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|dentifying and characterizing pesticide use on
9,000 fields of organic agriculture
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Notwithstanding popular perception, the environmental impacts of organic agriculture, par-
ticularly with respect to pesticide use, are not well established. Fueling the impasse is the
general lack of data on comparable organic and conventional agricultural fields. We identify
the location of ~9,000 organic fields from 2013 to 2019 using field-level crop and pesticide
use data, along with state certification data, for Kern County, CA, one of the US" most
valuable crop producing counties. We parse apart how being organic relative to conventional
affects decisions to spray pesticides and, if spraying, how much to spray using both raw and
yield gap-adjusted pesticide application rates, based on a global meta-analysis. We show the
expected probability of spraying any pesticides is reduced by about 30 percentage points for
organic relative to conventional fields, across different metrics of pesticide use including
overall weight applied and coarse ecotoxicity metrics. We report little difference, on average,
in pesticide use for organic and conventional fields that do spray, though observe substantial
crop-specific heterogeneity.
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griculture covers about 40% of arable land globally! and is

a leading cause of environmental degradation!. Despite

tremendous gains in agricultural production in the past
several decades, hunger and malnutrition remain a challenge?,
and demand for agricultural products continues to increase’.
Finding scalable ways to improve the sustainability of agricultural
production is critical to supporting a growing population and
mitigating damage to human and environmental health.

Organic agriculture is a commonly suggested approach to
improving the sustainability of agricultural production. Organic
agriculture currently covers only ~1.5% of global agricultural land
but is growing rapidly in extent and sales*>. For example,
between 2000 and 2015, global organic agriculture grew from 15
million ha to 51 million ha? and has since exceeded 73 million
ha®. The rapid increase in consumer demand for organics is
driven by a variety of factors mostly related to nutrition, food and
farmworker safety, and environmental concerns?. Similar con-
cerns have prompted numerous policy initiatives to promote
organic production, such as the European Union’s Farm to Fork
Strategy®’. Despite popular perception, understanding the ben-
efits and drawbacks of organic agriculture on a per output basis
remains an area of active research8-13,

The crux of the debate, from the environmental sustainability
perspective, is whether the reduction in negative ecological and
environmental impacts on-field compensates for the reduction in
yields!415 and increased yield variability!® that has been observed
for most organically produced crops in actual field surveys$16:17,
Though seemingly simple, addressing this question for even a
subset of environmental outcomes is plagued by methodological
challenges stemming from a lack of a valid comparison group!8.
Organic fields are unlikely to be randomly placed on the land-
scape, nor are organic farmers likely a random draw of the
broader farming community. In other words, organic farms
might grow a systematically different suite of crops on system-
atically better or worse soil, or be produced by farmers with
systematically different environmental or health behaviors than
their conventional neighbors. Though such challenges can and
have been addressed through long-term field trials!®20, under-
standing the difference between organic and conventional fields
in real-world settings is crucial for understanding the merits of
organic production practices at scale. However, surveys of yields
and practices across a small number of willing farmers will likely
be plagued by selection bias. This sample-selection challenge is
further compounded by a paucity of field-level data on inputs
and/or outputs in general, and on organic fields in particular!!,
which complicates comparisons.

While only one metric of sustainability, pesticides are highly
salient to consumers!1:2!, Historically, widespread use of persis-
tent, broad-spectrum, and bioaccumulating chemicals such as
organochlorines and organophosphates had severe negative
impacts on humans, other mammals, and birds?>23; impacts
which helped spur the early organic movement?42>. As those
risks were increasingly recognized, a new generation of chemicals
was developed with a particular focus on reducing human-health
risks. While the development and uptake of these pesticides have
limited direct mammal and bird mortality in recent decades?®,
many remain highly toxic to other organisms?’-2°. Further,
population-level ecological effects through food web interactions
or sub-lethal impacts (e.g., behavioral changes and reduced
migratory navigation) remain a concern for higher taxa3%:31.

Organic agriculture is commonly perceived to be chemical-free,
though organic as a regulatory definition, at least in the US,
generally restricts the type of inputs applied rather than the
amount?!. The regulation does not itself require chemical-free
farming and organic compliance does not always imply low
toxicity to ecological or environmental endpoints. For example,

organic-acceptable active ingredients such as copper?!, pyrethrin,
and azadirachtin are toxic to aquatic organisms3233. Further-
more, since pesticide residue testing often focuses on synthetic
chemicals of high human toxicity>*3> and field-level data on
production or certification are rarely available, little is known
about pesticide use practices on organic fields.

Our goal is to quantify the differences in total pesticide use and
pesticides of specific concern to different ecological and envir-
onmental endpoints to further understanding of the environ-
mental benefits and drawbacks of different production systems.
We harmonize and aggregate several data sources to identify the
spatial location of organic crop fields and rely on unique, field-
level crop and pesticide use data from Kern County, California to
understand pesticide use differences. Kern County produces a
variety of high-value fruit and vegetable crops and is consistently
one of California’s and US most valuable crop-producing
counties by sales’. Due to the number of different products
and chemicals applied in our study area, we rely on pesticide use
and coarse metrics of ecotoxicity based on the pesticide product
label, which reflects the exceedance of toxicity thresholds to dif-
ferent endpoints. We acknowledge pesticide use may not always
reflect potential environmental harm37-38, and even thresholds of
toxicity cannot differentiate between the hazards posed by two
chemicals that both exceed regulatory thresholds, but that differ
in toxicity. We consider and discuss toxicity metrics and limita-
tions throughout.

Our investigation primarily relies on double hurdle models to
parse apart the decision to spray pesticides from the decision of
how much to spray. Using these models, we evaluate (1) overall
differences between organic and conventional fields with respect
to the decisions to spray and how much to spray for total pes-
ticide use and pesticides of potential hazard to a range of different
endpoints, (2) crop-specific differences in pesticide use decisions
between organic and conventional fields for five crops commonly
grown with both organic and conventional practices, and (3) how
adjusting for yield gaps may influence the overall results. Our
results suggest organic agriculture is more likely to be “pesticide-
free”, but organic fields that are sprayed tend to receive similar
levels of pesticides as their conventional neighbors.

Results

Summary statistics. Our sample consisted of 99,533 fields, which
were all permitted fields in Kern County between 2013 and 2019.
Across the sample, the average field size was about 31 ha and soil
quality—measured as the California Revised Storie Index3? with a
range from 1 (highest quality) to 6 (lowest quality)—averaged 1.8.
Annually, about 25kgha™! of pesticide active ingredients (AI)
and 45 kg ha—! of pesticide products (AI + adjuvants) were used
on the average field. There were 1293 farms in the average year
with an average farm size of 451 ha. All of these variables varied
spatially throughout Kern (Fig. 1).

