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Refractoriness of STING therapy is relieved by AKT
inhibitor through effective vascular disruption in
tumour
Seung-hwan Jeong1, Myung Jin Yang1,2, Seunghyeok Choi1,2, JungMo Kim2 & Gou Young Koh 1,2✉

Stimulator of interferon genes (STING) promotes anti-tumour immunity by linking innate and

adaptive immunity, but it remains unclear how intratumoural treatment with STING agonists

yields anti-tumour effects. Here we demonstrate that intratumoural injection of the STING

agonist cGAMP induces strong, rapid, and selective apoptosis of tumour endothelial cells

(ECs) in implanted LLC tumour, melanoma and breast tumour, but not in spontaneous breast

cancer and melanoma. In both implanted and spontaneous tumours, cGAMP greatly

increases TNFα from tumour-associated myeloid cells. However, compared to spontaneous

tumour ECs, implanted tumour ECs are more vulnerable to TNFα-TNFR1 signalling-mediated

apoptosis, which promotes effective anti-tumour activity. The spontaneous tumour’s

refractoriness to cGAMP is abolished by co-treatment with AKT 1/2 inhibitor (AKTi).

Combined treatment with cGAMP and AKTi induces extensive tumour EC apoptosis, leading

to extensive tumour apoptosis and marked growth suppression of the spontaneous tumour.

These findings propose an advanced avenue for treating primary tumours that are refractory

to single STING agonist therapy.
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Stimulator of interferon genes (STING), encoded by
TMEM173, activates the innate immune system in response
to cytosolic double-stranded DNA derived from viral or

bacterial infection, chemical- or irradiation-induced cellular
damage, and DNA leakage from the nucleus or mitochondria due
to pathologic conditions, such as cancer1–4. DNA sensor, cyclic
GMP-AMP synthase (cGAS), produces STING-activating ligand,
cyclic GMP-AMP (cGAMP), from cytosolic ATP and GTP5.
Upon activation via binding to cGAMP, STING is transferred
from the endoplasmic reticulum to the Golgi apparatus, where it
triggers Tank-binding kinase 1 followed by downstream signal
activations including the nuclear factor-κB pathway and type I
interferon production6,7. Enhanced interferon production indu-
ces cytotoxic effects directly against cancer cells, as well as acti-
vating dendritic cell (DC) maturation and promoting CD8+ T
cell priming in tumour-draining lymph nodes (TDLN)8–10.
Throughout these actions, STING agonists shift anti-tumour
immunity from immunologically silenced “cold” tumours to
active “hot” tumours11. By doing so, they have been considered
as synergistic agents for immune checkpoint inhibitors
targeting PD-1 and PD-L1, which rescue exhausted T cells to kill
tumour cells12–14. Although STING agonists has been tried for
cancer therapy under tremendous attention, underlying
mechanisms behind the anti-tumour effects are yet poorly
understood15,16.

Murine-specific STING agonist, 5,6-dimethylxanthenone-4-
acetic acid (DMXAA), which also has been known as a tumour
vascular disrupting agent (VDA), exerts a potent anti-tumour
effect that is caused by tumour endothelial cell (EC)-specific
apoptosis and extensive haemorrhage within tumour17. Tumour
antigen release from dead tumour cells is the first step in adaptive
immunity generation; therefore, tumour vascular destruction by
STING agonists might be indispensable for achieving sufficient
anti-tumour immunity18–20. Notably, TNFα has been proposed as
a mediator of STING-induced tumour EC apoptosis21,22. How-
ever, the source of TNFα upon STING activation remains
unknown, and it is unclear why STING activation triggers
apoptosis specifically to tumour ECs. Moreover, most previous
studies have been conducted in subcutaneous tumour implanta-
tion models, which have limited ability to reflect human primary
tumours23–25.

Activation of intracellular AKT signalling plays a critical role in
survival in several cell types, including ECs26–28. Of note, AKT is
a major downstream molecule for conveying intracellular sig-
nalling of vascular growth factors and their receptors including
angiopoietin-1/Tie2 and VEGF-A/VEGFR229,30, which are key
molecules in tumour angiogenesis. Accordingly, the AKT path-
way has been considered an attractive therapeutic target since
AKT hyper-activation is associated with tumour aggressiveness
and poor response to treatment. However, despite promising
results in preclinical models, clinical trials of AKT inhibitors have
failed to prove effectiveness, and none of the tested agents are
currently used for cancer treatment31,32.

Here, we show that intratumoural STING agonist induces
effective apoptosis of tumour endothelial cells (ECs) in implanted
tumours, but not in spontaneous tumours. The spontaneous
tumour’s refractoriness to STING agonist is abolished by addi-
tional treatment with AKT 1/2 inhibitor (AKTi) through effectual
apoptosis of tumour ECs.

Result
STING agonist cGAMP is a strong tumour vascular disrupting
agent. To explore the effects of a STING agonist on tumour
vessels and tumour growth, we used an established subcutaneous
LLC tumour model (Fig. 1a). As expected, intratumoural (i.t.)

injection of cGAMP (14 μg/70 μl of PBS) suppressed tumour
growth by 84% compared with PBS alone (Fig. 1b, c). To evaluate
the initial effects of cGAMP on the tumour microenvironment,
we performed i.t. injection of cGAMP or PBS into LLC tumours,
and sampled the tumours 24 h later (Fig. 1d). Strikingly, in
cGAMP-treated tumours, 37% of ECs were positive for the
apoptosis marker cleaved caspase3 (C.Casp3), while C.Casp3
positivity was observed in <2% of ECs in PBS-treated tumours.
Moreover, cGAMP-induced apoptosis in 43% of all cells within
tumour (hereafter described as “whole tumour cells”), while PBS
induced apoptosis in 6% of whole tumour cells (Fig. 1e, f). C.
Casp3+ apoptosis was detected mainly in tumour ECs at 3 h after
cGAMP injection, was additionally detected in the surrounding
cells at 6 h, and was prevalent in almost all cells at 24 h (Fig. 1g).
Flow cytometry analysis revealed a reduced population of live ECs
and increased number of dead cells as early as 3 h after cGAMP
injection, and these changes further progressed within 24 h
(Fig. 1h–k). Likewise, the systemic murine STING agonist
DMXAA induced apoptosis in 47% of ECs of tumour vessels, and
in 47% of whole tumour cells at 24 h (Supplementary Fig. 1a–c).
No apparent apoptotic signals were detected in the ECs of other
organs in the tumour-bearing mice treated with DMXAA (Sup-
plementary Fig. 1d). Additionally, cGAMP doses ranging from
0.1 μM to 1.0 mM did not alter the cellular viabilities of cultured
LLC cells or HUVECs (Supplementary Fig. 1e). These findings
implied that the apoptosis of tumour ECs and tumour cells was
not directly derived from cGAMP cytotoxicity. Further analyses
revealed that cGAMP increased vascular leakage by 2.8-fold,
induced red blood cell leakage by 12.2-fold, reduced blood per-
fusion by 54%, and increased hypoxia by 9.2-fold at 24 h (Fig. 1l,
m). Similar findings were observed in the B16F10 melanoma
implantation model. Intratumoural cGAMP injections sup-
pressed tumour growth by 95% (Supplementary Fig. 1f–h).
Apoptosis was observed in 24% of tumour ECs, and in 27% of
whole tumour cells (Supplementary Fig. 1i–k). These findings
indicated that cGAMP is a strong and rapid tumour vascular
disrupting agent.

