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Increasing large wildfires over the western United
States linked to diminishing sea ice in the Arctic
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The compound nature of large wildfires in combination with complex physical and biophysical

processes affecting variations in hydroclimate and fuel conditions makes it difficult to directly

connect wildfire changes over fire-prone regions like the western United States (U.S.) with

anthropogenic climate change. Here we show that increasing large wildfires during autumn

over the western U.S. are fueled by more fire-favorable weather associated with declines in

Arctic sea ice during preceding months on both interannual and interdecadal time scales. Our

analysis (based on observations, climate model sensitivity experiments, and a multi-model

ensemble of climate simulations) demonstrates and explains the Arctic-driven teleconnection

through regional circulation changes with the poleward-shifted polar jet stream and enhanced

fire-favorable surface weather conditions. The fire weather changes driven by declining Arctic

sea ice during the past four decades are of similar magnitude to other leading modes of

climate variability such as the El Niño-Southern Oscillation that also influence fire weather in

the western U.S.
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Large wildfires are an increasing threat to society and eco-
systems over the western U.S., especially across the
expanding wildland-urban interface (WUI) regions1. Both

numbers and total burned areas of large wildfires (≥ 1000 acres)
in this region have been increasing in the past few decades2,
causing a tremendous socioeconomic burden in terms of devas-
tating casualties and losses, soaring fire prevention and suppres-
sion costs, and rising public health risk due to short-term and
long-term fire smoke exposure3,4. To understand the driving
forces of this alarming trend, many studies have investigated its
relationship with human activity5,6 and anthropogenic climate
change7–10 from various perspectives. Unfortunately, the com-
plexity of these interactions among human and natural dimen-
sions of fire activity in the presence of natural variability in the
climate system confounds the detection and attribution of
changes in large wildfires over this region. Understanding these
compound extreme weather events requires a multidisciplinary
analysis framework across multiple spatiotemporal scales11. Pre-
vious studies have suggested that climate impacts on regional fire
activity might be masked by human influence on fire ignition and
suppression, land use change, and forest management, implying
complex human-climate-fire interactions where human impacts
often prevail5,6. However, for other wildland regions that are less
affected by human activity, anthropogenic climate change still
exerts predominant impacts on fire by increasing lightning igni-
tions in boreal forest12 and permafrost13 regions, and modulating
either fuel availability in resource-limited fire regimes (e.g., xeric
shrublands and grasslands/savannas) or fuel aridity in condition-
limited fire regimes (e.g., tropical and subtropical forests) where
there is ample fuel supply14. Although there are multiple fire
regimes across the western U.S., several previous studies have
found substantial influence of global climate change on increasing
forest wildfires over the past four decades through enhanced fuel
aridity8,9 and a reduction of the high-elevation flammability
barrier with upslope advance in montane forest fires15. Different
characteristic scales of anthropogenic and natural processes also
shed light on disentangling the fire-centered nexus between
human and climate systems for extreme event detection and
attribution. For instance, land use change and forest management
with excessive fire exclusion and human suppression better
explains a forest fire deficit in the western U.S. decoupled from
climate and fire weather changes on centennial time scales since
the middle 1800s, while the reconciled trends of increasing large
fires and worsening fire weather in recent decades suggest an
increasingly important role of anthropogenic climate change in
modulating regional fire activity on shorter (interannual to
interdecadal) time scales16 as discussed here.

Fire weather variables such as temperature, vapor pressure deficit,
and precipitation provide strong explanatory power for seasonal to
multidecadal fire activity in empirically based statistical models
developed for the western U.S.8–10 and other fire-prone regions
worldwide14,17–19. However, a clear causal relationship with
mechanistic understanding of complex climate-fire interactions in
the Earth system can hardly be drawn from these relatively simple
empirical models lack of interacting processes across the Earth’s
subsystems (e.g., atmosphere, biosphere, and hydrosphere); those
causality explanations are better provided by physically-based Earth
system models (ESMs) with interactive fire components. In recent
years, fire modeling in ESMs has advanced rapidly using various
levels of model complexity to represent fire-related climate and
vegetation processes20. These fire-enabled ESMs provide new tools
for investigating the impact of anthropogenic climate change on
global and regional fire activity through process-based physical and
ecological pathways. For instance, Arctic sea ice has been declining
dramatically since the late 1970s particularly in summer and
autumn, which is closely related with much stronger warming in the

Arctic than the global mean temperature as so-called Arctic
amplification (AA)21. Several previous studies have suggested sig-
nificant influence of Arctic sea-ice loss on regional fire weather such
as surface air temperature and precipitation based on global and
regional climate models22–25 or even annual wildfire activity in the
western U.S. based on statistical analysis26, but a comprehensive and
quantitative evaluation of the Arctic impact on regional burning
activity and its role in the observed fire weather change is still
lacking. Given increasing but still controversial evidence of emerging
connections between high-latitude environmental change and mid-
latitude weather extremes in both warm and cold seasons of the past
few decades27–29, further exploration of the potential sea ice-fire
teleconnection is worthwhile using latest fire-enabled ESMs.

In this work, we use a series of observation-/reanalysis-/model-
based diagnostics and climate model sensitivity experiments to
investigate the linkage between declining sea ice in the Arctic and
worsening fire hazards in the western U.S. over the past four
decades. We first identify an observation-based teleconnection
linking regional fire weather and burning activity with Arctic sea-
ice changes, and then design and run climate sensitivity experi-
ments using a state-of-the-art fire model with improved fire
modeling capability embedded in the Community Earth System
model (CESM-RESFire)30. This teleconnection is further exam-
ined and corroborated across multiple ESMs participated in the
latest Coupled Model Intercomparison Project Phase 6
(CMIP6)31.

Results
An observational teleconnection linking regional fire with
Arctic sea ice. Our observation-based statistical analysis suggests
a strong negative correlation (r=−0.68; p-value < 0.01) between
declining sea-ice concentrations (SIC) over the Pacific sector of
the Arctic (120 °E to 135 °W; 70 °N to 80 °N) in preceding
summer and autumn (July to October) and worsening fire
weather conditions (as described by a Fosberg Fire Weather
Index32, hereafter FFWI, based on the fifth generation of the
European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis of the global climate (ERA5)33;
see Methods section) during the following autumn and early
winter (September to December) over the western U.S. (124 °W
to 97 °W; 32.5 °N to 48 °N; Fig. 1a, b). Observed changes in
composite analyses between years with minimum (hereafter
SIC−) and maximum (hereafter SIC+) sea-ice concentrations
(marked with triangles in Fig. 1b) in the satellite era further reveal
the existence of enhanced fire-favorable regional weather condi-
tions as well as expanded burned area of large wildfires following
Arctic sea-ice decline, especially during September to December
(Fig. 1c). This correlation is insensitive to the removal of long-
term trends in Arctic SIC and regional FFWI (r=−0.50 with
p-value < 0.01 after detrending; Supplementary Fig. 1), suggesting
a statistically robust linkage between Arctic sea ice and regional
fire weather changes across interannual to interdecadal time
scales. Results are also statistically significant and robust when
other fire weather indices based on different reanalysis data
products are used (see Supplementary Discussion and Supple-
mentary Fig. 2). These results raise two questions to be addressed
in this work: (1) What is the physical mechanism underlying this
robust teleconnection linking worsening regional fire weather and
increasing large wildfires with Arctic sea-ice loss across different
time scales? (2) How important is this teleconnection effect on
regional fire weather changes during the past four decades
comparing to the general global warming effect as well as other
teleconnections associated with major climate modes such as the
El Niño-Southern Oscillation (ENSO)? These two questions are
framed under the “Can it?” and “Has it?” analytical framework as
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suggested by a previous study34 discussing how to avoid ambi-
guities about the climate impacts of Arctic warming.

