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Global variation in the fraction of leaf nitrogen
allocated to photosynthesis
Xiangzhong Luo 1,2,3✉, Trevor F. Keenan 2,3✉, Jing M. Chen4, Holly Croft5, I. Colin Prentice 6,7,8,

Nicholas G. Smith 9, Anthony P. Walker 10, Han Wang7, Rong Wang4, Chonggang Xu11 & Yao Zhang 2,3

Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-

1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen

and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates

different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO;

fLNR), however, the reason for this remains unclear as widely different nitrogen use stra-

tegies are adopted in photosynthesis models. Here, we use a comprehensive database of

in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and

soil data, to examine the global distribution in fLNR using a random forest model. We find

global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf

mass per area and positive dependence on leaf phosphorus. Some climate and soil factors

(i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on

fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of

plants globally and an improved understanding of the global distribution of photosynthetic

potential.
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P lant photosynthesis is the primary means of biochemical
energy production and carbon assimilation that supports
the growth and survival of most life on Earth1,2. The rate at

which plants photosynthesize is partly constrained by plant
photosynthetic capacity, which largely reflects the active amount
and kinetic activity of the ribulose-1,5-bisphosphate carboxylase-
oxygenase (RuBisCO) enzyme in leaves1. In ecosystem models
that simulate plant photosynthesis, the active RuBisCO content is
indicated by the temperature-standardized rate of maximum
RuBisCO carboxylation (V25

cmax
). However, the estimation of V25

cmax

across global scales has been challenging as current approaches
provide substantially different estimates3,4.

RuBisCO is the most abundant protein in the world5. Nitrogen
invested in RuBisCO makes up a large fraction of nitrogen in
leaves, resulting in strong coupling between V25

cmax
and leaf

nitrogen content (LNC; area basis)6. The fraction of leaf nitrogen
allocated to RuBisCO (fLNR) is critical to the variability of the
LNC ~ V25

cmax
relationship7,8, as well as being an indicator of leaf to

whole-plant nitrogen use strategies. Several studies have sug-
gested that fLNR is a highly plastic trait, ranging from 9% to 28%
across species9–11. However, detailed information on the drivers
of fLNR variability is lacking, due to difficulties associated with its
direct measurement9,12. In ecosystem models, fLNR is also often
not explicitly considered4 but see13.

Many models use empirical linear relationships between V25
cmax

and LNC to estimate V25
cmax

, based on their concurrent
observations6,14. These empirical “nutrient-based” V25

cmax
models

use plant functional type (PFT)-specific linear equations to cal-
culate V25

cmax
from LNC, which essentially assume a fixed fLNR per

PFT, or in some cases modify fLNR (i.e., proportional to the
coefficient of the linear equations) by leaf traits such as LNC or
leaf phosphorus content (LPC)15,16. Even for models that apply
fLNR in the derivation of V25

cmax
, fLNR is set as a constant for each

PFT13, similar to the empirical V25
cmax

models4. The variation of
fLNR within PFTs is largely ignored in such nutrient-based
empirical V25

cmax
models. Another class of approaches upscales

in situ observations to the globe using linear regressions of V25
cmax

to climate variables17, under an assumption that local climate
constrains leaf photosynthetic traits. This “climate-based”
empirical approach provides a higher level of spatial variability
for V25

cmax
than nutrient-based approaches3, and thus a more

variable fLNR.
The emergence of optimality hypotheses has motived the

development of new V25
cmax

models that can explicitly or implicitly
estimate spatially and temporally dynamic fLNR. For example, an
ecological optimality (EO) model based on the coordination18
and least cost hypotheses19 predicts V25

cmax
from climate variables,

as plants optimize light use efficiency and minimize costs asso-
ciated with photosynthetic enzymes and water movement in
accordance with local weather and climate20. This model suggests
that plants acclimate to the local climate to optimize carboxyla-
tion, and fLNR is implicitly adjusted by the shifting RuBisCO
demands for nitrogen21. Meanwhile, another optimality model
—leaf utilization of nitrogen for assimilation (LUNA)—explicitly
suggests that fLNR actively changes with climate under a given
LNC, to optimize leaf nitrogen use so as to maximize net
photosynthesis22,23, and it has been incorporated in the latest
version of Community Land Model (i.e., v5)24.

We refer to these two optimality V25
cmax

models characterized by
dynamic fLNR as “optimal V25

cmax
models”, as opposed to the

aforementioned empirical V25
cmax

models. Though empirical mod-
els are often statistically derived from the similar ground obser-
vations that optimal V25

cmax
models are validated with, or even

trained upon, the resulting global distribution of V25
cmax

from these

different methods has been reported to be very different3. We
hypothesize that the stated differences between models reflect
their different assumptions regarding fLNR. To test this
hypothesis, we need to understand the variability of global fLNR
and identify the dominant controls of fLNR at the global scale.

Recent advances in leaf trait compilation and sharing25–27,
machine learning techniques for upscaling28–31, and remote
sensing of leaf traits32–35 provide a unique opportunity both to
create data-driven maps of global V25

cmax
and fLNR, to assess the

efficacy of existing estimates. In this study, we first take advantage
of newly released data of satellite-derived leaf chlorophyll
content35—the key pigment in photosynthetic light-harvesting,
and a comprehensive dataset of in situ V25

cmax
(8610 obs.; see

“Methods”) that we compiled from various databases14,20,25 to
infer the global distribution of V25

cmax
using a random forest (RF)

approach. We then use the gridded V25
cmax

map and a previously
published gridded LNC dataset28 to generate a data-driven map
of global fLNR (see “Methods”). The resulting global distribution
of fLNR allows us to examine the dominant controls of global
fLNR, and evaluate the nitrogen allocation assumptions of seven
competing V25

cmax
models, including four nutrient-based empirical

models—EM1 and EM26, EM3 and EM415, one climate-based
empirical model—EM517, and two optimality-based models—
EO20 and LUNA23 (see “Methods”).

