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Neural heterogeneity promotes robust learning
Nicolas Perez-Nieves 1✉, Vincent C. H. Leung 1, Pier Luigi Dragotti1 & Dan F. M. Goodman 1✉

The brain is a hugely diverse, heterogeneous structure. Whether or not heterogeneity at the

neural level plays a functional role remains unclear, and has been relatively little explored in

models which are often highly homogeneous. We compared the performance of spiking

neural networks trained to carry out tasks of real-world difficulty, with varying degrees of

heterogeneity, and found that heterogeneity substantially improved task performance.

Learning with heterogeneity was more stable and robust, particularly for tasks with a rich

temporal structure. In addition, the distribution of neuronal parameters in the trained net-

works is similar to those observed experimentally. We suggest that the heterogeneity

observed in the brain may be more than just the byproduct of noisy processes, but rather may

serve an active and important role in allowing animals to learn in changing environments.
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The brain is known to be deeply heterogeneous at all scales1,
but it is still not known whether this heterogeneity plays an
important functional role or if it is just a byproduct of

noisy developmental processes and contingent evolutionary his-
tory. A number of hypothetical roles have been suggested
(reviewed in ref. 2), including in efficient coding3–9, reliability10,
working memory11, and functional specialisation12. However,
previous studies have largely used simplified tasks or networks,
and it remains unknown whether or not heterogeneity can help
animals solve complex information processing tasks in natural
environments. Recent work has allowed us, for the first time, to
train biologically realistic spiking neural networks to carry out
these tasks at a high level of performance, using methods derived
from machine learning. We used two different learning
models13,14 to investigate the effect of introducing heterogeneity
in the time scales of neurons when performing tasks with realistic
and complex temporal structure. We found that it improves the
overall performance, makes learning more stable and robust, and
that the network learns neural parameter distributions that match
experimental observations, suggesting that the heterogeneity
observed in the brain may be a vital component of its ability to
adapt to new environments.

Results
Time scale heterogeneity improves learning on tasks with rich
temporal structure. We investigated the role of neural hetero-
geneity in task performance by training recurrent spiking neural
networks to classify visual and auditory stimuli with varying
degrees of temporal structure. The model used three layers of
spiking neurons: an input layer, a recurrently connected layer,
and a readout layer used to generate predictions (Fig. 1A), a
widely used minimal architecture (e.g. Maass et al.15, Neftci
et al.14). Heterogeneity was introduced by giving each neuron an
individual membrane and synaptic time constant. We compared
four different conditions: initial values could be either homo-
geneous or heterogeneous, and training could be either standard
or heterogeneous (Fig. 1B). In more detail, time constants were
either initialised with a single value (homogeneous initialisation),
or randomly according to a gamma distribution (heterogeneous
initialisation). In both types of training, the parameters of the
models were optimised using surrogate gradient descent14.
Synaptic weights were trainable in both standard and hetero-
geneous training regimes, while time constants were either held
fixed at their initial values in the standard training regime, or
could be modified in the heterogeneous training regime.

We used five different datasets with varying degrees of
temporal structure. Neuromorphic MNIST (N-MNIST)16,
Fashion-MNIST (F-MNIST)17, and the DVS128 Gesture
dataset18 feature visual stimuli, while the Spiking Heidelberg
Digits (SHD) and Spiking Speech Commands (SSC) datasets19 are
auditory. N-MNIST and DVS128 use a neuromorphic vision
sensor to generate spiking activity, by moving the sensor with a
static visual image of handwritten digits (N-MNIST) or by
recording humans making hand gestures (DVS128). F-MNIST is
a dataset of static images that are widely used in machine
learning, which we converted into spike times by treating the
image intensities as input currents to model neurons, so that
higher intensity pixels would lead to earlier spikes, and lower
intensity to later spikes. Both SHD and SSC use the same detailed
model of the activity of bushy cells in the cochlear nucleus
developed in Cramer et al.19, in response to spoken digits (SHD)
or commands (SSC). Their model consists of standard compo-
nents from the auditory modelling literature, including a
hydrodynamic basilar membrane, transmitter pool and inhomo-
geneous Poisson process hair cell, and leaky integrate-and-fire

bushy cell. Of these datasets, N-MNIST and F-MNIST have
minimal temporal structure, as they are generated from static
images. DVS128 has some temporal structure as it is recorded
motion, but it is possible to perform well at this task by discarding
the temporal information. The auditory tasks SHD and SSC by
contrast have very rich temporal structure. In all cases, we used
the train/test split suggested by the corresponding dataset authors
to compare our performance with previous baselines fairly.