Increased regional fire in response to Arctic sea-ice loss in
CESM-RESFire. To answer the first question, we have designed
and conducted two CESM-RESFire sensitivity experiments by
replacing the climatological Arctic sea-ice concentrations and
associated sea surface temperature (SST) from July to October in
the 40-year control run with the multi-year average Arctic SIC/
SST conditions corresponding to the observed minimum (here-
after SICexp−) and maximum (hereafter SICexp+) SIC years to
isolate the impact of preceding Arctic sea-ice loss on regional fire
weather and burning activity in the following autumn and early
winter (September to December; see Methods section). The
modeling results show an anomalous dipole pattern in the
500 hPa geopotential height field averaged over September-
December (hereafter Z500) with cyclonic (negative) anomalies
centered over Alaska and anticyclonic (positive) anomalies cen-
tered over the western U.S. in response to prescribed sea-ice
reduction in preceding July to October (Fig. 2a). This anomalous
circulation pattern is similar to that revealed by differencing
ERA5 reanalysis-based composites between the SIC− and SIC+
years (Fig. 1a). The similarity is even more striking over the
downstream North America continental regions when the SIC,
FFWI, and burned area time series as well as gridded reanalysis
data are all detrended before differencing the new groups of the
years with minimum (hereafter SICnotrd−) and maximum

(hereafter SICnotrd+) sea-ice concentrations in the detrended SIC
time series (Supplementary Fig. 1b; see Methods section). Con-
sidering that the long-term trends in these variables are closely
related with global warming effects, the improved similarity
between the modeling results and the detrended reanalysis data is
understandable because of the absence of global warming effects in
the SICexp− and SICexp+ simulations other than those deliber-
ately exposed to the Arctic sea ice-driven local warming effect. Since
the sea-ice forcing used in the climate model sensitivity experiments
results from both interannual and interdecadal changes, we use the
original sea ice and reanalysis data affected by both short-term and
long-term variability and the detrended data mainly affected by
interannual variability for the following composite analyses to test
the robustness of the composite results on different time scales.
Note that the SIC± (Fig. 1b) and SICnotrd−/notrd+ (Supple-
mentary Fig. 1b) years are different for the two observation-/rea-
nalysis-based composite analyses because of different SIC time
series used for the composite member selection.

We project the simulated Z500 anomalies onto to a fire-favorable
regional circulation pattern to obtain its corresponding time series
(hereafter Z500i) in each experiment (see Methods). The statistical
distributions of Z500i suggest a positive shift in SICexp− (Fig. 2b;
p-value= 0.01 based on a two-sided t-test for the 40 paired Z500i
samples from the SICexp± experiments; the same test is also used
for the following FFWI, burned area, fire occurrence, and fire size
comparisons between the SICexp± experiments) concurrent with
other regional weather changes including suppressed clouds and
precipitation and increased incoming solar radiation over the

Fig. 1 Observation- and reanalysis-based teleconnection between Arctic sea ice and regional fire. a Spatial distributions of the correlation (shading in the
Arctic as denoted by the purple-green color bar) between seasonal average Arctic sea-ice concentrations (SIC) in summer and autumn (July to October)
and a seasonal and regional average fire weather index (FFWI) over the western U.S. in the following autumn and early winter (September to December),
and the difference of seasonal average FFWI (shading in North America as denoted by the blue-red color bar) between the years with minimum (SIC−: red
up-pointing triangles in b) and maximum (SIC+: blue down-pointing triangles in b) Arctic SIC. The difference of seasonal (September to December)
average geopotential height at 500 hPa between the SIC− and SIC+ years is also shown in a (contours with negative values in dashed lines; unit: m).
Stipples in a mark regions that are significantly different from 0 at the 0.05 significance level of two-sided t-tests, and hatching in a denotes statistically
significant regions based on the stricter FDR method (see Methods section) with local gridded p-value � p�FDR ¼ 0:0023 at the threshold of αFDR ¼ 0:10.
b Time series of seasonal and regional average SIC (seasonal mean from July to October; normalized by its 1981–2010 climatological mean and standard
deviation; note its scale on the left Y-axis is inverted to directly compare temporal variations of both time series), FFWI (seasonal mean from September to
December), and their correlation. The region definitions for the Pacific sector of the Arctic and the western U.S. are outlined by the red and cyan boxes in a,
respectively. The horizontal dashed lines denote the ±1 standard deviations of normalized SIC as thresholds for selecting the SIC± years. c The composite of
monthly FFWI (solid lines with dots and error bars) and fractional burned area change of large wildfires (vertical bars) over the western U.S. Error bars in c
denote ±1 standard deviations of monthly FFWI in each group. Dot sizes for monthly FFWI in c Denote the 0.05 (large),0.1 (medium), and non-significant
(small) significance levels of two-sided t-tests for monthly FFWI differences between the years with minimum (FFWI_SIC−) and maximum (FFWI_SIC+)
Arctic SIC, respectively.
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western U.S. (Supplementary Fig. 3), contributing to a positive shift
of regional FFWI (Fig. 2b; p-value= 0.06) with more frequent and
intensified hot and dry surface weather conditions during autumn
and early winter in SICexp−. Accordingly, such fire-favorable
weather in SICexp− is conducive to more extensive burning activity
over the western U.S. as suggested by expanded regional burned
area (Fig. 2a, c; p-value= 0.04) due to both increased fire
occurrence (Fig. 2d; p-value= 0.04) and enlarged fire size (Fig. 2e;
p-value < 0.01). A month-by-month comparison between SICexp−
and SICexp+ also shows consistent changes in regional fire
weather, fire occurrence, fire size, and total burned area in
consecutive months after Arctic sea-ice declining, with the largest
increase of regional total burned area by ~12.5% in November
(Supplementary Fig. 4). Besides the ensemble mean responses, we
also examine the probability and intensity changes of extreme
burning years (defined by modeling years in each experiment with
regional and seasonal total burned area above the 95% percentile of
the SICexp+ results) using a bootstrap resampling method (see
Methods section). The results show dramatic increases with nearly
four times higher occurrence probability and 14–15% higher
burning intensity of extreme burning years under the SICexp−
condition than that under the SICexp+ condition (Supplementary
Fig. 5). This significant increase in the occurrence probability of
extreme burning years is robust for both bootstrapping estimates
without and with sample replacement once the modeling ensemble
size exceeds 30 years (Supplementary Fig. 6).

Consistent fire weather changes in the reanalysis and modeling
results. Additional diagnostics of atmospheric dynamics and ther-
modynamics help to better understand the physical processes con-
tributing to the above sea ice-driven fire expansion. The reanalysis-

based difference in zonally averaged temperature (from the ERA5
reanalysis product) between SIC− and SIC+ years shows strong but
heterogeneous warming both near the surface and in the free tro-
posphere over mid- and high-latitude regions, manifested by an
enhanced (reduced) meridional temperature gradient ~60 °N (80 °N)
in the lower and middle troposphere (Fig. 3a). This feature of an
increased baroclinity around 60 °N is also evident in the composite
difference between SICnotrd− and SICnotrd+ years based on the
detrended ERA5 reanalysis data (Fig. 3b), which is well captured by
the model sensitivity experiments (Fig. 3c) through atmospheric
dynamics-driven processes rather than from physical processes such
as diabatic heating or vertical diffusion (Supplementary Fig. 7). The
warming magnitudes in the detrended ERA5 data and model
simulations are weaker than that in the original ERA5 data because
the long-term global warming trend is absent in the detrended data
and model simulations; moreover, the SST distributions outside the
perturbed Arctic region in the model simulations are identical and
the climate forcing agents such as greenhouse gases (GHGs) and
aerosols repeat the same climatological cycle each year in both
SICexp− and SICexp+ experiments so as to isolate the modeled
response to regional Arctic sea-ice reduction and local SST warming.
Nevertheless, the meridional temperature structures showing similar
temperature gradient patterns correspond to similar circulation
changes in zonally averaged zonal wind through the thermal wind
relation, manifesting a poleward shift of the polar jet stream and
storm tracks in all three reanalysis- and model-based datasets
(Fig. 3d–f). These poleward shifts are also evident in horizontal wind
and precipitation fields, resulting in a wetter Pacific Northwest coast
and most inland regions in Alaska and Canada but a drier western
and midwestern U.S. (Fig. 3g–i). These changed hydroclimate
conditions between SIC− and SIC+ years are consistent across