Results
We examined the relative importance of 20 environmental (i.e.,
biotic and abiotic) factors in estimating in situ observations of
V25

cmax
, and identified remote sensing leaf chlorophyll content

(Chl), PFTs, precipitation, and soil pH as the most critical factors
(see “Methods”). We used these four predictors in RF to estimate
global V25

cmax
. The resulting RF V25

cmax
model explained 56.4% of the

spatial variance in observed V25
cmax

(Fig. 1a). Global V25
cmax

estimated
by RF was 65.7 ± 13.8 μmol m−2 s−1 (mean ± sd), ranging from to
27.4 to 158.4 μmol m−2 s−1 (Fig. 1b). Using RF V25

cmax
as the

reference, we found that global V25
cmax

estimated by the seven
competing models (i.e., EM1 to EM5, EO and LUNA; see
“Methods”) showed very different spatial patterns, with the cor-
relation coefficient (r) to RF V25

cmax
ranging from −0.14 to 0.30

(Fig. 1c; Supplementary Fig. 1).
The fLNR inferred from RF V25

cmax
and LNC28 (see “Methods”)

showed that global vegetation invested 18.2 ± 6.2% of leaf nitro-
gen in RuBisCO, on par with the value (mean: 17.6%; 90%
quantiles: 9.9–26.7%) reported by a previous meta-analysis of leaf
chemistry (n= 138)10. Our RF result suggested that fLNR was
very plastic, varying from 4.8% to 59.9% spatially (Fig. 1d). The
fLNR of vegetation in boreal (>60°N and S) and tropical zones
(30°S–30°N) was generally lower than that in temperate zones
(30–60°N and S).

We further evaluated seven V25
cmax

models and found they all
demonstrated different implied fLNR patterns than RF fLNR
(Supplementary Fig. 2), though the average fLNR reported by the
optimal V25

cmax
models (i.e., EO and LUNA) was closer to the

average RF fLNR than the empirical models. The fLNR estimated
by V25

cmax
models was 13.3 ± 5.3% (EM1), 14.0 ± 4.3% (EM2), 11.3

± 1.1% (EM3), 6.2 ± 2.2% (EM4), 20.5 ± 11.1% (EM5), 18.9 ±
5.8% (EO) and 20.0 ± 10.9% (LUNA), respectively.

We then examined the changes in fLNR from RF and the other
models along with ecological, climate, and soil gradients.
According to RF, forests showed significantly (t-test; p < 0.05)
smaller fLNR (15.3 ± 4.7%) than non-forests (20.9 ± 6.2%), con-
sistent with a leaf chemistry analysis9. Tropical evergreen forests
had less fLNR variability (sd= 2.3%) than other PFTs (from 4.6%
for evergreen needleleaf forests to 6.3% for croplands; Fig. 2a).
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There was a large variation in RF fLNR within each PFT (Fig. 2a),
which indicates that the plasticity of fLNR was dependent on
factors other than PFT. This invalidates some empirical V25

cmax

models (i.e., EM1, EM2), which assume fLNR is almost a constant
per PFT. EM3 and EM4 modify fLNR by LNC and LPC only,
however, such modification was insufficient to account for the
observed variation in fLNR (Fig. 2a). EM5, EO, and LUNA
demonstrated within-PFT variation in fLNR comparable to that
of RF fLNR (Fig. 2a), suggesting that environmental factors adjust
within-PFT variability of fLNR.

Since fLNR is critical to the photosynthetic capacity of leaves
and there is evidence that the photosynthetic capacity of leaves is
dependent on leaf traits36, climate14, and soil characteristics37, we
assume that the changes in fLNR can be attributed to these three
types of factors. We used a generalized additive model to study
the partial response of fLNR to the principal components (PCs) of
each group of variables (i.e., leaf traits, climate, and soil; Sup-
plementary Table 1). We found the RF fLNR was most sensitive
to the first principal component (PC1) of leaf traits, followed by
smaller influence from climate PC1 and soil PC1 (Fig. 2b–d).
There was a 25% change in fLNR over the observed leaf traits
range. The leaf traits-fLNR relationship suggests a strong con-
straint of fLNR by the coordination of leaf functional traits (i.e.,
the leaf economic spectrum)36. While the optimal V25

cmax
models

(i.e., EO and LUNA) and EM5 captured the response of fLNR to
leaf traits PC1 well, they either slightly underestimated or over-
estimated the sensitivity to leaf traits PC1 (Fig. 2b). Climate PC1
caused RF fLNR to change as much as 10%. However, we found
none of the V25

cmax
models captured the observed climate-fLNR

relationship, as LUNA underestimated the sensitivity of fLNR to
climate PC1, and EM5 and EO suggested the opposite direction of
response (Fig. 2c). The influence of soil PC1 on RF fLNR was less
than 3%. All optimal V25

cmax
models detected a similar magnitude

of the soil PC1 effect on fLNR but showed slightly different
response curves (Fig. 2d).

Globally, we found that fLNR was predominately determined
by its relationship with other leaf traits, as on 63.5% of the

vegetated land surface leaf traits explained more than 50% of the
changes in fLNR, while climate and soil characteristics imposed
substantial impacts at the regional scale (Fig. 3a). Climate
explained 30% or more of the changes in leaf fLNR over 50.9% of
the vegetated land surface, including the southeastern U.S.,
Central America, Eastern Europe, tropical and southern Africa, a
large part of China, India, and Australia. Meanwhile, soil
explained 15% or more of the changes in leaf fLNR on 11.9% of
the vegetated land surface, including western and eastern North
America, northern Eurasia, and temperate Africa (Fig. 3a). The
average changes in fLNR driven by leaf traits, climate and soil
were 4.3 ± 2.7, 2.1 ± 1.7%, and 0.8 ± 0.6%, respectively.

