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Space-time crystalline order of a high-critical-
temperature superconductor with intrinsic
Josephson junctions
Reinhold Kleiner1✉, Xianjing Zhou2, Eric Dorsch1, Xufeng Zhang2, Dieter Koelle 1 & Dafei Jin 2✉

We theoretically demonstrate that the high-critical-temperature (high-Tc) superconductor

Bi2Sr2CaCu2O8+x (BSCCO) is a natural candidate for the recently envisioned classical space-

time crystal. BSCCO intrinsically forms a stack of Josephson junctions. Under a periodic

parametric modulation of the Josephson critical current density, the Josephson currents

develop coupled space-time crystalline order, breaking the continuous translational sym-

metry in both space and time. The modulation frequency and amplitude span a (none-

quilibrium) phase diagram for a so-defined spatiotemporal order parameter, which displays

rigid pattern formation within a particular region of the phase diagram. Based on our cal-

culations using representative material properties, we propose a laser-modulation experiment

to realize the predicted space-time crystalline behavior. Our findings bring new insight into

the nature of space-time crystals and, more generally, into nonequilibrium driven condensed

matter systems.
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In recent years, the notion of a space−time crystal (STC) has
attracted a great deal of attention1–13. While there has been
considerable discussion about what is truly outstanding in

such a system, at present, it is mostly agreed that the STC refers to
a nonequilibrium phase of matter displaying long-range order in
both space and time11. Specifically, the (nonlinear) many-body
interaction makes the system exhibit long-lived oscillations at a
period longer than the period of the driving source, and the
oscillation patterns show rigidity against perturbation from the
environment7,10,12,14. These extraordinary behaviors have been
theoretically conceived and experimentally observed in atomic-
molecular-optical systems3,15–19. But few candidates from con-
densed matter systems have been explored20,21.

In this paper, we present theoretically that the high-critical-
temperature (high-Tc) cuprate superconductor Bi2Sr2CaCu2O8+x

(BSCCO) is a natural candidate of a classical discrete STC that
was recently envisioned22. This material, as illustrated in Fig. 1,
acts as a stack of intrinsic Josephson junctions (IJJs) along its
crystallographic c axis with s= 1.5 nm layer period23–25. Each
junction is formed by the insulating BiO and SrO planes sand-
wiched between the superconducting CuO2 planes. In the crys-
tallographic ab plane, the junctions can be macroscopically large
(≳1 mm) and behave as a long (and wide) Josephson junction.
Adjacent junctions are coupled via phase gradients of the
superconducting wave function, produced by currents flowing
along the CuO2 planes. The number N of junctions in a stack can
vary from a few to thousands.

Our calculations indicate that when the critical current density
jc of the junctions is subject to a parametric modulation, which is
made periodic in time and uniform in space, BSCCO

spontaneously develops half-harmonic oscillations of the
Josephson currents in time and broken (continuous) translational
symmetry in space. The newly formed order goes beyond a direct
product of separate spatial and temporal orders and embodies
space−time coupled symmetry11. At a fixed temperature T and
thermal noise, the modulation frequency and amplitude span a
phase diagram. Within a specific region with clear boundaries in
this phase diagram, a nonzero spatiotemporal order parameter
emerges, indicating the necessary robustness in phase formation.

Although parametric driving and half-harmonic generation of
nonlinear oscillators such as Josephson junctions or junction
arrays have been investigated previously26–28, their conceptual
connection to the space−time crystalline order was only recently
proposed22. Our study verifies that half-harmonic generation is
accompanied with the spatiotemporal order formation in any
spatial dimensions of BSCCO. But most notably, the STC phase is
stable only at nonzero spatial dimension; the phase rigidity
appears to increase with the spatial dimensionality. Therefore, our
study of the intrinsic Josephson junction stack in BSCCO suggests
the possible realization of a classical discrete STC from a naturally
existing condensed matter system.

Results
Josephson plasma and photon modes in BSCCO. The dynamics
of a BSCCO stack follows the inductively coupled sine-Gordon
equations29–32. These are nonlinear differential equations for the
gauge-invariant Josephson phase differences, parametrically
dependent on the Josephson critical current density jc(T), the in-
plane and out-of-plane resistivities ρab(T) and ρc(T), and the
Cooper pair density ns(T). All of these quantities are T-depen-
dent. The BSCCO stack supports collective oscillations of the
supercurrents—the Josephson-plasma oscillations—across the
junctions33,34. These oscillations can couple with the electro-
magnetic waves in the stack in the frequency range from
≲0.1 THz to ≳1 THz24,25,35–37. In practice, BSCCO stacks are
routinely fabricated into rectangular bars with tens-of-micron
length L along x, several-micron width W along y, and a height
H=Ns associated with tens or hundreds of junctions along z (cf.
Fig. 1). This stack, resembling a slab waveguide cavity, hosts a
series of resonance modes at gigahertz-to-terahertz frequencies.
For not too large oscillating amplitudes, the electric field and
tunneling current along z on the nth junction take the form38,39,