Fig. 2 CESM-RESFire simulated Arctic sea ice and regional fire teleconnection. a Spatial distributions of the seasonal average (July to October) sea-ice
concentration (SIC; unit: 100%) difference (color shading in the Arctic Ocean as denoted by the purple-green color bar) between the SICexp− and SICexp+
experiments, and the seasonal average (September to December) burned area difference (color shading in North America as denoted by the blue-red color bar) in
response to the sea-ice perturbation. The difference of geopotential height at 500 hPa (Z500; unit: m) between SICexp− and SICexp+ is also shown (contours
with negative values in dashed lines). The region definitions for the Pacific sector of the Arctic and the western U.S. are outlined by the red and cyan boxes,
respectively. Stipples in a show regions that are significantly different from 0 at the 0.1 significance level of two-sided t-tests, and hatching in a denotes statistically
significant regions based on the stricter FDR method (see Methods section) with local gridded p-value � p�FDR ¼ 0:017 at the threshold of αFDR ¼ 0:20. b Two-
dimensional joint distributions of the seasonal mean fire-favorable circulation index (Z500i; standardized by first removing the 40-year mean and then normalizing
by the standard deviation of Z500i from the SICexp+ experiment; unitless) and fire weather index (FFWI; also standardized by the 40-year mean and standard
deviation of FFWI from the SICexp+ experiment; unitless) based on the kernel density estimation (KDE) for SICexp− (red shading) and SICexp+ (blue contours).
The legends for color shading and contours are attached aside, and corresponding 1-d KDE distributions for each index in SICexp− (red) and SICexp+ (blue) are
also shown along the x- and y-axis. c As in b, but for the comparison of FFWI and regional total burned area (BA; unitless) that are both standardized. d As in b, but
for the comparison of FFWI and regional mean fire occurrence (NFIRE; unitless) that are both standardized. e As in b, but for the comparison of FFWI and regional
mean fire size (FIREsize; unitless) that are both standardized. Note that the model-based fire variables are averaged over the coarse model grid cells that describe
statistical properties of fire ensembles at each grid cell rather than individual properties of each single fire.
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different observational and reanalysis precipitation datasets other
than the one used here (Supplementary Fig. 8). The associated
anticyclonic circulation anomaly over the western U.S. also sup-
presses cloud formation with enhanced downward motion and
incoming solar radiation, resulting in hotter and drier surface
weather that is synergistic for enhanced fuel aridity across the
western U.S. (Fig. 3j–l). The consistency between the original and
detrended reanalysis data suggests a robust dynamical linkage
between the Arctic sea ice and regional fire weather on both long-
term and short-term time scales, while the resemblance between
the model and the reanalysis-based results confirms the significant
impact of declining Arctic sea ice on exacerbated burning activity
through modulating regional circulation and surface fire weather
conditions.

Substantial Arctic teleconnection effects across multiple
CMIP6 models. The synergistic effects of these multivariate fire
weather changes following pre-conditioned peak fire season
during climatologically hot and dry summer prolongs regional

fire season and exacerbates burning severity in the subsequent
autumn and early winter following diminished Arctic sea ice,
making the prediction of fire hazards well-suited to an analysis of
compound climate extreme events35. However, the complexity of
multiple interactive pathways and processes in climate systems
and relatively short observational records also increase the diffi-
culty of detection and attribution of climate extreme events in the
observed historical data. As mentioned above, the model-
simulated warming and associated hydroclimate anomalies are
generally weaker than the reanalysis-based composite difference
because of the fixed climate forcing agents such as GHGs and
extra-polar SST changes other than the local warming effect
induced by Arctic sea-ice loss in the modeling sensitivity
experiments. The missing global warming effect in the atmo-
sphere and extra-polar oceans in the CESM modeling settings
limits its capability to answer the second question about the
importance of the Arctic-driven teleconnection effect in the
observed fire weather changes associated with all climate varia-
bility and interactive processes.

Fig. 3 Physical processes underlying the Arctic sea ice and regional fire teleconnection. a Zonally averaged (170 °W to 60 °W; as shown in g) temperature
(T; color shading; unit: K) difference in autumn and early winter (September to December) between the years with minimum (SIC−) and maximum sea-ice
concentration (SIC+) based on the original ERA5 reanalysis data. The time average of zonally averaged temperature in the SIC+ years is also shown (contours;
unit: K). b As in a, but for the temperature difference between the years with minimum (SICnotrd−) and maximum sea-ice concentration (SICnotrd+) based on
the detrended ERA5 reanalysis data. c As in a, but for the temperature difference between the experiments with minimum (SICexp−) and maximum sea-ice
concentration (SICexp+) based on the CESM-RESFire simulations. d–f As in a–c, but for zonally averaged zonal wind (U; color shading; unit: m s−1) difference
based on the original ERA5 reanalysis data, the detrended ERA5 reanalysis data, and the CESM-RESFire simulations, respectively. g–i As in a–c, but for wind
circulation at 500 hPa (arrows; unit: m s−1) and total precipitation rate (PREC; color shading; unit: mmd−1) differences based on the original ERA5 reanalysis
data, the detrended ERA5 reanalysis data, and the CESM-RESFire simulations, respectively. j–l As in a–c, but for surface relative humidity (cyan contours with
negative values in dashed lines; unit: %) and surface air temperature (SAT; color shading; unit: K) differences based on the original ERA5 reanalysis data, the
detrended ERA5 reanalysis data, and the CESM-RESFire simulations, respectively. Stipples in a–l show regions that are significantly different from 0 at the
0.1 significance level of a two-sided t-test.
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To improve the robustness of our analysis and preclude the
potential influence of other processes and pathways driven by
variable climate forcing agents (e.g., increasing GHGs in the past
four decades) on historical fire weather variability, we also
examine the difference of climate responses between the Atmo-
spheric Model Intercomparison Project (amip)31 and its counter-
factual counterpart with pre-industrial forcing (amip-piForcing
or AMIP SSTs with control forcing)36 experiments in CMIP6 (see
Methods). These two experiments share the same realistic and
observationally-based SST and sea-ice surface conditions from
1979 to near present-day but expose model sensitivity to different
anthropogenic forcing levels of GHGs, aerosols, and land use
change by simulating the model response to time varying realistic
forcing levels (as in the amip scenario) and to forcing levels held
constant at pre-industrial levels (as in the amip-piForcing
scenario). The differences between the SIC− and SIC+ years in
both amip (Supplementary Fig. 9a–d) and amip-piForcing
(Supplementary Fig. 9e–h) experiments agree with each other
with minor changes in fire-related climate responses, suggesting a
dominant role of ocean/sea-ice surface conditions in driving the
observed fire weather changes (i.e., fire weather changes over the
U.S. resemble each other in the amip and amip-piForcing
experiments despite different levels of atmospheric and terrestrial
forcing agents). The difference between these two experiments
further reveals mixed climate effects of anthropogenic and natural
forcing through atmospheric and land processes on regional fire
weather changes. Specifically, only the response in warmer surface
air temperature (Supplementary Fig. 9l) over the continental U.S.
is consistent with the reanalysis-based composite result (Fig. 3j),
while the climate responses to the airborne and terrestrial
anthropogenic forcing (i.e., GHGs, aerosols, and land use change)
reflected in zonally averaged temperature (Supplementary Fig. 9i)
and wind (Supplementary Fig. 9j) fields as well as horizontal wind
circulation and precipitation (Supplementary Fig. 9k) show
distinct signatures that differ from the reanalysis-based results
(Fig. 3a, d, g). These results indicate that the observed regional
fire weather changes between the SIC− and SIC+ years are
strongly controlled by oceanic surface conditions including both
sea-ice and SST changes in a warming climate rather than by a
direct response through atmospheric or terrestrial processes to
the climate forcing agents.