STING pathway of bystander cells plays a key role in tumour
EC apoptosis. STING plays diverse roles in tumour growth
depending on cells composing tumour cells or tumour
microenvironment3,33–35. To further examine the initial effects of
cGAMP on tumour EC apoptosis and anti-tumour growth, we
used the LLC tumour model with STING KO mice (Goldenticket,
STINGgt/gt)13 (Fig. 2a). The cGAMP-induced tumour EC apop-
tosis and anti-tumour growth were completely abrogated in
STING KO mice (Fig. 2b–f). Moreover, in STING KO mice,
cGAMP-treated tumours did not show a reduced live tumour EC
population, or increased dead cell population (Fig. 2g–j). To
dissect the role of intrinsic STING in tumour cells, STING in LLC
cells was depleted via transduction of a lentiviral vector encoding
shSTING (Fig. 3a, b). As a control, the cells were transduced with
shCon or nothing (NOT) (Fig. 3a, b). LLCs transduced with
shSTING and shCon did not differ in cGAMP-induced anti-
tumour growth (each by 93%) (Fig. 3c–e), vascular disruption
following tumour EC apoptosis (28% and 21%, respectively), or
tumour apoptosis (34% and 29%, respectively) (Fig. 3f–i). Fur-
thermore, to evaluate whether the cGAMP-induced tumour EC
apoptosis is mediated directly through STING activation in
tumour ECs, we generated an inducible, endothelial cell-specific
STING-deleted mice (STINGiΔEC) by crossing STINGfl/fl mice
with VE-cadherin-Cre-ERT2 mice36 (Supplementary Fig 2a). Lit-
termates of VE-cadherin-Cre-ERT2 were used as control wild type
(WT) mice. Two weeks before LLC implantation, tamoxifen
(2 mg) was administered to WT and STINGiΔEC mice for five
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times with 2-day interval (Supplementary Fig 2b). Of note, there
were no significant differences in tumour growth, tumour EC
apoptosis and whole tumour cell apoptosis between WT and
STINGiΔEC mice (Supplementary Fig. 2c–g), implying that the
cGAMP-induced tumour EC apoptosis was not mediated through

direct STING activation of tumour ECs. Together, the cGAMP-
induced tumour vascular destruction and anti-tumour growth
could be derived from STING activation of bystander cells in the
tumour microenvironment, rather than from intrinsic STING
activation of tumour cells or tumour ECs.
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Fig. 1 Intratumoural injection of cGAMP strongly induces tumour vascular disruption in implanted LLC tumour. a-c Diagram depicting generation of
implanted LLC tumour in B6 mice and treatment schedule of intratumoural (i.t.) PBS or cGAMP. Comparison of LLC tumour growths. n = 6 mice/group
from two independent experiments. Dots and bars indicate mean ± SD. Plot indicates each individual tumour growth. d–f Diagram depicting generation of
LLC tumour, i.t. PBS or cGAMP treatment, and tumour sampling at 24 h later. Representative images and comparisons of apoptosis in tumour ECs and
whole tumour cells (whole cells). Dashed lines demarcate tumour vascular lining, while white arrowheads indicate apoptotic ECs. Scale bars, 1.0 mm
(yellow bars) and 50 μm (white bars). Each dot indicates a value from one mouse and n = 8 mice/group from two independent experiments. Vertical bars
indicate mean ± SD. g–k Representative images showing temporal responses of tumour ECs and whole tumour cells following i.t. cGAMP treatment in
implanted LLC tumour. n = 6 mice/group. Note that progressive tumour EC apoptosis followed by extensive tumour cell apoptosis. Scale bars, 50 μm (g).
Representative flow cytometry plots and comparisons showing gradual changes of live EC and dead cell populations. Each dot indicates a value from one
mouse and n = 6 mice/group from three independent experiments. Vertical bars indicate mean ± SD. l, m Impaired vascular function 24 h after i.t. cGAMP
treatment. Representative Images and comparisons of dextran leakage (n = 4 images/4 mice), TER119+ RBC leakage (n = 7 images/7 mice), lectin+

vascular perfusion (n = 5 images/5 mice) and GLUT1+ hypoxic area (n = 7 images/7 mice). Scale bars, 100 μm. Each dot indicates a value from one
mouse from four independent experiments. Horizontal bars indicate mean ± SD. P values by two-tailed t-test (b, f, m), Kruskal–Wallis test followed by
Dunn’s test (i) or Welch’s one-way ANOVA test followed by Dunnett’s T3 test (k). Source data are provided as a Source Data File.
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Tip-like and proliferative tumour ECs are vulnerable to STING
activation-induced apoptosis. To further understand STING
agonist-induced vascular destruction in the tumours, we per-
formed single-cell RNA sequencing (scRNA-seq) on ECs
obtained from LLC tumours (Fig. 4a, b). The cGAMP-treated
tumour ECs exhibited differentially expressed genes (DEGs)
related to leucocyte recruitment and the interferon stimulation
pathway, such as ACKR1, CCL5, CXCL9, CXCL10, IRF7,
IRGM1, ISG15, OASL2, PHF11D, and SERPING1 (Fig. 4c). To
identify the transcriptomic changes after STING activation, the
scRNA-seq datasets from these two groups were integrated and
analysed after batch effect removal. Through unsupervised

clustering, we identified four subpopulations: stalk-like, tip-like,
proliferative, and arterial EC (Fig. 4d, e). Notably, the scRNA-
seq analysis suggested that, compared to PBS-treated ECs, the
cGAMP-treated ECs exhibited an increase of stalk-like EC
population but reductions of tip-like and proliferative EC
populations (Fig. 4f). Accordingly, compared with PBS-treated
ECs, the cGAMP-treated ECs had a 5.2-fold higher population
of selectin P+ (SELP+, a representative marker for stalk-like
ECs) ECs, while they had a 41% less population of placental
growth factor+ (PGF+, a representative marker for tip-like
ECs) ECs (Fig. 4g–j). To identify cGAMP treatment-mediated
changes in the signalling pathways and biological processes,
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we generated triplicates of pseudo-bulk RNA expression for
each scRNA-seq dataset, and performed gene set enrichment
analysis (GSEA) (Supplementary Fig. 3a). In cGAMP-treated
ECs, the apoptosis pathway was among the top up-regulated
KEGG gene sets, and the TNFα signalling pathway was among
the top up-regulated hallmark gene sets (Supplementary
Fig. 3b–g).

TNFα-TNFR1 mediates STING activation-induced tumour EC
apoptosis. Based on the GSEA outcomes, we hypothesised that
the tumour EC apoptosis might be caused by TNFα produced due
to STING activation, since TNFα exerts a potent anti-tumour
effect derived from tumour vascular destruction37–39. In fact,
compared to PBS-treated tumours, cGAMP-treated tumours
showed 3.9-fold and 2.2-fold increases of TNFα and IFNγ,
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respectively (Supplementary Fig. 4a, b). Intratumoural TNFα
injection induced 10% tumour EC apoptosis, and co-treatment
with TNFα and IFNγ further increased tumour EC apoptosis to
22% (Supplementary Fig. 4c–e). While i.t. injection of TNFα or
IFNγ alone did not induce significant apoptosis in LLC tumours,
co-treatment with TNFα and IFNγ induced whole tumour cell
apoptosis to 24% (Supplementary Fig. 4c-e). Similar to those in
WT mice, i.t. TNFα injection-induced tumour EC apoptosis by
15.9%, and co-treatment with TNFα and IFNγ further increased
tumour EC apoptosis to 43.4% in STING KO mice (Supple-
mentary Fig. 4c-e), While i.t. IFNγ alone did not induce sig-
nificant apoptosis in LLC tumour, i.t. TNFα induced whole
tumour cell apoptosis by 11.9% in STING KO mice. However, co-
treatment with TNFα and IFNγ induced whole tumour cell
apoptosis by 37.6% in STING KO mice (Supplementary
Fig. 4c–e). To further examine the role of TNFα in cGAMP-
induced anti-tumour effects, we utilized anti-TNFα neutralizing
antibody (Ab) (Supplementary Fig. 4f). Anti-TNFα neutralizing
Ab diminished cGAMP-induced anti-tumour growth by 47%,
and reduced apoptosis of tumour ECs and whole tumour cells by
55% and 48%, respectively (Supplementary Fig. 4f–k). In the
TNFR1 KO mice, cGAMP-induced anti-tumour growth was
reduced by 64%, and apoptosis of tumour ECs and whole tumour
cells was reduced by 65% and 66%, respectively (Supplementary
Fig. 5). These findings imply that TNFα-TNFR1 activation in
tumour bystander cells including tumour-associated macro-
phages, rather than in tumour cells and ECs, substantially con-
tributed to the cGAMP-induced extensive tumour EC apoptosis
and anti-tumour growth.