Ez; jz / cos
πlx
L

� �
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πmy
W

� �
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πqn
N þ 1

� �
; ð1Þ

where x∈ [0, L], y∈ [0,W], and n= 1, 2,…,N. The mode indices
l and m take zero or any positive integers, and q takes a positive
integer from 1 to N. The associated resonance frequency reads
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with f p /
ffiffiffiffiffiffiffiffiffiffi
jcðTÞ

p
being the Josephson plasma frequency and

cq ¼ �c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�s cosðπq=ðN þ 1ÞÞ

p
being the effective speed of

light, where �c is the Swihart velocity and �s � 0:5 is the interlayer
coupling constant. C ≤ 1 is a correction factor which we introduce
here to account for a frequency shift generated by parametric
driving. The values of jc, fp and �c depend strongly on the charge
carrier concentration. For convenience, we use jc ≈ 250 A cm−2,
fp ≈ 47 GHz, and �c � 3:3´ 105 m/s at 4 K, which are typical for
slightly underdoped BSCCO31,32. These quantities drop to zero at
the critical temperature Tc ≈ 85 K.

If l=m= 0, Ez and jz are uniform in the x and y directions,
independent of the lateral size L and W, and irrespective of the
values of n and q in the thickness direction. When L and W are
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Fig. 1 Schematic of the superconductor BSCCO with intrinsic Josephson
junctions. a Atomic structure in which the CuO2 planes are
superconducting. b Equivalent circuit. Each discretized element is
characterized by the Josephson critical current Ic, c-axis resistance Rc, c-axis
capacitance Cc, ab-plane resistance Rab, and ab-plane inductance Lab, which
is associated with the in-plane supercurrents and dominantly kinetic in
origin. Additional geometric inductances could be added in series to Rab but
are neglected. The discreteness along z is naturally set by the layered
structure, whereas the element sizes along x and y are in theory
infinitesimal, dx, dy→ 0. In the numerical simulation, dx and dy are finite but
smaller than the Josephson length λJ. Here we chose dx= dy= 0.5 μm,
which is roughly a factor of 2 below λJ. c A typical rectangular-shaped 3D
junction stack of length L, width W, and height H.
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both small (≲2 μm), the only modes in the accessible frequency
range are the uniform modes. In this case, if N= 1, we have an
effectively 0-dimensional (0D) single-layer short junction. On the
other hand, when L is large (≳10 μm) but W is small, we can
differentiate two cases: If N= 1 and q= 1, we have an effectively
1D single-layer long junction; and if N > 1 and q= 1, 2,…,N, we
have an effectively 2D multi-layer long junction stack. In these
situations, l can take nonzero integers but m remains zero. Lastly,
when L and W are both large and N > 1, we return to a 3D multi-
layer long and wide junction stack. Below, we show the
emergence of space−time crystalline order in BSCCO with
increasing dimensionality from 0D to 3D, under a temporally
periodic but spatially uniform parametric modulation to jc. While
the case of a 0D single-layer short junction is merely a replica of
the children’s swing problem40,41, exhibiting half-harmonic
generation in time, the involvement of spatial dimensions from
1D to 3D not only exhibits half-harmonic generation but also
stabilizes the temporal pattern on a much shorter time scale, and
moreover, results in spontaneous (continuous) translational
symmetry breaking in space. The parametric driving bandwidth
and the robustness to thermal noise enhance significantly with
the increase of spatial dimension.

It is worthwhile to point out that there are three essential
ingredients leading to the nontrivial behavior of this system: the
discrete electromagnetic modes as described by Eq. (1), the
nonlinear Josephson coupling of the superconducting planes, and
the parametric drive through a periodic modulation of the
Josephson critical current density. Superconductivity plays a key
role in all these ingredients. Referring to Fig. 1b, in the normal
state when superconductivity disappears, the inductive elements
Lab would be absent (Lab→∞) and the Josephson critical
currents would be zero. Then the equivalent circuit would turn
into a highly damped resistor network with linear capacitive
couplings between the metallic layers. The mode spectrum as in
Eq. (2) would be highly damped and, formally, f res would go to
zero. For purely linear oscillators, parametric excitation still
works. However, the oscillation amplitude may grow unbounded.
We have explicitly tested this for the parameters of our system in
the 0D and 1D cases by linearizing the Josephson current−phase
relation. We found that the Josephson plasma oscillations or the
cavity resonances were either not excited at all or grew
exponentially. The sinusoidal Josephson current−phase relation
removes this divergence.