The SST and sea-ice changes appear to be the critical
ingredients in eliciting the regional fire weather conditions
conducive to more large wildfires–but which one is more
important? We further conduct a pattern recognition method
known as the “signal-to-noise-maximizing pattern (S/NP) filtering
method”37 based on the ERA5 reanalysis and the amip model
ensemble to separate forced responses in regional fire weather due
to other climate variability such as tropical ocean variations
associated with ENSO (see Methods). The multi-field pattern
filtering results show ENSO- and Arctic-driven hemispherical
teleconnection patterns emerging in the first (S/NP1; Supplemen-
tary Fig. 10) and third (S/NP3; Supplementary Fig. 11) groups of
S/NPs, respectively. These two groups of S/NPs show consistent
responses in regional fire weather with predominant contributions
to a warmer and drier western U.S. during the SIC− years by
similar magnitudes. Repeating this analysis using the detrended
ERA5 reanalysis and amip-piForcing data shows similar results
(e.g., a hotter and drier western U.S. during the SICnotrd− years)
that are also constructively contributed by interannual variations
of both ENSO (Supplementary Fig. 12) and Arctic sea ice
(Supplementary Fig. 13) even when the long-term global warming
and AA effects have been removed in the detrended data.
Therefore, these climate diagnostic results along with our Arctic
sea ice sensitivity experiments support the hypothesis that Arctic
surface conditions play an important and synergistic role in

determining regional fire weather and burning activity changes
over the western U.S. across interannual to interdecadal scales.
Given the continuously increasing trend in the S/NP3 time series
and decreasing trend in Arctic sea ice (Supplementary Fig. 11),
Arctic-driven teleconnection effects are expected to play an
increasingly prominent role in modulating regional fire weather in
the future.

The hypothesized Arctic-driven teleconnection has been further
examined using the amip simulations to corroborate the robustness
of these relationships across different amip participating models.
Since the amip experiment uses the observational SST and sea ice
surface boundary conditions, the time series of SIC in the amip
model ensemble is almost identical to the observational data (Fig. 4a).
The ensemble simulated atmospheric and land surface fire weather
variations in terms of Z500i (rZ500iamip�ERA5 ¼ 0:74; p-value < 0.01) and
FFWI (rFFWI

amip�ERA5 ¼ 0:54; p-value < 0.01) also reproduce the
reanalysis-based interannual and interdecadal variations in general,
with comparable correlation coefficients among SIC, Z500i, and
FFWI between the amip model ensemble and the reanalysis data
(Supplementary Fig. 14). All 15 models capture the correct signs of
correlations between SIC and Z500i as well as Z500i and FFWI,
respectively, and a majority of participating models (12 out of 15)
successfully reproduce the negative correlation between SIC and
FFWI with 5 of them showing statistically significant negative
correlations like that found in the reanalysis data (Supplementary
Fig. 14). We then analyze the spatial distributions in the 12 amip
models showing correct SIC-FFWI correlations by comparing the
differences of non-filtered (Fig. 4b, c) and S/NP3 filtered patterns
(Fig. 4d, e) in precipitation and FFWI between the SIC− and SIC+
years to tease out the role of the Arctic-driven fire weather changes
in all forcing-driven changes. The changes in S/NP3 filtered fields
appear to be mostly driven by the Arctic change, with little forced
response evident from other climate drivers. Though the magnitudes
of the Arctic-driven fire weather changes in precipitation (Fig. 4d)
and FFWI (Fig. 4e) are about half of the corresponding total changes
(Fig. 4b, c), the north-south contrast spatial patterns are well
preserved in the S/NP3 filtered fields with severely deteriorated fire
weather occurring over the western U.S. during SIC− years.
Moreover, the changes in regional fire weather (i.e., precipitation;
FFWI) associated with the Arctic and ENSO variability are
comparable and constructive with each other, contributing to
synergistical enhancement in their net effects by adding them
together that resemble the total changes driven by all forcing and
variability (Supplementary Fig. 15). The lower ranking and larger
ensemble spread of S/NP3 (Supplementary Fig. 11) than S/NP1
(Supplementary Fig. 10) suggest a lower signal-to-noise ratio of
Arctic-driven teleconnection effects than ENSO-driven effects in the
amip models, which is partly responsible for the controversial role of
high-latitude changes in middle-latitude climate and weather
extremes owing to diversified climate modeling responses to Arctic
sea-ice loss29,38. Improvement on the representation of Arctic-mid-
latitude teleconnection in ESMs might pose another grand challenge
to climate model development because of all the complex dynamic
and physical processes involved in the long teleconnection pathway
across multiple components of the Earth system.

Discussion
Recently, considerable progress has been made to understand the
linkage between high-latitude climate change and mid-latitude
weather extremes, but there is a lack of consensus among the
community about the potential mechanisms due to the relatively
short length of observational datasets and low signal-to-noise
ratios in climate modeling results29. Most previous studies have
focused on the Arctic influence on climate and weather extremes
in winter27 or summer28, with compound extreme events during
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transitional seasons such as large wildfires in autumn receiving
less attention. The competition of different dynamic pathways
and processes39 in those transitional seasons increases the diffi-
culty of obtaining a clear view (with consensus) about the climate
influence on compound extreme events such as the fire hazard
discussed here. Our combined analyses based on both single
forcing-oriented climate sensitivity experiments and all forcing-
included ensemble historical modeling experiments enable us to
understand the physical mechanism underlying the statistical
relationship as well as its relative contributions to the observed

fire weather changes. Massive Arctic sea-ice loss in summer and
autumn strongly increases surface absorption of incoming solar
radiation through the positive surface albedo feedback, resulting
in a strong surface warming and strengthened upward turbulent
heat fluxes into the lower troposphere over the sea-ice melted
Arctic regions. This surface warming anomaly induces a cyclonic
potential vorticity anomaly40 over the heating source and vicinity
land regions like Alaska, which further enhances warm air
advection from the ocean into downstream land regions like the
western U.S. This dynamic-driven warming anomaly over the

Fig. 4 Arctic sea ice and regional fire weather teleconnection in the CMIP6 amip experiment. a Time series of normalized seasonal and regional average
sea-ice concentration (SIC; unitless), a fire-favorable circulation index (Z500i; unitless), and a fire weather index (FFWI; unitless) based on the
observational/reanalysis data and 15 amip model ensemble. The shading along lines of the time series denotes ±1 standard deviations of the model
ensemble, and the vertical bar shading denotes years with minimum (pink; SIC−) and maximum (blue; SIC+) SIC for the composite differences in b and c.
Note the SIC scale on the top left Y-axis is inverted for direct comparison with the other two variables. b The total difference in precipitation rates (PREC;
color shading; unit: mm d−1) in autumn and early winter (September to December) between the SIC− and SIC+ years based on the 12 amip model
ensemble. c As in b, but for the total difference in the fire weather index (FFWI; color shading; unitless). d The Arctic-driven (S/NP3) changes in
precipitation rates (PREC; color shading; unit: mm d−1) in autumn and early winter (September to December) between the SIC− and SIC+ years based on
the 12 amip model ensemble. e As in d, but for the Arctic-driven (S/NP3) changes in the fire weather index (FFWI; color shading; unitless) based on the 12
amip model ensemble. Stipples in b–e show regions that 2/3 amip models agree on the signs.
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western U.S. helps to develop and strengthen an anticyclonic
anomaly in the lower to middle troposphere of this region that
manifests as a dipole pattern in conjunction with the cyclonic
anomaly over the upstream regions like Alaska. This dipole
pattern corresponds to a poleward-shifted polar jet stream with
suppressed precipitation and elevated surface air temperature and
vapor pressure deficit over the western U.S., all conducive to
increased fuel aridity and more extensive burning during the
following autumn and early winter in this region (Fig. 5).