We identified about 9100 organic fields between 2013 and 2019
by joining pesticide use data and data on the spatial location of
certified organic fields obtained by request from the California
Department of Food and Agriculture (see methods). Per year, the
number of organic fields ranged from a low of 936 in 2013 to a
high of 1544 in 2017. In a given year between 2013 and 2019,
there were about 14,200 permitted fields, and thus organic fields
represented ~7-11% of fields in Kern County. On average across
the entire sample, organic fields were about 44% smaller than
conventional fields (Table 1); however, farms containing both
conventional fields and at least one organic field in the study
period were ~4 times larger than purely conventional farms
(1240 ha compared to 319 ha). Organic fields also tended to be on
better soil, both on average (Table 1) and when accounting for
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Fig. 1 Kern Fields in 2019. a Top 15 crops (by a number of fields) grown with all other crops grouped as “Other” and

all multi-crop fields marked as

“Multicrop”. b Field size in hectares, with quartiles from O (light yellow) to 296 (dark red). ¢ Soil quality by Storie Index, with quartiles from 1 (dark green-
productive soil) to 6 (light yellow-unproductive soil). d Pesticide uses in kg ha=! of a pesticide product, with quartiles from O (light purple) to 2188 (dark
purple). For fields with multiple values (multi-crop, active vs. inactive permits, etc.), maps illustrate the maximum value of each variable, and for crops, the

most frequent crop grown.

Table 1 Summary statistics for organic and conventional fields.

Total fields Mean-field Mean soil quality Mean active ingredients

Mean pesticide product

size (ha) (1= high, 6 =low) applied (kgha 1) applied (kgha 1)
All Fields Conv 90,439 32.03+x0Mm 1.87 £<0.01 2691+ 0.27 47.62+0.43
Org 9,094 17.91+£0.17 1.37 £<0.01 8.04+0.27 1710+ 0.48
Carrots Conv 2,886 26.88+0.25 1.35+£0.01 127.90 £ 3.61 253.46+7.28
Org 1,403 29.22+0.36 1.29£0.01 11.67 £0.60 19.90+0.98
Grapes Conv 8443 27.88+0.34 1.54£0.01 59.83+£1.96 99.91+2.51
Org 317 27.73+1.37 1.52+0.05 65.38+4.16 12491+7.55
Onions Conv 985 22.05+0.61 1.59+0.03 21.04 £ 2.69 39.90+4.98
Org 141 23.63+1.20 1.21£0.03 26.65+4.39 38.46+5.28
Oranges Conv 4,520 24.05+£0.46 1.43+£0.01 50.06+0.89 92.05+1.33
Org 141 26.04+1.84 1.33+£0.05 3316 £ 4.54 44.82+513
Potatoes Conv 2,314 29.07+0.37 1.45+0.01 46.80£1.96 9413425
Org 489 28.09 £ 0.65 1.30+0.02 1.61+£0.17 4.61+£0.49

Mean * standard error (sd//n) for field size, soil quality, and pesticide use for all fields and for five crops commonly grown as both organic (“Org") and conventional (“Conv").
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crop-specific heterogeneity (Supplementary Table 1). Top actively
cultivated crops by area included carrot, potato, lettuce leaf, and
tomato for organic fields and almond, pistachio, grape, and alfalfa
for conventional fields, respectively.

Lognormal hurdle models. We began with pooled and panel data
models to understand the influence of different model specifica-
tion decisions (Methods, Supplementary Notes, Supplementary
Tables 2 and 3). However, the mechanisms determining zero
values for pesticide use may differ from those determining the
level of use, and basic summary statistics suggest differences in
the frequency of zero values between organic and conventional
fields (Supplementary Table 4). As such, we investigate and pri-
marily discuss double hurdle models to parse apart the decision to
spray from the decision of how much to spray. For the first
hurdle, we are interpreting the use of zero pesticides as the true
choice of the farmer and are predicting the probability the farmer
(of a given field) is “zero type” as a function of being organic or
not. We do so using a random-effects probit model with cov-
ariates for field size, farm size, and soil quality, with random
intercepts for farm-by-crop family and with cluster robust stan-
dard errors clustered at the farm-by-crop family (Methods,
Supplementary Notes). We report the average marginal effects
from the probit models. For all active ingredients, we find being
organic leads to an average ~31 percentage point (0.31 +0.03)
reduction in the probability of pesticide use (Fig. 2, Supplemen-
tary Table 5). Since the weight of active ingredients does not
necessarily reflect environmental harm37, we test several other
pesticide outcomes based on information on the pesticide label.
The pesticide label, which is governed by the EPA“0, includes
hazards statements that reflect whether one or more chemicals in

the product exceeds thresholds regarding acute toxicity to
humans, as well as for different environmental and ecological
outcomes. These statements are generally based on acute toxicity
studies for humans, and for birds, fish, invertebrates, pollinating
insects, and mammals*® (see “Methods”). In addition, labels
include a statement based on the product’s potential to drift or be
transported in other media, and information on the active
ingredients from which target taxa can be derived, among other
information. For these other pesticide use outcomes—pesticide
products, insecticide products, products with a propensity to
drift, products of potential hazard to fish and bees, and products
of higher (EPA signal word 1-2) and lower (EPA signal word
3-4) acute toxicity to humans—we see being organic leads to an
18-31 percentage point (0.18 +0.02 to 0.31 +0.03; Fig. 2, Sup-
plementary Table 5) average reduction in the probability of spray,
holding all else constant. Here, increasing field and farm size and
higher soil quality lead to a significant increase in the average
probability of using pesticides for most of the pesticide use out-
comes evaluated.

In the second hurdle, we evaluate what drives the amount of
pesticide use on fields that decide to spray. With the exception of
lower acute human toxicity products, we see a generally negative
effect of being organic, though the coefficient is only significant
(p<0.05) for higher acute human toxicity products (Fig. 2,
Supplementary Table 5). We report the organic coefficients as the
semi-elasticity, calculated from the second hurdle (log-level)
model as 100(ef — 1), and the standard error, derived using the
delta-method implemented with the nlcom function in Stata.
Here, a switch to organics leads to a significant 27 + 11 % decline
in the amount of use per hectare for higher toxicity products and
a significant 28 + 14% increase in lower toxicity products. For all
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Fig. 2 Lognormal hurdle models for different pesticide use outcomes. Lognormal hurdle models estimating the change in the probability of pesticide use
(a) and the percent change in pesticide use for fields with positive use (b) for organic relative to conventional fields. The x-axis indicates different measures
of pesticide use outcomes: kg ha=" active ingredients (Al), kg ha=! products (Prd), kg ha=! of products targeting insect pests only (Insect), kg ha=! of
products with a propensity to drift (Drift), kg ha=" products of potential hazard to fish and bees (Fish, Bee), as well as products of higher (EPA signal word
1-2) and lower (EPA signal word 3-4) acute human toxicity (High, Low). Across all outcomes, organic fields have a significantly lower probability of using
pesticides (a), though there is little difference between organic and conventional fields for those that do spray, with the exception of higher and lower
toxicity chemicals (b). Symbols indicate point estimates (mean) and error bars represent the 95% CI. All models include cluster robust standard errors
clustered at the farm-by-crop family level. For the second hurdle (b) in Figs. 2-4, percent change is calculated from the log-level model as 100(ef — 1) and
standard errors are derived using the delta-method implemented with the nlcom function in Stata. All models include covariates for field size, farm size, and
soil quality as well farm-by-crop family random effects. N =91,926 for all specifications in the first hurdle (a) and N = 68,704 (Al), N = 68,816 (Prd),
N =52,606 (Insect.), N= 67,988 (Drift), N= 60,653 (Fish), N = 48,254 (Bee), N = 61,883 (High), and N = 65,593 (Low) in the second hurdle (b), where
abbreviations are as described above. Coefficient estimates for all covariates are provided in Supplementary Table 5.
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other outcomes except products of potential hazard to fish, the
coefficient estimates were equivalent to a ~1-17% decrease (Fig. 2,
Supplementary Table 5), though none were statistically
significant.

