between two options (left or right tubes for mice and circle or square for monkeys)
and then received a reward (drop of water and juice for mice and monkeys, respectively) probabilistically based on their choice. c, d Average choice and
reward using a sliding window with a length of 10 for a representative session in mice (c) and five superblocks of a representative session in monkeys (d).
Mean selection of 1 and −1 correspond to 100% selection of or 100% reward on the right and left in mice (square and circle stimuli in monkeys),
respectively, and mean selection of 0 corresponds to equal selection or reward on the two choice options. Vertical gray dashed lines indicate trials where
reward probabilities reversed. Vertical gray solid lines indicate divisions between superblocks in the monkey experiment. e, f Average relative choice and
reward fractions around block switches using a non-causal smoothing kernel with a length of three separately for all blocks with a given reward schedule in
mice (e) and monkeys (f). The better (or worse) option is the better (or worse) option prior to the block switch. Trial zero is the first trial with the reversed
reward probabilities. Average choice fractions for the better option (better side or stimulus) are lower than average reward fractions for that option
throughout the block for both mice and monkeys, corresponding to undermatching behavior.
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multiple regressions to predict deviation from matching for both
mice and monkeys based on commonly used behavioral metrics
including: p winð Þ; p stay

� �
; p stay; jwin� �

, and pðswitchjloseÞ. The
threshold for adding a predictor was set at p < 0.0001 (see
“Methods” for more details and Supplementary Note 1 for
regression equations). These regression models explained 31%
and 34% of the variance in deviation from matching for mice and
monkeys, respectively, which are significant but unsurprising
amounts of overall variance (mice: Adjusted R2= 0.31; monkeys:
Adjusted R2= 0.34).

We next included the Repetition Index (RI) on the better (RIB)
and worse (RIW) options (side or stimulus), which measure the
tendency to stay beyond chance on the better and worse options36 to
predict undermatching. To that end, we conducted additional
stepwise multiple regressions that predicted deviation from matching
using: RIB;RIW ; p winð Þ; p stay

� �
; pðstayjwinÞ; and pðswitchjloseÞ as

predictors. These models explained 48% and 49% of the variance in
deviation from matching for mice and monkeys, respectively (mice:
Adjusted R2 ¼ 0:48;monkeys : Adjusted R2 ¼ 0:49). Thus, includ-
ing RIB and RIW enabled us to account for additional 17% and 15%
of variance, suggesting that staying beyond chance on both the better
and worse choice options is a significant contributor to under-
matching behavior.

Together, these results illustrate that undermatching is correlated
with tendency to stay beyond chance (measured by RI) and response

to reward feedback in terms of stay or switch (measured by win-stay
and lose-switch). However, win-stay and lose-switch are not strong
predictors of undermatching because their relative importance
depends on the overall probability of winning. For example, if
p winð Þ is high, lose-switch is less useful for predicting behavior
because response to loss represents strategy in a small subset of trials.
Although win-stay, lose-switch, p winð Þ, and p stay

� �
contain all the

information necessary to compute the dependence of strategy on
reward, this requires interpretation of all four metrics in conjunction
and may depend on nonlinear relationships that are challenging to
intuit or capture with regression. To overcome these issues, we
propose metrics to quantify changes in strategy due to reward
outcome using information theory.

Behavioral metrics based on information theory. To better
capture the dependence of staying (or similarly switching) strat-
egy on reward outcome, we developed a series of model-free
behavioral metrics based on Shannon’s information entropy37.
The Shannon information entropy of a random variable X con-
ditioned on Y , denoted HðXjYÞ, captures the surprise or uncer-
tainty of X given knowledge of the values of Y . Lower
information entropies correspond with decreased uncertainty in
the variable under consideration and thus consistency in utilized
strategy (see below).
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Fig. 2 Mice and monkeys exhibit highly variable but significant undermatching. a Plot shows relative reward fraction versus relative choice fraction across
all blocks separately for each reward schedule in mice. The black dashed line represents the identity line. For relative reward fractions >0.5, nearly all points
remain below the identity line, indicating a relative choice fraction smaller than reward fraction for the better option (undermatching). Similarly, points above
the identity line for relative reward fractions <0.5 indicate undermatching. b, c Histograms show deviation from matching for the 40/10 (b) and 40/5 reward
schedules (c) in mice. The solid black line indicates 0, corresponding to perfect matching. The dashed black lines are the median deviation from matching.
Asterisks indicate significance based on a two-sided Wilcoxon signed-rank test ð40=10: p ¼ 1:53 ´ 10�213; 40=5: p ¼ 8:75 ´ 10�269Þ. d–f Similar to (a–c),
but for monkeys with 70/30 and 80/20 reward schedules. Asterisks indicate significance based on a two-sided Wilcoxon signed-rank test
ð70=30: p ¼ 9:74 ´ 10�161; 80=20: p ¼ 3:06 ´ 10�161Þ. Because of random fluctuations in local reward probabilities, overmatching occurred in a minority
of cases.
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First, we define the entropy of reward-dependent strategy
(ERDS) that measures the dependence of adopting a response
strategy on reward outcome. Formally, ERDS is the information
entropy of response strategy conditioned on reward outcome in
the previous trial, H str; jrewð Þ (see “Methods” for more details).
Therefore, ERDS quantifies the amount of information needed to
explain an animal’s strategy (e.g., choosing the option selected in
the previous trial) given knowledge of reward outcome (e.g.,
whether the animal won or lost in the previous trial). Lower
ERDS values indicate more consistent response to reward
feedback.

In its simplest formulation for measuring the effect of reward in
the previous trial on staying or switching, ERDS is a function of win-
stay, lose-switch, and p winð Þ (see Eq. (8) in “Methods”). As win-stay
and lose-switch move further from 0.5, ERDS decreases, reflecting
increased consistency of reward-dependent strategy (Fig. 3a). More-
over, p winð Þ modulates the effects of win-stay and lose-switch on
ERDS (Fig. 3b, c). As p(win) decreases, the influence of win-stay on
ERDS decreases, reflecting that win-stay is less relevant to overall
response to reward feedback when winning rarely occurs. Similarly,
as p loseð Þ (¼ 1 � pðwinÞ) decreases, the influence of lose-switch on
ERDS decreases, reflecting that lose-switch is less relevant to response
to reward feedback. Because of these properties, ERDS corrects for
the limitations of win-stay and lose-switch. Also, as stay (or switch)
strategy becomes more independent of reward outcome, ERDS
increases because reward outcome provides no information about
strategy.

ERDS can be decomposed into ERDS+ and ERDS- to measure
the specific effects of winning and losing in the preceding trial,
respectively (Fig. 3b, c; see Methods). More specifically, ERDS+ is
the entropy of win-dependent strategy, and ERDS− is the entropy
of loss-dependent strategy. Therefore, comparing ERDS+ and
ERDS- provides information about the relative contributions of
win-dependent strategy and loss-dependent strategy to the overall
reward-dependent strategy.

In addition to conditioning stay strategy on reward outcome in
the preceding trial, we can also condition stay strategy on
selection of the better or worse choice option (stimulus or action)
in the previous trial. The resulting entropy of option-dependent
strategy (EODS), H str; jopt� �

, captures the dependence of stay (or
switch) strategy on the selection of the better or worse option in
the preceding trial (Fig. 3d). EODS depends on
pðchoose betterÞ; pðstayjchoose betterÞ, and pðswitchjchoose worseÞ
and moreover, can be decomposed into EODSB and EODSW
based on selection of the better or worse option, respectively
(Fig. 3e, f).

Finally, to capture the dependence of response strategy on
reward outcome and the previously selected option in a single
metric, we computed the entropy of reward- and option-
dependent strategy (ERODS), H str; j; rew; opt� �

. ERODS depends
on the probabilities of adopting a response strategy conditioned
on all combinations of reward outcome and option selected in the
previous trial (see “Methods” for more details). ERODS has
similar properties to ERDS and EODS and can be interpreted in a
similar fashion. Low ERODS values indicate that stay (or switch)
strategy consistently depends on combinations of win/lose and
the option selected in the previous trial; for example, winning and
choosing the better side in the previous trial. ERODS can be
decomposed either by the better or worse option (ERODSB and
ERODSW), by win or loss (ERODS+ and ERODS−), or by both
(ERODSB+, ERODSW+, ERODSB−, and ERODSW−).

To summarize, we propose three metrics, ERDS, EODS, and
ERODS that capture the dependence of response strategy on
reward outcome and/or selected option in the preceding trial.
Each metric can be decomposed into components that provide

important information about the dependence of stay (or switch)
strategy on winning or losing and/or choosing the better or worse
option in the preceding trial (see Supplementary Table 1 for
summary). We next show how these entropy-based metrics can
predict deviation from matching behavior and further be used to
construct more successful RL models.