Although some interactive processes such as ocean-atmosphere
coupling and fire-climate feedbacks are missing in the modeling
experiments used in this study, previous studies have investigated
the possible influence of those interactive processes and suggested
consistent but amplified climate responses through ocean-
atmosphere coupling41 and nonnegligible but secondary fire-
climate feedbacks through land-atmosphere coupling42. More-
over, more coordinated climate modeling intercomparison pro-
jects such as the Polar Amplification Model Intercomparison
Project (PAMIP)43 and the Fire Model Intercomparison Project
(FireMIP)44 have been designed and conducted, which help
narrowing the knowledge gaps regarding the teleconnection
linking high-latitude and mid-latitude regions and its role in
increasing fire hazards.

More extreme fire weather with increasing likelihood of large
wildfires in autumn has become the new normal for western
regions like California, a region projected to suffer more by the
end of this century as has the clear decline in Arctic sea-ice
coverage45. Previous studies have identified strategies for coex-
istence with wildfires in a changing climate with escalating fire
danger46,47. But Arctic sea ice has been projected to continuously
decline and eventually diminish to a sea ice-free Arctic in Sep-
tember before the 2050s48, so more drastic changes might be
anticipated. This study describes a mechanism indicating how the
teleconnection between decreasing Arctic sea ice and worsening
regional fire weather may be sustained and even strengthen over
the next few decades, favoring more and larger wildfires across
the western U.S. and making this region, especially the growing
WUI areas, even more susceptible to destructive fire hazards.
These implications may serve as motivation for more attention to
adaptive resilience approaches including public awareness of fire
risk and hazard mitigation, scientific fire risk and forest

management, and sustainable residential and infrastructure
development planning on fire-prone landscapes46,47.

Methods
Observation and reanalysis data. The 1° ´ 1° gridded sea-ice concentrations at
monthly frequency for 1981–2019 are provided by the Hadley Centre Sea Ice and
Sea Surface Temperature dataset (HadISST)49. Daily and monthly meteorological
variables including air temperature, 2-m relative humidity, wind speed and vectors,
total precipitation rates, and geopotential heights used for the FFWI calculation
and fire weather composite analysis are collected and processed based on the ERA5
reanalysis dataset33. We also analyzed the Canadian Forest Fire Weather Index
(FWI)50 datasets that are calculated based on the ERA5 reanalysis data33 from the
Global ECMWF Fire Forecast model (GEFF-ERA5)51 and the NASA’s Modern-Era
Retrospective Analysis for Research and Applications (MERRA-2)52 reanalysis data
from the Global Fire Weather Database (GFWED)53, respectively, as well as
multiple observation- and reanalysis-based precipitation datasets from the Global
Precipitation Climatology Project (GPCP v2.3)54, MERRA-252, Climate Forecast
System Reanalysis (CFSR)55, ERA-Interim56, and the Japanese 55-year Reanalysis
(JRA-55)57 for testing the robustness of the Arctic sea ice-fire teleconnection in
Supplementary Table 1, Supplementary Fig. 2, and Supplementary Fig. 8.

The observational dataset of large wildfires (≥ 1000 acres) across the western
U.S. from 1984 to present are produced by the U.S. Geological Survey Center and
the USDA Forest Service through the Monitoring Trends in Burned Severity
(MTBS) program58. We update the relative old MTBS fire data used in Dennison
et al.2 and show the continuously increasing trends in both numbers and burned
areas of large wildfires over the western U.S. in Supplementary Fig. 16. The
fractional changes of regional total burned area (BAC) in Fig. 1c, Supplementary
Fig. 1c, and Supplementary Fig. 2c are given by:

BAC ¼
�BASIC� � �BASICþ

1
2

�BASIC�
�� ��þ �BASICþ

�� ��� � ð1Þ

where �BASIC� and �BASICþ are the monthly total burned area of large wildfires
averaged over the minimum and maximum SIC years in the original (SIC−/SIC+;
as shown in Fig. 1b) or detrended (SICnotrd−/SICnotrd+; as shown in
Supplementary Fig. 1b) SIC time series, respectively. Note that the MTBS dataset
starts from 1984 with a shorter time period than the SIC time series, so the group
members for �BASICþ are slightly different (with missing years before 1984) from
the composite analyses for other variables like FFWI. We choose the average of
�BASIC�

�� �� and �BASICþ
�� �� rather than �BASICþ

�� �� alone as the denominator in case of
zero �BASICþ

�� �� in some months such as December or negative burned area
anomalous values after detrending in SICnotrd− and SICnotrd+ years. In these
cases, BAC becomes 200% or −200% according to Eq. (1) (e.g., Dec in Fig. 1c;
May–Jun and Sep–Nov in Supplementary Fig. 1c).

Models and experiments. We use a process-based CESM-RESFire model30 for the
Arctic sea-ice climate sensitivity experiments. The RESFire model was developed
with improved region-specific fire weather and socioeconomic constraints and fire
feedbacks to the climate and vegetation, and coupled with both the land and the
atmosphere components of the CESM version 1.2 modeling system59. The major
new features of this fire model include online coupled fire emissions in forms of
mass and energy fluxes with fire plume rise and associated radiative effects as well
as fire-induced land cover change and disturbances to terrestrial biogeochemical
cycle. The land component we use for the sensitivity experiments is the Com-
munity Land Model version 4.5 (CLM4.5)60, while the atmosphere component we
use is the high-top Whole Atmosphere Community Climate Model (WACCM)61,
which is a comprehensive atmospheric model with a well-resolved stratosphere by
70 vertical levels up to 140 km at a horizontal resolution of 1.9° (latitude) × 2.5°
(longitude).

We first conduct a 40-year simulation as a control (CTRL) run with annually
repeating prescribed climatological (1981–2010 average) SIC and SST from the
HadISST dataset49 to generate initial conditions for two sensitivity runs. We then
branch two climate sensitivity experiments (i.e., SICexp+ and SICexp−) from July
to December of each modeling year by perturbing SIC and SST in the Pacific sector
of the Arctic (120 °E to 135 °W; 70 °N to 80 °N; as shown in Fig. 2a) from July to
October to investigate the climate response to regional Arctic SIC and associated
local SST changes. The selection of the perturbation months is based on the
correlation coefficients of seasonal FFWI and monthly Arctic SIC of the same years
that are statistically significant with both original and detrended monthly SIC time
series. In the SICexp+ experiment, we replace the climatological SIC and SST in
the selected Arctic region with the averaged SIC and SST over the six maximum
SIC years (1983, 1984, 1985, 1986, 1994, and 1996; as shown in Fig. 1b) above
positive one standard deviation (>þ 1σ) of the normalized regional SIC during
1981–2019. In the SICexp− experiment, we replace the climatological SIC and SST
in the selected Arctic region with the averaged SIC and SST over the six minimum
SIC years (2007, 2008, 2012, 2016, 2017, 2019; as shown in Fig. 1b) below negative
one standard deviation (<� 1σ) of the normalized regional SIC during 1981–2019.
All other conditions such as the initial conditions, extra-polar SST boundary
conditions, and lightning and population density for natural and anthropogenic
fire ignition are kept the same in both experiments (Supplementary Table 2).