Crop-specific hurdle models. Random intercepts for farm-by-
crop families allow for correlation between fields shared by a
farmer of a specific class of crops but force all observations to
share the same overall relationship, which may hide important
and policy-relevant variation in the relationship between man-
agement and pesticides for individual crops. We re-ran the log-
normal hurdle model for five crops (carrot, grape, orange, potato,
and onion) that were relatively widely grown both organically and
conventionally (see “Methods”). This allows for unique slopes by
crop type, though reduces the number of observations sub-
stantially, particularly for organics in the second hurdle. Across
these five crops, we see a consistent and statistically significant
21-51 percentage point (0.21 + 0.04 to 0.51 + 0.03) decrease in the
average probability of using any pesticide active ingredients
(Fig. 3, Supplementary Table 6). The effect of organics on the
second hurdle was much more variable. We see being organic
significantly decreases pesticide AI on carrots by about 87 + 3%,
while significantly increasing pesticide Al on grapes by about
132 £33% (Fig. 3, Supplementary Table 6). Switching to organic
is estimated to significantly reduce pesticide use by 64 + 11% and
81 + 5%, respectively, for oranges and potatoes, and result in a
non-significant 54 +54% increase for onions (Fig. 3, Supple-
mentary Table 6). Compared to the pooled model with all crops,
these crops, on average, had a larger decrease in the probability of
using any pesticides and a larger decrease in pesticide use for
organic versus conventional fields that did spray (Supplementary
Tables 5 and 6).

Since kg of pesticide active ingredients does not necessarily
capture environmental harm, we evaluated several pesticide
outcomes for grape and carrot, the two most widely grown of our
top five crops. This further limited the sample size in the second

hurdle, which uses only positive observations, particularly for
organic fields. Across all outcomes, a switch to organic reduced
the average probability of using a given type of pesticide by about
27-51 percentage points (0.27 +£0.05 to 0.51 +£0.04) for carrots
and 21-23 percentage points (0.21 + 0.03 to 0.23 + 0.3) for grapes
(Supplementary Tables 7 and 8, Supplementary Fig. 1). As above,
for the second hurdle, a switch to organic for carrots reduced
most types of pesticide use by 80+9% to 98+1%, while
increasing low toxicity chemicals by about 72 +12%. Switching
to organics for grapes increased use by 126 +34% to 286 + 98%
(Supplementary Tables 7 and 8, Supplementary Fig. 1).

Accounting for a yield gap. Throughout, we have been mea-
suring pesticide use per area rather than per unit output since we
lack information on yields. This is important here since many
organic crops have reduced yields relative to conventional
production!®1>. To assess the possible impact of a yield gap on
our results, we multiply the use rate by the yield gap estimates in
Ponisio et al.!> for organic fields and rerun the lognormal hurdle
models across all crops pooled. Doing so, of course, does not
impact our coefficients in the first hurdle (decision to use any
pesticides), but does shift our coefficients in the second hurdle.
Across all outcomes except low toxicity chemicals, the effect of
switching to organics is near zero and not significant (Fig. 4,
Supplementary Table 9).

Other sample considerations. Observations missing crop famil-
ies were dropped in any model that included family in either the
random effects or the cluster robust standard errors. While 7367
fields were dropped due to missing crop families, 6684 of those
were uncultivated agriculture. A small number of observations
(n =319 out of >90,000) were dropped due to missing soil quality
data. Including observations with interpolated soil quality has
little effect on our results. Including fields that self-reported
organic increased the sample of organic fields by 407 (out of
>9000), and resulted in more consistently positive, though not
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Fig. 3 Lognormal hurdle models run separately for 5 commonly grown organic and conventional crops. Across all five crops, organic fields have a lower
probability of using any pesticide active ingredients (a). The effect of organic on pesticide use for fields that do spray is crop-dependent (b). For the second
hurdle (b), percent change is calculated from the log-level model as 100(e® — 1) and standard errors are derived using the delta-method implemented with
the nlcom function in Stata. Symbols indicate point estimates (mean) and error bars represent the 95% ClI. All models include heteroskedasticity robust
standard errors. All models include covariates for field size, farm size, and soil quality, as well as year random intercepts. For the first hurdle, N = 4289
(Carrot), N=38760 (Grape), N =4654 (Orange), N = 2804 (Potato), N =1126 (Onion). For the second hurdle, N=2766 (Carrot), N=7678 (Grape),
N = 4316 (Orange), N=2059 (Potato), N =814 (Onion). Coefficient estimates for all covariates are provided in Supplementary Table 6.
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Fig. 4 Lognormal hurdles models correcting for estimated yield gaps following Ponisio et al.’>. Correcting for yield gaps does not affect the first hurdle
(a), but does shift the coefficient estimates in the second hurdle up (b) relative to the unadjusted model (Fig. 2). Figure details are otherwise the same as
Fig. 2. The x-axis indicates different pesticide use outcomes: kg ha=" active ingredients (Al), kg ha=! products (Prd), kg ha= of products targeting insect
pests only (Insect), kg ha= of products with a propensity to drift (Drift), kg ha=! products of potential hazard to fish and bees (Fish, Bee), as well as

products of higher (EPA signal word 1-2) and lower (EPA signal word 3-4) acute human toxicity (High, Low). Symbols indicate point estimates (mean) and
error bars represent the 95% Cl. All models include cluster robust standard errors clustered at the farm-by-crop family level. For the second hurdle (b),
percent change is calculated from the log-level model as 100(e® — 1) and standard errors are derived using the delta-method implemented with the nlcom
function in Stata. All models include covariates for field size, farm size, and soil quality as well as farm-by-crop family random effects. N = 91,926 for all
specifications in the first hurdle (@) and N = 68,704 (Al), N=68,816 (Prd), N=52,606 (Insect.), N = 67,988 (Drift), N= 60,653 (Fish), N= 48,254

(Bee), N = 61,883 (High), and N = 65,593 (Low) in the second hurdle (b). Coefficient estimates for all covariates are provided in Supplementary Table 9.

statistically significant, coefficients on organic for most pesticide
outcomes in the second hurdle (Supplementary Figs. 2 and 3).