Effectively 0D single-layer short junction. Let us first look at an
effectively 0D single-layer short junction, whose governing
equation is identical to that of a nonlinear pendulum42,43. If the
critical current density jc is modulated in time, then the system is
analogous to a children’s swing. Our calculation takes account of
the thermal (Nyquist) noise, which is related to the temperature T
by the fluctuation-dissipation theorem. In the presence of some
initial fluctuations, the current density jz across the junction starts
to oscillate, provided that the modulation frequency is about
twice the intrinsic Josephson plasma frequency fp and the mod-
ulation amplitude is large enough40. No inhomogeneous external
force is applied to the system. Figure 2 shows our calculation for a
single-layer short junction of BSCCO with the junction area L ×
W= 4 μm2. The parametric modulation takes the form

jcðT; tÞ ¼ jcðTÞ
1þ Amod cosð2πfmodtÞ

1þ Amod
; ð3Þ

where jc(T) is the unmodulated critical current density, fmod is
the modulation frequency and Amod is the modulation ampli-
tude. Figure 2a, b shows the time traces of jz(t), normalized to jc
at 4 K, after many steps of initial relaxation with the same

modulation frequency fmod ¼ 85 GHz � 2f p but two different
modulation amplitudes Amod ¼ 0:01 (small) and 0.1 (large). For
small modulation, the current amplitude is irregular. But for
large modulation, the system can reach a Floquet steady
state14,44, where the oscillation amplitude in time turns into an
ordered pattern. Figure 2c, d gives the Fourier transform of jz(t)
in terms of the amplitude ∣jz(f)∣ for the two modulation cases. A
sharp half-harmonic peak around fp (along with a few other
peaks at higher harmonics) can be observed in Fig. 2d for large
modulation.

To quantify the temporal order, we define a (dimensionless)
current−current correlation function,

gðδtÞ ¼ hjzðtÞjzðt þ δtÞitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj2zðtÞithj2zðt þ δtÞit

q ; ð4Þ

where the time average is taken in the Floquet steady state. The
overline denotes additional ensemble averaging. Figure 2e, f
shows g(δt), which is irregular for small modulation amplitude
and almost periodic (like a sinusoidal function, as shown in the
inset of Fig. 2f) for large modulation amplitude. To see the
dependence of temporal order on the modulation parameters, we
define a temporal order parameter,

Δt ¼
1
2

hjzðtÞjzðt þ 2νTmodÞit;νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj2zðtÞit;νhj2zðt þ 2νTmodÞit;ν

q
2
64

�
hjzðtÞjzðt þ ð2ν þ 1ÞTmodÞit;νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj2zðtÞit;νhj2zðt þ ð2ν þ 1ÞTmodÞit;ν

q
3
75;

ð5Þ

with the integer ν denoting even (2ν) and odd (2ν+ 1) number of
modulation period Tmod in the time difference δt. The averaging
is taken over both t and ν. The so-defined Δt emphasizes
oscillations of jz occurring at twice the modulation time
2Tmod ¼ 2=fmod, since the odd and even parts have the same
moduli but different signs. By contrast, it suppresses oscillations
that are either periodic in Tmod or incommensurate. Figure 2g
gives a “phase diagram” of Δt versus fmod and Amod at the
temperature T= 4 K. We see that, like for the children’s swing40,
only if the modulation frequency falls in a narrow band near 2fp
and the amplitude is neither too small nor too large, the system
can produce ordered half-harmonics. If the modulation ampli-
tude is overly large, the system can become chaotic. Figure 2h is a
line-scan of Fig. 2g at the modulation amplitude Amod ¼ 0:1,
showing a parametric excitation band within 80–90 GHz, near
and slightly below 2fp= 94 GHz40.

An important observation unique to the 0D case is that the
correlation function and order parameter appear to persistently
decay even after an exceedingly longtime drive. This means that
the Floquet steady state here is in fact a quasi-steady state. In
contrast, as shown below, after spatial dimensions are involved,
temporal patterns are more efficiently stabilized to a true steady
state. We deem this as a key difference between the well-known
0D single parametric oscillator and the more nontrivial multi-
dimensional STC. (See “Methods” for a quantitative comparison
between the 0D and 1D cases.)

Effectively 1D single-layer long junction. The investigation
above merely recovers the Floquet dynamics of a nonlinear
parametric oscillator. However, by extending the studies into 1D,
we find that even if the modulation still follows Eq. (3), the
system permits spontaneous translational symmetry breaking.
The system tends to pick favorable modes within a broadened
modulation band that can be higher than 2fp. Figure 3 shows our
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calculations for an effectively 1D single-layer long Josephson
junction in BSCCO with L= 25 μm and W= 2 μm. The spon-
taneously developed space−time crystalline order, especially, with
rhombohedral unit cells, is remarkable. This symmetry is classi-
fied as C2mxmt in ref. 11. To our knowledge, BSCCO provides the
first material realization of this new symmetry class. Figure 3a
gives the space−time trace jz(x, t) at fmod ¼ 140 GHz and
Amod ¼ 0:1. Figure 3c gives its spatiotemporal Fourier transform
in terms of the amplitude ∣jz(β, f)∣, where β is the wavenumber
(reciprocal of wavelength) along x. It shows a strong peak at the
half-harmonic frequency fmod=2 and a wavenumber corre-
sponding to mode index l= 9. This is manifested by the line
projection of the Fourier amplitude across the half-harmonic
peak versus frequency in Fig. 3b and versus wavenumber in
Fig. 3d, respectively. We then define a spatiotemporal correlation
function,

gðδx; δtÞ ¼
hjzðx; tÞjzðx þ δx; t þ δtÞix;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj2zðx; tÞix;thj2zðx þ δx; t þ δtÞix;t

q ; ð6Þ

where the average is taken for both space and time. Figure 3e
gives a color plot for g(δx, δt), displaying nearly perfect sinusoidal
oscillations along both δx and δt. To see the dependence of space
−time crystalline order with the modulation parameters, we

define a coupled spatiotemporal order parameter,

Δxt ¼
1
2

hjzð0; tÞjzðL; t þ 2νTmodÞit;νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj2zð0; tÞit;νhj2zðL; t þ 2νTmodÞit;ν

q
�������

�
hjzð0; tÞjzðL; t þ ð2ν þ 1ÞTmodÞit;νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj2zð0; tÞit;νhj2zðL; t þ ð2ν þ 1ÞTmodÞit;ν

q
�������;