We further quantified the influence of each variable on fLNR
using a multivariate linear model (see “Methods”). Our result
suggested that leaves with larger leaf mass per area (LMA) have
smaller fLNR (Fig. 3b), indicating that non-photosynthetic pro-
teins and amino acids used an increasingly larger portion of leaf
nitrogen. A 1 g/m2 increase in LMA caused a 0.19 ± 0.001% (95%
CI) decrease in fLNR. Meanwhile, LPC was positively related to
fLNR, with a 0.1 g/m2 increase in LPC leading to a 4.22 ± 0.047%
increase in fLNR. The response of fLNR to LPC for tropical
evergreen forests and mixed forests was stronger than other PFTs
(Fig. 3c, Supplementary Table 2). Changes in fLNR were posi-
tively correlated to vapor pressure deficit (VPD). An increase of
0.1 kPa in VPD drove fLNR to increase by 0.48 ± 0.002%. Air
temperature, precipitation, and soil water content overall showed
a negligible impact on fLNR. The fLNR of non-forest ecosystems
(i.e., croplands, shrublands, and wetlands) increased with pho-
tosynthetically active radiation (PAR), suggesting plants enhance
nitrogen use under high light conditions. Overall, a 100 µmol/m2/
s increase in PAR led to a 0.26 ± 0.001% increase in fLNR. Finally,
soil pH and soil sand percentage were identified as the two most
important soil factors influencing fLNR. fLNR increased by 0.25
± 0.03% and 0.03 ± 0.0002% in response to a unit increase in pH
(unitless) and soil sand percentage (%), respectively (Fig. 3c). In
addition, some soil characteristics demonstrated PFT-specific
influence on fLNR, notably a positive effect of soil bulk density on

Fig. 1 Global V25
cmax

and the fraction of leaf nitrogen invested in RuBisCO (fLNR). a The relationship (type-II regression) between observed in situ V25
cmax

and
V25
cmax

estimated by a random forest model (RF) on a 0.5-degree grid; (b) the global distribution of V25
cmax

(μmol m−2 s−1) estimated by RF using global
gridded environmental covariates; (c) the spatial correlation between RF V25

cmax
and the estimates of seven competing V25

cmax
models, including five empirical

V25
cmax

models (EM1 to EM5) and two optimal V25
cmax

models (EO and LUNA); (d) the global distribution of RF fLNR (%). The maps in (b) and (d) were created
by the authors using a Matlab package M_Map (see “Code availability statement”).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25163-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4866 | https://doi.org/10.1038/s41467-021-25163-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


fLNR of croplands and grasslands, and a negative effect of soil silt
percentage on fLNR of evergreen needleleaf forests.

Discussion
In this study, we produced a global fLNR and V25

cmax
map using an

RF model trained primarily by remote sensing and in situ
observations and examined seven V25

cmax
models based on 5

competing hypotheses with regard to their assumptions on fLNR.
Our results suggested that the global average fLNR was 18.2 ±
6.2%, and the global distribution of fLNR was dominated by the
interaction between fLNR and leaf traits (i.e., LMA and LPC),
followed by regional influences from climate (i.e., VPD and PAR)
and soil characteristics (i.e., soil pH and sand percentage). We
used RF fLNR distribution and its relationships with environ-
mental covariates to evaluate five empirical and two optimal V25

cmax

models, and found that the models showed different degrees of
inefficacy in reproducing RF fLNR. Here, we discuss the
mechanisms underlying the detected fLNR responses to leaf traits,
climate, and soil characteristics and propose future directions to
improve the simulation of fLNR and V25

cmax
in models.

Negative correlation between fLNR and LMA. Our finding that
fLNR is negatively related to LMA agrees with a previous meta-
analysis that found fLNR decreases by 0.54 ± 0.08% with a 1 g/m2

increase in LMA based on a univariate regression10, though
another study reported that the negative relationship between
fLNR and LMA was non-significant using a smaller dataset11.

Using the global dataset, we found a relatively small sensitivity of
fLNR to LMA (−0.19 ± 0.001% per 1 g/m2) when accounting for
climate and soil (Fig. 3b).

Higher LMA is the result of plants allocating more biomass and
nitrogen to building cell walls, which may cause a reduction in
CO2 diffusion into the mesophyll as well as relative nitrogen
allocated to RuBisCO38. Leaves with greater LMA are tougher
and usually have a longer leaf lifespan11,36. Therefore, the
negative correlation between fLNR and LMA highlights the trade-
off between photosynthesis and persistence along the leaf
economic spectrum: on one end, leaves invest more nitrogen in
RuBisCO to increase the photosynthetic capacity and enhance
carbon uptake; on the other end leaves invest more nitrogen in
structural biomass to improve leaf longevity and lengthen the
carbon uptake period. The latter is especially true for evergreen
species that have greater LMA and smaller fLNR than deciduous
and herbaceous species10. The coordination of fLNR and LMA is
also consistent with a recent analysis highlighting the role of LMA
in determining the variation and predictability of LNC in
ecosystem models39.

In addition, we found that LPC increases fLNR in tropical
evergreen forests and mixed forests, which tend to be more
phosphorus limited40. Our result is consistent with previous
studies reporting coupled leaf photosynthetic capacity (i.e., V25

cmax

or maximum photosynthetic capacity (Amax)) and LPC for
tropical species41,42. This result indicates potential widespread
adjustments of plants nitrogen use by phosphorus investment for
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Fig. 2 Comparison of the fraction of leaf nitrogen in RuBisCO (fLNR) estimated by V25
cmax

models to fLNR estimated by random forest (RF). Five
empirical V25

cmax
models (EM1 to EM5) and two optimal V25

cmax
models (EO and LUNA) were examined. a fLNR per plant functional type (PFT) and the

