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In silico voltage-sensitive dye imaging reveals the
emergent dynamics of cortical populations

Taylor H. Newton 125 Michael W. Reimann® ', Marwan Abdellah’, Grigori Chevtchenko',
Eilif B. Muller'34> & Henry Markram'©

Voltage-sensitive dye imaging (VSDI) is a powerful technique for interrogating membrane
potential dynamics in assemblies of cortical neurons, but with effective resolution limits that
confound interpretation. To address this limitation, we developed an in silico model of VSDI
in a biologically faithful digital reconstruction of rodent neocortical microcircuitry. Using this
model, we extend previous experimental observations regarding the cellular origins of VSDI,
finding that the signal is driven primarily by neurons in layers 2/3 and 5, and that VSDI
measurements do not capture individual spikes. Furthermore, we test the capacity of VSD
image sequences to discriminate between afferent thalamic inputs at various spatial locations
to estimate a lower bound on the functional resolution of VSDI. Our approach underscores
the power of a bottom-up computational approach for relating scales of cortical processing.
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ARTICLE

lectrical signaling in cortex is thought to be divided into

“inputs” in the form of subthreshold synaptic potentials,

and “outputs” in the form of action potentials (APs) or
spikes!. Therefore, a complete understanding of cortical function
requires not only a means of recording spikes in neural ensembles
but also a technique for resolving subthreshold membrane
potentials (V) in these populations. Voltage-sensitive dye ima-
ging (VSDI) is a mesoscale imaging technique capable of cap-
turing subthreshold activity across the entire rodent neocortical
surface (on the order of several cm?) with good spatiotemporal
resolution (on the order of milliseconds in time, and <50 ym in
space).l-4

In previous decades, significant progress was made in mapping
the functional architecture of the brain using intrinsic optical
imaging, a modality based on activity-dependent changes in the
intrinsic absorptive and fluorescent properties of brain tissue. Stu-
dies combining intrinsic optical imaging with cytochrome oxidase
staining revealed the interdependent organization of ocular dom-
inance columns, cytochrome oxidase blobs (color preference), and
orientation-selective “pinwheel” structures in the visual system>—.
However, intrinsic optical imaging is limited by a slow time con-
stant (on the order of seconds!®!!), rendering it ill-suited for
capturing temporal changes in ongoing activity. To this end, VSDI
has added a dynamic component to the understanding of neural
assemblies. For example, VSDI-based studies have clarified the role
of feedforward thalamic inputs versus intracortical recurrent activity
in shaping orientation selectivity!2, and shown how orientation-
selective responses spread over the cortex as a function of stimulus
shape and size!3. VSDI has also been widely applied to the study of
somatosensory computations in barrel cortex, where the somato-
topic organization and spatiotemporal scale of activity are well
suited to the technique. Such studies have produced important
findings regarding the regulation of response dynamics by ongoing
spontaneous activity'4, cortical state!®, behavior!®-18, and stimulus
strength!®. Broadly put, VSDI has enabled the field to move beyond
the static picture provided by staining and intrinsic optical imaging,
adding a dynamic dimension to the understanding of mesoscale
cortical organization.

However, VSDI suffers from the limitation that the superposed
activity of neurites belonging to many cells is reflected in each
image pixel. Uneven dye penetration, and blurring due to the
absorption and scattering of photons in tissue further complicate
the interpretation of VSDI signals!>20. Indeed, a historical con-
cern has been identifying which attributes of neural anatomy and
physiology (e.g., layer, cell type, dendrites vs. axons, pre- vs.
postsynaptic activity) are the primary drivers of VSDI
measurements!®1921:22 There exist previous efforts to construct
detailed, bottom-up models of VSDI with the aim of answering
these questions?3. We build on the precedent set by such studies,
and elaborate further on the relationship between signaling at the
cellular level and dynamics at the level of neural populations.

Here, we present the results of a detailed computational model
of VSDI, implemented in a digital reconstruction of the neocor-
tical microcircuitry (NMC) of the hindlimb somatosensory cortex
of a juvenile rat?*. The NMC comprises a network of ~31,000
neurons with detailed cellular anatomy and physiology and data-
driven synaptic physiology, and algorithmically constrained
connectivity in a 0.29 + 0.01 mm? column of tissue (Fig. 1a, b). To
simulate VSDI signals, we performed simulations of the NMC to
obtain V,, recordings of neural compartments under various
experimental conditions (Fig. 1c) (see also Supplementary Fig. 2
for an evaluation of the evoked VSDI response in several different
instantiations of the NMC based on the anatomy of individual
rodents). Next, we corrected the compartment voltages to account
for the effects of dye penetration and light transport in cortical
tissue (Fig. 1d), and collected this data into voxels (Fig. 1d, e).

Using offline Monte Carlo simulations of photon-tissue interac-
tions and a ray transfer model of microscope optics, we calculated
a depth-dependent point spread function (PSF), with which we
convolved horizontal slices of voxelized data to account for
optical blurring (Fig. le, f) (see also “Methods”). This procedure
generated a time-ordered collection of VSD images (Fig. 1g),
which we repeated for various permutations of microcircuit
geometry (Fig. 1h) to probe population dynamics in the NMC
model. To this end, we began by testing our model’s capacity to
recapitulate established results in the VSDI literature regarding
the dynamics of evoked cortical activity spread. Next, we inves-
tigated several common but difficult to test assumptions con-
cerning the cellular origins of VSDI signals: the insensitivity of
VSDI measurements to individual spikes, and the respective
contributions of distinct subpopulations of neurons. Finally, we
leveraged our model’s biophysical detail to predict the funda-
mental limits of VSDT’s ability to resolve spatially distinct cortical
inputs.