ð7Þ

as a natural extension of purely the temporal order parameter
Eq. (5). This order parameter cannot be separated into a direct
product of a spatial order parameter and temporal order para-
meter. It correlates the out-of-plane supercurrents at the most far
distant points in space—the boundaries at x= 0 and x= L in 1D
(and diagonally opposite corners in higher dimensions), con-
sistent with our rectangular spatial system geometry. We find,
because of the particular complexity of our system, this definition
of the order parameter (or quasi order parameter) is practically
the most rational and universal choice, owing to the fact that
whenever a spatiotemporal order emerges and collective modes
have formed, the long-range correlation function across the sys-
tem must be large.

In Fig. 3f, we plot the phase diagram of Δxt versus fmod and
Amod. Figure 3g gives a linescan of Fig. 3f when Amod ¼ 0:1. We
can see that the half-harmonic response now extends into a broad
frequency band from 120 to 160 GHz. Comparing with the 0D
case, exhibiting an only 10 GHz wide band near and slightly

a b

c d

e f
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Resolution-limited half-harmonic peak

0 1Order Parameter:
Modulation Amplitude

Amod = 0.01
Modulation Amplitude

Amod = 0.1
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Amod = 0.1
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Fig. 2 Calculation on an effectively 0D single-layer short Josephson junction in BSCCO at 4 K under parametric modulation. The junction area is
L ×W= 4 μm2 and the Josephson plasma frequency is fp= 47 GHz. a Time trace of the current density jz(t) under a modulation frequency fmod ¼ 85 GHz
and small modulation amplitude Amod ¼ 0:01. The system does not converge to a Floquet steady state. b Time trace of jz(t) under a large modulation
amplitude Amod ¼ 0:1. The system has reached the Floquet steady state. c Fourier transform to jz(t) in (a), plotted in the magnitude of ∣jz(f)∣. d Fourier
transform to jz(t) in (b), showing a resolution-limited sharp half-harmonic generation around the Josephson plasma frequency. e Time-averaged current
−current correlation function g(δt) for fmod ¼ 85 GHz and small modulation amplitude Amod ¼ 0:01. f Time-averaged correlation function g(δt) for a large
modulation amplitude Amod ¼ 0:1, showing an ordered temporal pattern. g Phase diagram of temporal order parameter Δt for an ensemble of 50 junctions
versus the modulation frequency fmod and amplitude Amod (with fixed fp, temperature T= 4 K, and thermal noise). Clear phase boundaries can be identified.
h Temporal order parameter versus fmod when Amod ¼ 0:1, showing a parametric excitation band within 80−90 GHz.
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below 2fp, the 1D system is more robust to the choice of the
driving source. The peaks with Δxt > 0.5 seen in Fig. 3g
correspond to mode indices l between 3 and 10. Note that the
fundamental mode with l= 0 when fmod � 2f p, which one may
anticipate to show up, is suppressed.

Effectively 2D multi-layer long junction stack. Next, we include
the spatial dimension along z by increasing the junction number
N from 1 to 20. This dimension is distinct from x and y, and is
unique for the naturally grown BSCCO crystal compared with the
traditionally fabricated planar Nb or Al junction arrays24,36.
Figure 4 gives our calculated results in this scenario. Figure 4a, b
shows the space−time traces in the xt and zt plane at the fixed
points z= 0 and x= 0, respectively. The modulation frequency is
fmod ¼ 150 GHz and the amplitude is Amod ¼ 0:1. 2D crystalline
order emerges in both directions. In Fig. 4c, d, we show the space
−time Fourier transform for 4a, b respectively and plot the
Fourier amplitudes in the wavenumber−frequency planes. In
addition to the half-harmonic generation in t, the system spon-
taneously chooses the mode l= 6 in x and q= 6 in z. We can
define the further generalized spatiotemporal correlation func-
tion,

gðδx; δz; δtÞ ¼
hjzðx; z; tÞjzðx þ δx; z þ δz; t þ δtÞix;z;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hj2zðx; z; tÞix;z;thj2zðx þ δx; z þ δz; t þ δtÞix;z;t
q ; ð8Þ

by taking averages in all dimensions and noting z= sn and
δz= sδn. In Fig. 4e, f, we plot g(δx, 0, δt) and g(0, δz, δt), which
again verifies the nearly perfect crystalline order between each
pair of space−time dimensions. We can also define a further

generalized coupled spatiotemporal order parameter by

Δxzt ¼
1
2

hjzð0; 0; tÞjzðL;H; t þ 2νTmodÞit;νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj2zð0; 0; tÞit;νhj2zðL;H; t þ 2νTmodÞit;ν

q
�������

�
hjzð0; 0; tÞjzðL;H; t þ ð2ν þ 1ÞTmodÞit;νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj2zð0; 0; tÞit;νhj2zðL;H; t þ ð2ν þ 1ÞTmodÞit;ν

q
�������;

ð9Þ

and plot its dependence on fmod at the fixed Amod ¼ 0:1, as
shown in Fig. 4g. With the addition of the z-dimension, the
system shows an almost continuous modulation bandwidth
between 100 and 160 GHz.