responses of fLNR to the first principal components (PC1s) of (b) leaf traits, (c) climate variables, and (d) soil variables. In (a), the acronyms and the
numbers of half-degree cells for PFTs are: cropland (CRO; n= 10,525), deciduous broadleaf forest (DBF; n= 7525), evergreen broadleaf forest (EBF; n=
4626), evergreen needleleaf forest (ENF; n= 6259), mixed forest (MF; n= 713), grassland (GRA; n= 5771), shrubland (SH; n= 3606) and wetland (WET;
n= 940). For each box plot, the cross indicates the mean, the center line indicates the median, the box indicates the upper and lower quartiles and the
whiskers indicate the 10th and 90th percentiles of the data. In (b)–(d), Y axis indicates the partial changes in fLNR (ΔfLNR; unit: %). PC1s account for
83.4%, 57.3%, and 60.0% of the variance in leaf traits, climate variables, and soil variables, respectively (Supplementary Table 1). The partial response of
fLNR to PC1s is acquired using a generalized additive model where the solid line indicates the mean partial response, and the shadings indicate one
standard error augmented by 10.
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photosynthesis and plant growth43 in tropical and mixed forests.
In addition, we note that the productivity of some grasslands44,45

and boreal forests46,47 has also been reported to be limited by
phosphorus availability, however, we did not detect a strong
positive dependence of fLNR on LPC globally for these
ecosystems in our study. The difference potentially suggests that
the phosphorus limitation of grasslands and boreal forests is not
as prevalent as that for tropical and mixed forests (though some
mixed forests are in the boreal region).

Climate and soil impacts on fLNR. The response of fLNR to
climate is often implicitly included in V25

cmax
models. We found

that fLNR was sensitive to annual VPD globally. Several studies
have reported that plants in arid environments (i.e., high VPD)
tend to have a higher Amax and LNC48,49 as plants enhance
photosynthetic capacity to maintain a given assimilation rate with
lower stomatal conductance and reduced water loss. Such a
response to aridity has been described using the least-cost
theory19,21. Our results show that other than Amax and LNC,
fLNR also increases with VPD, consistent with a recent study
reporting higher nutrient use efficiency for plants in semi-arid
ecosystems of the African Sahel49. We note that an earlier study
reporting differently that a dry site has a smaller V25

cmax
/LNC ratio

(i.e., smaller fLNR) than a wet site19, though it used annual
precipitation, not VPD to define aridity.

In addition, the positive relationship between PAR and fLNR
for non-forests (Fig. 3c) provides a potential explanation of the
light acclimation of photosynthesis, as several studies have found
that leaf and ecosystem Amax can be enhanced by intermediate to
long-term average PAR50–52. For non-forest ecosystems, our
results suggest that photosynthetic light acclimation emerges as
plants increase fLNR in response to increasing annual PAR.
However, for forests (except EBF) the results suggest that
photosynthetic light acclimation may emerge more due to the
increase in LNC as we did not detect a positive response of fLNR
to light (Fig. 3c).

Soil characteristics have been reported to influence Amax and
LNC37, but we found no studies that have examined the impact of
soil characteristics on fLNR. Among the eight soil properties we
examined, we found positive responses of fLNR to soil pH and
soil sand percentage, followed by small influences of bulk density
and silt for certain ecosystems (i.e., croplands, needle leaf forests).
pH influences the ability of soil to hold on to nutrients, including
Ca2+, K2+, and Mg2+, that are essential to plant growth. A higher
pH means more available nutrient cations as acid soils replace
nutrient cations with H+. Several studies have reported a positive
effect of pH on Amax

37, non-temperature standardized Vcmax

20,
and LNC39. Soil sand percentage had a positive impact on fLNR,
possibly because sandy soils tend to be less fertile53 and thus
stimulate plants to use their nitrogen more efficiently for
photosynthesis and growth. The global influence of soil on fLNR

Fig. 3 The influences of leaf traits, climate, and soil variables on fLNR. a Dominant factors controlling fLNR changes over the globe; (b) the changes in
global fLNR attributed to different variables; (c) the changes in PFT-specific fLNR attributed to different variables. In (a), the percentage contributions from
climate and soil are augmented by 50% for demonstration purposes. The variables are leaf phosphorus content (LPC), leaf mass per area (LMA), annual
mean air temperature (Tair), precipitation (PP), photosynthetic active radiation (PAR), vapor pressure deficit (VPD), soil water content (SWC), soil organic
carbon content (soilC), total nitrogen content (soilN), the ratio of soilC to soilN (CN), soil pH, soil sand and silt percentage (sand and silt), bulk density
(bulkD) and cation exchange capacity (CEC). For each box plot in (b) and (c), the centerline indicates the median, the box indicates the upper and lower
quartiles and the whiskers indicate 1.5 times the interquartile range away from the top or bottom of the box. The numbers of samples for box plot in (b) and
panels in (c) are 39147, 10354, 7467, 4602, 6069, 701, 5548, 3534, and 872, respectively. The map in (a) was created by the authors using a Matlab
package M_Map (see “Code availability statement”).
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was generally smaller than leaf traits and climate, but our analysis
indicated that on 11.9% of the vegetated surface, soil character-
istics contributed more than 15% of the changes in fLNR
(Fig. 3a).

Notably, our study found that the soil nitrogen content has a
limited impact on the spatial variation of fLNR (Fig. 3). The result
implies that processes such as nitrogen deposition/addition are
unlikely to affect plants fLNR. The soil nitrogen map we used was
upscaled from ground observations of soil profiles in the World
Soil Information Service (WoSIS) database. About 47.4–81.4% of
the soil profiles in WoSIS are collected from the 1980s to 2020s54,
when there were strong N deposition effects55. Therefore,
we expect the N deposition effect has been implicitly included
in our analysis. We acknowledge that some studies have suggested
N deposition influenced leaf nitrogen content and
photosynthesis56,57, however, the influence is limited to certain
biomes, deposition load range, and time after the deposition. It is
unclear whether these localized and time-dependent effects can
influence the global variation of fLNR.