Deviation from matching is highly correlated with entropy-
based metrics. To test the relationship between the observed
undermatching and our entropy-based metrics, we next computed
correlations between all behavioral metrics and deviation from
matching (Supplementary Fig. 2). We found that nearly all entropy-
based metrics were significantly correlated with deviation from
matching. Out of all behavioral metrics tested, deviation from
matching showed the strongest correlation with ERODSW− based
on both parametric (Pearson; mice: r ¼ �0:71; p < 10�300; mon-
keys: r ¼ �0:64; p ¼ 10�231) and non-parametric (Spearman;
mice: r ¼ �0:78; p < 10�300; monkeys: r ¼ �0:75; p < 10�300)
tests in both mice and monkeys (Fig. 4). The size of the correlation
between ERODSW- and deviation from matching is remarkable
because it indicates that a single metric can capture more than 50%
and 41% of the variance in deviation from matching in mice and
monkeys, respectively. This finding suggests that undermatching
occurs when animals lose when selecting the worse option and
respond inconsistently to those losses.

Out of all existing behavioral metrics tested, the probability of
winning and probability of staying had the two strongest
correlations with deviation from matching for mice and monkeys,
respectively, but each metric individually only captured about
25% of variance in deviation from matching (Fig. 4). The
correlation between the probability of winning (total harvested
rewards) and deviation from matching was positive such that
increased total harvested rewards corresponded with less
undermatching.

In addition to ERODSW−, EODSW was also highly correlated with
deviation from matching (Pearson: mice:r ¼ �0:60; p < 10�300;
monkeys: r ¼ �0:53; p ¼ 9:35 ´ 10�150; Spearman: mice:
r ¼ �0:67; p < 10�300, monkeys: r ¼ �0:67; p ¼ 1:18 ´ 10�265)
as was ERDS− (Pearson: mice: r ¼ �0:43; p ¼ 6:72 ´ 10�156;
monkeys: r ¼ �0:57; p ¼ 1:94 ´ 10�191; Spearman: mice: r ¼
�0:47; p ¼ 7:31 ´ 10�198; monkeys: r ¼ �0:63; p ¼ 1:06 ´
10�240). Overall, these results show that global deviation from
matching was most strongly correlated with the consistency of
response after selection of the worse option (worse side or stimulus in
mice and monkeys, respectively) and when no reward was obtained.

As expected, there were significant correlations between the
proposed entropy-based metrics (see lower right of matrices in
Supplementary Fig. 2). For instance, ERDS and EODS were
highly correlated (Pearson: mice: r ¼ 0:90; p < 10�300; monkeys:
r ¼ 0:94; p < 10�300). EODS and ERODS were also highly
correlated as expected (Pearson: mice: r ¼ 0:95; p < 10�300;
monkeys: r ¼ 0:97; p < 10�300). Additionally, many entropy-
based metric decompositions had similarly large correlations
with other entropy-based metric decompositions. Finally, we
found consistent results for the relationships between under-
matching and our metrics for both reward schedules, even though
undermatching and our metrics were sensitive to reward
probabilities on the two stimuli or actions (see Supplementary
Figs. 1, 3, 4, 5).

Entropy-based metrics can accurately predict deviation from
matching. To verify the utility of entropy-based metrics in pre-
dicting deviation from matching, we performed additional stepwise
regressions to predict deviation from matching using our entropy-
based metrics. In these models, we included ERDSþ; ERDS�;
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Fig. 3 Relationship between entropy-based metrics and win-stay, lose-switch strategies. a–c Plotted are ERDS and ERDS decompositions for rewarded
and unrewarded trials (ERDS+ and ERDS−) as a function of p(win), p(lose), win-stay, and lose-switch. Darker colors correspond to larger values of
metrics. For the plot in (a), p(win) is set to 0.5. Observed entropy-based metrics and constituent probabilities for each block for mice (orange dots) and
monkeys (green dots) are superimposed on surfaces. d–f EODS and EODS decompositions for the better and worse options (EODSB and EODSW) as a
function of the probabilities of choosing the better and worse options, p(better) and p(worse), conditional probability of stay on the better option, and
conditional probability of switch from the worse option. For the plot in (d), p(better) is set to 0.5. For all plots, the units of entropy-based metrics are bits.
g–i Same as in (a–c) but using heatmap. j–l Same as in (d–f) but using heatmap.
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EODSB; EODSW ; ERODSBþ; ERODSB�; ERODSWþ; ERODSW�;
RIB;RIW ; p winð Þ; p stay

� �
;win-stay; and lose-switch as predictors

(see Supplementary Note 1 for regression equations).
These models explained 74% and 57% of total variance in

deviation from matching for mice and monkeys, respectively (mice:
Adjusted R2 ¼ 0:74;monkeys : Adjusted R2 ¼ 0:57). For mice, the
regression model explained 26% more variance than the model with
repetition indices and other existing behavioral metrics and 43%
more variance than the model with existing behavioral metrics
but without repetition indices. For monkeys, the regression model
explained 8% more variance than the model with repetition indices
and existing behavioral metrics and 23% more variance than the
model with existing behavioral metrics without repetition indices.
These are significant improvements over previous models, suggest-
ing that most variance in undermatching behavior can be explained
by trial-by-trial response to reward feedback.

In terms of the predictive power of different metrics, we found that
for mice, the first three predictors added to the regression models
were ERODSW− (ΔR2 ¼ 0:59), ERODSW+ ðΔR2 ¼ 0:04Þ; and
ERODSB+ ΔR2 ¼ 0:02

� �
: For monkeys, the first three predictors

added were ERODSW− ðΔR2 ¼ 0:31Þ; EODSW ðΔR2 ¼ 0:09Þ; and
ERODSB+ ðΔR2 ¼ 0:06Þ. These results indicate that entropy-based
metrics were the best predictors of deviation from matching when
considering all metrics together. In addition, most entropy-based
metrics included as predictors were added to the final regression
equations for both mice and monkeys. This suggests that despite their
overlap, each entropy-based metric captures a unique aspect of the
variance in deviation from matching behavior.

Entropy-based metrics capture the relationship between
undermatching and reward environment better than existing

metrics. Our previous observation that entropy-based metrics can
explain most variance in undermatching behavior suggests that
entropy-based metrics may also capture average differences in
undermatching between reward schedules in mice and the lack of
differences in undermatching between reward schedules in monkeys.

To test whether this was the case, we used tenfold cross-
validated linear regression to predict deviation from matching
using a model without entropy-based metrics or repetition
indices, a model without entropy-based metrics, and a model with
all metrics (full model). Predictors chosen for inclusion in these
models were the predictors that remained in final stepwise
regression equations described above.

For mice, in all three models, predicted deviation from
matching was significantly lower in the 40/5 than the 40/10
reward environment (Supplementary Fig. 6; two-sided t test;
model without entropy-based metrics or repetition indices:
p ¼ 6:30 ´ 10�3; model without entropy-based metrics:
p ¼ 3:22 ´ 10�3; full model: p ¼ 4:76 ´ 10�25). Importantly,
the difference between deviation from matching in the two
reward schedules was greatest for the full model (Supplementary
Fig. 6; Cohen’s d; model without entropy-based metrics or
repetition indices: d ¼ �0:10; model without entropy-based
metrics: d ¼ �0:10; full model: d ¼ �0:39). The full model
with entropy-based metrics was the only model that came close to
replicating the magnitude of differences in deviation from
matching between the 40/5 and 40/10 schedules in behavioral
data (Supplementary Fig. 6c, d).

For monkeys, predicted deviation from matching from both
regression models without entropy-based metrics was signifi-
cantly lower in the 70/30 than the 80/20 reward environment
(Supplementary Fig. 6e, f; two-sided t test; model without
entropy-based metrics or repetition indices: p ¼ 1:19 ´ 10�49;
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Fig. 4 Correlation between undermatching and proposed entropy-based metrics and underlying probabilities. a Pearson correlation between proposed
entropy-based metrics and existing behavioral metrics and deviation from matching in mice. Correlation coefficients are computed across all blocks, and
metrics with nonsignificant correlations (two-sided, p>0:0001 to account for multiple comparisons) are indicated with a hollow bar. The metric with the
highest correlation with deviation from matching is indicated with a star (ERODSW−; r ¼ �0:71; p< 10�300). b Similar to (a) but for monkeys (ERODSW−;
r ¼ �0:64; p ¼ 10�231). Overall, entropy-based metrics show stronger correlation with deviation from matching than existing metrics.
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model without entropy-based metrics: p ¼ 1:32 ´ 10�29). Only
the regression model with entropy-based metrics replicated the
observed lack of difference in undermatching between reward
schedules (Supplementary Fig. 6g, h; full model: p ¼ 0:36;
observed difference between reward schedules: p ¼ 0:19). There-
fore, entropy-based metrics are necessary and sufficient to capture
the influence of reward schedule on deviation from matching.