TAMCs-generated TNFα mediates STING activation-induced
tumour EC apoptosis. To confirm whether tumour-associated
myeloid cells (TAMCs) including tumour-associated macro-
phages were the main sources of TNFα21,40, we generated mye-
loid cell-specific STING-depleted mice (STINGΔMC) by crossing
STINGfl/fl mice with LysM-Cre mice41 (Fig. 5a, b). In each
experiment, LysM-Cre-negative but flox/flox-positive littermates
were defined as WT mice. TNFα in the cGAMP-treated LLC
tumours was reduced by 81% in STINGΔMC mice compared with
WT mice (Fig. 5c, d). In contrast, IFNβ and IFNγ in the cGAMP-
treated LLC tumours was similar between STINGΔMC mice and
WT mice (Fig. 5c, d). These findings suggested that TAMCs are
main source of TNFα, while they are not a main source of IFNβ
and IFNγ upon STING activation42. Of note, STINGΔMC mice
exhibited reduced apoptosis of tumour ECs and tumour cells by
74% and 56%, and delayed anti-tumour growth by 41%, respec-
tively (Fig. 5e–i). Number of tumour-infiltrating CD8+ T cells
(TICD8TC) were not significantly increased in the LLC tumour
in STINGΔMC mice following cGAMP treatment, but were
increased by 8-fold in WT mice (Fig. 5j, k). These findings
indicate that STING agonist-induced activation of TAMCs are
not only major sources of TNFα that rapidly induces tumour EC

apoptosis, but also responsible sources for recruiting TICD8TC to
tumour microenvironment.

cGAMP fails to induce tumour vascular destruction inMMTV-
PyMT spontaneous breast cancer. To evaluate whether cGAMP-
induced tumour EC apoptosis might be clinically useful, we used
a spontaneous breast cancer model, the MMTV-PyMT mice.
Unexpectedly, i.t. cGAMP treatment did not induce apoptosis of
tumour ECs or tumour cells, although it slightly delayed tumour
growth (Fig. 6a–f). To investigate this difference, we generated an
implanted breast tumour model through the inoculation of
tumour cells that were harvested from the MMTV-PyMT spon-
taneous breast cancer, into the mammary fat pads (Fig. 6g). In
this implanted breast tumour, i.t. cGAMP injection induced
apoptosis of tumour ECs (37%) and whole tumour cells (47%)
(Fig. 6h–j). Moreover, i.t. injections of cGAMP suppressed
tumour growth by 91% (Fig. 6k–m). Thus, cGAMP-induced anti-
tumour growth was remarkable in implanted breast tumour, but
negligible in MMTV-PyMT spontaneous breast cancer (Fig. 6n).
On the other hand, those two models showed comparable
cGAMP-induced increases of tumoural TNFα and IFNγ
(Fig. 6o–q). To ensure these findings, we generated another
implanted breast tumour model through the inoculation of 4T1
breast carcinoma cells into the mammary fat pad (Supplementary
Fig. 6a). Similar to those in implanted MMTV-PyMT cells breast
tumour, i.t. cGAMP injection-induced apoptosis of tumour ECs
(48%) and whole tumour cells (38%) and suppression of tumour
growth by 81% in implanted 4T1 cells breast tumour (Supple-
mentary Fig. 6b-f). These findings suggested that the apoptotic
responses of tumour ECs and whole tumour cells against
cGAMP-induced TNFα or IFNγ might be truncated in the
spontaneous tumour.

Tumour ECs of implanted breast tumours express tran-
scriptome profiles sensitive to STING activation-induced
apoptosis. To investigate why cGAMP did not induce apoptosis
in the spontaneous breast tumour, we performed bulk RNA
sequencing (RNA-seq) of the ECs from normal mammary fat
pads, MMTV-PyMT spontaneous breast tumours, and implanted
breast tumours treated with PBS or cGAMP. All these three
groups apparently responded to cGAMP with up-regulation of a
transcriptome related to immune activation and stimulation of
type I interferon pathways (Fig. 7a–d). Following cGAMP treat-
ment, apoptosis-related genes were enriched in the ECs of both
MMTV-PyMT and implanted breast tumours. However, only the
ECs of cGAMP-treated implanted breast tumours exhibited high
expression of pro-apoptotic genes, including CASP3, CASP8,
APF1, BID, BAX, and BAK (Supplementary Fig. 7a, b). In all three
groups, cGAMP treatment led to the enrichment of genes related
to TNFα signalling via NF-κB (Supplementary Fig. 7c). Impor-
tantly, genes related to the PI3K-AKT-mTOR pathway (the
strongest EC survival pathway against EC apoptosis) were

Fig. 4 Tumour ECs of implanted LLC tumours are vulnerable to STING activation-induced apoptosis. a, b Diagrams depicting generation of LLC tumour,
i.t. PBS or cGAMP treatment, tumour sampling at 24 h after the treatment, isolation of tumour ECs by FACS, and scRNA-seq analysis using a droplet-based
platform. c Violin plots depicting the normalized expression levels of top-ranked differentially expressed genes between PBS- and cGAMP- treated tumour
ECs. d Heatmap visualizing distinctive expression profiles of tumour EC subpopulations. Scaled expression levels of top ten differentially expressed genes
for the indicated each cluster are shown. e UMAP plots comparing four clusters of tumour ECs derived from PBS- or cGAMP-treated tumours by
unsupervised clustering of integrated dataset. Each dot represents a single EC. f Donut plot showing composition and difference in tumour EC
subpopulations between PBS- and cGAMP- treated tumour ECs. g–j Representative images and comparisons of SELP+/CD31+ stalk-like ECs and PGF
+/CD31+ tip-like ECs (white arrowheads) between PBS- and cGAMP-treated tumour ECs. Scale bars, 50 μm. Each dot indicates a value from one mouse
and n = 8 mice/group for (g, h) and 7 mice/group for (i, j) from four independent experiments. Horizontal bars indicate mean ± SD. P values by two-tailed
t-test. Source data are provided as a Source Data file.
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enriched following cGAMP treatment in MMTV-PyMT and
implanted breast tumours but not in normal mammary fat pads
(Supplementary Fig. 7d), which is consistent with a previous
report43. Gene sets related to tip-like ECs and angiogenesis were
highly expressed only in the ECs of implanted breast tumours,
while gene sets related to proliferative ECs were highly expressed
in the ECs of both MMTV-PyMT and implanted breast tumours
(Fig. 7e, f, i). On the other hand, gene sets related to stalk-like and
arterial ECs were enriched in the ECs of normal mammary fat
pads (Fig. 7g, h). These findings imply that tip-like and pro-
liferative ECs could be vulnerable to STING activation-induced
apoptosis in tumours.