Uncertainty in the derivation of fLNR and Vcmax
. fLNR was

derived based on Eq. (1) (see “Methods”) that mechanistically
links V25

cmax
, LNC, and fLNR, with the assumption that specific

activity of RuBisCO (α25) and mass ratio of RuBisCO to nitrogen
(fNR) are relatively constant values. The average uncertainty of
RF fLNR was about 4.20 ± 2.20% (Supplementary Fig. 3). The
uncertainty of fLNR was propagated from several sources
including RF V25

cmax
, α25, fNR, and LNC (Supplementary Fig. 3).

Among them, the α25 ranges between 47.34 and 60 μmol CO2/g
RuBisCO/s, and fNR ranges between 6.11 and 7.16 g RuBisCO/g
N4. Our uncertainty test showed that the influence of α25 and fNR
uncertainties on global fLNR were only around 1.13 ± 0.39% and
0.80 ± 0.27%, respectively (see “Methods”; Supplementary Fig. 3).
Physiologically, α25 is a value that reflects the change in active
sites of RuBisCO and the kinetic constant of the enzyme
RuBisCO (k25). The number of active sites of RuBisCO is often
regarded as a fixed value (set at 6 × 1023/mol RuBisCO) for
vegetation on the land surface5, but there are reports showing that
k25 varies with species9, leaf ages58, and temperature59. While
these dependencies are elusive due to limited observations, pre-
vious studies have reported that k25 negatively correlates with
LNC60 and LMA61. The negative relationship between k25 and
LMA or LNC is potentially caused by the relatively lower draw-
down of CO2 from intercellular spaces to the chloroplast as
increased LMA increases mesophyll resistance. In that case, the
negative dependence of k25 and α25 on LNC and LMA might
account for part of the negative dependence of fLNR on LMA
that we found (Fig. 3b), though the negative influence of LMA on
α25 was weak and within the range of uncertainty, we quantified
(Supplementary Fig. 3).

Compared to α25 and fNR, the uncertainties in LNC and RF
V25

cmax
incurred larger uncertainties in fLNR. We found that LNC

alone caused changes of 3.35 ± 2.16% in fLNR and RF V25
cmax

caused 3.13 ± 1.50% (Supplementary Fig. 3). Our study is the first
attempt to upscale in situ V25

cmax
to the globe using remote sensing,

while similar studies have done that for other leaf traits33. The
observations used for training RF were densely distributed in
Europe and North America, while inner Asia, Southeast Asia,
Africa, and high-latitude regions are much less constrained by
observations (Supplementary Fig. 6a). In addition, we did not
consider temperature acclimation when standardizing in situ
Vcmax

to V25
cmax

(Eq. (2)), in order to facilitate the comparison with
models that only estimate V25

cmax
. However, the uncertainty related

to temperature scaling should be limited as acclimated and non-

acclimated temperature scaling factors for Vcmax
are similar under

30 °C62,63.
The choice of an LNC map is another source of uncertainty in

the derivation of fLNR. There are several global LNC maps
available other than the EB1728 map we used, namely AMM1833

and CB2031. Each product has been validated in their respective
studies (Supplementary Table 3). To examine the uncertainty
incurred by the choice of LNC maps, we calculated fLNR using
each of the three LNC maps. The three resulting fLNR maps show
similar spatial patterns (Supplementary Fig. 10), with the spatial
correlation coefficients (r) between them ranging from 0.57 to
0.71 (p < 0.01). Examining the influences of environmental
variables on fLNR, we found the fLNR based on EB17 and
AMM18 demonstrated similar results—fLNR was primarily
influenced by LMA, LPC, VPD, PAR, and soil pH. Meanwhile,
the fLNR based on CB20 was mostly influenced by soil pH, LMA,
VPD, air temperature, and soil sand percentage. Noting that the
CB20 LNC map has lower R2 in its cross-validation compared to
that of EB17 and AMM18 (Supplementary Table 3), we have
more confidence in the fLNR maps based on EB17 and AMM18.
In our study, we used EB17 as the principal LNC map since it
demonstrated the highest R2 in validation (Supplementary
Table 3) and it was more consistent with the other two LNC
maps than AMM18 (Supplementary Fig. 9). We acknowledge that
the AMM18 LNC map has a smaller RMSE in validation
compared to EB17 though it has a slightly lower R2 (Supple-
mentary Table 3). In this study, we do not identify which LNC
map is more accurate but show that the choice between EB17 and
AMM18 has a limited influence on our conclusion regarding the
dominant controls for fLNR (Supplementary Fig. 10g, h).

Implication for modeling photosynthesis in ecosystem models.
The accurate simulation of fLNR provides a reliable constraint on
vegetation photosynthesis, though fLNR is often not an explicit
variable in V25

cmax
and ecosystem models4. Our results suggest that

the conventional PFT-specific method is not effective due to the
large variation in fLNR within PFTs. The development of optimal
V25

cmax
models is a step forward in estimating spatially varying

fLNR, though they currently also show some degree of inac-
curacies. We propose two directions moving forward:

(1) Improve optimal V25
cmax

models. We found that optimality
models demonstrated some promising strengths, e.g., LUNA and
EO detected the coordination between leaf traits and fLNR,
however, they demonstrated different responses to climate and
soil. The difference between LUNA and EO fLNR is perhaps due
to two reasons: (a) the different optimization approach taken and
(b) the representativeness of training and validation datasets.

First, the EO model estimates photosynthetic capacity based on
the first principles of photosynthesis, that plants minimize the
relative carbon and water costs of photosynthesis per unit carbon
assimilated while coordinating the electron transport rate-limited
and RuBisCO-limited rates of photosynthesis to maximize
photosynthesis while minimizing enzymatic and water costs20.
While the LUNA model dynamically adjusts the fraction of
nitrogen invested in different components of photosynthetic and
metabolic processes in leaves (i.e., light capture, electron
transport, carboxylation, and respiration) to maximize net
photosynthesis (gross photosynthesis—photorespiration —dark
respiration)22,23. LUNA and EO adopt cost functions that are
formulated by different biological and environmental constraints
to reach also slightly different goals of carbon gain (see
“Methods”).