Purely RL models do not capture the pattern of entropy-based
metrics. To capture the observed variability in entropy-based
metrics and underlying learning and choice mechanisms, we next
fit choice behavior using three purely RL models. These models
assumed different updating of reward values (RL1 and RL2; see
Methods for more details) or learning multiple reward values
across different timescales (multiple timescales model). We tested
these models because previous research has suggested they can
replicate matching or undermatching phenomena14,26,31. Out of
these three models, we found that RL2, in which the estimated
reward value for the unchosen option (side or stimulus) decays to
zero over time, provided the best fit of choice behavior for both
mice and monkeys as reflected in the lowest Akaike Information
Criterion (AIC) (Fig. 5a, b, Supplementary Table 2).

We next tested whether RL2 could replicate observed distribu-
tions of entropy-based metrics and undermatching by simulating
the model during our experiment using parameters obtained from
model fitting. Due to the large number of simulations performed
(100 simulations per session, mice: n ¼ 331; 900 blocks;
monkeys: n ¼ 221; 200 blocks), we were able to estimate popula-
tion distributions of metrics for each model. We found that the
median predicted ERODSW− was significantly higher than the
median observed ERODSW−, suggesting the RL2 model under-
utilizes loss-dependent and option-dependent strategies when
compared to mice and monkeys in our experiments (Fig. 5c, d).
To evaluate the similarity of observed and predicted distributions
of entropy-based metrics and matching, we computed Kolmogor-
ov’s D statistic that measures the maximum difference (or
distance) between two empirical cumulative distribution func-
tions. Using this method, we ound that the distribution of
predicted ERODSW− was very different than the observed
distributions for both mice and monkeys (Fig. 5c, d; two-sided
Kolmogorov–Smirnov test; mice: D ¼ 0:121; p ¼ 1:44 ´ 10�41;
monkeys: D ¼ 0:072; p ¼ 1:42 ´ 10�9). Moreover, the predicted
distribution of deviation from matching was very different from
the observed distribution for both mice and monkeys (Fig. 5e, f;
Two-sided Kolmogorov–Smirnov test; mice: D ¼ 0:091;
p ¼ 3:24 ´ 10�24; monkeys: D ¼ 0:101; p ¼ 6:38 ´ 10�20).

Finally, we also computed undermatching and all behavioral
metrics in simulated data using RL2 with random parameter
values. We found that our entropy-based metrics were better
predictors for deviation from matching than the parameters of
the RL2 model (see Supplementary Fig. 7). Together, our results
illustrate that purely RL models fail to replicate observed
distribution of ERODSW− and variability in matching behavior,
pointing to additional mechanisms that contribute to behavior.
Moreover, ERODSW− was highly correlated with undermatching
in observed behavior (Fig. 4) and RL simulations (Supplementary
Fig. 7), suggesting that a model that better captures ERODSW–

may also better capture variability in matching behavior.

Model with additional choice memory captures entropy-based
metrics in monkeys more accurately. The deviations of predicted
ERODSW− from observed ERODSW− suggest RL models
underutilize loss-dependent and option-dependent strategies; that
is, they fail to capture the influence of option (stimulus or action)
and loss in the current trial on choice in the subsequent trial. To

improve capture of option-dependent strategy, we added a
common choice-memory component to estimate the effects of
previous choices on subsequent decisions8,15,38. The choice-
memory (CM) component encourages either staying on or
switching from options that have been chosen recently. Because
standard RL models typically choose the option with a higher
value, the CM component can capture strategy in response to
selection of the better or worse option reflected in the option-
dependent entropy-based metrics. The influence of the CM
component on choice is determined by fitting a weight parameter
that can take either positive or negative values which correspond
to better-stay/worse-switch or better-switch/worse-stay strategies,
respectively.

In monkeys, we found that the RL2 model augmented with a
CM component, which we refer to as the RL2+CM model, fit
choice behavior better than RL1, RL2, and RL1+CM as
indicated by lower AIC (Fig. 5b; Supplementary Table 2).
Although the improvement in fit of choice behavior for
RL2+CM over RL2 was statistically significant (paired samples
t test of AICs: p ¼ 1:04 ´ 10�23; Supplementary Table 2), the
RL2+CM model was only twice as likely as RL2 to be the best
model based on a comparison of Akaike weights.

Importantly, the RL2+ CM model improved capture of the
observed distribution of ERODSW− in monkeys (Fig. 5d; two-
sided Kolmogorov–Smirnov test; D ¼ 0:037; p ¼ 8:91 ´ 10�3).
This improvement in capturing ERODSW- corresponded with
similar improvements in capturing deviation from matching. The
predicted distribution of deviation from matching from the
RL2+CM model better replicated the observed distribution of
deviation from matching than the predicted distribution from
RL2 (Fig. 5f; two-sided Kolmogorov–Smirnov test;
D ¼ 0:065; p ¼ 2:07 ´ 10�8). This improvement was signifi-
cant; there was an over 30% reduction in the maximum difference
between CDFs in the RL2+ CM model from the RL2 model.

To determine whether these improvements were attributable to
modulations in better-switch/worse-stay or better-stay/worse-
switch strategies, we examined the distribution of the estimated
CM weights and fit a model with a CM component with weights
restricted to positive values only (RL2+ CM+model). The
median fitted CM weights in the RL2+CM model was negative
(Supplementary Fig. 8k), and the fit of choice behavior was worse
for the RL2+ CM+model than the RL2+ CM model (Supple-
mentary Table 2), indicating that the CM component enhanced
better-switch/worse-stay strategies in monkeys.

In mice however, the RL2+ CM model had positive weights
and had fairly weak effects on fit of local choice behavior and
capture of metrics and undermatching (Supplementary Figs. 8i,
5a; Supplementary Table 2). These results in conjunction with our
entropy-based findings suggest that additional mechanisms that
modulate response to loss are necessary to improve capture of
variability in ERODSW- and matching behavior in mice.

New model with additional choice and loss memories captures
choice behavior and entropy-based metrics in mice more
accurately. To better capture loss-dependent strategy in mice, we
augmented the RL2+ CM model with a new outcome-dependent
loss-memory component (see Methods). The loss-memory (LM)
component encourages either staying or switching in response to
loss (increases lose-switch or lose-stay) and is modulated by
expected uncertainty. Here, expected uncertainty is defined as the
expected unsigned reward prediction error in the RL2 compo-
nent. As uncertainty increases, the weight of the LM component
increases proportionately, making choice more dependent on
feedback in the previous trial. In contrast to RL models with
adaptive learning rates (e.g., as in Pearce-Hall model), changes in
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the LM component only influence subsequent choice, not the
aggregation of values in the RL component of the model. The
model is also agnostic about the strategy employed by the LM
component such that it can encourage lose-stay or lose-switch
behavior. The addition of the LM component to the RL+CM
model creates a model that can flexibly modulate loss-dependent

strategies, which may increase the consistency of strategy in
response to loss on the worse option (reduce ERODSW−).

In mice, the RL2+ CM+ LM model (RL2 augmented with a
choice-memory and a loss-memory component) fit choice
behavior better than all existing RL models as indicated by a
lower AIC (Fig. 5a). The Akaike weight for the RL2+ CM+ LM

a b

c d

e f

Fig. 5 RL2+ CM+ LM and RL2+ CM models better account for choice behavior, undermatching, and entropy-based metrics in mice and monkeys,
respectively. a, b Comparison of goodness-of-fit of a return-based (RL1) model, income-based (RL2) model, income-based models augmented with choice
memory (CM) and/or loss-memory (LM) components, and a model based on learning on multiple timescales. Plotted is the Akaike Information Criterion
(AIC) averaged over all sessions and Akaike weights computed with the average AIC for mice (a) and monkeys (b). c–f Empirical cumulative distribution
functions of ERODSW− (c, d) and deviation from matching (e, f) observed in animals and predicted from simulations of the RL2 and RL2+ CM+ LM
models. Shaded bars around CDFs indicate 95% confidence interval. Dashed vertical lines indicate the median of each distribution. Insets display the
distribution of observed metrics versus metrics predicted using the RL2 model (left inset) and RL2+ CM+ LM model and RL2+ CM model (right inset)
for mice and monkeys, respectively. Displayed D-values and p values are the test-statistic and p value from a two-sided Kolmogorov–Smirnov test
comparing the distributions. The RL2+ CM+ LM model and RL2+ CM better captured deviation from matching by over 20% and over 30% in mice and
monkeys, respectively.
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model was 0.84, which suggests there is a high probability that the
RL2+ CM+ LM model is the best model out of all models
examined. The RL2+ CM+ LM model also captured the
observed distribution of ERODSW− for mice better than RL2
(Fig. 5c, d; two-sided Kolmogorov–Smirnov test;
D ¼ 0:049; p ¼ 3:77 ´ 10�7). Moreover, the predicted distribu-
tion of deviation from matching from the RL2+CM+ LM
model better replicated the observed distribution of deviation
from matching than the predicted distribution from RL2 (Fig. 5e;
two-sided Kolmogorov–Smirnov test; mice:
D ¼ 0:065; p ¼ 2:19 ´ 10�12). This improvement corresponds
to an over 20% reduction in the maximum difference between
cumulative distribution functions (CDFs) for deviation from
matching computed from observed and simulated data.