Tip-like and proliferative ECs are vulnerable to STING
activation-induced apoptosis, but less sensitive to spontaneous
tumour versus to implanted tumour. To gain a further insight
on the response of tumour ECs to STING agonist, we performed
scRNA-seq on the ECs of MMTV-PyMT spontaneous tumour
and its orthotopic implanted breast tumour, which were sampled
at 3 h after i.t PBS or cGAMP (Fig. 8a). Compared with those
treated with PBS, cGAMP highly increased expressions of the
genes related to immune activation and stimulation of type I
interferon pathway such as CCL5, CXCL9, CXCL10, IRF7,
IRGM1, ISG15, OASL2 and PHF11D in both tumour ECs (Fig. 8b,
c). Five distinct EC clusters- stalk-like, tip-like, proliferative,
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arterial and AQP7+ ECs were present in the pooled ECs of both
spontaneous and implanted tumour treated with PBS or cGAMP
(Fig. 8d, e and Supplementary Fig. 8a-c). AQP7+ ECs are a
breast-specific, fully-differentiated subpopulation that highly
expresses AQP7, CD35 and FABP5 mRNAs and actively partici-
pates in the glycerol and fatty acid metabolism and transport44.
Distinctiveness of five clustering was largely blunted in the pooled
ECs treated with cGAMP compared with those treated with PBS
(Fig. 8d, e), implying that tumour ECs were largely affected by i.t.
STING agonist. The scRNA-seq analysis suggested that cGAMP
treatment markedly reduced the population of proliferative ECs
in spontaneous tumour, while it markedly reduced both pro-
liferative and tip-like ECs in implanted tumour (Fig. 8f, g). The
latter findings are similar to those in implanted LLC tumours
(Fig. 4f–j). Gene ontology enrichment analysis on the ECs of
implanted tumour versus spontaneous tumour revealed differ-
ential transcriptional responses to both PBS and cGAMP treat-
ment (Supplementary Fig. 8d). The genes related to cellular
responses to cytokine stimulus and interferon-γ were enriched in
all EC clusters of the implanted tumours treated with PBS
(Supplementary Fig. 8d), implying that implanted tumour ECs
could be more responding to anti-tumour immunotherapy
compared with spontaneous tumour ECs. Of note, the genes
related to apoptosis were enriched in the tip-like ECs of the
implanted tumours treated with cGAMP (red underline in Sup-
plementary Fig. 8d), implying that the tip-like ECs are vulnerable
to STING agonist. Because there was a lack of proliferative ECs
mainly due to apoptotic death in the cGAMP-treated tumours
(Supplementary Fig. 8d), we could not analyse the character of
the proliferative ECs. These findings denote that tip-like and
proliferative ECs are vulnerable to STING activation-induced
apoptosis, and these can partly explain why only the ECs of
implanted, but not spontaneous, breast cancer underwent apop-
tosis following cGAMP treatment. Moreover, the ECs retaining
maturation gene profiles within tumours such as arterial, stalk-
like and AQP7+ ECs (Fig. 8d, e and Supplementary Fig. 8a, b) are
likely to be resistant to STING activation-induced apoptosis.

Combined treatment with cGAMP and AKT 1/2 inhibitor
induces apoptosis of tumour ECs. Compared to the implanta-
tion tumour model, the spontaneous tumour model more closely
resembles primary human solid tumours45; thus, STING agonist
monotherapy could not produce satisfactory outcomes in clinical
use46,47. Based on the bulk RNA sequencing data (Supplementary
Fig. 7d) and a previous report43, we hypothesized that inhibition
of AKT signalling could potentiate spontaneous tumour to
combined TNFα and IFNγ-induced tumour EC apoptosis. In fact,
immunohistochemical analysis on the tissue array of human
breast ductal adenocarcinomas revealed that tumour ECs in

tumour core region had highly activated AKT compared with the
ECs in adjacent normal tissue region (Supplementary, Fig. 9).

We chose AKT 1/2 inhibitor as AKT inhibitor (AKTi) and
confirmed its effects by examining phosphorylation statuses of
AKT at S473 and its downstream FOXO1 at T24 in cultured
HUVECs and ECs of MMTV-PyMT spontaneous breast tumour.
Consistent with previous studies48,49, AKTi (10 μM) completely
abolished TNFα-induced phosphorylation of AKT and FOXO1 in
HUVECs (Fig. 9a), while i.p. AKTi (50 mg/kg of body weight)
largely induced nuclear localization of FOXO1 in the tumour ECs
(Fig. 9b). These findings indicate that AKTi effectively inhibits its
pathways in vitro and in vivo. We found that addition of TNFα,
IFNγ, or TNFα + IFNγ did not significantly alter cell apoptosis or
viabilities in cultured HUVECs, LLC cells, or tumour cells derived
from MMTV-PyMT breast tumours (Fig. 9c–g).

Further addition of AKTi led to reduction of cell viability by
89% and 93% and induction of apoptosis by 4% and 20%,
respectively in HUVECs cultured with TNFα or TNFα + IFNγ
(Fig. 9c–e). In cultured LLC cells andMMTV-PyMT tumour cells,
AKTi addition led to a reduction of cell viability by 37% and 35%,
respectively, regardless of the inclusion of TNFα and/or IFNγ
(Fig. 9f, g).

Accordingly, in spontaneous breast cancer of MMTV-PyMT
mice, combined treatment with i.t. cGAMP and i.p. AKTi induced
apoptosis of up to 28% and 34% in tumour ECs and whole tumour
cells, while either cGAMP or AKTi alone did not induce notable
apoptosis (Fig. 10a–d). Tumour antigens that originate from
extensive tumour cell apoptosis provoke dendritic cell (DC)
maturation, promoting antigen presentation to establish anti-
tumour immunity6,50. Therefore, we next evaluated the DCs in
tumour drainage lymph nodes (TDLNs) at 24 h after treatments to
determine whether the increased tumour cell apoptosis induced by
co-treatment with cGAMP and AKTi contributed to DC
maturation (Fig. 10a). Even in the absence of tumour cell
apoptosis, cGAMP treatment-induced DC maturation, manifested
by 4-, 6-, and 2-fold increases of CD80, CD86, and MHC-II,
respectively, compared to PBS treatment (Fig. 10e-g). Moreover,
co-treatment with cGAMP and AKTi further enhanced DC
maturation, as demonstrated by the 2-, 1.7-, and 3-fold increases
of CD80, CD86, and MHC-II, respectively, compared to cGAMP
monotherapy (Fig. 10e–g).

Combined treatments with i.t. cGAMP and i.p. AKTi led to the
suppression of tumour growth by 76% in MMTV-PyMT breast
tumour mice. In contrast, treatment of these mice with i.t. cGAMP
or i.p. AKTi alone suppressed tumour growth by 35% or 0%,
respectively (Fig. 10h–j). Moreover, co-treatment increased the
population of TICD8TC by 75-fold, while treatment with i.t.
cGAMP alone non-significantly increased TICD8TC by 14-fold
and i.p. AKTi alone yielded no change (Fig. 10k, l). Thus, our
results demonstrated that AKTi potentiated the cGAMP-induced

Fig. 5 TAMCs-derived TNFα is a crucial mediator for STING agonist-induced apoptosis of Tumour ECs. a, b Diagram depicting generation of myeloid
cell-specific STING-deleted (STINGΔMC) mice. Confirmation of STING depletion in macrophages (MØ) but not in lymphocytes (Lym) of STINGΔMC mice by
immunoblotting from two independent experiments. c, d, Diagram depicting generation of implanted LLC tumour in WT and STINGΔMC mice, i.t. PBS or
cGAMP treatment, and sampling of tumours at 6 h later. Comparisons of TNFα, IFNγ and IFNβ protein levels in tumour lysates treated with PBS or cGAMP
between WT and STINGΔMC mice. Each dot indicates a value from one mouse and n = 4 mice/group from four independent experiments. Horizontal bars
indicate mean ± SD. e, f LLC tumours were sampled 24 h after i.t. PBS or cGAMP injection in WT and STING ΔMC mice. Representative images and
comparisons of apoptosis in tumour ECs (white arrowheads) and whole tumour cells (whole cells). Scale bars, 1.0 mm (yellow bars) and 100 μm (white
bars). Each dot indicates a value from one mouse and n = 6 mice/group from four independent experiments. Vertical bars indicate mean ± SD.
g–k Diagram depicting schedule of LLC cells implantation, treatment, and sampling in WT and STINGΔMC mice. Comparisons of tumour growth. n = 6
mice/group from four independent experiments. Dots and bars indicate mean ± SD. Plot indicates each individual tumour growth. Representative flow
cytometry plots and comparisons showing tumour infiltrating CD8+ T cell populations in whole tumour cells. n = 6 mice/group from four independent
experiments. Horizontal bars indicate mean ± SD. P values by Welch’s one-way ANOVA test followed by Dunnett’s T3 test (d, f, h, k). ns, not significant.
Source data are provided as a Source Data file.
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Dunnett’s T3 test (p). ns, not significant. Source data are provided as a Source Data file.
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anti-tumour effect by inducing extensive apoptosis of tumour ECs,
enhancing immunogenic tumour cell apoptosis, and increasing
recruitment of TICD8TC in spontaneous breast cancer.