Results

Evoked VSDI response dynamics. Propagating waves of activity
are thought to support the representation and integration of
information in cortex!®17:1925-28  and can be observed with
VSDI. To quantify the similarity between the evoked response
dynamics of our model and those reported in literature, we
conducted a series of whisker flick-like trials (see “Methods”) and
examined the spread of activity. Our stimulation protocol con-
sisted of a single pulse of activity in 60 contiguous thalamocortical
(TC) fibers emanating from a virtual ventral posteromedial
nucleus (VPM) projecting to the geometric center of a concentric
arrangement of seven NMCs (i.e., the “mosaic”, Fig. 1h).

We observed a radially expanding pattern of activation
centered around the location of stimulus delivery, which
expanded to fill the entire NMC surface over the course of
several tens of milliseconds, reaching peak fluorescence at ~57 ms
poststimulus (Fig. 2a, b). The peak was immediately followed by a
period of declining activity characterized by increasing hyperpo-
larization, which undershot baseline fluorescence, reaching a
minimum at 170 ms and gradually recovering to within 10% of
baseline after ~510 ms. To quantify the temporal persistence of
the signal, we calculated the half-width duration (decay time to
50% of peak with respect to baseline, 88 ms). The time to peak
and half-width duration are comparable to the findings of!°, who
report values of ~45ms, and 86 + 69 ms, respectively (Fig. 2b).
We also considered the relationship between the instantaneous
firing rate (computed using 3 ms bins) and the VSDI signal in a
100 ms poststimulus window (Fig. 2¢,d). Our simulations indicate
that peak AP firing occurred ~7ms prior to peak VSD
fluorescence, contrary to the intuition that increased mean V,,
precipitates population spiking.

Notably, a differing VSD activity time-course was observed at
the stimulus delivery location relative to the NMC periphery
(Fig. 2g). At peripheral points along the x- and z-axes (4+540 um
and +460 um, respectively), the rising and falling phases of the
fluorescence response were almost identical to the spatial mean.
In contrast, signal recorded at the stimulus location exhibited an
initial transient within the first 12 ms of stimulus onset, and then
gradually rose to peak fluorescence. This response pattern
(initially confined, expanding thereafter) was also visible in the
spatial profile of activation over time as an initially sharp peak,
which gradually rose and then flattened into a plateau (Fig. 2f).

In order to characterize the propagation velocity of the evoked
activity wavefront, we fit each frame in the image sequence to a
two-dimensional Gaussian profile and measured the change in
the full width at half maximum over time (Fig. 2e) (see
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Fig. 1 Cortical microcircuit overview and in silico VSDI workflow. a Digital microcircuit comprising 31,346 morphologically detailed neurons connected in
a columnar unit. Inset: expanded view of a L5 PC, with synapses highlighted in red. b Exemplar excitatory (top) and inhibitory (bottom) cell types. Blue:
axons. Red: dendrites. c¢-f Schematic illustrating the in silico VSDI workflow. € Neuron surface areas are scaled by prefactors accounting for dye diffusion
and light transport in cortical tissue. d Microcircuit volume is divided into voxels to facilitate calculations. e Photons emitted from each voxel are scattered
and absorbed throughout the tissue volume via Monte Carlo simulations. Photons reaching the cortical surface are propagated through a tandem-lens
optical setup using ray transfer matrix analysis. Steps e and f are performed once for a given circuit and optical setup to determine a depth-dependent
point-spread function (point-spread from 1to 2 in panel e, i.e., from voxel to camera). f Raw signals at each depth are convolved with their respective point-
spread function, and accumulated in a pixel array at the surface. g Example VSDI image stack for 11 ms of spontaneous activity. Images were thresholded at
10% of peak response. h Microcircuits were aggregated into a larger volume made of a central microcircuit column surrounding by six additional columns
contacting each of the central column’s hexagonal sides (i.e., the “mosaic”). This arrangement mitigates boundary effects within the central column and
facilitates the analysis of signal spread dynamics.

Supplementary Algorithm 1 for details). We found that activity In vivo VSDI experiments have documented wavefront
wavefronts underwent two sequential bursts of expansion prior to  propagation speeds within an order of magnitude of those
peak VSD fluorescence, reaching a peak velocity of ~20 um/ms. reported above. For example!4, use a Gaussian fit of the cross-
Subsequently, the wavefront entered a period of contraction sectional profile of VSD images to estimate that whisker
(—10 um/ms) near the fluorescence peak, before gradually deflection-evoked waves in urethane or halothane anesthetized
returning to baseline (fluctuations near zero). rodent barrel cortex propagate along barrel rows at a speed of
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Fig. 2 Propagation of stimulus-evoked cortical activity. a 650 ms of stimulus-evoked VSD measurements in the “mosaic”. The stimulus consists of a
single, coincident pulse of activity in 60 contiguous thalamic projection fibers innervating the center of the interior microcircuit (delivered at t =0 ms).
b Time course of spatially averaged VSD signal in a. Upper arrows (black) indicate points of interest along the curve. From left to right: peak latency, half-
maximum duration (time to decay to 50% of signal peak), time of signal minimum, recovery time (earliest time after minimum for amplitude to stably
decay to within 10% of baseline). Bottom arrows (blue) indicate in vivo values for peak latency and half-maximum duration reported in literature. ¢ Top:
PSTH of spiking activity for time window (dashed box) indicated in b (3 ms bins). Bottom: pixel-wise PSTH (mean firing rate of all cells under each pixel)
over same time window (8 ms bins). d Top: expanded view of time window (dashed box) indicated in b detailing ascending and descending phases of
stimulus-evoked spatially averaged VSD signal. Bottom: same as above, but for spatially extended VSD signal, where each frame was computed by
averaging activity in 8 ms intervals. e Activity wavefront propagation velocity (solid line, left axis), and wavefront size (full-width at half-maximum, dashed
line, right axis). Blue horizontal line and shaded region show in vivo measurements of stimulus-evoked wavefront propagation velocity reported in
literature. Solid blue line: mean value; shaded blue region: measurement range; shaded gray region: standard deviation (n =10 independent trials).

f Spatiotemporal evolution of VSD signal along the x-axis (z=0, i.e., a horizontal line across the surface of the “mosaic”). Lightening hue represents
the passage of time. g Time course of VSD activation at specific locations on the cortical surface. Blue star: circuit periphery along the y-axis. Red star:

circuit periphery along the x-axis. Black star: circuit center. Colored error bands: standard deviation (n=10 independent trials).