Fig. 5 A schematic diagram for the teleconnection between Arctic sea-ice
loss and increasing fire hazards over the western U.S. The L and H denote
the cyclonic low pressure and anticyclonic high pressure circulation
anomalies, respectively, induced by preceding Arctic sea-ice loss as
suggested by the CESM-RESFire model sensitivity results shown in Fig. 2a.
(Background image by NASA/Goddard Space Flight Center Scientific
Visualization Studio).
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Finally, we examine the simulated responses in fire weather (e.g., T, Q, and U10 for
FFWI calculation; the sum of PRECC and PRECL for precipitation) and burning
variables (e.g., FAREA_BURNED for fractional burned area; NFIRE for fire counts;
BA_AVG for mean fire size at each model grid cell) in terms of changes in spatial/
temporal patterns and statistical distributions between the SICexp− and SICexp+
experiments. This method has been applied in similar model sensitivity studies on
climate impacts of sea-ice loss62,63.

To focus on the sea-ice influence on fire, we turn off the fire feedback processes
including online coupled fire emissions and fire-induced land cover change in the
RESFire model. These feedback processes would exert detectable but secondary
effects on global burning activity by either amplifying or damping regional burned
area simulations as suggested by the comprehensive evaluation in our previous
study42. For the western U.S. region of interest in this study, the net fire feedback
effect is almost negligible as shown in the Supplementary Fig. 17, which implies
that the simplified modeling setting without consideration of fire feedbacks in this
study is appropriate to meet its major research objective.

Besides the CESM-RESFire climate sensitivity experiments, we also examine the
Arctic sea ice-fire teleconnection in multiple CMIP6 climate modeling systems
participating in the amip31 and amip-piForcing36 experiments. There are 15
CMIP6 models (Supplementary Table 3; hereafter amip models) in total that
provide the daily and monthly model outputs of the amip experiment for the FFWI
calculation and fire weather analysis in Fig. 4, and 4 CMIP6 models
(Supplementary Table 4; hereafter amip-piForcing models) provide the monthly
model outputs of the amip-piForcing experiment for the fire weather composite
analyses in Supplementary Figs. 9, 12, and 13. Most model outputs in both amip
and amip-piForcing experiments end in 2014, so the composite years for the SIC−
group (2007–2012; as shown in Fig. 4a and Supplementary Figs. 10c, 11c) in these
models are slightly different from those in the ERA5-based composite analysis (the
composite years for the SIC+ group are the same as shown in Fig. 4a). For the S/
NP filtering analyses based on detrended amip-piForcing data, all the composite
years for both SICnotrd− (1981, 1990, 1993, 2007, 2008, 2012; as shown in
Supplementary Figs. 12c and 13c) and SICnotrd+ (1994, 1996, 2000, 2001, 2013; as
shown in Supplementary Figs. 12c and 13c) groups are also slightly different from
those in the ERA5-based SICnotrd− (with one more year of 2019) and SICnotrd+
(with one more year of 2018) groups in Supplementary Fig. 1b.

Climate and weather indices. FFWI32 is an empirical fire weather index provided
as a complement of the National Fire Danger Rating System (NFDRS)64 for
measuring the weather influence on fire danger in the U.S. It is calculated based on
surface air temperature, 2-m relative humidity, and surface wind speed with larger
values implying higher fire risk or potential. FFWI is given by:

FFWI ¼ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2

p

0:3002
ð2Þ

where U is surface wind speed in miles per hour and η is the moisture damping
coefficient.

η ¼ 1� 2 ´
EMC
30

� �
þ 1:5 ´

EMC
30

� �2

� 0:5 ´
EMC
30

� �3

ð3Þ

where EMC is the equilibrium moisture content as a function of surface air tem-
perature T in degrees Fahrenheit and relative humidity RH in percentage:

EMC ¼
0:03229þ 0:281073 ´RH� 0:000578 ´T ´RH; for RH< 10%

2:22749þ 0:160107 ´RH� 0:01478 ´T; for 10%<RH≤ 50%

21:0606þ 0:005565 ´RH2 � 0:00035 ´T ´RH� 0:483199 ´RH; for RH> 50%

8><
>:

ð4Þ
This EMC variable is the same with that used in NFDRS as the fundamental

basis to all fuel moisture computations in that more complicated system. All the
calculations of FFWI only require meteorological values at observational time or
corresponding modeling outputs. It has been previously used for evaluation of
climate change impacts on wildfire in California10 and weekly to seasonal fire
danger forecasts in the U.S.65. In comparison, FWI50 is a more sophisticated system
based on multiple fuel moisture codes and fire behavior indices, which are derived
from meteorological variables including surface air temperature, relative humidity,
wind, and precipitation at local noon time. We choose FFWI in combination with
precipitation rather than FWI for fire weather analysis in the main text because of
its less stringent requirement for meteorological data inputs given limited weather/
fuel data availability from daily-based climate model outputs. Using different fire
weather indices or reanalysis datasets for analysis does not change the major
finding of the identified teleconnection (see Supplementary Text).

We calculate the gridded FFWI based on the daily ERA5 reanalysis data and
climate modeling outputs from CESM-RESFire and CMIP6 models. The regional
average FFWI, BA, NFIRE, and FIREsize for the correlation and composite analysis
in Figs. 1, 2, and 4 are estimated using grid-area weighted average over the western
U.S. (as shown in Figs. 1a and 2a) based on the reanalysis (FFWI in Figs. 1b and 4a)
and modeling data (FFWI, BA, NFIRE and FIREsize in Fig. 2b–e; FFWI in Fig. 4a),
respectively. Similarly, the regional average SIC time series in Figs. 1b, 4a, and
Supplementary Fig. 2b without detrending and the SIC time series in
Supplementary Fig. 1b after detrending are estimated using the same method over
the Pacific sector of the Arctic (as shown in Figs. 1a and 2a). Z500i is estimated by

projecting the anomalous geopotential height at 500 hPa in either the reanalysis
data or the modeling results onto an identified fire-favorable circulation pattern
over the northeastern Pacific and western U.S. (135 °W to 90 °W; 25 °N to 55 °N; as
shown in Supplementary Fig. 2a), which is obtained by regressing the ERA5-based
anomalous geopotential height at 500 hPa onto the seasonal and regional average
FFWI time series over the western U.S. Note this regression-derived fire-favorable
pattern in the 500 hPa field resembles the anomalous large-scale circulation pattern
favoring regional large wildfires as suggested by a recent study using composite and
self-organizing maps analyses66. After regional averaging or summation, the time
series in Fig. 1b (SIC only), Fig. 4a, Supplementary Fig. 1b, and Supplementary
Fig. 2b are also normalized for direct comparison against each other before the
composite and correlation analysis. The univariate (1-D) and bivariate (2-D)
distribution densities for each index in Fig. 2b-e are then generated and visualized
using the Seaborn Python library67 based on the Kernel Density Estimation (KDE)
method, which is a non-parametric way to estimate the probability density function
of a random variable.

The bi-monthly Multivariate El Niño-Southern Oscillation index (MEI;
positive/negative values correspond to El Niño/La Niña events, respectively)68 is
the time series of the leading combined Empirical Orthogonal Function (EOF) of
five different variables (sea level pressure, SST, zonal and meridional components
of the surface wind, and outgoing longwave radiation) over the tropical Pacific
basin (30 °S to 30 °N; 100 °E to 70 °W). We use MEI for comparing and
interpretating the identified S/NP forced responses. The S/NP1 timeseries in both
original and detrended data show strong correlations with MEI (r= 0.96 with p-
value < 0.01 in Supplementary Fig. 10; r= 0.93 with p-value < 0.01 in
Supplementary Fig. 12), suggesting this pattern as the most prominent climatic
signal is closely related to the coupled ocean-atmosphere conditions in the tropical
Pacific.