3D multi-layer long and wide junction stack. Finally, we study
the full 3D situation by assigning the y dimension a finite width
W= 5 μm, and allowing for spatial variations of the Josephson
phase differences along y. Such a width can be easily obtained in
experiments24. Since in BSCCO, x and y are equivalent direc-
tions, we do not expect drastic changes of physics from the 2D
case except for further enhanced robustness of space−time
crystalline order due to the increased dimensionality. Our cal-
culation does verify this expectation. Instead of repeating same
sets of plots as above, we consider a possible experimental setup
(see “Methods”) and perform the 3D calculation with experi-
mental parameters.

We assume a laser beam, modulated in intensity at a frequency
fmod, is absorbed by the BSCCO stack where it deposits an ac
power Pac ¼ Pac;0sin

2ð2πfmodt=2Þ. If the BSCCO crystal is
considered at thermal equilibrium, the result of the laser
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Fig. 3 Calculation on an effectively 1D single-layer long Josephson junction in BSCCO under parametric modulation at 4 K. The junction length is
L= 25 μm and width is W= 2 μm. a Space−time trace of the current density jz(t) in the Floquet steady state under the modulation frequency
fmod ¼ 140 GHz and modulation amplitude Amod ¼ 0:1. b Linescan along the frequency axis in (c) at the peak wavenumber, showing a peak frequency
around the half-harmonic frequency fmod=2 � 70 GHz. c Fourier transform to jz(x, t) in (a), plotted in the magnitude ∣jz(β, f)∣, where β is the wavenumber
along x. The graph shows a strong half-harmonic peak in the wavenumber-frequency plane. d Linescan along the frequency axis in (c) at the peak
frequency, showing a peak wavenumber corresponding to the mode index l= 9. e Space−time-averaged current−current correlation function g(δx, δt) for
fmod ¼ 140 GHz and Amod ¼ 0:1, showing an ordered spatiotemporal pattern. f Phase diagram of the spatiotemporal order parameter Δxt versus
modulation frequency fmod and amplitude Amod (with fixed fp, temperature T= 4K, and thermal noise). Clear phase boundaries can be identified. g
Spatiotemporal order parameter Δxt versus fmod when Amod ¼ 0:1, showing a broadened parametric excitation band (compared with the 0D case) spanning
100−160 GHz, a range much higher than 2fp= 94 GHz. For Amod ¼ 0:1 the correction factor C= 0.95.
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irradiation would just be a rise in temperature, without
appreciable ac oscillations in the stack temperature, or phononic
temperature. However, if the crystal is cooled sufficiently, one
may see oscillations in the electronic temperature45, which is
what we need.

In our calculation, we assume that the stack is glued to a 30 μm
thick substrate, whose lower surface is kept at the bath
temperature Tb, which in practice is often lower than the
temperature T of the junctions. The thickness of the glue layer is
30 μm. We assume a local equilibrium between the electrons and
phonons in the crystal. To mimick oscillations in the electronic
temperature we use extremely low values of the heat capacities of
5 J/m3K. We find, when starting at a bath temperature of 4 K and
using Pac,0 = 0.5 mW, a time-averaged stack temperature of 29 K
and an oscillation amplitude of 5.3 K, leading to a 10%
modulation of jc, a 2% modulation of ns, a 20% modulation of
ρc and a 10% modulation of ρab. The time-averaged stack
temperature is actually not constant across the stack but decays
from 29.2 K in the center of the stack to 26.8 K at its edges.
Figure 5a displays projections of the time-averaged intensity
gð0; 0; 0; 0Þ ¼ hj2zðx; y; z; tÞi=jc2 of the normalized out-of-plane
current densities jz flowing in the stack. The projections are to the
(x, y), (x, z) and (y, z) planes, respectively. The modulation
frequency is fmod = 154 GHz. The mode indices of the standing
wave pattern are (l,m, q) = (8, 2, 13) and the oscillation
frequency of this mode is 77 GHz.

Experimentally, to visualize the spatial order in the xy plane,
one can use either near-field measurements of the ac electric fields
near the stack surface46,47 or low-temperature scanning laser
microscopy48. The latter technique has already been used to
visualize standing electromagnetic waves in BSCCO stacks used
for the generation of THz radiation. In these experiments, the

sample is usually current biased and a laser beam focused on the
sample induces local heating which in turn changes the local
electric properties. As a result, the global voltage across the
sample changes. These global voltage changes, which are related
to the local time average hj2zðx; y; tÞi in our case, can be mapped
by scanning. The typical resolution is around 1 μm, allowing to
resolve many of the standing wave patterns along x and y.
Fourier-transform infrared spectroscopy (FTIR) can be used to
verify the predicted spatiotemporal ordered states and resolve the
half-harmonic generation of the modulation frequency fmod in
time. Figure 5b shows the expected spectrum. Figure 5c shows the
calculated parametric modulation band as an indicator of the
driving robustness.