We found that heterogeneity in time constants had a profound
impact on performance on those training datasets where
information was encoded in the precise timing of input spikes
(Table 1 and Fig. 2A). On the most temporally complex auditory
tasks, accuracy improved by a factor of around 15–20%, while for
the least temporally complex task N-MNIST, we saw no
improvement at all. For the gesture dataset DVS128, we can
identify the source of the (intermediate) improvement as the
heterogeneous models being better able to distinguish between
spatially similar but temporally different gestures, such as
clockwise and anticlockwise versions of the same gesture
(Supplementary Fig. 7A, B). This suggests that we might see
greater improvements for a richer version of this dataset in which
temporal structure was more important.

We verified that our results were due to heterogeneity and not
simply to a better tuning of time constants in two ways. Firstly,
we performed a grid search across all homogeneous time
constants for the SHD dataset and used the best values for our
comparison. Secondly, we observe that the distribution of time
constants after training is very similar and heterogeneous
regardless of whether it was initialised with a homogeneous or
heterogeneous distribution (Fig. 2B), indicating that the hetero-
geneous distribution is optimal.

Introducing heterogeneity allows for a large increase in
performance at the cost of only a very small increase in the
number of parameters (0.23% for SHD, because we have added
some neuron-specific parameters, but not added any synapse-
specific ones, and the vast majority of parameters are synaptic
weights), and without using any additional neurons or synapses.
Heterogeneity is therefore a metabolically efficient strategy. It is
also a computationally efficient strategy of interest to neuro-
morphic computing, because adding heterogeneous time con-
stants to the model adds O(n) to memory use and computation
time when simulating the model, while adding more neurons
adds O(n2) (because the model is fully connected, so the number
of synaptic weights is proportional to the square of the number of
neurons).

Note that it is possible to obtain better performance using a
larger number of neurons. For example, Cramer et al.19 obtained
a performance of 83.2% on the SHD dataset without hetero-
geneity using 1024 neurons and data augmentation techniques,
whereas we obtained 82.7% using 128 neurons and no data
augmentation. We focus on smaller networks here for two
reasons. Firstly, we wanted to systematically investigate the effect
of different training regimes, and the current limitations of
surrogate gradient descent mean that each training session takes
several days. Secondly, with larger numbers of neurons,
performance even without heterogeneity can in some cases
approach the ceiling on these tasks (which are still simple in
comparison to those faced by animals in real environments),
making it more difficult to see the effect of different architectures.
In the case of the SSC dataset, however, even with this limitation
to small networks, heterogeneity confers such an advantage that
our results are state of the art (for spiking neural networks) by a
large margin.

We also tested the effect of introducing heterogeneity of other
neuron parameters, such as the firing threshold and reset
potential, but found that it made no appreciable difference. This
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was because for our model, changing these is almost equivalent to
a simple scaling of the membrane potential variable. By contrast,
Bellec et al.24 found that introducing an adaptive threshold did
improve performance, presumably because it allows for much
richer temporal dynamics (in line with earlier findings25).

Predicted time constant distributions match experimental
data. In all our tasks, the distributions of time constants after
training approximately but not exactly fit a log-normal or gamma
distribution (with different parameters for each task). They are
also consistent across different training runs (Supplementary
Figs. 1 and 2) and initial distributions (Supplementary Figs. 8 and
9), suggesting that the learned distributions may be optimal.

Using publicly available datasets including time constants recor-
ded in large numbers of neurons in different animals and brain
regions20–23, we found similar distributions to those we predicted
(Fig. 2C). This is striking, as our model is optimised for a single,
relatively simple task, while animals in real environments face a
range of tasks, each of which is more difficult than our model
tasks. The parameters for the experimentally observed distribu-
tions are different for each animal and region, just as for different
tasks in our simulations. Interestingly, the distribution para-
meters are also different for each cell type in the experimental
data, a feature not replicated in our simulations as all cells are
identical. This suggests that introducing further diversity in terms
of different cell types may lead to even better performance.