Statistical analysis and significance tests. We first calculate the correlation
coefficients between the time series of the regional and seasonal average FFWI (as
shown in the red line in Fig. 1b) and the seasonal average Arctic sea-ice con-
centrations at each grid cell to identify the most sensitive Arctic regions affecting
regional fire weather conditions over the western U.S. These SIC-FFWI correlations
are shown by the color shading over the Arctic region in Fig. 1a, suggesting the
Pacific sector of the Arctic (outlined by the red box over the Arctic in Fig. 1a) as the
most critical region of interest. Then the Arctic SIC over this region is averaged to
obtain its time series (as shown in the blue line in Fig. 1b) for calculating corre-
lation with the regional average FFWI time series. The correlation coefficient
between these two time series is −0.68 with p-value < 0.01, reconfirming the close
connection between the two regions in terms of temporal variations of the two
variables. To exclude the impact of long-term trends in both time series, we also
conduct the same analysis based on the detrended time series in Supplementary
Fig. 1. The correlation coefficient between the detrended data is lower but still
statistically significant (r=−0.50; p-value < 0.01), suggesting a robust relationship
on both interdecadal and interannual time scales.

We then conduct composite analyses based on original or detrended
observational and reanalysis data to identify regional weather and fire activity
responses to the Arctic sea-ice changes on different time scales. The members in
each composite group are selected based on the regional averaged and normalized
SIC time series before (Fig. 1b) and after detrending (Supplementary Fig. 1b). We
use ±1 standard deviations of the original (detrended) SIC time series as thresholds
for selecting members in SIC−/SIC+ (SICnotrd−/SICnotrd+) groups in Fig. 1
(Supplementary Fig. 1). Please note that the MTBS burned area in Supplementary
Fig. 1c and meteorological variables such as Z500 and FFWI in Supplementary
Fig. 1a, b and air temperature, zonal winds, precipitation, and relative humidity in
Fig. 3b, e, h, k are also detrended to keep consistent with the detrended SIC time
series in SICnotrd−/SICnotrd+ groups. The long-term trends in time series are
removed using the NCL dtrend function, while the trends in gridded data are
removed by first estimating long-term trends in zonal mean values and then
subtracting these trends from gridded values at same latitudes to retain
heterogeneity in the zonal direction after removing global warming effects
and their footprint in the meridional direction such as AA. In this way, the
strong global warming effect is largely removed in the detrended data as shown in
Fig. 3b, k.

We use a two-sided Student’s t-test to test the statistical significance of the
differences between two groups of time averaged data (either for each grid cell or
for regional averages) such as the seasonal/monthly FFWI composites in Fig. 1a, c
(n= 6), model-simulated seasonal total burned area composites in Fig. 2a (n= 40),
model-simulated regional average atmospheric and fire indices in Fig. 2b-e
(n= 40), and seasonal mean fire weather variables in Fig. 3 (n= 6 for reanalysis-
based data and n= 40 for model-based data). These data generally satisfy the
assumptions of the t-test including normality and randomness of samples. If a p-
value obtained from the t-test is no larger than a threshold, e.g., α ¼0.01, 0.05, or
0.1, then we reject the null hypothesis of equal averages in the sample groups at
certain significance levels corresponding to the threshold. We also use a stricter
control of False Discovery Rate (FDR) method69 to protecting against
overstatement of multiple-testing results due to the influence of possible spatial
correlation in Figs. 1a and 2a. Local null hypotheses of each grid cell are rejected if
their respective p-values are no larger than a threshold level p*FDR that depends on
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the distribution of the sorted p-values:

p*FDR ¼ max
i¼1;¼ ;N

pðiÞ:pðiÞ ≤ i=N
� �

αFDR

h i
ð5Þ

where N is the number of testing grid cells and αFDR is the chosen control level for
the FDR method. For data grids exhibiting moderate to strong spatial correlation,
we can achieve approximately correct global test levels by choosing αFDR ¼ 2αglobal
for the FDR method69. For the modeling results from different CMIP6 climate
modeling systems in Fig. 4 and Supplementary Fig. 9, we compare their consistency
in simulated fire weather responses to test the robustness of the climate-fire
teleconnection across those models.

To estimate the uncertainty of the probability and intensity changes of extreme
burning years, we use a bootstrap method by resampling the model-simulated
samples with or without replacement for 10000 times (n= 10,000) and then
repeatedly estimating the statistics such as the probability and intensity of extreme
years based on the resampled data from each experiment (see Supplementary
Figs. 5 and 6). By analyzing the newly generated samples from the bootstrap
method, we can obtain the statistics of the variables of interest such as the 95%
inter-percentile ranges (i.e., percentile values between 2.5% and 97.5%) of the
probability of extreme members. These extreme members are defined as modeling
years with regional total burned area values above the 95% percentile in the
samples from the SICexp+ experiment. Therefore, the probability of extreme
years in the SICexp+ experiment (Pextreme

SIC expþ) is always 5% in the SICexp+
bootstrap resampling data by definition, while the probability of extreme years in
the SICexp− experiments (Pextreme

SIC exp�) varies with the mutable resampled data
subsets (except the unique subset with the sample size of all 40 modeling years in
the non-replacement case). We also test the robustness of these statistical
estimates against different ensemble sizes in Supplementary Fig. 6, which shows
the probabilities of extreme burning years converging with increasing ensemble
sizes of the bootstrap resampling groups. The 40-year ensemble size is large
enough to separate the probability of extreme years in the SICexp− experiment
(Pextreme

SIC exp� ¼ 20% with the 95% inter-percentile range of [6.6%, 38.9%]) from that
in the SICexp+ experiment even with replacement in the bootstrap resampling
processes (i.e., Pextreme

SIC expþ ¼ 5% is outside of the 95% inter-percentile range of
Pextreme
SIC exp�). This method has been applied in our previous climate extreme

modeling study63 and other similar applications70.
The signal-to-noise-maximizing pattern filtering method37 has been used to

separate forced climate responses from each other as well as from climate internal
variability. The S/NP filtering method relies on a pattern recognition method
named linear discriminant analysis to identify spatial patterns as linear
combinations of EOFs that maximize the variance of signal-to-noise ratios among
an ensemble of realizations37. Here signal is defined by the mean over the
ensemble, which consists of the ERA5 reanalysis data and the amip (as listed in
Supplementary Table 3) or amip-piForcing (as listed in Supplementary Table 4)
models. The ranking of identified S/NP patterns denotes the intensity of the
corresponding signal in the ensemble (i.e., signal intensity from high to low with
increasing ranking), and the consistency of corresponding temporal variability
among different ensemble members denotes the noisiness of the signal. Therefore,
the S/NP ranking results are slightly affected by the ensemble composition given
different signal-to-noise ratios in each amip or amip-piForcing model, while the
spatial distributions of each S/NP are less sensitive to the ensemble composition.
Another advantage of this S/NP filtering method over the simple ensemble
averaging method is that it greatly reduces the number of ensemble members
needed to estimate forced responses by a factor of 7–10 compared to simple
ensemble averaging37. As suggested by Wills et al.37, the S/NP-filtered estimate of
forced responses based on 3 ensemble members is better than the simple ensemble
average of 20 members, and the S/NP-filtered estimate based on 2 ensemble
members is only slightly worse. This improved signal-to-noise detection efficiency
is of great help for our analyses here given limited numbers of CMIP6 models that
provide necessary modeling outputs for the ensemble.