~60 pm/ms, and barrel arcs at ~33 um/ms. See Supplementary
Table 1 for a summary of cortical wavefront propagation
velocities reported in the literature. Also, see Supplementary
Fig. 3 for an analysis of laminar VSDI activity spread in a sagittal
slice (x-y plane) of the NMC.

Excitatory neurons in layers 2/3 and 5 dominate VSDI mea-
surements. VSDI signals are linearly proportional to the product
of local V,, and membrane surface areal. Moreover, signals ori-
ginating in neurites located in deeper layers are significantly more
attenuated than those emanating from superficial layers due to
uneven dye penetration and light-tissue interactions (Fig. 3b). It
follows that the morphology, location, and orientation of a given
cell affect the magnitude of its contribution to the optical
response. To better understand these influences, we analyzed the
fractional contributions of cortical layers and cell types to the

overall VSDI signal. In agreement with previously reported
results!®172229 we found that >90% of the raw fluorescence
originated within 500 pum of the pial surface (Fig. 3b). Further-
more, we saw that neurites belonging to L2/3 and L5 neurons
monopolized the “effective surface area”, which we define as the
quantity that results from multiplying the original surface area of
each neurite by a depth-dependent scaling factor accounting for
dye penetration and light transport; L2/3 and L5 contributed
44.9% and 43.7% of the total, respectively. As predicted by the
distribution of effective surface area, L2/3 and L5 were also the
primary drivers of the VSDI signal (47.8% and 37.6%, respec-
tively, n=10 trials) during spontaneous activity (Fig. 3c, d).
Cross-correlation revealed mutual positive correlations between
the contributions of each layer and the VSDI total (Fig. 3e).
However, for evoked activity, L5 generated upwards of 67% of the
signal whereas L2/3 neurites constituted 19% (Fig. 3f, g).
Importantly, L5 underwent strong depolarization in the
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Fig. 3 Fractional contributions to VSDI measurements by layer and cell-type. a-b Surface area contributions for each layer by depth. a Microcircuit, for
reference respecting relative layer positions and axis orientation. b Left: raw (unscaled) neurite surface area profiles by depth for each layer (20 um bins).
Middle: depth-dependent scaling prefactors accounting for dye diffusion (solid black line) and light penetration (dashed black line). Solid blue line indicates
product. Right: effective surface area profiles by depth for each layer (raw surface area b scaled by product of light attenuation and dye diffusion prefactors
(blue line, middle panel), 20 um bins). ¢ Spatially averaged VSD signal (black) with fractional contribution of each layer (colored) for 1.5 s of spontaneous
activity. d Boxplot of fractional layer-wise contribution data in ¢, illustrating overall spread and polarity of each layer's contributions. Whiskers indicate
standard deviation. n =30,010 time samples acquired over n =10 independent trials (3001 per trial; 2000 ms to 3500 ms in 0.5 ms steps). Box extends
from lower to upper quartile values of the data, with a line at the median. Top and bottom whiskers indicate extent of data up to last datum below

Q3 +1.5xIQR, and last datum above Q1 — 1.5x IQR, respectively, where Q1 is the 1st quartile, Q3 is the 3rd quartile, and IQR is the interquartile range
(Q3 — Q1. e Correlation matrix for all traces in ¢. f Spatially-averaged VSD signal (black) with fractional contribution of each layer (colored) for 500 ms of
evoked activity. Plot begins at —50 ms, stimulus delivered at O ms (dashed line). g Same as in d but for evoked activity. n = 30010 time samples acquired
over n=10 independent trials (3001 per trial; 2000 ms to 3500 ms in 0.5 ms steps). Box and whisker definitions same as in e. h Same as in e but for
evoked activity. i Fractional contributions of excitatory and inhibitory populations to overall VSD signal, shown over a 50 ms second window spanning
25 ms pre- and 25 ms poststimulus. j Mean membrane potentials computed for inhibitory cell populations in each layer, plotted over the same time window
as in i. k Boxplots depicting the difference between pre- and poststimulus membrane potentials for inhibitory cell populations in each layer. Boxplots in
each panel were calculated using the 25 ms pre- and poststimulus periods referred to in i and j, **: p < 1e-10, paired sample t test (two-sided). n =350 time
samples acquired over n =1 trial (data for each time point calculated by averaging over inhibitory cell voltages per layer). Box and whisker definitions same
as in e.

poststimulus window while L2/3 tended to hyperpolarize, indi-
cating differential, layer-specific roles during stimulus-driven
responses. Analysis of the correlations between layer contribu-
tions supports this conclusion, showing anticorrelated activity
between superficial and deep layers (Fig. 3h). Finally, we note that
these experiments (Fig. 3) were conducted in an isolated NMC
column. In contrast, our analysis of cortical activation spread
(Fig. 2) was computed in a mosaic concatenation of seven NMCs
to allow sufficient surface area for signal spread. Concatenating
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several columns slightly alters the lateral distributions of neurites,
and accounts for the differences in peak activity profiles
(monophasic vs. biphasic) and peak amplitudes (~2.5% vs. ~1%)
apparent in Figs. 2b and 3f.