Prediction
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Fig. 1 Diagram of network architecture and training configurations. A Model architecture. A layer of input neurons emits spike trains into a recurrently
connected layer of spiking neurons which is followed by a readout layer. B Configurations. Training can be either standard (only the synaptic weights are
learned) or heterogeneous (the synaptic weights and membrane and synaptic time constants are learned). The initialisation can be homogeneous (all
synaptic and membrane time constants are initialised to the same value) or heterogeneous (synaptic and membrane time constants are randomly
initialised for each neuron by sampling them from a given probability distribution).

Table 1 Testing accuracy percentage over different datasets and training methods.

Initialisation Training N-MNIST F-MNIST DVS128 SHD SSC

Homog. Standard 97.4 ± 0.0 80.1 ± 7.4 76.9 ± 0.8 71.7 ± 1.0 49.7 ± 0.4
Heterog. Standard 97.5 ± 0.0 87.9 ± 0.1 79.5 ± 1.0 73.7 ± 1.1 53.7 ± 0.7
Homog Heterog. 96.6 ± 0.2 79.7 ± 7.4 81.2 ± 0.8 82.7 ± 0.8 56.6 ± 0.7
Heterog. Heterog. 97.3 ± 0.1 87.5 ± 0.1 82.1 ± 0.8 81.7 ± 0.8 60.1 ± 0.7
Chance level 10.0 10.0 10.0 5.0 2.9

Effect of initialisation and training configuration on performance, on datasets of increasing temporal complexity. Initialisation can be homogeneous (all time constants the same) or heterogeneous
(random initialisation), and training can be standard (only synaptic weights learned) or heterogeneous (time constants can also be learned). N-MNIST and F-MNIST are static image datasets with little
temporal structure, DVS128 is video gestures, and SHD and SSC are temporally complex auditory datasets.
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Heterogeneity improves generalisation: speech learning across
time scales. Sensory signals such as speech and motion can be
recognised across a range of speeds by humans and animals. We
tested the role of heterogeneity in learning a circuit that can
function across a wide range of speeds. We augmented the SHD
spoken digits datasets to include faster or slower versions of the
samples, multiplying all spike times by a temporal scale as an
extremely simplified model that captures a part of the difficulty of
this task (Fig. 2D). During training, temporal scales were ran-
domly selected from a distribution roughly matching human
syllabic rate distributions26. The heterogeneous configurations
performed as well or better at all time scales (Fig. 2E), and in
particular were able to generalise better to time scales outside the
training distribution (e.g. an accuracy of 47% close to a time scale
of 4, around 7% higher than the homogeneous network, where
chance performance would be 5%). Heterogeneous initialisation
alone was sufficient to achieve this better generalisation perfor-
mance, while time constant training improved the peak perfor-
mance but gave no additional ability to generalise.

Heterogeneity improves robustness against mistuned learning.
We tested the hypothesis that heterogeneity can provide robust-
ness with two experiments where the hyperparameters were
mistuned, that is where the initial distributions and learning
parameters were chosen to give the best performance for one
distribution, but the actual training and testing is done on a
different distribution.

In the first experiment, we took the augmented SHD spoken
digits dataset from the previous section, selected the hyperpara-
meters to give the best performance at a time scale of 1, but then
trained and tested the network at a different time scale (Fig. 2F).
We used training of weights only, since allowing retraining of
time constants lets the network cancel out the effect of changing
the time scale. With a homogeneous or narrow heterogeneous
initial distribution (blue line in Fig. 2F), performance falls off for
time scales far from the optimal one, particularly for larger time
scales (slower stimuli). However, a wide heterogeneous initial
distribution (purple line in Fig. 2F) allows for good performance
across all time scales tested, at the cost of slightly lower peak