Finally, to understand how the RL2+ CM+ LM model
modulates specific loss- and option-dependent strategies in mice,
we compared the distributions of model parameters between all
models with RL2. The LM and CM components both had positive
average weights in mice (Supplementary Fig. 8i–l), such that the
LM component encouraged lose-switch strategies and the choice-
memory component encouraged worse-switch strategies. Two
additional models, RL2+ CM+ and RL2+ LM+, in which the
weights of the CM and LM components were restricted to
positive values, fit comparably to the RL2+ CM and RL2+ LM
models, providing further evidence for the previous conclusion.
Interestingly, the average weights of the CM and LM components
were higher in the RL2+ CM+ LM model than in the RL2+CM
and RL2+ LM models, indicating that the two components may
interact to modulate behavior (Supplementary Fig. 8i, j). This
dovetails with our entropy-based results that show response to
the loss after selection of the worse option is uniquely important
for global choice behaviors.

In monkeys, however, the LM component was not necessary to
better explain choice behavior. The RL2+CM model fit local
choice behavior better than the RL2+ CM+ LM model based on
AIC and better captured ERODSw- and deviation from matching
(Fig. 5a; Supplementary Table 2). Despite this, in monkeys, the
RL2+ LM model still improved upon RL2 in capture of
undermatching and ERODSW− (Supplementary Table 2), indi-
cating that there may be overlap between the effects of the CM
and LM components that renders the LM component useless in
the full model.

To summarize, the models with additional components
improved fit of choice behavior and captured our metrics and
undermatching more accurately in both species, whereby
revealing that undermatching behavior arises from competition
among multiple components incorporating choice memory and/
or loss memory on a trial-by-trial basis. Importantly, we used
deviations in predicted entropy-based metrics from their
observed values to identify shortcomings in purely RL models
and to incorporate previous mechanisms or propose new
mechanisms to mitigate them.

Discussion
Undermatching is a universal behavioral phenomenon that has
been observed across many species. Here, we show that proposed
entropy-based metrics based on response to reward feedback can
accurately predict undermatching in mice and monkeys, sug-
gesting that inconsistencies in the use of local reward-dependent
and option-dependent strategies can account for a large propor-
tion of variance in global undermatching. Moreover, we
demonstrate that these entropy-based metrics can be utilized to
construct more complex RL models that are able to capture
choice behavior, undermatching, and utilization of reward-
dependent strategies. Together, our entropy-based metrics

provide a model-free tool to develop and refine computational
models of choice behavior and reveal neural mechanisms
underlying adaptive behavior.

Similar to many previous studies of matching
behavior4,11,14,17,39, we observed significant, but highly variable
undermatching in both mice and monkeys. By focusing on the
variability in undermatching, here, we were able to show that
global undermatching can be largely explained by the degree of
inconsistency in response to no reward on the worse option
(ERODSw−) across species. Specifically, ERODSw− could explain
about 50% and 41% of the variance in undermatching in mice
and monkeys, respectively. The proposed entropy-based metrics
were able to predict undermatching across two very different
species despite differences in the tasks including utilized reward
probabilities and schedules (40/5 and 40/10 probabilities with
baiting vs. complementary 80/20 and 70/30 with no baiting),
learning modality (action-based vs. stimulus-based), choice
readout (licks vs. saccades), and predictability of block switches
(unpredictable vs. semipredictable), suggesting the proposed
metrics are generalizable.

The proposed entropy-based metrics complement and improve
upon commonly used behavioral metrics such as win-stay, lose-
switch, and the U-measure40. Although win-stay and lose-switch
provide valuable information28,41–45, these probabilities do not
solely reflect the effects of reward feedback on staying (or simi-
larly switching) as they both depend on the probability of stay.
For example, if staying behavior is independent of reward, win-
stay, and lose-switch values simply reflect the overall stay and
switch probabilities, respectively. Consistently, we found that
win-stay and lose-switch are not strong predictors of under-
matching because their relative importance depends on the
overall probability of winning. For example, if the overall prob-
ability of reward is high, lose-switch is less useful for predicting
behavior because response to loss represents strategy in a small
subset of trials. Therefore, win-stay and lose-switch cannot cap-
ture the degree to which staying and switching strategies depend
on reward outcome only. The entropy-based metrics such as
ERDS overcome these issues by combing win-stay and lose-
switch with p(win) and p(stay). Similarly, although the U-value
has been used to measure consistency or variability in choice
behavior46,47, this metric is difficult to interpret and fails to
capture sequential dependencies in choice48. Our proposed
entropy-based metrics avoid these issues because they have both
clear interpretations and can capture the sequential dependence
of choice on previous reward and/or selected action or option.

As shown by multiple studies, models that fit choice data best
may still fail to replicate important aspects of behavior33,34.
Therefore, model validation must involve analyzing both a
model’s predictive potential (fitting) and its generative power
(replication of behavior in simulations). We used shortcomings of
purely RL models in capturing the most predictive entropy-based
metrics to detect additional mechanisms underlying adaptive
behavior. This approach can be applied to other tasks in which
similar or different entropy-based metrics are most predictive of
global choice behavior (matching or other metrics). Our aim here
was not to find the best model for capturing all aspects of
behavior but instead, to provide a framework for how local
response to reinforcement can be used to guide model develop-
ment and explore interesting properties of local and global choice
behavior.

Using this method, we constructed a model (RL2+ CM+ LM
model) that augments a reinforcement-learning model with a
choice-memory component that captures option-dependent
strategies and a loss-memory component that captures loss-
dependent strategies. Previous studies have also shown that a
combination of WSLS strategies with RL models could improve
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fit of choice behavior and capture of the average matching
behavior27,28,49. The choice-memory component used here is
similar to other choice-memory components that have been
shown to improve fit of choice behavior15,38. Nonetheless, the
proposed RL2+ CM+ LM model is a novel combination of these
components. Critically, the weights of the loss and choice com-
ponents could be either positive or negative. This parallels how
entropy-based metrics capture response to reward feedback
considering that low entropy can result from strong positive or
negative influences of recent rewards or choices (e.g., high win-
stay and high win-switch both correspond to low entropy).
Neural correlates of a similar loss-memory component weighted
by recent reward prediction errors have been identified in the
dorsal anterior cingulate cortex of humans50. Moreover, neural
correlates of such choice memories have been identified in var-
ious cortical areas of monkeys including the dorsolateral pre-
frontal cortex, dorsal medial prefrontal cortex, lateral intraparietal
area, and the anterior cingulate cortex51–53.

Despite the significant correlation between ERODSW− and
deviation from matching in both species, the loss-memory
component introduced here only improved fit of choice beha-
vior and capture of metrics in the full model in mice. This finding
may be related to the close correspondence between reward- and
option-dependent strategies in the monkey task because winning
(respectively, losing) almost always corresponds with choosing
the better (respectively, worse) side. Due to this significant
overlap, one component may be sufficient to capture both stra-
tegies. In the mouse task, however, these strategies were dis-
sociated because losing was likely when choosing either the better
or worse option (but more for the worse option). This could
explain why for monkeys, the LM component improved capture
of entropy-based metrics and deviation from matching in the
RL2+ LM model relative to the RL2 model but was not useful in
conjunction with the choice-memory component. Moreover, we
observed a higher overall probability of switching in mice than in
monkeys, indicating that mice occasionally switch from the more-
rewarding side to harvest baited rewards on the less-rewarding
side, whereas monkeys typically exploit the more-rewarding sti-
mulus. Because of this, a loss-memory component that
encourages switching in response to loss would be more helpful in
capturing that behavior in mice than in monkeys. Although
aforementioned differences in results for these two datasets may
be partially explained by differences in task structure and species,
they also highlight the limitations of using entropy-based metrics
to guide model development. Entropy-based metrics describe
properties of choice behavior that are helpful for making educated
guesses about model structure, but alone, cannot provide a gen-
erative account of behavior.