AKTi potentiates cGAMP-induced anti-tumour effect in
spontaneous melanoma and LLC tumour. We next wondered
whether co-treatment with cGAMP and AKTi would also be
highly effective for suppressing tumour growth in another
spontaneous tumour, we adopted Tyr-CreERT2;BrafCA;PtenloxP

spontaneous melanoma mice51 (Supplementary Fig. 10a). Com-
bined treatment with i.t. cGAMP and i.p. AKTi induced apoptosis
in tumour ECs and whole tumour cells by 47% and 53%,
respectively, while either cGAMP or AKTi alone did not induce
notable apoptosis in spontaneous melanoma (Supplementary
Fig. 10a–d). The combined treatment led to the suppression of
tumour growth by 91% in Tyr-CreERT2;BrafCA;PtenloxP sponta-
neous melanoma mice. In contrast, treatment of these mice with i.
t. cGAMP or i.p. AKTi alone suppressed tumour growth by 44%
or 10%, respectively (Supplementary Fig. 10e-g). We further

examined whether co-treatment with cGAMP and AKTi would
also be highly effective for suppressing tumour growth in
implanted LLC tumour. Combined treatment with i.t. cGAMP
and i.p. AKTi increased apoptosis of tumour ECs and whole
tumour cells by 86% and 641%, respectively. However, although i.
t cGAMP alone increased apoptosis of tumour ECs and whole
tumour cells by 70% and 568%, i.p. AKTi alone had negligible
effects on them (Supplementary Fig. 11a–c). Accordingly, com-
pared to treatment with PBS alone, co-treatments suppressed
tumour growth by 81%, while treatments with cGAMP or AKTi
alone suppressed tumour growth by 60% or 3%, respectively
(Supplementary Fig. 11d–f). Moreover, co-treatment or cGAMP
alone increased the TICD8TC population by 8-fold or 3-fold,
while the TICD8TC population was not significantly changed in
tumours treated with AKTi alone (Supplementary Fig. 11 g, h).
Thus, we found that AKTi also potentiated the cGAMP-induced
anti-tumour effect in implanted tumours, by further inducing
extensive apoptosis of tumour ECs and increasing recruitment of
TICD8TC into the tumour.
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Fig. 7 Implanted breast tumour ECs exhibit angiogenic and inflammatory transcriptome profiles. a Heatmap of the RNA-seq data of ECs from normal
mammary pads, MMTV-PyMT spontaneous breast tumours, and implanted breast tumours (see Fig. 6). n = 3 mice/group from three independent
experiments. b Principal component analysis (PCA) of the RNA-seq data. c Gene ontology analysis of PCA axis. d MA plots showing differentially
expressed genes by cGAMP treatment in each group. e–i Heatmaps comparing genes related to tip-like ECs, proliferative ECs, stalk-like ECs, arterial ECs,
and angiogenesis in the ECs of normal mammary pads and spontaneous and implanted tumours treated with PBS.
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Discussion
In this study, we examined the poorly understood role of the
STING agonist cGAMP as a tumour-specific VDA, and demon-
strated that this early activity of cGAMP is a key for establishing
the anti-tumour effect. We also showed that refractoriness of i.t.

STING therapy could be relieved by the addition of AKTi
through effective tumour EC apoptosis in spontaneous tumours
(Supplementary Fig. 12).

One representative VDA, flavone acetic acid, selectively block
vascular flow in the tumour core by promoting tumour EC
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apoptosis, leading to powerful anti-tumour effect in murine
tumour models52. Its derivatives have been developed from the
trait of its chemical structure possessing amenable site with active
region of xanthenone-4-acetic acid, which gave rise to the
development of DMXAA as potent as 16-fold53. Interestingly, the
scheme of DMXAA on anti-tumour effect has changed from
VDA to immunotherapeutic agent as a STING agonist54,55.
Currently, i.t. STING agonist therapy is generally recognized to
increase the production of type I interferon in tumours, which
promotes CD8+ T cell priming and infiltration into the tumour,
eventually converting immunologically “cold” tumours to “hot”
tumours9,14,20. Therefore, STING therapy has been considered a
promising treatment for use in combination with immune
checkpoint inhibitors, since they are more effective in hot
tumours than cold tumours56. However, throughout this study,
we addressed the strong and rapid apoptotic role of STING
agonist, cGAMP, in tumour ECs as a VDA. Through scRNA-seq
and bulk RNA-seq analyses of the tumour ECs, we revealed that
tip-like and proliferative EC subpopulations were vulnerable to
STING activation-induced apoptosis. More importantly, we

found that TAMCs-derived TNFα was a key mediator of the
extensive apoptosis of tumour ECs (Supplementary Fig. 12).

STING plays multifaceted roles in tumour progression
depending on target cells such as tumour cell or cells composing
tumour microenvironment such as ECs, cancer-associated fibro-
blasts, and immune cells3,33–35. For instance, Yang et al.14 have
recently reported that STING agonists normalize tumour vessels
mediated by up-regulating the genes related to type I/II interferon
and vascular stabilization and enhancing pericyte coverage.
However, it occurs several days after i.t. injection with a prior and
marked reduction of tumour ECs. In comparison, this study
shows that STING agonist strongly and rapidly induces tumour
EC apoptosis within a day after the injection. Moreover, our
findings indicate that the massive tumour cell death, following
extensive cGAMP-induced tumour EC apoptosis, led to sufficient
TICD8TC expansion and suppressed tumour growth in implan-
ted tumours. On the other hand, when tumour ECs were resistant
to cGAMP-induced apoptosis, the sparse tumour cell death led to
failures of TICD8T expansion and suppression of tumour growth
in spontaneous tumours (Supplementary Fig. 12).
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AKT activation plays a central role in survival in several cell
types, including ECs26–28. Our analysis actually revealed that the
tumour ECs of human breast ductal adenocarcinomas retain
highly phosphorylated AKT compared with the ECs in adjacent
normal tissue region. Nevertheless, our findings indicate that

AKTi alone did not induce apoptosis in tumour ECs and whole
tumour cells in spontaneous tumours. We hypothesized that AKT
inhibition might enforce STING activation-induced apoptosis of
tumour ECs in primary tumours based on our RNA-seq data
and a previous report43. Indeed, AKTi treatment abrogated
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unresponsiveness to STING therapy, mediated through effective
apoptosis of tumour ECs. Moreover, AKTi potentiated the
cGAMP-induced anti-tumour effect, which partly could be
mediated by enhancing the innate immune responses of tumour
cells and bystander cells to cGAMP (Supplementary Fig. 12).
Supporting this scenario, previous studies57 demonstrated that
intracellular STING signalling and AKT pathways are antag-
onistically interacted for tumour progression mediated through
innate immune responses, while AKTi increases T cell persistency
and infiltration as well as early memory phenotype in tumour
sites to enhance anti-tumour effect58,59.

In conclusion, our present findings unravel long-standing
questions regarding the mechanism underlying STING
activation-induced tumour EC apoptosis. Our results highlight
the critical role of STING agonist as a VDA, which results in
extensive tumour cell death releasing massive tumour antigen,
supporting the activation of anti-tumour immunity. Based on
these findings, we propose that combination treatment of STING
agonist and AKT inhibitor should be considered for clinical
human tumours, which could be refractory to single therapy with
either agent alone.

Methods
Mice. The experiments on the mice were conducted according to the approval
(KA2017-30) of the Animal Care Committee of Korea Advanced Institute of Sci-
ence and Technology (KAIST). Specific pathogen-free C57BL/6 J, FVB/NJ, Balb/c,
STING knockout (C57BL/6J-Sting1gt/J), MMTV-PyMT transgenic [FVB/N-Tg
(MMTV-PyVT)634Mul/J], LysM-Cre (B6.129P2-Lyz2tm1(cre)Ifo/J), TNFR1 knock-
out (C57BL/6-Tnfrsf1atm1Imx/J), and B6.Cg-Tg(Tyr-cre/ERT2)13Bos Braftm1Mmcm

Ptentm1Hwu/BosJ (Tyr-Cre-ERT2;BrafCA;PtenloxP) mice were purchased from Jack-
son Laboratory (USA). VE-cadherin-Cre-ERT2 mice36 were provided by Prof.
Yoshiyaki Kubota (Keio University, Japan), transferred, established and bred in
SPF animal facilities at KAIST. STING1tm1a(EUCOMM)Hmgu mice, which have
conditional knockout potential with frt-flanked lacZ and neomycin resistance
cassette followed by loxP-flanked exon 6, were purchased from EUMMCR. To
generate STINGflox mice, STINGtm1a(EUCOMM)Hmgu mice were crossed with FLP1
recombinase expressing mice (B6;SJL-Tg(ACTFLPe)9205Dym/J), which were
purchased from Jackson laboratory. All mice were fed with ad libitum access to
standard diet (PMI lab diet) and water, and were anesthetized by i.p. injection of a
combination of anaesthetics (80 mg/kg of ketamine and 12 mg/kg of xylazine)
before all the procedures and being sacrificed.