Discussion
One may quest whether the spatiotemporal order in BSCCO can
be extended to spatially arbitrarily large stacks. With increasing
stack size, particularly along the z-direction, the number of
resonant modes drastically increases, with a large number of
modes that are nearly degenerate. A strong mode competition can
occur in this case, eventually leading to a decreased mode stability
and/or to chaotic behavior. Our preliminary simulations for lar-
ger junction numbers indeed indicate this trend. Therefore, a
junction number of order 20 may already be close to the max-
imum in order not to destroy the space−time order. More in-
depth studies are needed along this direction.

Besides, we have not specifically mentioned the effect of bath
temperature, which is proportional to the thermal fluctuation that
may cause mode unlocking. At low temperatures around 4 K,
within the timescales of our simulations, we have not observed
any mode-unlocking instability. However, at high temperatures,
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Fig. 4 Calculation on an effectively 2D multi-layer long Josephson junction stack in BSCCO at 4 K under parametric modulation. The junction length is
L= 25 μm, width isW= 2 μm, and layer number is N= 20. a Space−time trace of jz(x, 0, t) in the xt plane when z= 0 in the Floquet steady state under the
modulation frequency fmod ¼ 148 GHz and modulation amplitude Amod ¼ 0:1. b Space−time trace of jz(0, z, t) in the xt plane when x= 0. c Fourier
transform to jz(x, 0, t) plotted in the magnitude ∣jz(β, 0, f)∣, where β is the wavenumber along x. d Fourier transform to jz(0, z, t) plotted in the magnitude
∣jz(0, γ, f)∣, where γ is the wavenumber along z. e Space−time-averaged correlation function g(δx, δz, δt) in the δz= 0 plane. f Space−time-averaged
correlation function in the δx= 0 plane. The corresponding mode indices are l= 6 and q= 6. g Spatiotemporal order parameter Δxzt versus the modulation
frequency fmod when Amod ¼ 0:1 (with fixed fp, temperature T= 4K, and thermal noise). It shows a more continuously filled parametric excitation band
(compared with the 1D case) spanning 100−160 GHz for Amod ¼ 0:1. For Amod ¼ 0:1 the correction factor C= 0.91.
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e.g., above 30 K, we have indeed found that increased thermal
fluctuations cause mode unlocking.

A fundamentally intriguing question is how the system will
behave in the true thermodynamic limit, i.e., when the degrees of
freedom, volume, and time all go to infinity. According to our
simulations for a finite system, when the system degrees of
freedom increase, the long-wavelength soft modes tend to be
suppressed, likely due to the random destruction interference
under strong drive. We thus speculate that in the true

thermodynamic limit, only the modes with a spatial period on the
order of the Josephson length λJ may survive.

In summary, we have shown theoretically that the high Tc
superconductor BSCCO is a natural candidate for a classical STC,
owing to its property to intrinsically form a stack of long (and
wide) Josephson junctions. Under a temporally periodic and
spatially uniform modulation of the Josephson critical current
density, BSCCO can display space−time crystalline order of the
supercurrents that breaks the continuous translational symmetry
in both space and time. If the size of BSCCO is comparable or

b

c

Resolution-limited
half-harmonic peak

0 1Averaged Current Magnitude:a

Fig. 5 Calculation on a 3D multi-layer long and wide Josephson junction
stack in BSCCO under periodic laser illumination. The junction length is
L= 25 μm, width is W= 5 μm, and layer number is N= 20. a An example
of expected spatial profiles of hj2z ðx; y; z; tÞi=jc2 in the Floquet steady state
after being averaged over (z, t), (x, t), and (y, t) and plotted in the xy, yz, and
xz planes, respectively. The modulation frequency is fmod ¼ 154 GHz, the
laser power is P= 0.5 mW, and the bath temperature is Tb= 4 K. b
Expected Fourier spectrum of jz(x, y, z, t) on the edge of the sample (0, 0, 0)
where it can convert to electromagnetic radiation and be detected. The
spectrum shows the highest spark exactly at the half-harmonic frequency
77 GHz. c Expected parametric excitation band for the spatiotemporal order
parameter for various modulation frequencies fmod at the fixed laser power
0.5 mW. This spectrum is further broadened (compared with the 2D case).