Toxicity considerations. As pesticide use does not always reflect
potential environmental harm, we sought to investigate additional
measures of toxicity as robustness tests. The data needed to cal-
culate many toxicity metrics (e.g., pesticide load and pesticide
toxicity index) were not readily available or accessible for the
numerous chemicals in use and endpoints of interest. Never-
theless, to compare our binary metrics of toxicity to a continuous
metric, we followed Nowell et al.#! to calculate the Pesticide
Toxicity Index for one well-studied environmental endpoint, fish.
Data for other endpoints either had less coverage or were not
readily available. Still, only about 70% of the chemicals in use in
our study period matched the Nowell et al.4! data or data from
the Ecotox database accessed with the R package Standartox*2.
Further, organic fields were more likely to lack toxicity infor-
mation. Noting the bias due to non-random missing toxicity data,
we nevertheless ran our double hurdle model for fields that had
products with toxicity information for, on average, 70% of the
chemicals used. About a third of our organic fields that had
pesticide use met this condition, while about two-thirds of the
conventional fields with pesticide use met this condition. For this
subsample, our highly preliminary investigation suggests a
decrease in toxicity-weighted use for fish of about half for fields
that are organic relative to conventional. However, a more
comprehensive understanding of toxicity particularly for organic
chemicals and other endpoints is needed to appropriately com-
pare ecotoxicological outcomes between organic and conven-
tional fields.

Discussion

Organic agriculture is often proposed as a more sustainable and
environmentally healthy alternative to mainstream, conventional
approaches. Yet, a lack of data on production and inputs has
hampered comparisons of conventional and organic
methods! 141543 gpurring ongoing debates®!11-13:44. Here, we
sought to isolate all organic fields across one of the US’ most
valuable crop-producing counties and compare the effect of
organic versus conventional production systems on different
metrics of field-level pesticide use. Our analysis provides four
main innovations: (1) for the first time, we have isolated the
spatial location of thousands of organic fields using production
and pesticide use data, (2) organic fields are generally smaller in
size, part of larger farms, and on better soil than their conven-
tional counterparts, (3) organic agriculture, on average, uses less
pesticides than conventional production and this manifests in a
lower probability of using any pesticides and similar use on fields
that do spray, (4) different crop types vary considerably from the
average, and in some cases, the reverse relationship is present and
significant across pesticide metrics.

Field-level data from Kern County, CA illustrates around
7-11% of crop production is organically grown, based on our
definition which sought to capture certified organic fields. How-
ever, these fields are not a random subset of agricultural fields in
the county. Rather, there is little overlap in the most commonly
grown organic and conventional crops, which was part of our
motivation for including farmer-by-crop family random effects
and evaluating crop-specific relationships. Organic crops differ in
other ways as well. Organic crops tend to be grown on more
productive soil—on average and even after controlling for crop-
specific characteristics (see methods)—suggesting that any yield
gap in Kern County may be an underestimate. In addition,
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organic fields, while smaller in size, are generally part of farms far
larger than their purely conventional counterparts, indicating the
potential for selection bias in comparisons of environmental
impacts. Beyond contradicting the small family farm many con-
sumers envision, this may indicate both economy of scale benefits
and a tendency for producers of organic crops to maintain a large
portfolio to smooth production shocks, which may differentially
affect conventional and organic crops?. Given the dramatic dif-
ference in farm size, future investigations into farm structure that
support viable organic production in intensive production regions
are warranted.

Pesticide use, though only one component of environmental or
health aspects of organic production, is of paramount importance
to consumers due to potential environmental and human health
impacts such as water quality contamination and consumer and
farm-worker wellbeing®4>~4’. We parse apart the decision to
spray pesticides from the decision of how much to spray using
lognormal hurdle models. This allows for different mechanisms
to influence each decision. In the first hurdle, which models the
decision to use pesticides or not, the coefficient on organics,
pooled across all crops, suggests a significant 18-31 percentage
point reduction in the probability of spray, depending on the
pesticide use metric (all active ingredients, products of potential
hazard to fish, high acute human toxicity, etc.). Therefore, on
average, organic fields in Kern County are more likely to be
“pesticide-free”, and the absence of spraying implies a lack of
ecotoxicological impacts stemming from pesticide use on those
fields. For the second hurdle, which models the decision of how
much to spray on fields that have positive pesticide use, we see a
significant 27% reduction in pesticide products (kg ha—!) of high
acute human toxicity for organic versus conventional, where high
toxicity is defined as EPA acute toxicity category one or two. For
other metrics of pesticide use (total active ingredients, total
products, products of potential hazard to fish, etc.) where there
are sufficient observations for comparison, we generally see a
nonsignificant reduction.

As is often the case, the average belies high levels of crop-
specific heterogeneity*8:49. Here, we observe that variation in the
organic coefficient is highly variable in the individual crop models
relative to the pooled crop model, but only in the second hurdle.
For crops commonly grown both organically and conventionally,
we see a consistent reduction in the probability of using any
pesticides, of similar magnitude as the overall average. Yet, for the
second hurdle, we see some crops have very large decreases in
pesticide use across metrics, and for others, particularly grapes,
we see large increases across most metrics. This crop-specific
heterogeneity in the effect of organic management on pesticide
use is critical to acknowledge, and policies seeking to encourage
changes in pesticide use behavior would be most effective if they
account for individual crop relationships.

As the equalizer between low-intensive, expansive agriculture
and high-intensive agriculture, yields are at the crux of most
debates regarding the sustainability of different production
systems>>0. In the absence of yield data, studies such as ours,
unfortunately, rely on per area, rather than per unit production,
comparisons of environmental impacts related to pesticide use
and other on-farm decisions. Correcting for yield differences
using published, crop-group specific yield gap estimates!> does
not, of course, change our estimated effects on the decision to
spray. However, it does shift the estimated effect of organics on
the amount of pesticide used across metrics such that the dif-
ference between organic and conventional is near zero, often
positive, but not significant. The Ponisio et al.l> study is an
estimate based on a meta-analysis of studies done across many
growing regions and could be far removed from the realities in
California. Better estimates of yield differences in this region

would dramatically improve understanding of the environmental
impacts of organic production.