The model fits were also worse for mouse data than the
monkey data in terms of explained variance in choice behavior,
likely due to differences in the overall entropy in choice behavior
and task structure. More specifically, mice showed higher average
entropy in their choice behavior than monkeys across different
measures, suggesting that the observed difference in the quality of
fit occurred because mice choice behavior was more random and
thus harder to predict. In addition, sessions in the mouse task
were longer than superblocks in the monkey task, so the same
number of parameters were used to account for more choices in
mice than in monkeys, resulting in an overall poorer fitting
quality.

The goal of our approach, to predict and develop generative
models to explain undermatching, was similar to a recent study
that suggested limited undermatching results in optimal perfor-
mance in stochastic environments and proposed learning on
multiple timescales to account for such undermatching31. In
contrast, we identified a positive correlation between reward

harvesting and deviation from matching which suggests that the
degree of undermatching observed here corresponded with sub-
optimal choice. This difference between Iigaya et al.31 and our
study could be due to differences in how performance and
undermatching are defined. More specifically, here we measure
performance as the total number of harvested rewards in each
block of trials and undermatching as the difference between
choice and reward fractions in each block. In contrast, Iigaya
et al.31 use harvesting efficiency, equal to the number of rewards
harvested divided by the maximum number of rewards that could
have been collected, in each session of experiment (consisting of
multiple blocks) as a measure of performance and quantify
undermatching as the difference between the slope of choice vs.
reward fractions and one in each session. Moreover, we found
that nearly all other models described here better accounted for
local and global choice behavior than the multiple timescales
model proposed in Iigaya et al.31. Nonetheless, it is possible that
more complex models based on learning on multiple timescales
may fit choice behavior better.

We also observed weak, positive choice-memory effects in mice
such that mice tended to choose options that they had recently
chosen. A previous study using a nearly identical task (reversal
learning with same reward schedules (40/10) and baited rewards,
but longer blocks) observed a much stronger, negative choice
memory effect in mice8. The reason for this difference is unclear
given the similarity of the two tasks. Consistent with prior studies
of choice-history effects in monkeys15, we identified strong,
negative choice-memory effects in monkeys such that the choice-
memory component encouraged switching from recently chosen
options. Thus, the incorporation of the negative weights was only
important for capturing behavior in the monkey task and thus,
could be task dependent. This negative weighting mechanism
may be able to facilitate quick adaptation to reversals in monkeys,
a behavior that has previously been described using a Bayesian
approach54, because negative weights in either the choice-
memory or the loss-memory component encourage faster
response to reversals. Future studies are needed to test whether
this is the case.

In summary, we show that entropy-based metrics are good
predictors of global choice behavior across species and can be
used to refine RL models. Results from fitting and simulating RL
models augmented with additional components suggest that
recent choices and rewards affect decisions in ways beyond their
influence on the update of subjective values in standard RL
models. Thus, entropy-based metrics have the potential to open a
realm of possibilities for understanding computational and neural
mechanisms underlying adaptive behavior.

Methods
Experimental paradigm in mice. Mice performed a dynamic foraging task in
which after receiving a go-cue signaled by an odor, they licked one of the two water
tubes (on left and right) to harvest possible reward. In 5% of trials, a no-go cue was
presented by another odor signaling that a lick would not be rewarded or punished.
If a mouse licked one of the tubes after a go-cue odor, reward was delivered
probabilistically. Each trial was followed by an inter-trial interval drawn from an
exponential distribution with a rate parameter of 0.3. If a mouse licked a tube in the
1 s no-lick prior to odor delivery, an additional inter-trial interval and an additional
2.5 s no-lick period were added.

The reward probabilities assigned to the left and right tubes were constant for a
fixed number of trials (blocks) and changed throughout the session (block
switches). Block lengths were drawn from a uniform distribution that spanned a
range of 40–100 trials, however, the exact block lengths spanned smaller ranges for
individual sessions, resulting in variable block lengths with most block lengths
ranging between 40 and 80 trials. If mice exhibited strong side-specific biases, block
lengths were occasionally shortened or lengthened. Miss trials, in which the mouse
did not make a choice, and no-go trials were excluded for all analyses described
here. In total, 1706 miss trials (average of 3.64 per session) and 7893 no-go trials
(average of 16.83 trials per session) were excluded from our analyses.
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Mice performed two versions of the task, one with 16 different sets of reward
schedules and another with two sets of reward schedules. The vast majority (469
out of 528) of sessions used two sets of reward probabilities equal to 0.4 and 0.1,
and 0.4 and 0.05, which we refer to as 40/10 and 40/5 reward schedules. Here, we
focus on the most frequent blocks (40/5 and 40/10 reward schedules). Rewards
were baited such that if reward was assigned on a given side and that side was not
selected, reward would remain on that side until the next time that side was
selected. Due to this baiting mechanism, the probability of obtaining reward on the
unchosen side increased over time as during foraging in a natural environment. In
total, 16 mice performed 469 sessions of the two-probability version of the task for
a total of 3319 blocks (1786 and 1533 blocks with 40/5 and 40/10 reward schedules,
respectively) and 189,199 trials. Male C57BL/6J (The Jackson Laboratory, 000664)
mice were used in the experiment, and mice were housed on a 12 h dark/12 h light
cycle. All surgical and experimental procedures were in accordance with the
National Institutes of Health Guide for the Care and Use of Laboratory Animals
and approved by the Johns Hopkins University Animal Care and Use Committee.
This experimental setup and some analyses of the data have also been described in
Bari et al.9.

Experimental paradigm in monkeys. In the reversal learning task in monkeys,
Costa et al.35 trained monkeys to fixate on a central point on a screen to initiate
each trial (Fig. 1). After fixation, two stimuli, a square and circle, were presented on
the screen to the left and right of the fixation point (6° visual angle). The side that
the stimuli were presented on was assigned randomly and was not related to
reward. Monkeys made saccades to a stimulus and fixated on the stimulus to
indicate their choice in each trial. A 0.085 mL juice reward was delivered prob-
abilistically via a pressurized tube based on the chosen stimulus. Each trial was
followed by a fixed 1.5 s inter-trial interval. Trials in which the monkey did not
make a choice or failed to fixate were immediately repeated.

Monkeys completed sessions that contained around 1300 trials on average
divided into superblocks of 80 trials. Within each superblock the reward
probabilities assigned to each cue were reversed randomly between trials 30 and 50,
such that the stimuli that was less rewarding at the beginning of the superblock
became more rewarding and vice versa. Every 80 trials, monkeys were presented
with new stimuli that varied in color but not shape. Six images of a red, green, and
blue circle or square were used as stimuli, and the two choice options in a given
block always differed in both color and shape, e.g., a red square could be presented
with a blue circle. Superblock presentation was fully randomized without
replacement such that a monkey viewed all stimuli pair/reward schedule
combinations (e.g., red square, blue circle, 70/30) before any repeated.

Monkeys performed two variants of the task, a stochastic variant with three
reward schedules (80/20, 70/30, and 60/40) and a deterministic variant with one
reward schedule (100/0). Here, we focus our analyses on the 80/20 and 70/30
reward schedules (2212 blocks of the task performed by 4 monkeys) as they provide
two levels of uncertainty similar to the experiment in mice. Male rhesus macaques
were used in the experiment. Monkeys were water restricted throughout the
experiment and during test days earned fluid only through the task. Stimulus
presentation and behavioral monitoring was controlled by the MonkeyLogic
(version 1.1) toolbox55. Eye movements were sampled at 1 kHz using an Arrington
eye-tracking system (Arrington Research). All experimental procedures were
performed in accordance with the Guide for the Care and Use of Laboratory
Animals and were approved by the National Institute of Mental Health Animal
Care and Use Committee. This experimental setup and some analyses of the its
data have also been described in Costa et al.35,54.

Behavioral metrics
Matching performance. To measure the overall response to reinforcement on the
two choice options (e.g., left and right actions when reward is based on the loca-
tion) in each block of the experiment, we defined undermatching (UM) as:

UM ¼ ChoiceF � RewardF
� �

´ sign RewardF � 0:5
� � ð1Þ

where sign 0ð Þ ¼ 1 and choice and reward fractions (ChoiceF , RewardF) are defined
as follows:

ChoiceF ¼ Pðchoosing leftÞ
P choosing left
� � þ Pðchoosing rightÞ

RewardF ¼ Pðreward on leftÞ
P reward on left
� � þ Pðreward on rightÞ ð2Þ

Therefore, UM measures the difference between choice and reward fractions
toward the more-rewarding side. Similarly, UM can be computed based on the
color of stimuli when color is informative about reward outcome. Based on our
definition, negative and positive values for UM correspond to undermatching and
overmatching, respectively.