Morphological reconstructions indicate that the dendritic
arbors of inhibitory neurons tend to be spatially confined relative
to their excitatory counterparts (Fig. 1b; red: dendrites, blue:
axons), which may influence their respective contributions to the
VSDI signal. Thus, we also decomposed VSD fluorescence into
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Fig. 4 Detectability of spiking activity in the VSDI signal. a Top: firing rate (red), VSD (black), and VSD computed excluding spikes (membrane potentials
thresholded at —55 mV, blue) for 200 ms of spontaneous activity followed by 600 ms of evoked activity. Bottom: signal-to-spike ratio. Noise here refers to
“spike noise”, or contamination of putative subthreshold measurements by APs. Pale black lines are individual trials; dark line indicates mean. Dashed black
line: signal-to-spike ratio = 10. b Power spectral density of spike noise computed for 100 ms prestimulus window (black), and 100 ms poststimulus window
(magenta). Blue shaded box indicates frequencies for which pre- and poststimulus noise are significantly different. Dashed black line indicates frequency at
which prestimulus noise and poststimulus noise are no longer meaningfully different (paired t test (two-sided), significance threshold = 0.01 adjusted to

2.6e-4 for multiple comparisons using Holm-Bonferroni correction).

excitatory and inhibitory components. For evoked trials, the
excitatory component of the signal (>90%) underwent large
deflections in the poststimulus window, far outweighing inhibi-
tory contributions (<10%) (Fig. 3i). Indeed, the inhibitory fraction
remained small throughout both pre- and poststimulus periods.
One might expect the inhibitory VSDI fraction to increase in
proportion to the excitatory fraction, as it is known that
excitatory activity in healthy neocortex quickly recruits a
mitigating  inhibitory = response,  preventing  runaway
excitation30-33. We therefore analyzed the timecourse of mean
membrane potential changes in the inhibitory populations of each
layer, revealing that those in superficial layers were significantly
hyperpolarized following stimulation, while those in deep layers
were significantly depolarized (Fig. 3j, k). Thus, the spatially
confined dendrites of inhibitory neurons located in deeper layers
contributed significantly less to the overall signal as their arbors
do not extend to a height reachable by dye and excitation light. As
a consequence, only the contributions of hyperpolarized super-
ficial inhibitory neurons are visible to the VSDI signal.

Disentangling the impacts of sub- and suprathreshold neural
activity on VSDL It is thought that APs are too brief and too
asynchronous to contribute substantially to the VSDI signal,
despite causing large fluctuations in V,,114-16:19.34  This con-
clusion is based on simultaneous VSDI and single-cell patch-
clamp recordings, of which spike-triggered averaging exposes the
absence of individual AP waveforms from the VSDI signall®.
However, such experiments leave open the possibility that large
volleys of spikes occurring within a narrow time window could
still measurably influence the signal. We tested this conjecture by
comparing spike-related VSDI contributions in pre- and post
stimulus time windows lasting several hundred milliseconds each
(Fig. 4). To isolate the effects of spikes on the optical response, we
ran our VSDI pipeline on spike-filtered compartment voltage data
and compared with unfiltered data (Fig. 4a). Assuming the null
hypothesis that VSDI primarily reflects subthreshold activity, we
considered any difference between the raw and spike-filtered
signals as “noise” due to spikes. This allowed us to calculate a
signal-to-spike ratio (SSR), defined in analogy to the signal-to-
noise ratio, as the squared quotient of the root mean square
amplitudes of the unfiltered signal and spiking component. That

is,
a=\l5 / " (vSD(o)dt (1.1)
=Jaif, .
2
SSRé(Ar$> (1.2)
Arawfﬁlt

which we represented as a continuous variable by binning into
40 ms intervals with overlapping windows. Conservatively, we
estimate that typical VSDI experiments have an SNR of
~1022:35-39 Therefore, when SSR is <10 (i.e., less than the
empirical SNR of typical experiments), the component of the
VSDI signal due to spikes is larger than contamination due to
other noise sources, and in principle could be detected. Although
SSR did dip slightly below our estimated detectability threshold
during the poststimulus window, this is unlikely to be meaningful
in most laboratory settings. However, in cases where exception-
ally high SNR is achieved, information regarding the spiking
component of the VSDI signal may become relevant. Therefore,
we sought to understand how the frequency content of spike
noise is affected by stimulation (Fig. 4b).

An analysis of the power spectral density of spike noise
immediately pre- and poststimulus showed that the frequency
content differs significantly only below ~100Hz, with lower
frequencies exhibiting greater divergence. Measurements sensitive
enough to detect a spiking contribution to the VSDI signal,
therefore, would only contain spike-related information below
this frequency cutoff and would be dominated by low-frequency
components. It is important to acknowledge that, as reported
previously, contributions by individual spikes are not detectable
in mesoscale recordings; rather, it is the aggregate influence of
population spiking that adds a small DC offset (and low-
frequency oscillations) to the VSDI signal, as described above.

Assuming a high SNR scenario, we also undertook an analysis
of the relative contributions of forward- and backward-
propagating APs to the spike-related VSDI signal component
(Supplementary Fig. 3). We found that nearly all of the spike-
related VSDI signal is due to backward-propagating APs in
dendritic arbors.
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Fig. 5 VSDI pixel-wise two-point discrimination of VPM input locations. VVarious measures of circuit activity were compared for their ability to