Interestingly, we observe that field size leads to an increase in
the propensity to spray across all outcomes and for most indi-
vidual crops. There are both economic and ecological explana-
tions for why increasing field size would lead to an increase in
pesticide use. Larger fields provide farmers more control of their
pest populations and more private benefit from their pest control
actions!. Ecologically, larger fields may result in less spillover of
natural enemies into crop fields°>3, thus resulting in more
chemical pest control484954 Yet, with either of these explana-
tions, we would expect field size to reduce the amount as well as
the probability of treatment. Oddly, we only observe consistently
significant effects of field size in the first hurdle. Though outside
the scope of this study, exploring the influence of spatial
arrangement of organic and conventional fields and between
similar crops that may share pest or natural enemy communities
may vyield nuanced insight into the field size relationship
observed. For farm size, we see increasing farm size leads to an
increase in the propensity to treat for most outcomes, but a
decrease in the amount of pesticide used on treated fields. Again,
we might anticipate larger farms benefit from economies of scale,
and therefore spray more because it is cheaper to do so. While
our results may suggest the threshold for treatment is lower, the
actual amount used on treated fields is counterintuitively inver-
sely related to farm size.

Beyond lacking yield data, there are other caveats to our
approach. For one, it is possible we have misidentified some
certified organic fields. Identifying organic fields was particularly
challenging for observations that provided only the Public Land
Survey (PLS) Section in which the field was located. We used the
pesticide use data to carefully eliminate fields using conventional
pesticides, but it is possible that fields within a PLS Section that
did not use conventional pesticides were still not certified organic
but were misidentified as such. Second, it is also the case that not
all fields following organic practices are certified organic. Small
farms, in particular, may find the cost of certification prohibitive
and forego it>>°. The inclusion of these fields in the conventional
group could downward bias the coefficient on organics; however,
including self-reported organic fields in a subset of years did not
qualitatively affect our results. Third, while we observe permit
numbers, which reflect producers, we do not observe agricultural
enterprises. In other words, if a parent company has multiple
labels, we fail to account for those relationships. Doing so would
be important if decisions about where to plant organic fields were
made at the parent company level and reflected environmental or
pest conditions. Additionally, our metrics of pesticide use and
potential hazards are based on binary thresholds of toxicity to
different environmental endpoints. Because of the many chemi-
cals in use, the many untested adjuvants associated, and the many
environmental endpoints of interest, we were not able to apply
more refined measures of toxicity’”>8. A preliminary investiga-
tion into one well-studied endpoint hints that there may be a
larger gap between organic and conventional pesticides if con-
tinuous metrics of pesticide use were more widely available. More
in-depth toxicological analyses would be extremely valuable.
Furthermore, though we conduct several robustness tests
including different random effects and within estimator model
specifications to account for unobserved agronomic and farmer
characteristics that may differ between organic and conventional
fields, we cannot be sure we have isolated all sources of bias that
would preclude the causal interpretation of our results. Lastly,
Kern County is just one county. While the results are likely
reflective of other intensive fruit and nut-producing regions in the
western and southern US and similar climates, they may not
reflect organic and conventional production in regions with less
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valuable crop composition or lower intensity practices. Further,
the overwhelming majority of organic fields in our study belon-
ged to “mixed” farms or farms that also included conventional
fields. In areas with other business structures or a greater pre-
ponderance of exclusively organic farms, perhaps there would be
a different level of differentiation in pesticide use. However, for
organic production to meet future food demand without large
increases in farmed land will likely involve the type of intensive
organic production by large “mixed” farms seen in places like
Kern County.

Yields, fertilizers, water quality and quantity, soil quality, bio-
diversity, emissions, and price are all key aspects that are neces-
sary for a holistic understanding of the sustainability of different
production systems!!-!7, Many of these variables have been
quantified and many of those, besides yields, are improved by
organic practices, on a per area basis!1»17. However, pesticide use
behavior has remained obscure due to a lack of data for location
and spraying patterns on organic and conventional fields. Here,
we sought to elucidate the difference between organic and con-
ventional systems with respect to the decision to spray pesticides
and the decision of how much to spray. Both overall and for
individual, commonly grown crops, organic fields were more
likely to be “pesticide-free”. However, on fields that did spray,
organic and conventional fields were similar for most metrics of
pesticide use, except higher acute human toxicity chemicals. Crop
loss to pests is costly to the farmer and society, representing not
just lost production and higher prices®®%, but a waste of land,
water, and inputs as well. More detailed toxicity and yield data,
and an expanded region of study would undoubtedly provide
additional insights and are worthy of future research. Never-
theless, our results suggest that while farmers seem to make the
choice to spray organic fields less frequently, when they spray,

they use pesticides at a similar overall rate as their conventional
neighbors with substantial crop-specific heterogeneity.

Methods

We first identify the location of organic crop fields in Kern County and then
estimate whether status as organic versus conventional fields determines pesticide
use (Fig. 5).

Identifying organic fields. We identified organic fields using a combination of
California Department of Food and Agriculture (CDFA) records and Kern County
Agricultural Commissioner’s Office spatial data (“fields shapefiles”) and pesticide
use records. No single source was complete, and as such, we evaluated several
different approaches to identifying organic fields.

California Department of Food and Agriculture (CDFA) records. Data on the
location of organic fields, per the California State Organic Program, for 2013-2019
was obtained by request from the California Department of Food and Agriculture
(CDFA). The CDFA, through the State Organic Program, requires annual regis-
tration of certified organic producers who have an expected gross sale of over
$5000. We were specifically interested in the pesticide aspects of organic produc-
tion, which is governed in our study region by the USDA’s National List of Allowed
and Prohibited Substances. The National List of Allowed and Prohibited Sub-
stances delineates which synthetic substances can be used and which natural
substances cannot be used for pest control in US organic production. Besides
substances specifically (dis)allowed on the National List, allowed substances
include non-synthetic biological, botanical, and mineral inputs. Field location data
were in the form of either Assessor’s Parcel Number (APN) or PLS System
Township-Range-Section (TRS) values, though data were reported without sys-
tematic formatting. We harmonized the CDFA APN values to merge with the Kern
County Assessor’s parcel shapefile (2017), which we then spatially joined with the
Kern fields shapefiles. We followed a similar process with PLSS TRS values, which
were then merged with the Kern County PLS Section shapefile, and joined to Kern
field shapefiles. We refer to our final organic designation as “CDFA Organic”.
Details of the data cleaning process are described in the Ancillary Data Processing
Methods section below.