Tumour models and treatment regimens. Lewis lung carcinoma (LLC) cells,
B16F10 melanoma cells and 4T1 breast carcinoma cells were purchased from
American Type Culture Collection. To generate implanted LLC or B16F10 tumour
model, 1 ×106 LLC cells, B16F10 cells, or LLC cells transduced with shControl or
shSTING lentiviral particles were subcutaneously injected into the right flank of
8–9-week-old male C57BL/6 J mice. For the experiments with MMTV-PyMT
spontaneous breast tumours, the treatment began when the female mice were 9-
week old. To generate an orthotopic implanted breast tumour model, breast
tumour nodules of MMTV-PyMT transgenic mice were harvested and digested
with enzyme buffer containing 2 mg/ml collagenase type II (Worthington), 0.1 mg/
ml DNase I (Roche), and 0.8 mg/ml dispase (Gibco) at 37 oC for 30 min. The
dissociated cells underwent trypsinization with 0.25% trypsin/EDTA for 5 min to
remove fibroblasts, and then diluted with fresh growth medium. Tumour cells were
expanded on culture plates for 2 days, diluted 5 × 105 cells in 25 μl of PBS were
mixed with 25 μl of Matrigel (Corning), and implanted to the mammary fat pad of
8–9-week-old female FVB mice. To generate an orthotopic implanted 4T1 breast
tumour model, 5 × 105 cells of 4T1 cells in 25 μl of PBS were mixed with 25 μl of
Matrigel, and implanted to the mammary fat pad of 8–9-week-old female syngeneic
Balb/c mice. To generate a spontaneous melanoma model, a droplet of tamoxifen
(20 mg/ml) was swabbed on the back of Tyr-Cre-ERT2;BrafCA;PtenloxP mice for two
consecutive days. After 2 weeks, flat and melanin pigmented lesions appeared, and
then grew into nodular mass at 4 weeks after tamoxifen swabbing.

STING agonist 3’3’cGAMP (cGAMP, 14 μg/70 μl of PBS; Invivogen) or the
same volume of PBS was intratumourally (i.t.) injected at indicated time points. For
blocking TNFα, anti-TNFα monoclonal antibody (clone XT3.11, 15 mg/kg of body
weight, diluted in 100 μl PBS; #BE0058, BioXcell) or isotype control antibody
(clone HRPN, 15 mg/kg of body weight diluted in 100 μl PBS, Rat IgG1; #BE0088,
BioXcell) was intraperitoneally (i.p.) administered. i.t. injection of TNFα (210 ng/
70 μl of PBS; Sigma), IFNγ (350 ng/70 μl of PBS; R&D systems) or the combination
(in 70 μl of PBS) was performed at day 13 after tumour implantation. For
inhibition of AKT pathway, AKT 1/2 kinase inhibitor (AKTi, 50 mg/kg of body
weight; Sigma #A6730) was i.p. injected with i.t. PBS (70 µl) or cGAMP (14 µg/70
µl) at indicated time points before sampling. To avoid confounding effect caused by

i.t. injection per se, the same volume (70 µl) of PBS was injected into the tumour of
control group. To prevent the backflow leakage, i.t. injection was performed slowly
over 1 min while holding the injection site with smooth forceps, followed by gentle
manual compression for 15 sec. Tumour volume was calculated according to the
formula 0.5 × A × B2, where A is the longest diameter of a tumour and B is its
perpendicular diameter.

Cell culture and treatments. All tumour cells for this study were cultured in
Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% foetal
bovine serum, penicillin (100 U/ml), and streptomycin (100 mg/ml) at 37 oC with
5% CO2. LLC cells were transduced with lentiviral particles encoding shRNA
targeting STING (Santa Cruz, #sc-154411) or empty control (Santa Cruz, #sc-
108080) following the manufacturer’s protocol. Briefly, 5 × 104 LLC cells are
transduced with 1 × 105 infectious units of virus of each lentiviral particle. After
incubation with puromycin for 2 days, 6 puromycin resistant colonies were picked
and expanded. Knockdown efficiency was evaluated by qRT-PCR and immuno-
blotting in each expanded sample. Pooled primary cultured HUVECs (Lonza) were
grown in EGM2 medium (Lonza), and passages between 3-6 were used for the
experiments.

Cell viability assay. Cell viability assay was performed using Cell Counting Kit-8
(CCK-8, Dojindo Molecular Technologies) following manufacturer’s instruction.
HUVECs, LLC or MMTV-PyMT tumour cells were seeded onto 96-well plate at a
density of 5000 cells/well. After 24 h of incubation with DMEM (for LLC and
MMTV-PyMT tumour cells) or EGM2 medium (for HUVECs), each well was
added with indicated agents such as cGAMP (0–1.0 mM), TNFα (200 ng/ml), IFNγ
(300 ng/ml) or AKTi (10 μM), and then 24 h later each well was incubated for 4 h
with 10 μL of CCK-8 solution followed by measurement of the absorbance of 450
nm using microplate reader (Biotek).

HUVEC apoptosis assay. 5 × 104 HUVECs were seeded into 8-well glass slide
(Lab-Tek, Thermo Fisher) with EGM2 medium, and after 24 h treated with TNFα
(200 ng/ml), IFNγ (300 ng/ml), or in combination of TNFα and IFNγ with or
without AKTi (10 μM). After 6 h, cells were fixed with 4% PFA for 10 min at RT
followed by several washes. Cells were blocked with 5% goat serum in PBST (0.3%
Triton X-100 in PBS) and then incubated overnight at 4 °C with anti-cleaved
caspase 3 antibody (rabbit, #9661, Cell Signalling Technology,). After several
washes, samples were incubated for 1 h at RT with following antibodies: Alexa
Fluor 488-conjugated anti-rabbit IgG (#111-545-144, Jackson ImmunoResearch),
Alex Fluor 594-conjugated phalloidin (#A12381, Invitrogen). Nuclei were stained
with 2,6-diamidino-2-phenylindole (DAPI, #D1306, Invitrogen) with 1:1,000
dilution. The samples were then mounted with fluorescent mounting medium
(DAKO) and immunofluorescent images were acquired using an LSM880 confocal
microscope (Carl Zeiss).