discriminate between VPM input stimulus locations. a Spike trains of individual neurons were used to compute AUROC scores (representing capacity to
differentiate between stimulus locations) as a function of stimulus separation. Colors in legend indicate percentile of discrimination capacity within each
subpopulation. b Discrimination power at discrete time points for stimuli positioned at —50 um and +50 pum along a vertical axis bisecting the VSD image
plane. Pixels are the negative log p value of the null hypothesis that the VSDI data associated with each stimulus location come from the same distribution.
¢ Center: summary map of discrimination performance (AUROC score) considering the entire time course of each VSDI pixel for stimuli at =50 um and
-+50 um. Surrounding plots: AUROC score as a function of increasing stimulus separation at several pixel locations indicated by white boxes (mean values,
n=(7,8,10, 8, 6, 4, 4, 2) independent scores per separation (0, 12.5, 25, 37,5, 50, 62.5, 75, 100 um, respectively) reflecting the number of possible
stimulus location pairings at that separation). Error bars indicate standard deviation for each separation. d Matrix of AUROC score maps for each
combination of stimulus locations. e XGBoost-based classification accuracy as a function of stimulus separation considering all pixels at all time points
(mean values, n= (20, 25, 20, 15, 10, 10, 5) independent scores per separation (12.5, 25, 37,5, 50, 62.5, 75, 100 um, respectively), reflecting the number of
possible (unique) stimulus location pairings at that separation evaluated with fivefold cross-validation). Dashed lines indicate threshold (25 um, ~75%

accuracy) below which classification performance drops considerably. Whiskers indicate standard deviation.

VSDI two-point discrimination. The signal in each VSDI pixel
reflects the summated activity of many dendritic processes
belonging to many different neurons whose somas are distributed
both horizontally, away from a given pixel, and vertically,
throughout all six cortical layers. We have shown previously how
such contributions break down by layer and neuron class. Now
we consider how the multiplexed nature of VSDI signals could
lead to loss of information.

First, as a baseline, we examined the capacity of the spike trains
of individual neurons to discriminate between different stimuli;
spiking activity constitutes the “output” communicated by the
circuit to other brain regions and is therefore useful as a proxy for
information content. To this end, we defined an experimental
paradigm wherein we subjected the NMC to simulated inputs
from the VPM nucleus of the thalamus at various spatial
locations. As our model contains diverse sources of biological
noise (Nolte et al.40), responses can vary significantly between
repetitions of a given experiment, making the distinction between
pairs of stimuli a non-trivial problem. Nevertheless, we found that
spike trains of individual neurons can discriminate spatially
separated stimuli with high accuracy, although performance
depended strongly on the individual. Only the top 5% of neurons
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achieved a level of accuracy at or exceeding 90%, and nearly half
of those sampled never rose above chance levels (Fig. 5a).

As noted previously, individual spiking activity is effectively
invisible to VSDI measurements, but the postsynaptic potentials
(PSPs) resulting from volleys of stimulus-induced spikes may
leave a detectable signature, albeit strongly mixed with PSPs
elicited by neighboring neurons not directly contacted by
thalamic projections. To investigate how evoked spiking activity
impacts the VSDI response, we quantified the degree to which
stimulation affects the value of a given pixel at a given point in
time. Specifically, for pairs of spatially separated but otherwise
identical stimuli, we calculated the negative logarithm of the null
hypothesis that the distributions of pixel values have identical
means (f test, n=25 repetitions of both stimuli). Figure 5b
depicts a map of this measure for the first ~13 ms following
stimulation, comparing delivery at —50 um and +50 um. We
found that two regions with strongly differentiated VSDI
responses emerge at 5ms post stimulus, and gradually fade by
13 ms, coinciding with the initial appearance and subsequent
dispersal of activity in the underlying VSDI datasets. Thus, pixels
directly above TC projection fibers exhibit the strongest
difference in the milliseconds immediately following stimulation.
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Furthermore, we observed a horizontal band of very small
difference along the axis of symmetry dividing the two stimulus
locations, implying that pixels there undergo a similar activity
trajectory for either stimulus condition. Having characterized the
spatiotemporal evolution of differences in the VSDI signal for
different stimuli, we proceeded by investigating how well
individual pixels are able to discriminate between simulus
locations when considering the entire history of pixel values.
Accordingly, we calculated the area under the receiver operating
characteristic curve (AUROC) of the classification problem (see
“Methods”, and Fig. 5¢). We found that overall discrimination
performance is reduced as compared to spike train-based
classification, reaching a maximum AUROC score of ~0.7 for
high-performing pixels. As before, we found that some pixels
provided no useful information for classification (AUROC score
near 0.5). In addition, we found that certain pixels achieved a
peak score at sub-maximal stimulus separations, although the
trend showed an increase in pixel-wise AUROC score for
increasing stimulus separation (Fig. 5c). Overall, discrimination
performance for single pixels suffered in comparison to stimulus
classification using only the spike trains of individual neurons.
We therefore performed a final classification, this time using
information from all pixels for a 700 ms time window including
the stimulus presentation. This allowed us to predict a lower limit
below which VSDI images lack the fundamental information
content necessary to reliably discriminate between stimulus
locations, i.e., an effective input resolution. For the classification,
we selected “XGBoost”, an implementation of the gradient
boosting decision tree algorithm noted for its speed and accuracy
on structured datasets?! (see “Methods”). Using this method, we
reached classification accuracies approaching 100% for large
separations, indicating that the values of pixels contained non-
redundant information. We further found that discrimination
performance declined for smaller separations, dropping sharply at
approximately 25 um (Fig. 5e). We interpret this value as a lower
bound on the effective input resolution of VSD imaging,
accounting for both the aggregate nature of the signal and
optical distortions introduced by photon scattering and absorp-
tion in the tissue. In most laboratory settings, additional sources
of noise will also contaminate the signal, further compromising
discrimination between input stimulus locations. Thus, future
advances in imaging technology are unlikely to improve VSDI’s
fundamental capacity to resolve loci of cortical activity below
this limit.