Using pesticide use reports to refine organic field identification. After spot-checking
pesticide use on CDFA Organic fields, it became clear we had not entirely
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Fig. 5 Methodology overview. Figure outlines the main method steps from identifying organic fields to creating the analysis data to performing the
statistical analyses. All images shown are simplified, visual representations of the datasets. CDFA refers to the California Department of Food and
Agriculture, while APN is the Assessor's Parcel Number and TRS is the Township-Range-Section. Identifying organic fields combines the created CDFA
organic APN, CDFA organic TRS, and organic pesticides data layers together to create the final organic versus conventional fields layer used in the analysis
data section. All analysis data layers are then inputted into the various statistical analyses.
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eliminated conventional fields. This was likely due to variation in polygon geo-
metries between PLSS Sections, Kern County Assessor parcels, and Kern agri-
cultural fields data. To further refine our classification, we used field-level pesticide
use, again from the Kern County Agricultural Commissioner’s Office. As thou-
sands of pesticide products (active ingredients + adjuvants) are in use in Kern
County, we took an iterative approach to eliminate fields using conventional
pesticides. We first limited the universe of pesticides to those applied to fields that
were CDFA Organic. We then identified the 50 most commonly used pesticide
products by a number of applications, and manually classified each as organic or
conventional. Having identified these products as described below, we matched
them back in, eliminating fields that used conventional products and identifying as
“PUR Organic” those that used only organic products. We repeated this process,
hand identifying the most commonly used products and eliminating fields using
conventional products until we had isolated fields using only organic products.

To classify a product as organic or conventional, we first searched for each
product’s U.S. EPA-registered product label, using the exact product name and
EPA product registration number. If there was any indication on the label that the
product was certified as organic by the Organic Materials Review Institute (OMRI),
or said “for use in organic production” or “organic”, then the pesticide was
identified as organic (n = 132). If there was no organic indication on the product
label, we searched the OMRI certification database for products with identical
names and manufacturers, and identified products as organic if such certifications
existed (n = 39). If all ingredients were defined (i.e., no inert or undefined
ingredients) and were known organic active ingredients, then the pesticide was
identified as organic (n = 1) (Supplementary Data 1). We failed to find EPA-
registered labels for three products and confirmed on the California Department of
Pesticide Regulation website that they are either inactive or out of production (EPA
registration numbers: 52467-50008-AA-5905, 36208-50020-AA, 2935-48-AA-120).
Each of the three was rarely used (1 <4) on CDFA organic fields across the 2013 to
2019 data. To be conservative, we defined them as conventional. If a field used no
pesticides and was CDFA organic, we labeled it as organic. If it used no pesticides
and was not CDFA organic, we maintained it as conventional.

Kern County agricultural commissioner’s office spatial data. For 2017-2019, the
commodity attribute field in the Kern County agricultural fields shapefiles indi-
cated self-reported organic fields with “~“ORGANIC” or “-ORG” following the
commodity name. Self-reported organic crop fields may be less accurate than those
identified using CDFA data as self-reporting is not validated nor required. After
researching multiple large crop producers in Kern County, we suspect that many
crops being grown organically with CDFA certifications are not being reported as
such to the county. Still, we run a robustness test including these fields in addition
to the PUR Organic fields for 2017 to 2019 to capture smaller farms that may be
exempt from certifications. Doing so did not qualitatively change our results
(Supplementary Figs. 2 and 3).

Analysis data. Beyond identifying organic fields, the goal of this project was to
understand the impact of organic versus conventional production on different
metrics of pesticide use. As such, we calculate various pesticide metrics, and farm,
field, and crop characteristics.

Kern County fields shapefiles. Annual Kern County fields shapefiles are publicly
available and include data on growing permit ID (“farm”), site ID, field size, crop
type, date active and inactive, among other information. A crop field is defined as a
permit-site-year combination. Permit numbers track individual growers through

time, while site IDs are a record of each permitted site maintained by a grower each
year. Site IDs occasionally persist from one year to the next (particularly for per-
ennial crops), and they are not duplicated within the same year such that rotated
crops are given unique site IDs. In some cases, multiple crops are grown on the

same field simultaneously. In such cases, each crop has a unique site ID. However,
when multiple crops are being grown on the same field simultaneously, the total
area occupied by each crop is not specified, but rather is recorded as the total field
size. To reduce bias in pesticide use rates, the field size was divided by the number
of crops being grown on a field, under the assumption that all crops on multi-crop
fields occupy an equal area. From crop type, we determined the crop’s taxonomic
family to be used in later analyses.

Pesticide use reports. Field-by-day-by-product level pesticide use data are available
to the public on the Kern County Department of Agriculture and Measurement
Standards website. Pounds of pesticide products were converted to kg of active
ingredients (AI) and identified by the type of product (e.g., insecticides) and
“potential hazard” to non-target organisms (e.g., bees) using the California
Department of Pesticide Regulation (DPR) Product Database (see Ancillary Data
Processing Methods below). We define insecticides as insecticides, insect growth
regulators, miticides, and repellents, excluding products that have dual action
(insecticide and fungicide), but not excluding insecticide products with adjuvant or
fertilizer additives. The Product Database includes binary indicators for whether a
given product is a potential hazard to different environmental outcomes. Since
pesticide adjuvants (“inert” ingredients) are sometimes used in the absence of
active ingredients and can nevertheless have environmental or wildlife impacts per
the label, we used kg of the product rather than a kg of active ingredients as

measures of use for products of potential hazard to environment and non-target
organisms. Using active ingredients instead did not qualitatively change our results
(Supplementary Fig. 4). Potential hazards to non-target organisms are based on the
Environmental Hazards statement on the pesticide label, which is regulated by the
EPA, and based on toxicity to birds, fish, invertebrates, bees, and mammals*’. We
chose to use binary metrics rather than an aggregate index because thousands of
products are used in Kern County, and toxicity metrics for the many different
chemicals and numerous environmental endpoints of interest are not readily
available. Thus, we proceed with measures of chemical product use (kgha~!) of
potential hazard to a series of ecological and environmental endpoints (fish, aquatic
species, drift, etc.). We also include products of high acute toxicity (EPA signal
words 1 and 2) and lower acute toxicity (EPA signal words 3 and 4 or not required)
to people. For completeness, we also aggregated ecotoxicity data for 29 products
that represent about 50% of each organic and conventional pesticide use (Sup-
plementary Table 10) from the Pesticide Products Database®!, primarily.

Using the fields shapefiles, pesticide use rates were summarized for each permit-
site-year grouping for various pesticide outcomes, including kgha=! of a pesticide
product, active ingredients, and products of potential hazard to fish, bees, and/or
aquatic species, products prone to drift, those categorized as insecticides, and high
and low acute toxicity products, as described above. Not all environmental
outcomes were equally likely, and in particular several pesticide use outcomes of
potential concern lacked a sufficient number of observations on organic fields for
robust comparison to their conventional counterparts (Supplementary Table 11).
We statistically analyze the subset of environmental outcomes that were reasonably
common in both organic and conventional fields, and thus more likely to produce
reliable estimates.