Histological analyses. For immunofluorescence (IF) staining, primary tumours
were fixed for 12 h in 4% paraformaldehyde (PFA), dehydrated in 30% sucrose
solution for 24 h, and embedded in tissue freezing medium (Leica). Frozen blocks
were cut into 50 μm sections. For IF staining of liver, lung, kidney, and spleen, the
mice were anesthetized and perfused with 1% PFA. For IF staining of lung, the
lungs were inflated with 1% agarose through the trachea before 1% PFA perfusion.
The harvested organs were fixed in 4% PFA for 4 h at 4 °C, cut into 120 μm
sections using vibratome (Leica), and then fixed in 1% PFA for 1 h at 4 °C followed
by several washes. For IF staining of retina, whole-mounted retinas were used as
previously described60. Briefly, whole-mount of retinas and retinal pigment epi-
thelium (RPE)-choroid-sclera complexes was performed. Eyeballs were enucleated
and fixed in 4% PFA for 20 min at RT. The retina or RPE-choroid-sclera complexes
were dissected from the eyeball and fixed in 1% PFA for 1 h at RT followed by
several washes. Sections or whole-mount retina were blocked with 5% goat serum
in PBST (0.3% Triton X-100 in PBS) and then incubated overnight at 4 oC with
following primary antibodies with 1:200 dilution: anti-CD31 (hamster, clone 2H8,
#MAB1398Z, Millipore), anti-cleaved caspase 3 (rabbit, #9661, Cell Signalling
Technology), anti-Ter119 (rat, #14-5921-82, eBioscience,), anti-GLUT1 (rabbit,
#07-1401, Millipore), anti-SELP (rat, #550289, BD Bioscience), or anti-PGF (rabbit,
#MBS9607235, BIOSS). After several washes, the sections were incubated for 2 h at
RT with following secondary antibodies with 1:1000 dilution: Alexa Fluor 488- or
647-conjugated anti-rabbit IgG (#111-545-144 and #111-605-144, Jackson
ImmunoResearch), Alexa Fluor 594- or 647-conjugated anti-hamster IgG (#127-
585-160 or #127-605-160, Jackson ImmunoResearch,) or Alexa Fluor 594-
conjugated anti-rat IgG (#112-585-167, Jackson ImmunoResearch). Nuclei were
stained with DAPI (Invitrogen) with 1:1,000 dilution. The samples were then
mounted with fluorescent mounting medium (DAKO) and immunofluorescent
images were acquired using an LSM800 or LSM880 confocal microscope (Carl
Zeiss). To examine AKT activation in the tumour ECs, we purchased a paraffin
embedded, sectioned tissue array containing human breast ductal adenocarcinomas
and their adjacent normal tissues (31 cases of patients) (USBiomax, #OD-CT-
RpBre03-004). The sections were deparaffinised, antigen retrieved, incubated with
a primary antibody (phospho-AKT Ser473 antibody, #4060, Cell Signaling Tech-
nology), amplified the signal with the chromogen, counterstained, and mounted for
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visualization according to the manufacturer’s instruction (Ventana BenchMark XT
Staining Systems). The images were acquired using Axio Zoom.C16 (Carl Zeiss).

In vivo vascular leakage and perfusion assay. We evaluated tumour vessel
leakage by intravenous injection of 100 μl of rhodamine-conjugated dextran (25
mg/ml, 70 kDa, Sigma) 30 min before euthanization. For vascular perfusion ana-
lysis, 100 μl of DyLight 488-conjugated Lycopersicon esculentum lectin (1.0 mg/ml,
Vector laboratory) was intravenously injected 30 min before euthanization. Mice
were anesthetized and perfused by intracardiac injection of 1% PFA to remove
circulating dextran or lectin.

Flow cytometry analysis. Harvested samples were digested with enzyme buffer
containing 2mg/ml collagenase type2-II (Worthington), 0.1 mg/ml DNase I (Roche),
and 0.8 mg/ml Dispase (Gibco) at 37 °C for 30min and filtered with a 40 μm nylon
mesh to remove cell clumps. ACK lysis buffer was added and incubated for 5min at
RT to remove RBC. The single suspended cells were incubated in FACS buffer (5%
bovine serum in PBS) with following antibodies with 1:200 dilution: BV711 rat anti-
mouse CD45 (#563709, BD biosciences), BV421 rat anti-mouse CD31 (#562939, BD
biosciences), APC/cyanine7 anti-mouse CD45.2 (#109824, Biolegend), FITC anti-
mouse CD3ε (#100306, Biolegend), PE anti-mouse CD4 (#100512, Biolegend), APC
anti-mouse CD8 (#100712, Biolegend), FITC anti-mouse CD45 (#553079, BD bios-
ciences), PE anti-mouse CD11c (#117308, Biolegend), BV650 anti-mouse CD80
(#104732, Biolegend), PE/cyanine7 anti-mouse CD86 (#105014, Biolegend), Pacific
blue anti-mouse MHC-II (#107620, Biolegend), PE anti-mouse CD11b (#12-0112-82,
eBioscience) or APC-eFluor780 anti-mouse F4/80 (#47-4801-82, eBioscience). Con-
comitant nucleic acid staining was performed to determine live or death cells using
DAPI (#564907, BD biosciences), V510 Ghost Dye (#13-0870-T500, Tonbo) or Sytox
Green (#S7020, Invitrogen) with 1:1,000 dilution. Data were obtained with FACS aria
II (BD Bioscience) and analysed using FlowJo (Tree Star Inc., Ashland, OR) software.
We analysed following cell subsets: (i) dead cells, gated as Sytox Green+ cells; (ii) live
ECs, gated as Sytox Green-/CD45-/CD31+ cells; (iii) CD8+ T cells, gated as DAPI-/
CD45+/CD3ε+/CD4-/CD8a+ cells; (iv) dendritic cells, gated as Ghost Dye-/CD45
+/CD11c+ cells; (v) TAMCs or macrophages, gated as DAPI-/CD45+/CD11b+/F4/
80+ cells; (vi) T lymphocytes, gated as DAPI-/CD45+/CD3ε + (Supplementary
Fig. 13). The expression levels of CD80, CD86 and MHC-II on DC were presented as
mean fluorescence intensity and compared among treatment groups.

Quantitative real-time RT-PCR. Total RNA from the sample was extracted using
RNeasy Plus Mini Kit (Qiagen) according to the manufacturer’s instructions. Total
RNA was reverse transcribed into cDNA using GoScriptTM Reverse Transcription
Kit (Promega). Then, quantitative real-time PCR was conducted using FastStart
Sybr Green Master mix (Roche) and QuantStudioTM 5 Real-Time PCR System
(Applied BiosystemsTM). GAPDH was used as a reference gene. PCR primer
sequences are listed below. Tmem173 forward CGCACGAACTTGGACTACTG,
reverse AAACATCCAACTGGACTGGACAT; Gapdh forward AGGTCGGTGTG
AACGGATTTG, reverse TGTAGACCATGTAGTTGAGGTCA.

Immunoblotting. For immunoblotting analysis, cultured or sorted cellular samples
were lysed with RIPA buffer supplemented with protease and phosphatase inhi-
bitors (Cell Signalling Technology). After sonicated and denatured, the lysates were
loaded on SDS-PAGE gel and transferred to nitrocellulose membranes. The
membrane was blocked for 1 h at RT with 4% BSA in TBST (0.1% Tween 20 in
TBS) and then stained with primary antibodies with 1:1,000 dilution overnight at
4oC. Following antibodies were used as primary antibodies: anti-cleaved caspase 3
(#9661, Cell Signaling Technology), anti-STING (#NBP2-24683, Novus Biologi-
cals), anti-GAPDH (#2118, Cell Signaling Technology), anti-FOXO1 (#2880 S, Cell
Signaling Technology), anti-phospho-FOXO1(T24)/FOXO3a(T32) (#9464 S, Cell
Signaling Technology), anti-AKT (#9272 s, Cell Signaling Technology), anti-
phospho-AKT(S473) (#4060 s, Cell Signaling Technology), or anti-α tubulin (#sc-
69970, Santa Cruz Biotechnology). After several washes, secondary antibodies were
stained with 1:5,000 dilution for 1 h at RT and detected using Immobilon Western
Chemiluminescent HRP substrate (Millipore). Following antibodies were used as
secondary antibodies: anti-rabbit IgG HRP linked (#7074 S, Cell Signaling Tech-
nology) or anti-rat IgG HRP linked (#7077 S, Cell Signaling Technology). Imaging
was performed on Amersham Imager 680 (GE healthcare).

Enzyme-linked immunosorbent assay (ELISA). Tumours were sampled at
indicated time points, transferred to Precellys lysing kit (Bertin) containing RIPA
buffer supplemented with protease and phosphatase inhibitors (Cell Signalling
Technology), and then homogenized with Precellys tissue homogenizer (Bertin).
Samples were centrifuged at 12,000 g for 10 min and supernatant was collected.
Protein concentrations were measured using Bicinchoninic acid (BCA) assay and
normalized to contain the same amount of total protein for each assay. TNFα,
IFNβ, and IFNγ were measured using ELISA kits (R&D systems) by microplate
reader (Biotek) according to the manufacturer’s instruction.