Amod = 0.1

a

b

Amod = 0.1

0D

1D

Fig. 6 Comparison between the calculated temporal correlation function
for 0D and 1D Josephson junctions in BSCCO. The time difference δt takes
up to 32768 cycles of modulation period Tmod ¼ 1=fmod and the modulation
amplitude is Amod ¼ 0:1. a 0D case with fmod ¼ 85 GHz. The insets show
slightly decayed oscillation amplitudes for the first and last 10 modulation
periods. b 1D case (evaluated at a specific point with the space difference
δx= 0) with fmod ¼ 140 GHz. The insets show nearly the same oscillation
amplitudes for the first and last 10 modulation periods.
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smaller than the Josephson length in all directions, the system has
effectively zero dimension and merely exhibits the well-known
parametric oscillations in time and demands an infinite time to
evolve towards a (quasi-)Floquet steady state. In contrast, finite
(one to three) spatial dimensions ensure a rapid convergence of
the system towards the real STC state. The modulation frequency
and amplitude span a nonequilibrium phase diagram for a so-
defined spatiotemporal order parameter. The phase diagram
shows clear boundaries, outside of which the system is either
disordered or chaotic. With increasing spatial dimensions, the
system shows increasing stability manifested by a broadened
modulation bandwidth.

Our calculations are all based on actual properties of BSCCO
and so can be used to predict experiments. We have envisioned
an experimental scheme to realize the BSCCO STC by using a
near-infrared laser with a repetition rate of 100–200 GHz to
modulate the Josephson current density. The signature of STC
can be indirectly confirmed by measuring the half-harmonic
emission spectrum via FTIR or directly visualized by the well-
developed low-temperature scanning laser microscopy. If
experimentally evidenced, this new kind of condensed-matter

STCs not only enriches the classical and quantum many-body
physics in nonequilibrium, but also holds promise for unprece-
dented applications in, e.g., tunable emitters and parametric
amplifiers at terahertz frequencies.

Methods
Calculation scheme. The basic model describing the electromagnetic and thermal
properties of IJJ stacks is given in ref. 31,32. Here we give a short summary, with an
emphasis on the geometry used for the present paper.

We consider a rectangular stack of N IJJs, each having a thickness (layer period)
s = 1.5 nm. The thickness of the superconducting layers (CuO2 double layers) is ds
= 0.3 nm and the thickness of the barrier layers is di = 1.2 nm. Like in the sketch of
Fig. 1 the stack of length L and width W shall be a stand-alone stack, i.e., without a
BSCCO base crystal underneath. The critical temperature of the stack is Tc = 85 K.
The electromagnetic part of the circuit is formulated in terms of in-plane and out-
of-plane current densities flowing, respectively, along the nth CuO2 layer or across
the nth junction in the stack.

The out-of-plane current densities jz,n across the nth IJJ between the CuO2

planes n and n− 1 consist of Josephson currents with critical current density jc,
(ohmic) quasiparticle currents with resistivity ρc and displacement currents with
dielectric constant ε. We also add Nyquist noise created by the quasiparticle
currents. The in-plane currents along the nth CuO2 plane consist of a
superconducting part, characterized by a Cooper pair density ns and a quasiparticle
component with resistivity ρab. The model parameters depend on temperature, as
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Fig. 7 Experimental scheme of a parametrically modulated stack of multi-layer long and wide Josephson junctions in BSCCO. a Schematics of a laser-
pumping induced space−time crystal in BSCCO. b Proposed setup to achieve 154 GHz laser modulation from 30.8 GHz using the rational harmonic
generation technique and to detect the half-harmonic generation either with a Fourier-transform infrared spectroscopy or autocorrelation setup. Inset
shows the loop gain profile with a sinusoidal line shape originating from the EOM modulation. The amplitude condition for lasing is satisfied when the gain
profile equals unity (GL= 1).
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plotted in detail in ref. 31. Then, the electric part of the circuit is described by sine-
Gordon-like equations for the Josephson phase differences γn(x, y) in the nth
junction of the IJJ stack:

sds∇
∇ _γn
ρab

� �
þ λ2k∇ðns∇γnÞ ¼

2þ λ2kns
λ2c

 !
jz;n � jz;nþ1 � jz;n�1:

ð10Þ

Here, n = 1…N,∇= (∂/∂x, ∂/∂y) and λk ¼ ½Φ0ds=ð2πμ0jc0λ2ab0Þ�
1=2

, with the in-
plane London penetration depth λab0 at 4 K and the magnetic permeability μ0.

λc ¼ ½Φ0=ð2πμ0jc0sÞ�1=2 is the out-of-plane penetration depth. jc0 is the 4 K
Josephson critical current density and ρc0 is the BSCCO c axis (subgap-)resistivity
at 4 K. Φ0 is the flux quantum. For the out-of-plane current densities,

jz;n ¼ βc0€γn þ
_γn
ρc;n

þ jc sinðγnÞ þ ηz;n; ð11Þ

with βc0 ¼ 2πjc0ρ
2
c0εε0s=Φ0; ε0 is the vacuum permittivity and ηz,n are the out-of-

plane noise current densities. Time is normalized to Φ0/2πjc0ρc0s, resistivities to ρc0
and current densities to jc0.

For the electrical parameters we use the 4 K values ρc0 = 1100Ω cm,
jc0= 250 A/cm2, λab0 = 260 nm, and further ρab(Tc) = 100 μΩcm and ε= 13,
yielding λc = 264 μm, λk = 1.52 μm and βc0 = 1.5 × 105. We will further make use
of the Josephson length λJ, obtained via λJ

�1 ¼ 2λ�1
k þ λ�1

c . For our parameters
λJ ~ 1.1 μm. For the temperature dependence of jc we use a parabolic profile,
jc / 1� ðT=TcÞ2; for the temperature dependence of ρc see ref. 31.