Second, our results suggest that subsets of global V25
cmax

demonstrate very different sensitivities to biological and environ-
mental factors (Supplementary Fig. 5). For example, the V25

cmax
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dataset used to parameterize the LUNA model identified PFT,
LMA, LPC, and cation exchange capacity as the critical factors for
V25

cmax
, while the NS19 dataset20 was used to validate the EO model

identified PFT, LNC, soil water content, and air temperature
(Supplementary Fig. 5). The dataset we compiled combines the
NS19, TRY, and LUNA datasets, and shows that leaf chlorophyll
content, PFT, precipitation, and soil pH are the most important
factors. Therefore, the choice of a subset for training model
parameters might result in model biases—e.g., the underperfor-
mance of LUNA was likely caused by the relatively small dataset
that was used for its parameterization rather than inherent issues
of its structure. This thus suggests that using a more
representative dataset of V25

cmax
, such as the one used here, might

improve optimal V25
cmax

model performance.
(2) Estimate fLNR empirically using key predictors. Based on

the dominant controls we identified for fLNR, it is feasible to
develop an empirical equation to estimate fLNR and then V25

cmax
.

fLNR is primarily determined by the coordination of leaf traits,
which is represented by a negative relationship between fLNR and
LMA, and a positive relationship between fLNR and LPC. The
effects of VPD, PAR, soil pH, and sand also need to be considered
(Fig. 3b). By adopting a multivariate linear model, we obtained
fLNR=−0.19LMA+ 42.2LPC+ 4.76VPD+ 0.25 pH+
0.0026PAR+ 0.032sand+ 2.4 for global vegetation and specific
fLNR equations for each PFT (see “Methods”; Supplementary
Table 2). In fact, EM3 and EM4 have attempted to use LNC and
LPC to adjust fLNR15, while the low-biased fLNR from EM3 and
EM4 might have resulted from the relatively small dataset of
phosphorus-limited observations used to derive the model. Our
results suggest that empirical V25

cmax
models can be improved by

including climate and soil factors.
In addition, the data-driven V25

cmax
map provides a direct

constraint on the spatial variations of vegetation photosynthetic
capacity. We release the V25

cmax
map and its associated uncertainty

(i.e., one standard deviation of estimates from bagged trees in the
RF) to facilitate large-scale ecological and modeling studies
(Supplementary Fig. 8). Since the remote sensing retrieval of leaf
chlorophyll content is for top leaves35, and the phenological
stages of trait samples are not often available, the V25

cmax
estimated

in our study can be interpreted as a multi-year average V25
cmax

for
top canopy leaves. The seasonality and the within-canopy
variations of V25

cmax
are not accounted for in the map.

In conclusion, we have used observations from a range of
sources to develop data-driven global maps of V25

cmax
and fLNR,

which are critical to understanding vegetation nitrogen use and
reducing the uncertainty in estimates of photosynthetic carbon
assimilation. We find that the global distribution of fLNR is
largely determined by LMA and LPC, in concordance with the
leaf economic spectrum, as well as regional climate (i.e., VPD and
PAR) and soil properties (i.e., pH and sand fraction). The new
understanding and data presented in this study allow for future
benchmarking and improvement of V25

cmax
and photosynthesis

models, and provide insight into nitrogen use strategies of global
vegetation.

Methods
Derivation of the fLNR map. The fraction of leaf nitrogen invested in RuBisCO
(fLNR) is related to the photosynthetic capacity of leaves, which is indicated by the
maximum carboxylation rate normalized to 25 °C (V25

cmax
). Direct measurements of

fLNR are sparse, however, as they require the chemical extraction of RuBisCO – a
soluble protein9,12. We, therefore, used Eq. (1)8,13 to indirectly derive fLNR using
concurrent V25

cmax
(μmol CO2/m2/s) and leaf nitrogen content (LNC):

V25
cmax

¼ α25 ´ LNC ´ fNR ´ fLNR ð1Þ

where α25 is the specific activity of RuBisCO, that is, the maximum rate of RuBP
carboxylation per unit RuBisCO protein (47.34 μmol CO2 /g RuBisCO/s), LNC is
area-based leaf nitrogen content (g N/m2) estimated from data in a published
study28, fNR is the mass ratio of RuBisCO molecule to N in RuBisCO molecule
(6.25 g RuBisCO/g N)4. The uncertainty of fLNR incurred by these parameters was
quantified in Supplementary Fig. 3.

In our study, the LNC data we used to derive fLNR was acquired from EB1728.
EB17 provides data-driven estimates of global mass-based leaf nitrogen content
(LNCm; unit: mg/g), specific leaf area (SLA; unit: m2/kg), and their associated
uncertainties. We estimated LNC using the equation LNC= LNCm/SLA (unit: g/
m2). The uncertainty of LNC was propagated from the uncertainties of LNCm and
SLA generated from 1000 bootstrapping tests. We note there are two alternative
global LNC maps available: AMM1833 and CB2031. Comparing the three LNC
maps (Supplementary Fig. 9), we found the spatial patterns of EB17 and AMM18
are similar to each other, with EB17 reported a relatively larger spatial gradient of
LNC. CB20 LNC shows less evident spatial variation than EB17 and AMM18, and
it has the lowest R2 in validation among the three products (Supplementary
Table 3). Since EB17 has the highest R2 in validation among the three, we chose the
EB17 LNC map as the principal LNC in our analysis, but have also examined the
impacts of using alternative LNC maps on our results (Supplementary Fig. 10).

We first acquired in situ observations of V25
cmax

of C3 species from multiple
sources, including the TRY database version 525 and the NS19 dataset20, which
contains the training dataset for the LUNA model14. We merged these datasets and
removed the overlapping records to obtain independent records (n= 8610;
Supplementary Fig. 6a), where 12.9% of samples were deciduous tree species, 13.7%
were evergreen tree species and 73.3% were herbaceous species.