Soil spatial data. To address the potential that organic and conventional fields have
systematically different soil quality, we used the California Revised Storie Index.
The Storie Index land classification system is widely used across California to assess
soil quality and agricultural productivity>® and is provided in Soil Survey Geo-
graphic Database (SSURGO) tabular data for most of the state. Ratings are sys-
tematically determined by a model in the Natural Resources Conservation Service
(NRCS) National Soil Information System (NASIS) software, based on tabular data
in the SSURGO database. Soil characteristics used in the model include soil profile,
surface texture (e.g., loamy to clay-rich, excluding organic horizons), topographical
features, growing season length, and dynamic properties (e.g., drainage, alkalinity,
acidity, erosion)?. Fertility and other readily modified characteristics are excluded.
The system uses six rating levels—” Grade One” being the highest quality soil
suitable for most crops and “Grade Six” being unproductive land. We include the
Storie Index as a measure of soil quality in all analyses. Further, we evaluate
whether organic and conventional fields differ systematically in soil quality, using
both the overall Storie Index as well as widely measured components of dynamic
properties, which theoretically could be influenced by on-farm management
(Supplementary Table 1).

Storie Index values were converted from a shapefile to a 60-m raster using R’s
fasterize package. The soil raster was used to extract Storie Index values for each
Kern field polygon, using an area-weighted mean function. 319 fields had no Storie
Index ratings. To assess the importance of these missing fields, we interpolated the
Storie Index values using an inverse distance weighting function in R’s gstat
package®263, The accuracy of interpolated values was checked by applying a Leave-
One-Out Cross-Validation function to 500 randomly selected points. Including
these fields did not qualitatively change our results.

Statistical analysis. Our statistical analysis proceeded in two steps. First, we
evaluated whether conventional versus organic fields differed in pesticide use,
modeled as a continuous variable, using pooled ordinary least squares and panel
data models to determine the influence of different model specification decisions
(see Ancillary Statistical Methods below, Supplementary Notes, Supplementary
Tables 2 and 3). However, pesticide use can be conceived as a two-part decision.
First, there is the decision to use pesticides at all, and second is the decision of how
much to spray when using pesticides. Tobit models are traditionally used to esti-
mate models with censoring. However, Tobit models force the mechanisms
determining whether to spray (i.e., moving from pesticide = 0 to pesticides > 0) to
be the same as the mechanisms determining the amount sprayed when some
pesticides are used (pesticides when pesticides > 0). Double-hurdle models®* are an
alternative to the Tobit model that allows for the separation of these two decisions.

The mechanisms underlying the two decisions (to spray, how much to spray if
spraying) can differ such that different covariates can describe each process, and
the same covariates are allowed to influence the two processes in different ways
(i.e., sign and magnitude can differ). The first, binary decision is usually modeled
with a probit model.

P(y=0lx) =1 — ®(xy) (1)
Then, the second decision is modeled as a linear model with pesticide use
following a lognormal distribution, conditional on positive pesticide use®*

log(y)Ix, y >0 ~ Normal(x, a?) 2)

where @ is the standard normal cdf, x is a vector of explanatory variables including
organic status, y is pesticide use, and P is a vector of coefficients. We use a
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lognormal hurdle model rather than a truncated normal hurdle model since
pesticide use is highly non-normal, and Q-Q plots suggested substantial model
improvement using a lognormal rather than normal distribution. In contrast to the
panel data models described in the Ancillary Statistical Methods below, our
estimation equation used natural log-transformed variables for pesticides (and field
and farm size) rather than inverse hyperbolic sine (IHS) transformation since only
positive observations are included in the second hurdle model. Following insights
derived from our panel data models (Supplementary Notes), we build on the basic
hurdle model concept using the farm-by-crop family interaction as a random
intercept in both the first and second hurdle. We chose the farm-by-crop family
interaction rather than a crossed random effect due to computational feasibility
with thousands of permits and hundreds of crops, due to similarity of results to the
within estimator model (i.e., fixed effects in causal inference terminology;
Supplementary Notes, Supplementary Table 2), and due to AIC/BIC
(Supplementary Table 3). Further, we find evidence of heteroskedasticity from both
visual inspection and Levine’s test, which adds additional complications to
computing crossed random effects. Thus, we proceed with the farm-by-crop family
interaction in a random intercept model with cluster robust standard errors
clustered at the same grouping. In doing so, observations, where the taxonomic
family of the crop was unclear, were dropped. Of the 7367 fields that were dropped
due to missing crop families, 6684 were uncultivated agriculture.

Our data are effectively repeated cross-sections rather than a true panel since
fields are defined by the farm-site-year combination and thus generally change
year-to-year or when crops rotate. We model it as such. This implies we do not
require observations to have no spray in all time periods, as would be the case in a
double hurdle panel model. Linking field IDs over time through spatial processing
is complicated by crop rotations of different size areas. Since farmers may farm
multiple fields under different management systems, as we illustrate here, and have
different contractual obligations at a sub-farm level, requiring farms to never use
pesticides on all fields is not reflective of on-the-ground decisions.

We repeated the lognormal hurdle models individually for carrots, grapes,
oranges, potatoes, and onions, which were the only widely-grown crops with more
than 100 organic fields. This allowed for a different slope and intercept by
crop type.

We conduct several robustness checks. First, we do not have data on crop yields.
However, to assess the potential implications of a yield gap on our results, we
modify our per hectare rates following Ponisio et al.1® as a robustness check. We
group commodities into cereals, roots and tubers, oilseeds, legumes/pulses, fruits,
and vegetables and assign them the Ponisio et al.!® yield gap estimates for that
group. Crops that did not fall into any of the above groups (e.g., cannabis) were
provided the all-crop average from Ponisio et al.1°. Second, we analyze how
conventional and organic differ with respect to soil quality using a within estimator
approach to account for crop-specific differences in soil quality. Third, binary
toxicity metrics, while valuable given the number of chemicals and endpoints of
interest here, nevertheless fail to distinguish gradations of toxicity for chemicals
above (or below) the regulatory threshold. As mentioned above, the data needed to
calculate many aggregate indices (e.g., Pesticide Load®” and Environmental Impact
Quotient®®) are not readily available for all of the chemicals in our study. For
completeness, we attempted to calculate the Pesticide Toxicity Index for one well-
studied endpoint, fish. We supplemented data provided in Nowell et al.4! with data
from Standartox*2. However, only about 70% of the chemicals used in our study
matched, and pesticide products used on organic fields were more likely to lack
toxicity information for one or more chemicals. We briefly discuss the highly
preliminary investigation, given the non-random missing toxicity data.

All spatial analyses were performed in R Statistical Software v 3.5.3 and all
statistical analyses were performed Stata 16 MP. For all tests, statistical significance
was based on two-tailed tests with o = 0.05.