Win-stay and lose-switch. Win-stay (WS) and lose-switch (LS) measure the ten-
dency to repeat a rewarded choice (in terms of action or stimulus) and switch away
from an unrewarded choice, respectively. These quantities are based on the con-
ditional probabilities of stay and switch after reward and no reward, respectively,

and can be calculated in a block of trials as follows:

WS ¼ P stayjwin� � ¼ Pðstay;winÞ
PðwinÞ

LS ¼ P switchjloseð Þ ¼ Pðswitch; loseÞ
PðloseÞ ð3Þ

where PðwinÞ and PðstayÞ are the probabilities of harvesting reward and choosing
the same option (side or stimulus) in successive trials, PðloseÞ ¼ 1 � PðwinÞ, and
PðswitchÞ ¼ 1 � PðstayÞ.

When computing metrics based on action or reward in the previous trial for
mice, we treated each miss trial as though the trial did not exist. For example, if a
mouse chose left and was rewarded on trial t, did not respond on trial t þ 1 (miss
trial), then chose left on trial t þ 2, trial t þ 2 would be labeled as win-stay.

Repetition index. Repetition index (RI) measures the tendency to repeat a choice
beyond what is expected by chance and can be computed by subtracting the
probability of stay by chance from the original probability of stay36. RI can be
computed based on the repetition of left or right choices (RILR) as follows:

RILR ¼ PðstayÞ � ðP left
� �

´ P left
� � þ PðrightÞ ´ PðrightÞÞ ð4Þ

In general, RI reflects a combination of reward-dependent and reward-
independent strategies as well as the sensitivity of choice to value differences (equal
to the inverse temperature in the logit function translating value differences to
choice probability; see Eq. (28).

Repetition index can also be measured based on other option or choice
attributes that predict reward such as the color of the chosen option. For example,
RI can be defined based on selection of the better or worse option (RIBW ) when
such options exist in a task:

RIBW ¼ P stay
� � � P betterð Þ ´ P betterð Þ þ P worseð Þ ´ P worseð Þð Þ

¼ P better tð Þ; better t � 1ð Þð Þ � P betterð Þ ´ P betterð Þð Þ
þ P worseðtÞ;worseðt � 1Þð Þ � P worseð Þ ´ P worseð Þð Þ

ð5Þ

where t is the trial number. Using Eq. (5), RIBW can be decomposed into two
pieces, RIB and RIW , that measure the tendency to repeat the better and worse
options, respectively:

RIB ¼ P better tð Þ; better t � 1ð Þð Þ � P betterð Þ ´ P betterð Þ

RIW ¼ P worseðtÞ;worseðt � 1Þð Þ � P worseð Þ ´ P worseð Þ ð6Þ
Entropy-based metrics. In order to quantify the influence of previous reward out-
come on choice behavior in terms of stay or switch, we defined the conditional
entropy of reward-dependent strategies (ERDS) that combines tendencies of win-
stay and lose-switch into a single metric. More specifically, ERDS is defined as the
conditional entropy of using stay or switch strategy depending on win or lose in the
preceding trial:

ERDS ¼ H strjrewð Þ ¼ � Pðstay;winÞ ´ log2
P stay;win
� �
P winð Þ

� ��

þ P switch;winð Þ ´ log2
P switch;winð Þ

P winð Þ

� �
þ Pðstay; loseÞ

´ log2
Pðstay; loseÞ

PðloseÞ

� �
þ Pðswitch; loseÞ ´ log2

Pðswitch; loseÞ
PðloseÞ

� �� ð7Þ

To better show the link between ERDS and win-stay, lose-switch, and p(win),
Eq. (7) can be rewritten as follows:

ERDS ¼ � P winð Þ ´ WS ´ log2 WSð Þ þ P winð Þ ´ 1 � WSð Þ�
´ log2 1 � WSð Þ þ ð1 � P winð ÞÞ ´ ð1 � LSÞ ´ log2 1 � LSð Þ

þ ð1 � P winð ÞÞ ´ LS ´ log2 LSð Þ�
ð8Þ

ERDS can be decomposed into two components, ERDSþ and ERDS�
(ERDS ¼ ERDSþ þ ERDS�), to allow separation of animals’ response to
rewarded (win) and unrewarded (loss) outcomes:

ERDSþ ¼ HðstrjwinÞ ¼ � Pðstay;winÞ ´ log2
Pðstay;winÞ

PðwinÞ

� ��

þ Pðswitch;winÞ ´ log2
Pðswitch;winÞ

PðwinÞ

� �� ð9Þ

ERDS� ¼ HðstrjloseÞ ¼ � Pðstay; loseÞ ´ log2
Pðstay; loseÞ

PðloseÞ

� ��

þ Pðswitch; loseÞ ´ log2
Pðswitch; loseÞ

PðloseÞ

� �� ð10Þ

The above equations also show that ERDSþand ERDS� are linked to win-stay
and lose-switch, respectively.

Considering that RI can be decomposed to repetition after the better or worse
option (Eq. (5), and following the same logic used to derive ERDS, one can define
the conditional entropy of option-dependent strategy (EODS) based on staying on
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or switching from the better or worse option (EODSBW ) in two consecutive trials:

EODSBW ¼ HðstrjoptÞ ¼ � Pðstay; betterÞ ´ log2
Pðstay; betterÞ

PðbetterÞ

� �
þ Pðswitch; betterÞ

�

´ log2
Pðswitch; betterÞ

PðbetterÞ

� �
þ Pðstay;worseÞ ´ log2

Pðstay;worseÞ
PðworseÞ

� �

þPðswitch;worseÞ ´ log2
Pðswitch;worseÞ

PðworseÞ

� ��

ð11Þ
EODSBW can be decomposed into two components based on the better and

worse options:

EODSB ¼ HðstrjbetterÞ ¼ � Pðstay; betterÞ ´ log2
Pðstay; betterÞ

PðbetterÞ

� ��

þ Pðswitch; betterÞ ´ log2
Pðswitch; betterÞ

PðbetterÞ

� ��

EODSW ¼ HðstrjworseÞ ¼ � Pðstay;worseÞ ´ log2
Pðstay;worseÞ

PðworseÞ

� ��

þ Pðswitch;worseÞ ´ log2
Pðswitch;worseÞ

PðworseÞ

� �� ð12Þ

EODS can also be computed based on other choice attributes (e.g., location or
color of options) to examine what information drives stay or switch behavior:

EODSLR ¼ HðstrjoptÞ

¼ � Pðstay; rightÞ ´ log2
Pðstay; rightÞ

PðrightÞ

� �
þ Pðswitch; rightÞ

�

´ log2
Pðswitch; rightÞ

PðrightÞ

� �
þ Pðstay; leftÞ ´ log2

Pðstay; leftÞ
PðleftÞ

� �

þ Pðswitch; leftÞ ´ log2
Pðswitch; leftÞ

PðleftÞ

� ��
ð13Þ

We should note that ERDS and EODS are directly comparable and provide
insight into the consistency of strategy adopted by an animal. Lower ERDS than
EODS suggests that an animal’s decisions are more consistently influenced by
immediate reward feedback than selection of the better or worse option. A lower
EODS than ERDS suggests the opposite. It is worth noting that ERDS
decompositions (ERDS+ or ERDS−) cannot be directly compared to EODS
decompositions (EODSB or EODSW) because they encompass different sets of
trials; that is, trials where the animal wins may not be trials where the animal
chooses the better option and vice versa.

Because conditional entropies can be defined for any two discrete random
variables, ERDS and EODS can be generalized to combinations or sequences of
combinations of reward and option. Hence, we can define the entropy of reward-
and option-dependent strategy (ERODS), a measure of the dependence of strategy
on the selected option and reward outcome.