We then used a peaked Arrhenius function to standardize Vcmax
to 25 °C62:

Vcmax ¼ Vc25max exp½HaðTl � Tref Þ=ðTref RTlÞ�
1þ exp

Tref ΔS�Hd

Tref R

� �

1þ exp TlΔS�Hd
TlR

� � ð2Þ

where Tl is the growing temperature of leaf in Kelvin, Tref is the reference temperature
of 298.15 K, Ha is the activation energy for carboxylation (71513 Jmol−1), Hd is the
deactivation energy (200,000 J mol−1), ΔS is an entropy term (649.12 J mol−1 K−1)
and R is the universal gas constant (8.314 J mol−1 K−1).

We then used an RF model trained on the 8610 samples and several predictors
to estimate gridded V25

cmax
. The RF approach is selected as (1) the tree-based method

is suited to dealing with categorical variables, such as PFTs and climate zones, that
are often used in global extrapolation, and (2) the tree-based method is compatible
with the prediction of variable importance by permutation, which provides a useful
way to reduce the number of variables for training and avoiding overfitting64. We
did not apply species/genus abundance weights to trait values for training and
validation purposes, because (1) the available species abundance information at the
community level for V25

cmax
was not the same as that for other leaf traits (i.e., leaf

nitrogen content) that are potential predictors; (2) we had a much smaller number
of samples for training if we aggregated trait values to the community-level (from
n= 8610 to n= 429), which led to a greater risk of overfitting the RF model.

We chose 20 candidate predictors, including LNC (unit: g/m2), LPC (unit: g/
m2), and LMA (unit: g/m2) acquired from a previously published upscaling
study28, leaf chlorophyll content of top leaves (Chl; unit: μg/cm2) derived from
remote sensing35, PFTs from the global land cover map produced by the Climate
Change Initiative (CCI) of the European Space Agency, annual mean air
temperature (Tair; unit: °C), precipitation (PP; unit: mm/year), photosynthetic
active radiation (PAR; unit: μmol/m2/s), vapor pressure deficit (VPD; unit: kPa)
from the Climate Research Unit (CRU) TS4.0165, annual mean soil water content
(SWC; unit: m3/m3) and alpha (i.e., evapotranspiration/potential
evapotranspiration; unitless) calculated from a bucket model (SPLASH) using CRU
TS4.0166, Koeppen climate classification67, and soil organic carbon (soilC; unit: g/
m3), total nitrogen (soilN; unit: g/m3), carbon to nitrogen ratio (CN), soil pH,
percentage of sand, percentage of silt, bulk density (bulkD; unit: g/cm3) and cation
exchange rate (CEC; unit cmol/kg) obtained from the SoilGrids project30. The
PFTs include croplands (CRO), deciduous broadleaf forests (DBF), evergreen
broadleaf forests (EBF), evergreen needleleaf forests (ENF), mixed forests (MF),
shrublands (SH), grasslands (GRA), and wetlands (WET).

To construct the RF, we first trained 200 bagged decision trees using all 20
predictors and quantified the importance of each predictor for in situ V25

cmax

estimation (Supplementary Fig. 5). We fed predictors one-by-one to the RF, which
consisted of 200 bagged decision trees, based on the importance rankings of
predictors until the out-of-bag (OOB; similar to drop-one bootstrapping) test of
the RF explanatory power (r2 between the estimates and observations) no longer
increased and the OOB error (mean squared error between the estimates and
observations) no longer decreased. This process selected 4 important predictors out
of the 20 predictors (remote sensing-based Chl, PFT, PP, and soil pH;
Supplementary Fig. 4a) as input for the final RF.

We trained the RF using the top 4 predictors and used both conventional and
spatial cross-validation to examine the reliability of the RF. We used 80% of
samples for training and 20% for validation. The spatial cross-validation is similar
to conventional cross-validation, but we removed the validation data points within
1.5° (~150 km) of the training samples to avoid spatial autocorrelation68. The
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spatial cross-validation showed an R2= 0.52 ± 0.36 and an RMSE of 39.9 ± 14.5
μmol m−2 s−1, while the conventional cross-validation showed an R2= 0.52 ± 0.01
and an RMSE of 20.7 ± 0.3 μmol m−2 s−1 (Supplementary Fig. 11). The spatial
cross-validation showed more variable R2 and larger RMSE than the conventional
cross-validation as the former has less samples for validation after removing the
spatially autocorrelated samples, and those spatially autocorrelated samples
generally have small RMSEs between the observations and the estimates. The
accuracy of the conventional cross-validation is comparable to previous trait
upscaling studies28,31,33,69 (also see Supplementary Table 3). After validating the
RF, we used gridded predictors and the trained RF to extrapolate a global map of
V25

cmax
. We quantified the uncertainty of RF V25

cmax
as the standard deviation of the

estimates from bagged trees in RF.
Finally, we applied Eq. (1) to get global fLNR from RF V25

cmax
and gridded LNC

and quantified its associated uncertainty. The uncertainty of fLNR comes from four
sources: uncertainties in V25

cmax
, LNC, α25, and fNR. The uncertainty of V25

cmax
was

quantified in training RF, the uncertainty of LNC was provided in the original
gridded data28. According to the literature, α25 ranges from 47.3 to 60.0 μmol CO2

/g RuBisCO/s, and fNR ranges from 6.11 to 7.16 g RuBisCO/g N4. We evaluated
the impacts of these different sources of uncertainty using 1000 bootstrapping tests,
each test using a random V25

cmax
, LNC, α25, and fNR within their uncertainty ranges

(Supplementary Fig. 3).