Fig. 2 Impact of training configuration and temporal structure of the dataset on the testing accuracy, membrane time constant distributions and
performance when training at different time scales. A Improvements in accuracy in testing data, for datasets with low (N-MNIST, F-MNIST),
intermediate (DVS) and high (SHD) temporal complexity. Shaded areas correspond to the standard error of the mean over 10 trials (which in some cases is
too small to be visible). Initialisation can be homogeneous (blue/green) or heterogeneous (orange/red), and training can be standard, weights only (blue/
orange) or heterogeneous including time constants (green/red). Heterogeneous configurations achieve a better test accuracy on the more temporally
complex datasets. Heterogeneous initialisation also results in a more stable and robust training trajectory for F-MNIST, leading to a better performance
overall. B Membrane time constant distributions before (left) and after (right) training for each dataset. Histograms above the axis represent
heterogeneous initialisation, and below the axis homogeneous initialisation. In the case of standard training (weights only), the initial distribution (left) is
the same as the final distribution of time constants after training. C Experimentally observed distributions of time constants for (top to bottom): mouse
cochlear nucleus, multiple cell types (172 cells)20,21; mouse V1 layer 4, spiny (putatively excitatory) cells (164 cells)22,23; human middle temporal gyrus,
spiny cells (236 cells)22,23. D Raster plot of input spikes from a single sample of the SHD dataset (spoken digits) at three different time scales. E Accuracy
on the SHD dataset after training on a variety of time scales (randomly selected from the grey distribution) for the four configurations described in A.
F Accuracy on the SHD dataset when the initial distribution of time constants is tuned for time scale 1.0, but the training and testing is done at different
time scales.
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performance at the best time scale. We tested whether or not this
was solely due to the presence of a few neurons with long time
constants by introducing an intermediate distribution where the
majority of time constants were the same as the homogeneous
case, with a small minority of much longer time constants (brown
line in Fig. 2F). The performance of this distribution was
intermediate between the homogeneous and heterogeneous
distributions, a pattern that is repeated in our second
experiment below.

In the second experiment, we switched to a very different
learning paradigm, FORCE training of spiking neural networks13

to replay a learned signal, in this case, a recording of a zebra finch
call (Fig. 3A; from Blättler and Hahnloser27). This method does
not allow for heterogeneous training (tuning time constants), so
we only tested the role of untrained heterogeneous neuron
parameters. We tested three configurations: fully homogeneous
(single 20 ms time constant as in the original paper); intermediate
(each neuron randomly assigned a fixed fast 20 ms or slow 100
ms time constant); or fully heterogeneous (each neuron randomly
assigned a time constant drawn from a gamma distribution).

Nicola and Clopath13 showed that network performance is
highly dependent on two hyperparameters (G and Q in their
paper). We, therefore, tuned these hyperparameters for a network
of a fixed size (N= 1000 neurons) and ran the training and
testing for networks of different sizes (Fig. 3B). As the network
size started to diverge, the homogeneous network began to make

large errors, while the fully heterogeneous network was able to
give low errors for all network sizes. The intermediate network
was able to function well across a wider range of network sizes
than the fully homogeneous network, but still eventually failed for
the largest network sizes. At these large network sizes, the
homogeneous network neurons fire at or close to their maximal
rate and training cannot take place, leading to poor performance
(Fig. 3C). The robustness of the heterogeneous version of the
network can be measured by the area of the hyperparameter space
that leads to good performance (Fig. 3D). Adding partial or full
heterogeneity leads to an improvement in learning for all points
in the hyperparameter space, again suggesting that it can improve
the robustness of learning in a wide range of situations.

Discussion
We trained spiking neural networks at difficult classification
tasks, either forcing all neuron time constants to be the same
(homogeneous) or allowing them to be different (heterogeneous).
We found that introducing heterogeneity improved the overall
performance across a range of tasks and training methods, but
particularly so on tasks with richer intrinsic temporal structure.
Learning was more robust, for heterogeneous networks, in that
the networks were able to learn across a range of different
environments, and when the hyperparameters of learning were
mistuned. When the learning rule was allowed to tune the time

Fig. 3 Robustness to learning hyperparameter mistuning. A Spectrogram of a zebra finch call. The network has to learn to reproduce this spectrogram,
chosen for its spectrotemporal complexity. B Error for three networks at different network sizes (hyperparameters G and Q were chosen to optimise
performance at N= 1000 neurons as given in Table 4). Networks are fully homogeneous (Homog); intermediate, where each neuron is randomly assigned
slow or fast dynamics (Double); or fully heterogeneous, where each neuron has a random time constant drawn from a gamma distribution (Gamma).
C Raster plots of 50 neurons randomly chosen, and reconstructed spectrograms under fully homogeneous and fully heterogeneous (Gamma) conditions
for N= 4000 neurons as indicated in B. D Reconstruction error. Each row is one of the three configurations shown as lines in B. Each column is a network
size. The axes of each image give the learning hyperparameters (G and Q). Grey pixels correspond to log mean square error above 0, corresponding to a
complete failure to reconstruct the spectrogram. The larger the coloured region, the more robust the network is, and less tuning is required.
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constants as well as synaptic weights, a consistent distribution of
time constants was found, akin to a log-normal or gamma dis-
tribution, and this qualitatively matched time constants measured
in experimental data. Our model is consistent with the two
possibilities that these time constant distributions are learned
during an individuals lifetime, or that they are found as a result of
an evolutionary process.