Equations (10) and (11) are discretized in space, with X = 50 points in x-
direction and Y points in y-direction. For 3D simulations Y= 10 and for 2D
simulations Y= 1. The equations are propagated in time using a 5th order Runge-
Kutta method. For each pixel, the normalized spectral density of ηz,n is 4ΓXYρc0/ρc,
where Γ= 2πkBT/Ic0Φ0 is the noise parameter.

In the 0D−2D simulations discussed in the main paper, we consider a minimal
model where we assume that the stack is at a fixed temperature T, with a
homogeneous temperature distribution inside the stack. For these simulations, we
assume that the Josephson critical current density oscillates in time with an
amplitude Amod, jcðtÞ ¼ jc½1þ Amod cosð2πfmodtÞ�=ð1þ AmodÞ and jc(t) is
homogeneous in space.

In the 3D simulations discussed in the main paper, we assume that some power
Pac ¼ Pac0cos

2ð2πfmodt=2Þ is deposited in the stack and solve Eqs. (10) and (11) in
combination with the heat diffusion equation cdT/dt=∇ (κ∇ T)+ qs, with the
specific heat capacity c and the (anisotropic and layer dependent) thermal
conductivity κ. The power density qs for heat generation in the stack results from
Joule heating due to the electrical part of the circuit and from the ac power
deposited by the laser. For the simulations, we assume that the stack is glued to a
30 μm thick substrate with lateral dimensions 2L × 2W, whose lower surface is kept
at the bath temperature Tb. The thickness of the glue layer is 30 μm. To mimick
oscillations in the electronic temperature we use extremely low values for the heat
capacities of 5 J/m3 K. The thermal equations are discretized in space, using 2X
points along x and 2Y points along y and are propagated in time using a 5th order
Runge-Kutta method.

It is important to note the difference between 0D and finite spatial dimensions.
For 0D, within our calculated time scale, the system has never reached a true
steady-state, i.e., a desired time-crystal phase. As shown in Fig. 6a, after the system
passes the transient state and enters the Floquet (quasi-)steady state, the temporal
correlation function persistently decays even by a time difference of 32,768 cycles
of modulation period Tmod ¼ 1=fmod, with fmod ¼ 85 GHz. In contrast, for 1D, as
shown in Fig. 6b, the temporal correlation (evaluated at a specific point with zero
space difference) establishes quickly and remains the same up to 32768 cycles of
Tmod ¼ 1=fmod, with fmod ¼ 140 GHz.

Experimental proposal. A schematic experimental design to generate periodic
modulations of the junction parameters is given in Fig. 7a. The major challenge is
to achieve a very high repetition rate 100−200 GHz and a strong power so as to
induce about 10% change of jc, i.e., Amod ¼ 0:1. One may consider raising the bath
temperature Tb close to Tc to reduce fp and thus alleviate the frequency require-
ment. However, the simultaneously increased thermal noise significantly sup-
presses the formation of space−time crystalline order. In fact, in our simulations,
we could not find a substantial spatiotemporal order above ~40 K even in the 3D
case.

Laser pulses with a high repetition rate can be achieved by adopting the rational
harmonic mode-locking (RHML) laser technique49,50. As shown in Fig. 7b, the
construction of a RHML laser consists of a closed-loop fiber ring as the optical
cavity. An erbium doped-fiber amplifier (EDFA) is plugged inside the fiber ring to
provide gain for lasing in the telecommunication C-band. In general, the lasing
frequency (wavelength) of a ring laser is determined by two conditions: (1)
amplitude condition: loop gain GL= 1; (2) phase condition: loop phase φL= 2πM
with M being an arbitrary integer. The amplitude condition is determined by a
lithium niobate electro-optical modulator (EOM) inserted into the ring, which
modulates the loop gain profile and consequently determines the lasing frequency,

while the phase condition is controlled by carefully selecting the modulation
frequency. When the EOM operates at a frequency fm ¼ sþ 1=p

� 	
f c, where s and

p are integers, and fc is the fundamental frequency of the fiber ring cavity which is
determined by the loop length of the fiber ring, the repetition rate of the laser
pulses can be obtained as fr= (sp+ 1)fc. As an estimation, a 5 m long single mode
(SM) fiber loop gives fc= 40MHz. Choosing s= 770 and p= 5, a high repetition
rate of fr= 154 GHz can be obtained, while the required modulation frequency
fm= 30.8 GHz is readily accessible using standard EOM and microwave sources. In
practice, the polarization of the laser is determined by the polarization-maintaining
elements (such as the EOM) inside the ring. The polarization controller (PC) is
used to optimize the polarization condition for these elements, and an optical
isolator is used to reinforce unidirectional propagation of the laser light inside the
ring. Most importantly, such a configuration ensures that the modulation signal,
laser repetition rate, and half-harmonic generation are all at different frequencies,
and therefore potential crosstalk in the characterization of the generated half-
harmonic signal can be drastically reduced.
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