We apply this S/NP filtering method to a multi-variable anomaly field based on
seasonal mean surface air temperature, precipitation, FFWI, and Z500 in the
Northern Hemisphere from each model. Such combined analysis on all four
meteorological fields improves the identification capability and robustness of
climate responses to different forcing such as ENSO and AA. After pattern
recognition, we calculate the correlation coefficients between timeseries
(1981–2014) of these identified S/NPs and climate indices of interest (MEI and SIC
in this application) to infer their driving forces. For example, in the S/NP filtering
analysis based on the original ERA5 reanalysis and amip modeling data, S/NP1 and
S/NP3 show good correlations with MEI (r= 0.96; p-value < 0.01; Supplementary
Fig. 10) and SIC (r=−0.75; p-value < 0.01; Supplementary Fig. 11), respectively.
Therefore, we identify S/NP1 (S/NP3) as the synoptic pattern associated with
ENSO (sea ice) variations. Similarly, S/NP1 and S/NP8 show relatively lower and
but still significant correlations with detrended MEI (r= 0.93; p-value < 0.01;
Supplementary Fig. 12) and detrended SIC (r=−0.29; p-value= 0.09;
Supplementary Fig. 13) in the S/NP filtering analysis based on the detrended ERA5
reanalysis and amip-piForcing data. We then do the composite analysis for each S/
NP by comparing differences between the SIC− (SICnotrd−) and SIC+ (SICnotrd
+) years to identify forced responses to different climate drivers on different time

scales. The S/NP composite results are shown in Fig. 4d, e in the main text as well
as in Supplementary Figs. 10–13 (shown as the ERA5 filtering results derived from
the ERA5 and amip model ensemble, or detrended ERA5 and amip-piForcing
model ensemble).

We test the robustness of those results by using different CMIP6 experiments
(i.e., amip vs. amip-piForcing) or different subsets of the amip models in the
ensemble. The MEI-related pattern stays in S/NP1 as the strongest signal across
different amip models, while the ranking of the SIC-related pattern varies between
the second and the third (e.g., the SIC-related pattern emerges in S/NP2 if using the
5 best-performed amip models (ACCESS-CM2, FGOALS-g3, GFDL-CM4, SAM0-
UNICON, and UKESM1-0-LL showing significant negative correlations between
SIC and FFWI in Supplementary Fig. 14), while it stays in S/NP3 if using all 15
amip models in the amip model ensemble and drops to the eighth in the detrended
amip-piForcing model ensemble. These results suggest a lower signal-to-noise ratio
of the Arctic-driven climate effects (as shown in S/NP2 or S/NP3 if using the amip
data, or S/NP8 if using the detrended amip-piForcing data) than that of the ENSO-
driven ones (as shown in S/NP1) in those CMIP6 models. However, this lower
ranking does not necessarily imply that the Arctic-driven effects are weaker than
ENSO-driven effects. The relative importance of different climate forcing factors
should be inferred by the composite differences for each S/NP, which suggest
comparable impacts on regional fire weather by ENSO-driven (Supplementary
Fig. 10 and Supplementary Fig. 12) and Arctic-driven (Supplementary Fig. 11 and
Supplementary Fig. 13) teleconnection processes in both original and detrended
data. For example, the magnitudes of the Arctic-driven changes in S/NP3
(Supplementary Fig. 11) based on the original data with both interannual and
interdecadal variability are on the same level of the ENSO-driven changes in S/NP1
(Supplementary Fig. 10). Even when the global warming effects have largely been
removed in the detrended ERA5 and amip-piForcing data, those S/NP patterns (S/
NPs2-7) with higher rankings than the Arctic-driven one (S/NP8) show subtle
differences between the SICnotrd− and SICnotrd+ years, making the Arctic-
driven changes in S/NP8 as the second largest contributor to fire-favorable weather
conditions over the western U.S. on shorter (interannual) time scales
(Supplementary Fig. 13). Moreover, the time series of Arctic-driven patterns in S/
NP3 (Supplementary Fig. 11) show a much stronger increasing trend than others
on interdecadal time scales, suggesting an increasingly important role of the Arctic
changes in modulating regional climate and fire weather over North America.
Please refer to Wills et al.37 for more technical details of the mathematical basis and
climate research applications of this method.

Dynamic and thermodynamic diagnosis. We examine daily temperature ten-
dencies in CESM-RESFire modeling outputs to quantify the contributions from
different dynamic and physical processes to the simulated climate responses. The
total temperature tendency (TTEND) consists of two components driven by
dynamic processes (DTCORE) and physical processes (PTTEND). The latter can
be further decomposed into four major physical processes: moisture processes
(DTCOND), longwave heating (QRL), shortwave heating (QRS), and vertical dif-
fusion (DTV). There is one more physical process related to gravity wave drag
(TTGW), which is small and negligible in the troposphere of modeling outputs.
Therefore, the contribution to the regional average meridional temperature gra-
dient anomaly (4T ¼ Twarm

�� ��� Tcool

�� ��; as shown in Supplementary Fig. 7) from
each process is given by:

4T t1 ¼ 4T t0 þ
Z t1

t0
TTENDdt ð6Þ

where TTEND ¼ DTCOREþ PTTEND ¼ DTCOREþ DTCONDþQRLþð
QRSþ DTVÞ, and 4T t0 ¼ 0 at the beginning of the sea ice perturbation.

The sign and magnitude of 4T depends on the competition of dynamic and
physical processes at each timestep. The time evolution of 4T shows that it stays
above zero in general from September to November (Supplementary Fig. 7), which
coincides well with the timing of strong positive fire anomalies (Supplementary
Fig. 4).

Besides, note that the meridional temperature gradients remain positive in both
the amip and amip-piForcing model ensembles (Supplementary Fig. 9a, e), while
the sign and pattern reverse in the difference between these two experiments
(Supplementary Fig. 9i). Such results imply that atmospheric and land processes
induced by natural and anthropogenic forcing (i.e., GHGs, aerosols, and LULCC)
cannot explain the observed circulation and fire weather changes (e.g., Fig. 3a–d)
between the SIC− and SIC+ years. These changes are better explained by ENSO-
and Arctic-related synoptic patterns according to the S/NP filtering analyses
(Supplementary Fig. 15). Please refer to the main text for detailed analysis and
interpretation. Also please find all the acronyms used in this study in
Supplementary Table 5.

Data availability
The processed simulation results of the CESM-RESFire sensitivity experiments
generated in this study have been deposited at the Figshare website (https://doi.org/
10.6084/m9.figshare.13022837.v1). The raw CESM-RESFire modeling input and output
data exceed the size limit of the above repository, and are archived on the High

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26232-9

10 NATURE COMMUNICATIONS |         (2021) 12:6048 | https://doi.org/10.1038/s41467-021-26232-9 | www.nature.com/naturecommunications

https://doi.org/10.6084/m9.figshare.13022837.v1
https://doi.org/10.6084/m9.figshare.13022837.v1
www.nature.com/naturecommunications


Performance Storage System (HPSS) managed by the National Energy Research
Scientific Computing Center (NERSC). They can be obtained by contacting the
corresponding authors.
The ERA5 reanalysis data used in this study are distributed by ECMWF from their

web site at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The
ERA5-based FWI is distributed from the Copernicus Climate Data Store at https://
cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.0e89c522?tab=overview. The
MERRA-2-based FWI is distributed from the NASA Center for Climate Simulation Data
portal at https://portal.nccs.nasa.gov/datashare/GlobalFWI/. The gridded Arctic SIC and
SST data are available at https://www.metoffice.gov.uk/hadobs/hadisst/. The bi-monthly
MEI.v2 is collected from the Physical Sciences Laboratory of National Oceanic and
Atmospheric Administration (NOAA) at https://psl.noaa.gov/enso/mei/. The MTBS
burned area data are available at https://www.mtbs.gov/. The CMIP6 model outputs are
distributed by the Earth System Grid Federation (ESGF) at https://esgf-node.llnl.gov/
search/cmip6/ (see Supplementary Tables 3-4 for model details and references).

Code availability
The source code for the RESFire model used in this study is available at https://doi.org/
10.6084/m9.figshare.7352063. The code for the S/NP filtering analysis is shared and
provided by Robert Wills at https://github.com/rcjwills/forced-patterns.
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