We conclude from this that neural heterogeneity is a meta-
bolically efficient strategy for the brain. Heterogeneous networks
have no additional cost in terms of the number of neurons or
synapses, and perform as well as homogeneous networks which
have an order of magnitude more neurons. This gain also extends
to neuromorphic computing systems, as adding heterogeneity to
the neuron model adds an additional time and memory cost of
only O(n), while adding more neurons has a cost of O(n2)
(because all neurons are connected). Further, in some neuro-
morphic systems like BrainScaleS this heterogeneity is already
present as part of the manufacturing process28. In addition to
their overall performance being better, heterogeneous networks
are more robust and able to learn across a wider range of
environments, which is clearly ethologically advantageous. Again,
this has a corresponding benefit to neuromorphic computing and
potentially machine learning more generally, in that it reduces the
cost of hyperparameter tuning, which is often one of the largest
costs for developing these models.

We now turn to the matter of the extent of time constant
tuning in real nervous systems. It could be the case that the
heterogeneous distribution of time constants observed in different
animals and brain regions (Fig. 2C) is simply a product of noisy
developmental processes. We cannot rule this out. However, our
results show that the distributions observed experimentally clo-
sely match the optimal ones found by simulations, and this
optimal distribution confers a substantial computational advan-
tage. It, therefore, seems likely that the brain makes use of this
advantage. We found that any degree of heterogeneity improves
performance, but that the best performance could be found by
tuning the distribution of time constants to match the task.
Without a more detailed model of particular brain regions in
specific animals, and the real-world tasks they solve, it is difficult
to conclude whether or not the precise distributions observed
experimentally are tuned to those tasks or not. Further, having a
less precisely tuned distribution may lead to greater robustness in
uncertain environments.

A number of studies have used heterogeneous or tunable time
constants29–31, but these have generally been focussed on max-
imising performance for neuromorphic applications, and not
considering the potential role in real nervous systems. In parti-
cular, we have shown that: heterogeneity is particularly important
for the type of temporally complex tasks faced in real environ-
ments, as compared to the static ones often considered in
machine learning; heterogeneity confers robustness allowing for
learning in a wide range of environments; optimal distributions of
time constants are consistent across training runs and match
experimental data; and that our results are not specific to a
particular task or training method.

The methods used here are very computationally demanding,
and this has limited us to investigating very small networks
(hundreds of neurons when using surrogate gradient descent and
thousands using FORCE training). Indeed, we estimate that in the
preparation of this paper, we used approximately 2 years of GPU
computing. Finding new algorithms to allow us to scale these
methods to larger networks will be a critical task for the field.

Finally, it would be interesting to see to what extent different
forms of heterogeneity confers other advantages, such as spatial
as well as temporal heterogeneity. We observed that in the brain,
different cell types have different stereotyped distributions of time

constants, and it would be interesting to extend our methods to
networks with multiple cell types, including more biophysically
detailed cell models.

Our computational results show a compelling advantage for
heterogeneity, and this makes intuitive sense. Having hetero-
geneous time constants in a layer allows the network to integrate
incoming spikes at different time scales, corresponding to shorter
or longer memory traces, thus allowing the readout layer to
capture information at several scales and represent a richer set of
functions. It would be very valuable to extend this line of thought
and find a rigorous theoretical explanation of the advantage of
heterogeneity.

Methods
Neuron and synaptic models. We use the Leaky Integrate and Fire (LIF) neuron
model in all our simulations. In this model, the membrane potential of the ith
neuron in the lth layer U ðlÞ

i ðtÞ varies over time following Eq. (1).

τm _U
ðlÞ
i ðtÞ ¼ �ðU ðlÞ

i ðtÞ � U0Þ þ IðlÞi ðtÞ ð1Þ
Here, τm is the membrane time constant, U0 is the resting potential and IðlÞi is

the input current. When the membrane potential reaches the threshold value Uth a
spike is emitted, Ui(t) resets to the reset potential Ur and then enters a refractory
period that lasts tref seconds where the neuron cannot spike.