Attribution of fLNR changes to ecological and climate factors. Since fLNR is
critical to the photosynthetic capacity of leaves, and there is evidence that the
photosynthetic capacity of leaves is dependent on leaf traits36, climate14, and soil
properties37, we performed an analysis to attribute the changes in fLNR to these
variables. We first divided the variables into three groups: leaf traits, climate, and
soil, and conducted a principal component analysis (PCA) on each group, in order
to remove the correlation between variables in each group. The explained variance
of PCs and the loadings of variables are in Supplementary Table 1. All variables
were normalized before the PCA analysis.

We used the first three principal components (PC1, PC2, and PC3) from each
group and dummy variables defined by PFTs to fit fLNR in a generalized additive
model (GAM) to quantify the partial and non-linear response of fLNR to PCs.
Based on the summations of changes in fLNR (ΔfLNR) to leaf traits PCs, climate
PCs, and soil PCs, we quantified the fLNR attributable to leaf traits (excluding LNC
as it has been used to calculate fLNR), climate and soil, and calculated their relative
importance to changes in fLNR over the globe. In this study, we first focused on the
response of fLNR to PC1s, as PC1s explained 83.4%, 57.3%, and 60% of the
variances of leaf traits, climate, and soil, respectively. Then, we summed the
responses of fLNR to the top three PCs (~90% of the variances explained) of each
group (i.e., leaf traits, climate, soil), and regarded the sums of the responses of the
top three PCs as the total effects of leaf traits, climate, and soil on fLNR. Finally, we
used multivariate linear models to fit variables in each group to their corresponding
total group effect, and in such a way, we obtained the sensitivity of fLNR to
individual variables (Supplementary Table 2).

Assumptions of fLNR in V25
cmax

models. Each V25
cmax

model has an underlying
assumption of the nitrogen use strategy of plants (i.e., fLNR), which can be inferred
using Eq. (1). We derived the fLNR of five empirical V25

cmax
models (EM1 to EM5)

and two optimal V25
cmax

models (EO and LUNA) (Supplementary Fig. 2). To derive

V25
cmax

, we used the same CRU TS4.01 climate65 and the gridded leaf traits dataset
EB1728 for all models.

EM1 and EM26. The two models estimate V25
cmax

using empirical linear equations
—V25

cmax
= n1 × LNC+ n2, with n1 and n2 being PFT-specific parameters. They are

developed using the maximum carboxylation rate (Vcmax
), maximum photo-

synthetic rate (Amax), and LNC records from the first version of the TRY database.
EM2 is similar to EM1 except that it uses a smaller n1 parameter for EBF to
consider an implicit phosphorus limitation. EM1 and EM2 suggest that fLNR are
PFT-specific values.

EM3 and EM415. The two models estimate V25
cmax

using a power function of leaf
nutrient content, with parameters in the function derived by fitting measurements
from 24 studies. In particular, EM3 is V25

cmax
= e3.712LNC0.65 and EM4 is V25

cmax
=

e3.946LNC[0.921+ 0.282ln(LPC)]LPC0.121. EM3 and EM4 suggest that fLNR decreases
as LNC increases and EM4 indicates that fLNR decreases also as LPC increases.

EM517. The EM5 model estimates V25
cmax

based on PFT-specific environment-trait
relationships, where the environment variables include precipitation, temperature,
radiation, and CO2. The environment-trait relationships were trained by multiple
linear regressions of V25

cmax
to climate, and the training dataset of V25

cmax
was acquired

from an early version of the TRY database supplemented by several studies.

EO20. The ecological optimality (EO) model estimates V25
cmax

based on the
assumption that plants minimize the carbon and water cost of photosynthesis while

coordinating light-limited and RuBisCO-limited rates of photosynthesis to opti-
mize leaf light use efficiency to maximize gross photosynthesis at the lowest
enzymatic cost. It provides an analytic solution to dynamically estimate V25

cmax
in

models. The estimate of the EO model has been validated against the NS19
dataset20 (n= 3672) at the growing season temperature. To facilitate the com-
parison in this study, we used a peaked Arrhenius temperature response function
without temperature acclimation62 to obtain V25

cmax
from the EO model, while the

original EO model estimate growing season Vcmax
using the temperature response

function with temperature acclimation62. A minimum value of 0.08 for the tem-
perature correction factor was applied to overcome extreme values70.

LUNA23. The LUNA model dynamically adjusts the fraction of nitrogen invested in
different components of photosynthetic and metabolic processes in leaves (i.e., light
capture, electron transport, carboxylation, and respiration) and cell structures to
maximize net photosynthesis (gross photosynthesis—photorespiration—dark
respiration), under given environmental conditions and an optimal leaf nitrogen
use strategy determined by the parameters of the LUNA model22. The driving
environmental conditions include light, temperature, relative humidity, CO2, and
day length, while the parameters used in LUNA were estimated by fitting observed
V25

cmax
(n= 833)14 to the LUNA model.

Data availability statement
Most data used to support the findings of this study are publicly available. The NS19
dataset is a compilation of multiple datasets, some of which are not public according to
their data policy. We encourage investigators to refer to the original studies cited in NS19
or contact N.G.S. for more information. The global leaf chlorophyll content map is
available upon request to J.M.C. It is not public as the investigator is seeking the best
practice to store and distribute this large volume of high-resolution remote sensing
product. The three global leaf nitrogen maps are available at (1) EB17 at https://github.
com/abhirupdatta/global_maps_of_plant_traits, (2) AMM18 at https://www.try-db.org/
TryWeb/Data.php#59 and (3) CB20 at https://doi.org/10.6084/m9.figshare.11559852.
The global maps of a fraction of leaf nitrogen invested in RuBisCO (fLNR) and V25

cmax
are

accessible via the Zenodo Data Repository (https://zenodo.org/record/5090497).

Code availability statement
The code used to support the findings of this study is publicly available at www.github.
com/lxzswr/Vcmax_fLNR. We used the Matlab package M_Map (https://www.eoas.ubc.
ca/~rich/map.html) to create the maps in our study71.
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