Discussion

We constructed a bottom-up, biophysically detailed model of
VSDI in a digital reconstruction of rodent somatosensory cortex
to relate cellular anatomy and physiology to mesoscale signals. As
a first step, we considered VSDI measurements of evoked
responses in our model and found that they were qualitatively
and quantitatively similar to analogous in vivo experiments. Next,
we used our model to deconstruct the VSDI signal into layer and
cell type contributions, revealing context-dependent, strongly
differentiated roles for layers 2/3 and 5. We also examined the
influence of spiking activity, and found that while individual
spikes are not reflected in VSDI data, large volleys of semi-
synchronous spikes could affect measurements. Finally, a two-
point discrimination test of “functional” resolution showed that
cortical VSDI is unlikely to be able to resolve point-like inputs
separated by <25pum. Several details pertaining to the above
results merit further discussion.

Lateral spread dynamics of VSDI signals. As stated previously
(see “Results”), the VSD fluorescence response to TC stimulation

underwent non-uniform lateral expansion, wherein the signal
quickly saturated near the location of stimulus delivery before
gradually extending across the entire microcircuit (Fig. 2f, g). This
observation is consistent with in vivo optical responses to evoked
activity, in which VSDI signals saturate in a locally confined
region near the stimulation site within the first 10-20 ms before
expanding outwards!%:19:2142,43,

Fehérvari et al.#2 report similar fluorescence dynamics in an
in vivo VSDI study of mouse primary visual cortex (V1). In
particular, they find that in a localized region at the site of an
applied 50 pA current impulse, fluorescence rapidly increases
within ~10 ms, before saturating and then expanding laterally.
They propose that the initial peak primarily reflects mono-
synaptic excitatory postsynaptic potentials (EPSPs), which are
followed by the propagation of disynaptic activity at greater
latencies. This explanation is consistent with our finding that the
first response occurs locally and quickly plateaus, likely as a
consequence of feedforward PSPs evoked by direct TC innerva-
tion at the center of the microcircuit. Subsequent activity spread
would occur only following a monosynaptic delay, as the targets
of TC projections propagate the signal to their postsynaptic
partners. Also, we note that in comparison to average signal
transmission speeds reported in the literature (Supplementary
Table 1), the wavefront phase velocities calculated here are
relatively low. We speculate that this may be due to slicing of
mid-range intracortical axons during the morphology reconstruc-
tion process. It is well known that extended axonal arbors are at
risk of slicing during histological processing, and efforts were
made to repair severed arbors using statistical methods%.
However, it is unlikely that such repairs would fully correct for
slicing artifacts, leaving open the possibility that significant
numbers of mid-range connections are missing. If true, it would
tend to decrease wavefront propagation speeds, as signal
transmission would be forced to proceed strictly through short-
range connections.

Lack of correlated activity between VSDI signals and layer 2/3
PCs. A point of disagreement between our results and those
described in literature is the degree to which VSDI recordings are
correlated with simultaneous whole-cell (WC) recordings in L2/3
(see Supplementary Fig. 1). Several in vivo studies have reported a
high correlation between VSD fluorescence and the V,, of single
neurons in L2/3 rodent barrel cortex!416:1934 However, due to
the technical challenges associated with simultaneously per-
forming VSDI and WC recordings in live animals, these studies
used anesthesial®161? or in vitro slice preparations34 to establish
the correspondence between V,, and VSDI traces. It has been
shown that anesthetic agents increase cortical synchrony and
pairwise neural correlations®-%7, Of particular relevance,
Greenberg et al.*> found that correlated AP firing in pairs and
populations of L2/3 neurons in rat visual cortex increased sig-
nificantly during anesthesia as compared to the awake state.
Therefore, the disparity between the strength of VSDI-V,, cor-
relations observed in vivo and those extracted from our simula-
tions may be at least partly explained by differences in cortical
state. Since VSDI signals reflect an average over V,, deflections in
a large number of neuronal processes mostly situated in L2/3,
anesthesia-induced synchrony among L2/3 neurons would tend
to increase the correlation between any given L2/3 neuron and
the population mean. Our model does not consider the effects of
anesthesia, nor do we observe the emergence of oscillatory cor-
tical states. Thus, both pairwise and population neural correla-
tions remain relatively weak during spontaneous activity,
resulting in a lower correspondence between VSD fluorescence
and individual V,, measurements.
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Changes in spiking activity precede deflections in mean
membrane potential. We showed that spikes precede V,, fluc-
tuations during both spontaneous and evoked activity (see Fig. 2c,
d; Fig. 4a; Fig. 5b), confirming several studies including one in rat
barrel cortex!®, and two others in ferret visual cortex*®49. A
reasonable expectation may be that, on the contrary, increases in
VSD fluorescence should precede increased spike firing, since
membrane depolarization would tend to bring neurons closer to
threshold making APs more likely. However, as suggested by
Eriksson et al.#8, since each cell contacts many postsynaptic
partners (452 + 272 in our microcircuit), any given AP will elicit
PSPs in the dendrites of hundreds to thousands of other cells.
Although spike initiation requires membrane depolarization, only
a fraction of the population is active at once (~26% at evoked
response peak, and ~0.4% during baseline; 2 ms bins). Therefore,
V,, changes associated with spike firing are outweighed by
downstream PSPs, with a monosynaptic delay. We found a 6.9 ms
delay between peak spiking and subthreshold response during
stimulation (Fig. 2¢, d), and a 22.7 ms delay during spontaneous
activity (Fig. 5b). Monosynaptic signal transmission reportedly
requires between 6 and 14ms in cortex’), suggesting that
deflections in mean V,, primarily reflect monosynaptic activity in
the first case (evoked), and disynaptic inhibition in the second
(spontaneous).