Spikes emitted by the jth neuron in layer l− 1 at a finite set of times ftðkÞj g can
be formalised as a spike train Sðl � 1Þ

j ðtÞ defined as in Eq. (2)

Sðl�1Þ
j ðtÞ ¼ ∑

k
δðt � tðkÞj Þ ð2Þ

The input current IðlÞi is obtained from the spike trains of all presynaptic
neurons j connected to neuron i following Eq. (3)

τs _I
ðlÞ
i ðtÞ ¼ �IðlÞi ðtÞ þ∑

j
WðlÞ

ij S
ðl�1Þ
j ðtÞ þ∑

j
V ðlÞ

ij S
ðlÞ
j ðtÞ ð3Þ

Here τs is the synaptic time constant, WðlÞ
ij is the feed-forward synaptic weight

from neuron j in layer l− 1 to neuron i in layer l and V ðlÞ
ij is the recurrent weight

from neuron j in layer l to neuron i in layer l.
Thus, a LIF neuron is fully defined by six parameters τm, τs,Uth,U0,Ur, tref plus

its synaptic weights WðlÞ
ij and V ðlÞ

ij . We refer to these as the neuron parameters and
weights, respectively.

Since we are considering the cases where these parameters may be different for
each neuron in the population we should actually refer to τm,i, τs,i, Uth,i, U0,i,Ur,i,
tref,i. However, for notational simplicity, we will drop the i subscript and it will be
assumed that these parameters can be different for each neuron in a population.

Neural and synaptic model discretisation. In order to implement the LIF model
in a computer, it is necessary to discretise it. We follow the discretisation in
Cramer et al.19. Here we use square brackets to index variables changing in a
discrete time setting, so that t refers to a continuous value when written f(t) or an
integer when written f[t]. We discretise time into multiples of a small-time step
Δt, so that spikes can only happen at multiples of Δt. With this discretisation, we
can approximately solve Eq. (3) to give

IðlÞi ðt þ ΔtÞ ¼ IðlÞi ½t þ 1� ¼ αIðlÞi ½t� þ∑
j
WijS

ðl�1Þ
j ½t� þ∑

j
VijS

ðlÞ
j ½t�; ð4Þ

with α ¼ expð�Δt=τsÞ. Similarly, Eq. (1) becomes

U ðlÞ
i ðt þ ΔtÞ ¼ U ðlÞ

i ½t þ 1� ¼ βðU ðlÞ
i ½t� � U0Þ þ U0 þ ð1� βÞIðlÞi ½t� � ðUth � UrÞSðlÞi ½t�;

ð5Þ
with β ¼ expð�Δt=τmÞ. Finally, the spiking mechanism

SðlÞi ½t� ¼ 1 if U ðlÞ
i ½t� � U th ≥ 0

0 if U ðlÞ
i ½t� � U th<0

(
ð6Þ

Notice how the last term in Eq. (5) introduces the membrane potential
resetting. This would only work if we assume that the neuron potential at spiking
time was exactly equal to Uth. This may not necessarily be the case since a
membrane potential update that crossed the threshold may result in U ðlÞ

i > U th and
then the resetting mechanism will not set the membrane potential to Ur. However,
we found that this has a negligible effect in our simulations.

Surrogate gradient descent training. With the discretisation introduced in the
previous section, a spiking layer consists of three cascaded sub-layers: current from
Eq. (4), membrane from Eq. (5) and spike from Eq. (6). The current and membrane
sub-layers have access to their previous state and thus, they can be seen as a
particular case of recurrent neural network (RNN). Note that while each neuron is

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26022-3

6 NATURE COMMUNICATIONS |         (2021) 12:5791 | https://doi.org/10.1038/s41467-021-26022-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a recurrent unit since it has access to its own previous state, different neurons in
the same spiking layer will only be connected if any of the non-diagonal elements
of V ðlÞ is non-zero. In other words, all spiking neural networks (SNNs) built using
this model are RNNs but not all SNNs are recurrent SNNs (RSNNs).

We can cascade L spiking layers to conform a deep spiking neural network
analogous to a conventional deep neural network and train it using gradient
descent. However, as Eq. (6) is non-differentiable, we need to modify the
backwards pass as in ref. 14 so that the backpropagation through time (BPTT)
algorithm can be used to update the network parameters.

σ U ðlÞ
i

� �
¼ U ðlÞ

i

1þ ρjU ðlÞ
i j

ð7Þ

This means that while in the forward pass the network follows a step function as
in Eq. (6), in the backwards pass it follows a sigmoidal function described in Eq.
(7), with a steepness set by ρ.