Bulk RNA-sequencing (RNA-seq) and analysis. Normal mammary fat pads and
the tumours of MMTV-PyMT spontaneous breast tumours and implanted breast

tumours were harvested after 3 h of PBS or cGAMP injection. The samples were
digested with enzyme buffer containing 2 mg/ml collagenase type II (Worthing-
ton), 0.1 mg/ml DNase I (Roche), and 0.8 mg/ml dispase (Gibco) for 30 min at 37 °
C and filtered with a 40 μm nylon mesh. Cell suspensions were incubated with
ACK lysis buffer for 5 min at RT to remove RBC and then stained with anti-CD31
microbeads (#130-097-418, Miltenyi Biotec). CD31+ ECs were positively selected
using LS columns (#130-042-401, Miltenyi Biotec) and QuadroMACSTM
Separator (#130-090-976, Miltenyi Biotec,) according to manufacturer’s instruc-
tions. The CD31+ samples from MACS sorting were stained with Sytox Green
(#S7020, Invitrogen,), BV711-conjugated anti-mouse CD45 (#563709, BD
bioscience,) and BV421-conjugated CD31 (#562939, BD bioscience). ECs, gated as
Sytox Green-/CD45-/CD31+, were sorted by FACS aria II (BD Bioscience). RNA
was extracted using RNeasy Mini Kit (Qiagen) according to manufacturer’s
instruction, and RNA integrity number (RIN) was obtained by Bioanalyzer 2100
(Agilent Technologies). We constructed cDNA library with RNA with RIN over 9
using NEBNext® Ultra™ II Directional RNA Library Prep Kit (New England Bio-
Labs) according to manufacturer’s instruction. Libraries were validated with the
BioAnalyzer and quantified by qPCR and Qubit Fluorometric Quantitation
(Thermo Fisher). The NextSeq 500/550 mid Output v2 Kit was used for sequencing
with a NextSeq 500 (Illumina) to generate 75-bp pair-end reads. The quality
assessment of raw sequence data was performed using FastQC (Version: FastQC
0.11.3, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). No samples
were discarded from the analysis. RNA-seq data analysis was performed as
described previously61 with some modifications. Sequenced reads were aligned to
mouse reference genome (mm10) with STAR (version 2.7), and the aligned reads
were used to quantify mRNA expression by using HTSeq-count (version 0.6.1).
Unsupervised hierarchically clustered heatmap, principal component analysis
(PCA), gene ontology analysis of PCA axis, and MA plot for differentially
expressed genes were analysed using iDEP.9162. Gene set enrichment analysis
(GSEA) was performed with Hallmark (H) or KEGG (CP) gene set collections of
the Molecular Signature Database (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp).

Droplet-based single-cell RNA-sequencing (scRNA-seq). For scRNA-seq on
LLC tumour ECs, FACS-sorted live ECs were collected 24 h after treatment of PBS
or cGAMP injection in each one mouse respectively. For scRNA-seq on breast
tumour ECs (MMTV-PyMT mice and their implantation mice), live ECs were
collected from two mice for each group after 3 h of treatment with i.t. PBS or
cGAMP injection. Live EC single cells were sorted and processed using 10X
Chromium Single cell 3’Reagent Kit v3 (10X genomics) according to manu-
facturer’s instructions. Briefly, cells were suspended in 0.5% BSA solution and
mixed with RT reagent mix and RT primer then added to each channel of 10X
chips. Cells were separated into Gel Beads in Emulsion where RNA transcripts
from single cells were barcoded and then cDNA libraries were constructed and
amplified. We used SPRI beads (Beckman Coulter) for appropriate size selection of
cDNA and ligated with adaptor, and performed sample-index PCR. Double-sized
size selection using SPRI beads was followed and then final library constructs were
diluted in 10-fold to run on the Agilent Bionanalyzer High Sensitivity Chip. Single-
cell library sequencing was conducted using Illumina Hiseq-X platform. The
sequenced data of single-cell libraries were demultiplexed and aligned to mouse
reference genome (mm10) by Cell Ranger software 3.0.0 provided by 10X Geno-
mics. Raw expression matrices were then built by using Read10X function in Seurat
(version 3.1.1). For cell-based quality control, low-quality cells detected with less
than 500 genes and putative dead cells with high mitochondrial gene percentage
(> 10% of total Unique Molecular Identifiers (UMI) counts) were discarded. For
gene-based filtering, genes expressed in less than 3 cells were removed. The quality
metrics of scRNA-seq was provided in Supplementary Table 1. After removal of
unwanted cells and genes, normalization of raw expression matrices was performed
by dividing UMI counts for each gene per cell by the total sum of UMI counts in a
given cell, multiplied by 10,000 and log-transformed, producing log-counts per
million (CPM) like values. Then, gene-based scaling was performed while regres-
sing out variables such as number of UMIs and mitochondrial gene percentage. For
clustering and downstream analysis R package Seurat was used. First, variable
genes for datasets were identified by FindVariableFeatures function in Seurat with
options: selection.method = “vst” and nFeatures = 2500. Then, independent
datasets were integrated using FindIntegrationAnchors and IntegrateData function
in Seurat. Then, Principal Component Analysis was performed, and top 30 prin-
cipal components were used for further analysis including Uniform Manifold
Approximation and Projection (UMAP) for two-dimensional visualization,
building shared nearest neighbourhood graph and Louvain algorithm for cluster
identification. After initial clustering, contaminating cell types that are Pecam1-

were removed from the dataset. Finally, another round of clustering was performed
on remaining Pecam1+ cells. Cluster-specific marker genes were regarded as dif-
ferentially expressed genes for each cluster identified using FindMarkers function
in Seurat on the RNA assay of Seurat object with following options: test.use =
“MAST”, min.pct = 0.25, min.diff.pct = 0.25. To perform gene set enrichment
analysis from single cell RNA datasets in LLC tumour ECs, pseudo-bulk RNA
expression matrices were built by bootstrapping. Triplicates of average normalized
expression, computed on 1000 random sampled cells, for each dataset were made.
The resulting pseudo-bulk expression matrices were used as input for GSEA on
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gene set collections from the Molecular Signature Database (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). In scRNA-seq of breast tumour ECs, the dif-
ferentially expressed genes in implanted tumour versus MMTV-PyMT tumour ECs
were extracted and provided on gene ontology analysis through DAVID 6.8.

Morphometric analyses. Density measurements were performed with ImageJ
software (https://imagej.nih.gov/ij/). The cleaved caspase 3+ apoptosis area, dex-
tran leakage area, Ter119+ haemorrhage area, and GLUT1+ hypoxic area were
presented as percentages per total mid-sectional tumour area. Cleaved caspase 3+

ECs, SELP+ ECs, and vascular perfusion were presented as percentages per CD31+

area in total mid-sectional tumour area. Apoptosis of whole tumour cells was
presented as percentages per cleaved caspase 3+ area in total mid-sectional
tumour area.

Statistical analyses. Data are presented as mean ± standard deviation (SD).
Statistical significance was determined between the two groups with two-tailed t-
tests (when parametric test was appropriate). To assess the statistical significance in
more than two groups, Welch’s one-way ANOVA followed by Dunnett’s T3 test
(when parametric test was appropriate) or Kruskal–Wallis test followed by Dunn’s
test (when non-parametric test was appropriate) was used. Statistical analysis was
performed with Prism 8 (GraphPad). Statistical significance was set to p < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Single-cell RNA-sequencing data and bulk RNA-sequencing data are available in
National Center for Biotechnology Information’s Gene Expression Omnibus under
accession number GSE159013 (scRNA-seq on tumour ECs of LLC tumour), GSE159203
(bulk RNA-seq on ECs from normal mammary pad and breast tumours), and
GSE171451 (scRNA-seq on tumour ECs from MMTV-PyMT spontaneous breast
tumours and implanted breast tumours). The remaining data are available within the
Article, Supplementary Information or Source Data file. Further information and
requests for resources and reagents should be directed to and will be fulfilled by Gou
Young Koh (gykoh@kaist.ac.kr). Source data are provided with this paper.
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