Ancillary data processing methods
Cleaning parcel data. To spatially locate organic fields, we needed to match the
Assessor’s parcel numbers (APNs) provided in the CDFA tabular data to APNs in
the Kern County Parcel shapefile (from 2017). Over 90% of the APN entries in the
CDFA data were in the format [xxx-xxx-xx], though multiple APNs were often
provided in the same cell separated by line breaks, semi-colons, commas, and/or
spaces. We made initial edits separating values into individual cells in Microsoft
Excel since formatting was highly inconsistent. Observations whose APNs were not
in the [xxx-xxx-xx] were modified so that their format matched. In the R envir-
onment, dashes were inserted after the third, sixth, and eighth characters
(1234567895 became 123-456-78-95) for APNs that did not already contain them.
Occasionally, APN numbers were provided with dashes, but with segments of
incorrect length (e.g., 12-34-567). In these instances, APN segments were either
trimmed from the right or padded with a zero on the left so they matched the [xxx-
xxx-xx] format. This approach yielded the greatest number of matches and was
checked for accuracy as described below. Additional segments (from APNs with
more than two dashes and eight numeric characters) were dropped. A handful of
APNs with fewer than eight numeric characters and no dashes were dropped
entirely.

The edited CDFA APNs were then joined with the Kern County Assessor’s
parcel shapefile, creating the “CDFA organic shapefile”. In total, 1637 of 1829
individual CDFA records joined successfully. To evaluate the accuracy of joins

between CDFA tabular data, Kern County parcel, and Kern County agricultural
spatial data, we spot-checked ownership information using “Company” (CDFA)
and “PERMITTEE” (Kern County agricultural data) values.

To then identify the crop fields within the organic parcels, we performed a
spatial join between the CDFA organic shapefile and the Kern County fields
shapefiles. Prior to performing the join, the CDFA parcels’ dimensions were
reduced with a 50-m buffer to eliminate spatial joins between CDFA parcels and
crop fields that were only touching the parcel margins. Of five different buffer
widths evaluated, 50 m reduced the number of false positives and negatives, as
determined by comparing the “Company” and “PERMITTEE” values. We refer to
the fields that match as “APN Organic”.

Cleaning PLSS Township-Range-Section values. Each year several producers
reported Township, Section, and Range (TRS) values, consistent with the PLS
System (PLSS), rather than APN values. We used these TRS values to identify PLSS
Sections that contained organic fields.

We separated any cell containing multiple TRS values and removed any prefixes
such as “S”, “Section”, “Sec.”, “I”, and “R” that would prevent joining to Kern
County PLSS spatial data in Excel. In the R environment, we padded the left side of
the “S” value with a 0 if it was a single digit, then concatenated the three
columns into a “TRS” column. We joined TRS from the CDFA tabular data to
PLSS spatial data, which identified 563 Sections as containing organic fields, from
2013 to 2019, out of a total of 664 unique TRS codes in the CDFA dataset. We then
performed a spatial join between PLSS Sections that contain organic fields and
Kern County fields shapefiles, to identify all agriculture fields that overlap with
those Sections. Additional processing using the Pesticide Use Reports is
described above.

Ancillary statistical methods. We began with a pooled ordinary least squares
(OLS) model that, as the name suggests, pools observations over farms, years, and
crop types. However, there may be attributes of crops or farms that may be sys-
tematically different between organic and conventional, and this systematic dif-
ference could bias our pooled OLS results. To address this, we first considered
propensity score approaches but were unable to find a sufficient balance of our
covariate distribution between organic and conventional fields. As an alternative,
we limited our sample to fields with overlapping farmers and crop types. In other
words, we focused on the subset of fields that are grown by farmers producing both
organic and conventional fields and to crops that are produced both conventionally
and organically. However, this shrunk our dataset by two-thirds.

To leverage more of our data, we next considered panel data models as a means
to address unobserved variables. We consider both within-estimator models (also
known as “fixed effects” in causal inference terminology, but different from the
biostatistical use of the term) and random effects models (with random intercepts),
seeking to capture characteristics of the crop, grower, and year. The advantage of a
within-estimator approach is that the omitted variables are removed (through
differencing) and thus, they can be correlated with covariates without biasing the
estimation. In other words, pesticide use and all covariates are differenced from
their crop-specific mean (or crop family, farmer, etc. specific mean, depending on
the model). In doing so, the propensity for certain crops (crop family, farmer) to be
grown organic or to be fast or slow adopters of new technologies is removed. The
disadvantage is that characteristics shared by all fields of a crop (e.g., value) are lost
in the differencing, and more importantly, that the differencing is not easily
translated to nonlinear models that we employ later in the analysis. Random
effects are more easily translated to nonlinear models. The disadvantage of
random effects is the strong assumption that the unobserved variables are
uncorrelated with the covariates!$95, which is required for random effects
coefficient estimates to be unbiased. Here, we see the difference in coefficient
estimates between the within-estimator and random effects models are quite small
(Supplementary Table 2).

Random effects particularly crossed random effects with thousands of permits
and hundreds of crops, introduce computational challenges due to large, sparse
matrices. Further, we find evidence of heteroskedasticity from both visual
inspection and Levine’s test, which adds additional complications to computing
crossed random effects. We proceed using the farm-by-crop family interaction in a
random intercept model with cluster robust standard errors clustered at the same
grouping based on AIC/BIC (Supplementary Table 3), computational feasibility,
and similarity to the within-estimator results (Supplementary Table 2).
Observations, where the taxonomic family of the crop was unclear, were dropped
in any models including family in either the random effects or the cluster robust
standard errors. Of the 7367 fields that were dropped due to missing crop families,
6684 were uncultivated agriculture.

In the panel data models, we used IHS transformations to accommodate highly
non-normal pesticide (and field and farm size) data. IHS is very similar to natural
log transformation®® but is defined at zero, which is important given a sizable
fraction of our observations have zero pesticide use. As with log-log
transformations, IHS-THS transformation can be interpreted as elasticities. We
pre-multiply pesticide use by 100 to improve estimation®, though this does not
affect interpretation. As described above, we leverage insights on model
specification from the panel data models, but rely on the double hurdle models to
parse apart the decision to spray from the decision of how much to spray.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The agriculture and pesticide use data for Kern County are available at http://
www.kernag.com/gis/gis-data.asp and Kern County parcel data is available at https://geodat-
kernco.opendata.arcgis.com/. The California Department of Pesticide Regulation Product
Database is available at https://apps.cdpr.ca.gov/docs/label/labelque.cfm. Soil quality data are
from Natural Resource Conservation Service SSUGO data available from https://
websoilsurvey.nrcs.usda.gov/ and accessed using https://websoilsurvey.sc.egov.usda.gov/
App/WebSoilSurvey.aspx. Data on registered organic producers was obtained through
request from the California State Organics Program, https://www.cdfa.ca.gov/is/
organicprogram/. Hand classified organic and conventional pesticides are provided in
Supplementary Data File 1. Data to repeat the main analyses is available on Dryad, https://
doi.org/10.25349/D9QO2T. Regression tables underlying all analysis figures (main text,
supplementary) are provided in the Supplementary Information.

Code availability

Code to repeat the main analyses is available in Supplementary Data 2.
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