Dissecting the neuropil and the role of axonal contributions.
Though each reconstructed morphology in the NMC contains the
full complement of axonal, dendritic and somatic compartments,
non-axon initial segment (AIS) axonal compartments are exclu-
ded at simulation runtime to conserve resources. This is possible
since axo-axonal connections are thought to be mediated by: (1)
Chandelier cells which form synapses exclusively on the AIS®!->2,
and (2) somatostatin-expressing cells which innervate somata,
dendrites, spines, and the AIS?, implying that non-AIS intra-
cortical axonal arbors merely propagate signal from one point in
space to another with relatively minimal disturbance. Thus, AP
waveforms originating in the AIS may be broadcast to axon
terminals following a suitable delay calculated from axonal path
length and known conduction velocities. However, the exclusion
of axonal compartments could curtail the accuracy of our VSDI
model, since they are a potentially relevant source of signal. To
address such concerns, we characterized the composition of the
neural tissue within each voxel (1000 um3 cube of tissue) in terms
of the surface area contributed by axonal, somatic, and dendritic
compartments (Supplementary Fig. 5). We found that axonal
compartments constitute a non-negligible fraction of the neuro-
pil, representing ~35% of the total membrane surface area
(Supplementary Fig. 5b,d), with a peak at the boundary between
layers 4 and 5 (Supplementary Fig. 5a). However, this concern
must be viewed in light of two important countervailing con-
siderations. First, electron microscopy serial reconstructions have
revealed substantial, although patchy, myelination along the
axonal arbors of both GABAergic and pyramidal neurons in the
neocortex (Micheva et al.>4). In particular, Tomassy et al.>> find
that up to 60% of the reconstructed axons of L5 and L6 PCs may
be myelinated. This would tend to attenuate axon-related fluor-
escence since VSDI does not measure activity in myelinated
axonal segments!. Second, in contrast to dendritic processes in
which PSPs constantly occur as a result of synaptic bombard-
ment, axons beyond the AIS do not receive synaptic input. Thus,
each axonal compartment sees only a brief deflection in V,, as an
AP waveform travels along the cable. Since it is well established
empirically that APs do not contribute to VSDI signals!>16:19:34
and since neocortical axons carry mostly or only AP-related
information, it follows that axons, in spite of their nontrivial total

surface area, are likely of little consequence in shaping VSDI
measurements. This claim awaits definitive confirmation in future
modeling studies that explicitly represent axonal compartments
in the calculation of in silico VSDI signals.

Limitations and outlook. As regards the validity of the in silico
model of VSDI presented here, we considered the following three
aspects: (1) accuracy of the biophysical model of VSDI, i.e., the
calculations linking cellular activity to measured fluorescence, (2)
biological plausibility of the composition and architecture of the
anatomical tissue model, (3) whether the simulations are func-
tionally representative of biological neocortex.

On the first account, we assert that the excellent linearity and
fast kinetics of VSDs?? greatly simplify their analytical relation-
ship to V. Regarding the second concern, a caveat is the absence
of several important structural details from the version of the
NMC used here, including glial cells, vasculature, and long-range
intracortical axons?*. However, in the case of glia, the slow
timescale of response (3-4 ms®®) and small amplitude of V,,
deflections (1-7 mV>7) make it unlikely that they contribute
meaningfully to VSDI measurements. As regards vasculature,
since our in silico VSDI pipeline already accounts for the bulk
optical properties of cortical tissue (see “Methods”), their effects
have, in principle, been accounted for. With respect to the third
concern above, several details that are likely to influence network
dynamics, including: gap junctions, multivesicular release,
synaptic plasticity, and especially neuromodulatory dynamics,
the effects of which are known to be implicated in the transitions
between cortical states®®, are not present in this version of
the NMC.

In addition, we note several limitations concerning the
comparison of our in silico stimulation protocol to whisker
deflection experiments in rodents. First, as a model of hindlimb
somatosensory cortex, the NMC lacks the unique cytoarchitecture
and anatomical organization that characterize barrel cortex®®60,
Furthermore, the NMC excludes the trigeminal and thalamic
nuclei, and therefore does not model sensory processing delays
(and VSDI response latencies) or the modulation of cortical
dynamics by TC feedback. Previous experiments have shown that
cortical activation patterns depend on stimulus strength, with a
tendency for excitation evoked by weak stimuli to remain
confined to a single barrel!2%3442, In our model, TC projection
fibers innervating the geometrical center of the microcircuit fire a
simultaneous AP, a scheme that neither captures the full
complexity of afferent TC signaling, nor permits a nuanced
modification of stimulus strength. Finally, experiments have
implicated reciprocal TC pathways®!-%3 and intracortical
interactions® in the emergence of slow wave activity. It is known
that cortical oscillations interact with sensory responses to
produce differentiated VSDI signals!4. Thus, an in silico account
of the effects of brain state on VSDI measurements awaits future
iterations of the NMC that include TC feedback and corticocor-
tical interactions.

Limitations aside, our digital framework permits extension
from models of exogenous dye-based imaging to other modes of
voltage imaging in the brain. In particular, recent advances in the
development of genetically encoded voltage indicators (GEVIs)
have prompted a resurgence of interest in voltage imaging. For
example, Abdelfattah et al.%> demonstrated the use of bright,
photostable indicators for in vivo imaging of sub- and
suprathreshold membrane voltage in populations of neurons in
larval zebrafish. Our research adds important nuance to the
understanding and interpretation of VSDI signals at a moment
when GEVIs are poised to reinvigorate the field of voltage
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imaging, and furthermore provides a foundation for future
modeling studies of GEVIs and other techniques.

This study demonstrates the utility of bottom-up biophysical
modeling as a complement to experimental approaches for
understanding the relationships between spatial and temporal
scales of cortical signaling. Using our model, we clarify which
aspects of neural anatomy and physiology shape VSDI signals.
Additionally, we estimate a bound on the fundamental capacity of
VSDI pixels to resolve cortical activity emanating from spatially
separated, point-like TC inputs. These insights were gleaned from
in silico data beyond the reach of current experimental
techniques.