We can now use gradient descent to optimise the synaptic weights WðlÞ and V ðlÞ

as in conventional deep learning. We can also optimise the spiking neuron-specific
parameters Uth,U0,Ur since they can be seen as bias terms. The time constants can
also be indirectly optimised by training α and β, which can be seen as forgetting
factors.

We apply a clipping function to α and β after every update.

clipðxÞ ¼ e�1=3; if x < e�1=3

0:995; if x > 0:995

(
ð8Þ

In order to ensure stability, the forgetting factors have to be <1. Otherwise, the
current and membrane potential would grow exponentially. Secondly to make the
system causal these factors cannot be less than zero. This, however, would allow for
arbitrarily small time constants and for a finite time resolution Δt leads to constant
firing and numerical instability. Thus, we constrain the time constants to be at least
3Δt. This leads to the minimum value being expð�1=3Þ. As for the upper bound,
we chose a maximum time constant of 100 ms (corresponding to
expð�Δt=100Þ ¼ 0:995) informed by the time constants reported in the
NeuroElectro database32, which shows that about 99.5% of the membrane time
constants recorded from biological neurons have time constants below this value.
The lower bound is also consistent with this database given our simulation time
step of 0.5 ms. Since there is no data available on synaptic time constants, we chose
the same range as for the membrane constant. We also set clipping limits for
Uth,U0,Ur such that they are always between the ranges specified in Table 2.

There are several ways in which the neuron parameters may be trained. One
possibility is to make all neurons in a layer share the same neuron parameters. That
is, a single value of Uth,U0,Ur, α, β is trained and shared by all neurons in a layer.
Another possibility is to optimise each of these parameters in each neuron
individually as we have done in our experiments. We also always trained the weight
matrices WðlÞ and V ðlÞ . Training was done by using automatic differentiation on
PyTorch33 and Adam optimiser with a learning rate 10−3 and betas (0.9, 0.999).

In all surrogate gradient descent experiments, a single recurrent spiking layer
with 128 neurons received all input spikes. This recurrent layer is followed by a
feed-forward readout layer with Uth set to infinity and with as many neurons as
classes in the dataset.

For the loss function, we follow the max-over-time loss in ref. 19 to take the
maximal membrane potential over the entire time in the readout layer, which was
found to lead to the highest classification performance. We then take these
potentials and compute the cross-entropy loss

L ¼ �log
exp argmaxtU

ðLÞ
class½t�

� �
∑j exp argmaxtU

ðLÞ
j ½t�

� �
0
@

1
A ð9Þ

where class corresponds to the readout neuron index of the correct label for a given
sample. The loss is computed as the average of Nbatch training samples. This was
repeated for a total of Nepochs.

In order to improve generalisation, we added noise to the input by adding
spikes following a Poisson process with a rate of 1.2 Hz and deleting spikes with a
probability of 0.001.

The parameters used for the network are given in Tables 2 and 3, unless
otherwise specified. In Fig. 2F, we used a log-normal distribution for the initial
values of the time constants in which we ensured the mode was the same as in the

Gamma distribution, we used for the other experiments (Table 2) but we scaled the
standard deviation to be f times that of the original Gamma distribution. We used
f= 4 for the heterogeneous case.

For the intermediate case, all neurons were initialised as in the Homogeneous
configuration except for 5% of them selected randomly that were given the largest
time constant value allowed of 100 ms. The aim of this was to test whether all that
was needed was some neurons with a longer memory. We chose 5% since the
optimal distribution of trained time constants in the SHD shows that about this
fraction of neurons reach this maximum value.

All states Ii(l)[0] and Ui(l)[0] are initialised to 0. For the weights W and V , we
independently sampled from a uniform distribution Uð�k�1=2; k�1=2Þ, with k being
the number of afferent connections34.

FORCE training. The FORCE method is used to train a network consisting of a
single recurrent layer of LIF neurons as in ref. 13. In particular, we followed the
method used to learn to reproduce a songbird singing. In this method, there are no
feed-forward weights and only the recurrent weights V are trained. We can express
these weights as

V ¼ Gv þ QηϕT ð10Þ
The first term in Eq. (10), namely Gv, remains static during training and it is

initialised to set the network into chaotic spiking. The learned component of the
weights ϕT 2 RK ´N is updated using the Recursive Least Squares algorithm. The
vector η 2 RN ´K serves as a decoder and it is static during learning. The
constants G and Q govern the ratio between chaotic and learned weights.