ERODS ¼ Hðstrjrew; optÞ

¼ � Pðstay;win; betterÞ ´ log2
Pðstay;win; betterÞ

Pðwin; betterÞ

� ��

þPðstay;win;worseÞ ´ log2
Pðstay;win;worseÞ

Pðwin;worseÞ

� �

þPðswitch;win; betterÞ ´ log2
Pðswitch;win; betterÞ

Pðwin; betterÞ

� �

þ Pðswitch;win;worseÞ ´ log2
Pðswitch;win;worseÞ

Pðwin;worseÞ

� �

þ Pðstay; lose; betterÞ ´ log2
Pðstay; lose; betterÞ

Pðlose; betterÞ

� �

þ Pðstay; lose;worseÞ ´ log2
Pðstay; lose;worseÞ

Pðlose;worseÞ

� �

þ Pðswitch; lose; betterÞ ´ log2
Pðswitch; lose; betterÞ

Pðlose; betterÞ

� �

þ Pðswitch; lose;worseÞ ´ log2
Pðswitch; lose;worseÞ

Pðlose;worseÞ

� ��

ð14Þ

ERODS can be decomposed based on choosing the better or worse option in the
previous trial, winning or losing in the previous trial, or combinations of the
selected option and reward outcome (e.g., choose better option and win on the
previous trial).

Decomposing ERODS based on reward option combinations gives:

ERODSBþ ¼ Hðstrjwin; betterÞ

¼ � Pðstay; win; betterÞ ´ log2
Pðstay; win; betterÞ

Pðwin; betterÞ

� ��

þ Pðswitch; win; betterÞ ´ log2
Pðswitch; win; betterÞ

Pðwin; betterÞ

� ��

ERODSWþ ¼ Hðstrjwin; worseÞ

¼ � Pðstay; win; worseÞ ´ log2
Pðstay; win; worseÞ

Pðwin; worseÞ

� ��

þ Pðswitch; win; worseÞ ´ log2
Pðswitch; win; worseÞ

Pðwin; worseÞ

� ��

ERODSB� ¼ Hðstrjlose; betterÞ

¼ � Pðstay; lose; betterÞ ´ log2
Pðstay; lose; betterÞ

Pðlose; betterÞ

� ��

þ Pðswitch; lose; betterÞ ´ log2
Pðswitch; lose; betterÞ

Pðlose; betterÞ

� ��

ERODSW� ¼ Hðstrjlose; worseÞ

¼ � Pðstay; lose; worseÞ ´ log2
Pðstay; lose; worseÞ

Pðlose; worseÞ

� ��

þ Pðswitch; lose; worseÞ ´ log2
Pðswitch; lose; worseÞ

Pðlose; worseÞ

� �� ð15Þ

Finally, ERODS can also be decomposed based on selection of the better or
worse option:

ERODSB ¼ Hðstrjrew; betterÞ ¼ ERODSBþ þ ERODSB�

ERODSW ¼ Hðstrjrew; worseÞ ¼ ERODSWþ þ ERODSW� ð16Þ
or winning or losing in the previous trial:

ERODSþ ¼ H strjwin; opt� � ¼ ERODSBþ þ ERODSWþ

ERODS� ¼ H strjlose; opt� � ¼ ERODSB� þ ERODSW�: ð17Þ
Reinforcement-learning models. We used nine generative RL models to fit choice
behavior. In all models except the multiple timescales model, reward values asso-
ciated with the right and left sides (QRight and QLeft) for mice or circle and square
stimuli (QCircle and QSquare) for monkeys were updated differently depending on
whether a given choice was rewarded or not. Some of the models incorporated
additional loss- or choice-memory components that influenced choice but did not
affect the update of reward values. As such, we refer to the final reward and non-
reward values used for decision making as decision values, DV (e.g., DVCircle), to
distinguish them from the updated reward values. Models were defined in a nested
fashion with subsequent models building on the update rules of their predecessor.

Purely RL models. In the first model, which we refer to as RL1, only the reward
value associated with the chosen option (side or stimulus) (QRL1

C ) was updated as
follows:

QRL1
C t þ 1ð Þ ¼ QRL1

C tð Þ þ α R tð Þ � QRL1
C tð Þ� � ð18Þ

where C 2 Left;Right
� �

for mice and C 2 Circle; Square
� �

for monkeys, R tð Þ ¼ 1
or 0 indicates reward outcome on trial t, and α corresponds to the learning rate
(αrew or αunrew) depending on the whether the choice was rewarded or not rewar-
ded. In contrast, the reward value associated with the unchosen option (QRL1

U ) was
not updated in this model:

QRL1
U t þ 1ð Þ ¼ QRL1

U tð Þ ð19Þ
where U 2 Left;Right

� �
for mice and U 2 Circle; Square

� �
for monkeys. In RL1,

DVi ¼ QRL1
i .

In the second model (RL2), the reward value associated with the chosen option
(QRL2

C ) was updated as in Eq. (18), and the reward probability associated with
unchosen option (side or stimulus) was also updated as follows:

QRL2
U t þ 1ð Þ ¼ QRL2

U tð Þ � decayrateðQRL2
U tð ÞÞ ð20Þ

where decayrate is the decay (or discount) rate of the value of the unchosen option.
In RL2, DVi ¼ QRL2

i .

Loss-memory component. The loss-memory component influences stay/switch
strategy in response to receiving no reward. In unrewarded trials, the value of the
loss-memory component for the chosen option ðLCðt þ 1ÞÞ is the negative
expected reward prediction error, and in rewarded trials, the value of the com-
ponent is 0:

LC t þ 1ð Þ ¼
0 if R tð Þ ¼ 1

�Erpe t þ 1ð Þ if R tð Þ ¼ 0

(
ð21Þ

where Erpe denotes the expected unsigned reward prediction error.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26784-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6567 | https://doi.org/10.1038/s41467-021-26784-w |www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


The expected unsigned reward prediction error tracks expected uncertainty and
is updated on every trial as follows:

Erpe t þ 1ð Þ ¼ Erpe tð Þ þ γðjR tð Þ � QRL2
C tð Þj � Erpe tð ÞÞ ð22Þ

where γ is the decay rate for expected reward prediction error and R tð Þ � QRL2
C ðtÞ is

the reward prediction error on the current trial. Because the value of the loss-
memory component is proportional to expected uncertainty, the no reward
outcome has a greater influence on choice during times of high uncertainty.

Choice-memory component. The choice-memory component influences stay/switch
strategy in response to selection of the better/worse option and is already known to
be important for explaining behavior in mice and monkeys8,15,38. The values of
choice memory for the chosen option (side or stimulus), CC , and for the unchosen
option (side or stimulus), CU , are updated as follows:

CC t þ 1ð Þ ¼ CC tð Þ þ γð1 � CC tð ÞÞ

CU t þ 1ð Þ ¼ CU tð Þ � γðCU tð ÞÞ ð23Þ
where γ represents the decay rate for the choice value.

Models with loss- and/or choice-memory components. The loss-memory and choice-
memory components are weighted with fitted parameters and summed with
learned reward values to determine the decision values for different models. Below
we use the notation RL1 and RL2 to denote that the standard reward values, QC tð Þ
and QU tð Þ; that are updated based on the update rules of RL1 and RL2,
respectively.

In the full model (RL2+ CM+ LM), the decision values related to the chosen
and unchosen options in trial t, DVC t þ 1ð Þ and DVU t þ 1ð Þ, are computed as
follows:

DVC t þ 1ð Þ ¼ QRL2
C t þ 1ð Þ þ ωLM ´ LC t þ 1ð Þ þ ωCM ´CC t þ 1ð Þ

DVU ðt þ 1Þ ¼ QRL2
U t þ 1ð Þ þ ωCM ´CU t þ 1ð Þ ð24Þ

where ωLM and ωCM are free parameters that determine the relative weight of the
loss-memory and choice-memory components, respectively.

In the full model, the same γ was used for both the choice- and loss-memory
components because we found that a model with different γ fitted for the two
components fit worse (based on AIC) than a model with one γ shared between the
components for mice and monkeys.

In RL2+ LM, the decision values are computed as follows:

DVC t þ 1ð Þ ¼ QRL2
C t þ 1ð Þ þ ωLM ´ LC t þ 1ð Þ

DVU t þ 1ð Þ ¼ QRL2
U t þ 1ð Þ ð25Þ

In RL2+ CM, the decision values are computed as follows:

DVC t þ 1ð Þ ¼ QRL2
C t þ 1ð Þ þ ωCMCC t þ 1ð Þ

DVU t þ 1ð Þ ¼ QRL2
U t þ 1ð Þ þ ωCMCU t þ 1ð Þ ð26Þ

In RL1+ CM, the decision values are computed as follows:

DVC t þ 1ð Þ ¼ QRL1
C t þ 1ð Þ þ ωCMCC t þ 1ð Þ

DVU t þ 1ð Þ ¼ QRL1
U t þ 1ð Þ þ ωCMCU t þ 1ð Þ ð27Þ

In all models except the multiple timescales model, the probability of selecting
the left side (or circle stimulus) is represented as a sigmoid function of the
difference in estimated reward probabilities or values for the left and right sides
(respectively, circle and square stimuli). Hence, the estimated probability of
choosing the left side for mice (or circle for monkeys) in trial t, PLeftðCircleÞ tð Þ, is
equal to:

PLeftðCircleÞ t þ 1ð Þ ¼ 1 þ e�β*ðDVLeft Circleð Þ t 1ð Þ�DV Right Squareð Þð Þ tþ 1ð ÞÞ
� 	�1 ð28Þ

where β is the inverse temperature (or stochasticity in choice) that quantifies
sensitivity of choice to the difference in decision values.