With this definition of V , we can write the currents into the neurons as the sum
I[t]= IG[t]+ IQ[t] (we dropped the layer l superscript since we only have a single
layer) where we define

IG½t þ 1� ¼ αIG½t� þ GvS½t� ð11Þ

IQ½t þ 1� ¼ QηϕTr½t� ð12Þ

r½t þ 1� ¼ αr½t� þ S½t� ð13Þ
In order to stabilise the network dynamics, we add a High Dimensional

Temporal Signal (HDTS) as in ref. 13. This is anM dimensional periodic signal z[t].
Given the HDTS period T, we split the interval [0, T] into M subintervals
Im,m= 1,…,M such that each of the components of z[t] is given by

zm½t� ¼
Asin Mπt

T

� ��� ��; if t 2 Im
0 otherwise

(
ð14Þ

This signal is then projected onto the neurons through a decoder μ 2 RN ´M

similar to η in Eq. (10). The total current is then given by

I½t� ¼ IG½t� þ IQ½t� þ μz½t� ð15Þ
The aim of FORCE learning is to approximate a K-dimensional time-varying

teaching signal x[t]. The vector r[t] is used to obtain an approximant of the desired
signal

x̂½t� ¼ ϕTr½t� ð16Þ
The weights are updated using the RLS learning rule according to:

ϕ½t� ¼ ϕ½t � 1� � e½t�P½t�r½t� ð17Þ

P½t� ¼ P½t � 1� � P½t � 1�r½t�r½t�TP½t � 1�
1þ r½t�TP½t � 1�r½t� ð18Þ

During the training phase, the teaching signal x[t] is used to perform the RLS
update. Then, during the testing phase, the teaching signal is removed.

We used the parameters given in Table 4 for all FORCE experiments, unless
otherwise specified. For the gamma initialised synaptic time constants, we draw the
values from Γ(3, 0.025).

The period T was chosen to be equal to the length of the teaching signal x[t].
The membrane potentials were randomly initialised following a uniform

Table 2 Parameter initialisation for the different
configurations.

Parameter HomInit HetInit Description

τm �τm Γð3; �τm=3Þ Membrane time constant
τs �τs Γð3; �τs=3Þ Synaptic time constant
Uth Uth Uð0:5; 1:5Þ Membrane threshold
U0 U0 Uð�0:5;0:5Þ Resting potential
Ur Ur Uð�0:5;0:5Þ Reset potential

Table 3 Surrogate gradient descent network parameters.

Parameter Value Description

Δt 0.5 ms Simulation time step
�τm 20 ms Mean membrane time constant
�τs 10 ms Mean synaptic time constant
Uth 1 V Membrane threshold
U0 0 mV Resting potential
Ur 0 mV Reset potential
tref 0 ms Refractory time
ρ 100 Surrogate steepness
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distribution UðU r;U thÞ. Vectors η and μ were randomly drawn from Uð�1; 1Þ. The
static weights v were drawn from a normal distribution N ð0; 1=ðNp2ÞÞ, then these
weights were set to 0 with probability p= 0.1. All other variables are initialised to
zero unless otherwise specified.

We computed the errors following

logMSEðx; x̂Þ ¼ log 10
jjx � x̂jj2F

D

� �
ð19Þ

where jjxjjF is the Frobenius norm of the multidimensional time signal x and D is
the number of elements in x.

Data availability
Spiking datasets
The spiking data used in this study are available in the following databases.
• N-MNIST: https://www.garrickorchard.com/datasets/n-mnist.
• Fashion-MNIST: https://github.com/zalandoresearch/fashion-mnist.
• DVS Gesture: https://www.research.ibm.com/dvsgesture.
• Heidelberg Spiking Datasets (SHD and SSC): https://compneuro.net/posts/2019-

spiking-heidelberg-digits.
Neural data
The neural data used in this study are available in the following databases.
• Allen Atlas: https://allensdk.readthedocs.io/en/latest.
• Paul Manis dataset: https://figshare.com/articles/dataset/

Raw_voltage_and_current_traces_for_current-
voltage_IV_relationships_for_cochlear_nucleus_neurons_/8854352.
Audio files
The Zebra Finch bird song data used in this study is available in the following

database.
• Zebra Finch bird song: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192758/

bin/pone.0025506.s002.wav.

Code availability
All code is available at https://github.com/npvoid/neural_heterogeneity35.
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