Values of decayrate; γ; αrew; and αunrew ranged from 0 to 1 for all models, and values
of β ranged from 0 to 100. For fit of mouse data, γ was fit as a free parameter, but for fit
of monkey data, γ was fixed as γ ¼ meanðαrew; αunrewÞ such that learning in choice-
and loss-memory components occurred at the same rate as the acquisition of reward
values. This was done because models with fixed γ had lower mean AIC than models
with fitted γ for monkey data and models with fixed γ had higher mean AIC than
models with fitted γ for mouse data (mean AIC; mice data: fixed γ: AICRL2þCM ¼
385:65;AICRL2þ LM ¼ 376:26;AICRL2þCMþ LM ¼ 374:65; fitted
γ: AICRL2þCM ¼ 381:70;AICRL2þ LM ¼ 376:47;AICRL2þCMþ LM ¼ 372.97;
monkey data: fixed γ: AICRL2þCM ¼ 43:10;AICRL2þ LM ¼ 44:13;
AICRL2þCMþ LM ¼ 43:64; fitted γ: AICRL2þCM ¼ 44:16;AICRL2þ LM ¼
45:22;AICRL2þCMþ LM ¼ 44:32). This difference may be attributable to different task
structure: a superblock for monkeys is only 80 trials, whereas a session for mice is much

longer, making the threshold for how useful a parameter must be on a trial-by-trial basis
to be added to a model more stringent for monkeys.

In the above models, values of ωLM and ωCM varied from −1 to 1, such that the
effects of recent loss and choice on future choice could increase either staying or
switching behavior. To test the effects of negative choice-memory weights, we also
two additional models, RL2+ LM+ and RL2+ CM+. In RL2+ LM+ and
RL2+ CM+, the decision values are computed as in Eqs. (24), (25), respectively,
however, ωLM and ωCM only range from 0 to 1 instead of −1 to 1.

Multiple timescales model. We also fit and simulated one additional model based on
learning across multiple timescales (Iigaya et al.31). In this model, the values for
options are updated across three timescales, τfast� 1 ¼ 2; τfast� 2 ¼ 20; τslow ¼
100 trials. The reward values for the chosen and unchosen options computed on
timescale τi; (Q

Time
C;τi

ðtÞ and QTime
U ;τi

ðtÞ) are updated as follows:

QTime
C;τ i

t þ 1ð Þ ¼ 1� 1
τi

� �
QTime

C;τ i
tð Þ þ 1

τi

� �
RðtÞ

QTime
U ;τi

t þ 1ð Þ ¼ 1 � 1
τi

� �
QTime

U ;τi
tð Þ ð29Þ

which is equivalent to the RL2 update rule with αrew ¼ αunrew ¼ decayrate ¼ 1=τi .
The decision value for the chosen (unchosen) option ðDVC Uð Þ tð ÞÞ is then a

weighted sum of the three reward values computed on different timescales:

DVC Uð Þ t þ 1ð Þ ¼ ωfast� 1 � QTime
C Uð Þ;τfast� 1

t þ 1ð Þ þ ωfast� 2 � QTime
C Uð Þ;τfast� 2

t þ 1ð Þ
þωslow � QTime

C Uð Þ;τslow t þ 1ð Þ
ð30Þ

where ωfast� 1;ωfast� 2; and ωslow are fitted parameters that range from 0 to 1 and
determine the contribution of different timescales to decision making.
ωfast� 1;ωfast� 2; and ωslow are normalized such that they sum to 1.

Finally, the probability of choosing the left side (circle stimulus) is computed as
follows:

PLeftðCircleÞ t þ 1ð Þ ¼ DVLeft Circleð Þðt þ 1Þ
DVLeft Circleð Þðt þ 1Þ þ DVRight Squareð Þðt þ 1Þ ð31Þ

We also tested a few modified versions of the timescale model that incorporated
fitting a beta parameter, using a sigmoid decision rule, fitting instead of fixing the τ
parameters, and integrating learning on multiple timescales with RL2. However,
none of modified timescale models fit or captured metrics better than
RL2+ CM+ LM for mice or RL2+ CM for monkeys, so we only present the
original multiple timescales model.

Model fitting and simulations. We used the standard maximum likelihood esti-
mation method to fit and estimate the best-fit parameters for the models described
above. One set of model parameters was fit to each session of mouse data and each
superblock of monkey data. We then used estimated parameters across sessions (in
mice) and superblocks (in monkeys) to generate the distributions of parameters for
each model (Supplementary Fig. 8). When fitting and simulating RL models with
mouse data, we treated miss and no-go trials as if they had not occurred.

To quantify goodness-of-fit, we computed the Akaike Information Criterion
(AIC) for each session (for mouse data) or superblock (for monkey data):

AIC ¼ �2 ´ log-likelihood þ 2p ð32Þ
where p is the number of free parameters in a given model. To test for significant
differences in AIC, we conducted paired samples t tests comparing the mean of
AIC of each model with the mean AIC of the best-fitting model (Supplementary
Table 2).

To compute the probability that a given model is the best model given the data
and set of candidate models, we used AIC values to compute the Akaike
weights56,57 for the ith model ðMiÞ in a set of k models, M1;M2; ¼ ;Mk

� �
; as

follows:

Δ �AIC Mi

� � ¼ �AIC Mi

� � � min f �AICðM1Þ; �AICðM2Þ; ¼ ; �AICðMkÞg
� �

wi ¼
e�

1
2*Δ �AIC Mið Þ

∑k
j¼ 1 e

�1
2*Δ �AIC Mjð Þ ð33Þ

where �AIC Mi

� �
indicates the mean AIC for Mi;Δ �AIC Mi

� �
is the difference

between the mean AIC for Mi and the minimum mean AIC out of the set of
candidate models, and wi indicates the Akaike weight for Mi:

To quantify an absolute measure of goodness-of-fit, we also computed the
McFadden R2 58 for each model:

McFadden R2 ¼ 1 � ∑sessions log-likelihood
∑sessions log-likelihoodNull

¼ 1 � ∑sessions log-likelihood
∑sessions n ´ lnð0:5Þ

ð34Þ
where n is the number of trials in a given session or superblock.
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One hundred model simulations were performed per session using best-fit
parameters. The large number of simulations allowed us to estimate the population
distributions of all metrics. Finally, we conducted additional simulations of RL2
using random parameter values to examine the relationship between parameters
and entropy-based metrics. For these simulations, αrew, αunrew; and β varied in the
range of (0,∞) and decayrate was set to 0.1.

Data analyses and stepwise regressions. Stepwise regressions were conducted
using MATLAB’s (R2019a) stepwiselm and stepwisefit functions. The criterion for
adding or removing terms from the model was based on an F-test of the difference in
sum of squared error resulting from the addition or removal of a term from the model.
A predictor was added to the model if the p value of the F-test was <0.0001, and a
predictor was removed from the model if the p value of the F-test was >0.00011.

We note that there were fewer blocks used in the full model stepwise regression
because some of the specific entropy-based metrics were not defined for certain blocks,
e.g., if a mouse or monkey never won on the worse option (worse side or stimulus) in a
block, then ERODSW+ was undefined for that block. This resulted in the exclusion of
around 500 blocks for mice and 700 blocks for monkeys in the final regression.

We also conducted tenfold cross-validated regressions to predict deviation from
matching (Supplementary Fig. 6) using MATLAB’s (R2019a) fitrlinear and
kfoldPredict functions. More specifically, stepwise regressions were performed on a
set of possible predictors to determine which predictors to include in the final
regression model. Then, cross-validated regressions were computed to predict
deviation from matching using the set of predictors included in the final stepwise
regression model.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
The raw and processed data generated in this study have been deposited in a GitHub
repository accessible at https://doi.org/10.5281/zenodo.550169359. Mouse and monkey
data analyzed here have been analyzed previously; see9 for previous analysis of mouse
data, and see35,54 for previous analyses of monkey data. Source data are provided as a
Source Data file.

Code availability
The code used for calculation of all behavioral metrics, data analyses, fitting choice data,
and plotting figures is available at https://doi.org/10.5281/zenodo.550169358.
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