Methods

Microcircuit. Our in silico VSDI model was implemented in a digital microcircuit
consisting of a connected network of 31,346 neurons, ~8 million connections, and
~37 million synapses. The network was arranged in a columnar volume 462 x
400 pm wide and 2082 pm deep. A spatially extended version was constructed by
interconnecting seven such units in a hexagonal tiling (the “mosaic”). In this
configuration, depth axes were mutually parallel, and columnar surfaces were
coplanar (Fig. 1h). The cell morphologies populating the circuit were obtained
from 3D reconstructions of biocytin-stained neurons from juvenile rat hindlimb
somatosensory cortex, while the placement, connectivity, and electrophysiological
properties of each cell was determined algorithmically and constrained by sparse
data derived from experiments and literature?4. TC innervation was reconstructed
using VPM axonal bouton density profiles in rat barrel cortex, and synapses were
probabilistically assigned to incoming fibers using a Gaussian distribution centered
around each fiber?4. See Markram et al.2* for additional details concerning
microcircuit construction and composition. Models and circuit data are freely
available for download at: https://bbp.epfl.ch/nmc-portal/downloads (see “Data
Availability” statement).

Supercomputing. A 2-rack Intel supercomputer using dual socket, 2.3 GHz, 18
core Xeon SkyLake 6140 CPUs, with a total of 120 nodes, 348 GB of memory, and
46 TB of DRAM was used to run the simulations and carry out analysis.

Simulation. Simulations were conducted using proprietary software based on the
NEURON simulation environment®. Data were output in the form of binary files
containing spike times and compartment V,, sampled every 0.1 ms for each neuron
in the network. Extracellular calcium and potassium concentrations were modeled
by considering their phenomenological effects on neurotransmitter release prob-
ability and somatic depolarization, respectively. These values were adjusted to most
closely mimic an in vivo-like network state?%, corresponding (empirically) to
extracellular calcium and potassium concentrations of 1.25 mM, and 5.0 mM
(~100% somatic firing threshold), respectively.

Trials simulating evoked responses modeled TC stimulation with a single pulse
of activity in 60 contiguous thalamic fibers projecting to the geometric center of the
microcircuit. For experiments requiring a larger cortical surface area, the same
approach was applied to the spatially extended hexagonal microcircuit tiling (see
Microcircuit above). Activity was simulated over ten trials (i.e., random seeds) for a
duration of 5s each, with the first 2's of data in each trial discarded to avoid any
boundary condition-dependent artefacts. The stimulus was delivered at 2500 ms,
meaning that each trial consisted of an initial period of 500 ms of spontaneous
activity, followed by 2500 ms of poststimulus activity.

Signal calculation. We assumed that the VSDI signal emanating from a small
patch of cellular membrane was linearly related to the product of the membrane
surface area and V, 131416.19.2229.34 Our neuronal morphologies are composed of
small segments (“compartments”) of equipotential cable whose surface area and
transmembrane voltage were multiplied to obtain the raw VSDI signal. This raw
signal was scaled for each compartment as a function of depth to account for the
physics of dye diffusion and the scattering and absorption of illumination light
(Fig. 1d). The degree of signal attenuation due to uneven staining through the
cortical depth was interpolated from data measured in four mouse brains treated
with RH1691 voltage-sensitive dye, flash-frozen, and sliced into 20 um thick
cryosections!®. To reduce data storage requirements, we divided the microcircuit
into voxels, within which an aggregate signal was computed by summing the
contributions of all compartments in that voxel:

Vi® = Zeu, T (3,) (AV3, (D) + Go) (2.1)

where v;; denotes the value in the ijkth voxel, a, is the surface area of the rth

compartment, F( ,) is an attenuation prefactor accounting for dye penetration and
scattering/absorption of illumination light at depth y for compartment r, AV, is
the change in membrane potential for the rth compartment, and G, is a constant
reflecting the combined contributions of background noise and autofluorescence

(assumed isotropic). The value of G, was fixed by requiring that a 10 mV change in

V,, correspond to a ~0.5% change in fluorescence over baseline (AF/Fy), as
reported by Ferezou et al.16, assuming an average resting potential of —65 mV. We
developed a dedicated software package (EMSim) for efficient calculation of the
data volumes defined by Eq. (2.1), which is open source and freely available for
download (see “Code Availability” statement)®”.

To model the effects of scattering and absorption in the tissue, we used a Monte
Carlo simulation-based approach (see Point Spread Function) to compute an
effective PSF for increasing depths along an axis perpendicular to the cortical
surface. We used the PSF at each depth to determine the standard deviation of a
Gaussian kernel, which we convolved with the horizontal data slice at that depth:

Hj= (VOjo s Voﬂf' ’ 'Evnj() C Vi) 22
10 = Hy(ty°g (o)) 23)
v=U#g 24)
j
Hj (Eq. (2.2)) is a horizontal data slice at depth j, where i € {0, ... ,n} and

ke {0,...,1}. In Eq. (2.3), ﬂj is the filtered data slice at depth j, H; is the original
data slice, and g is a Gaussian kernel, with depth-dependent standard deviation ;.
The union of all filtered slices yields the filtered data volume 4 (Eq. (2.4)). Post-
convolution, each vertical (j-axis) column of voxels was accumulated into a single
value, resulting in a two-dimensional matrix of pixels, which we stored as an image
(Eq. (2.5)). VSDI signals were computed as a fractional change in fluorescence over
resting intensity>+17:68:69, This gives raw and normalized signal intensities for each
pixel in an image matrix:

Fu(t) = (1) (2.5

VSDy(t) = (2:6)

AF (1) 1
T

ik

where FY is a baseline fluorescence image obtained by averaging the first 100
frames (50 ms of data sampled at 2000 Hz). We used Eq. (2.6) to calculate voltage-
sensitive dye signals in this work. The software for the pipeline (Egs. (2.2) through
(2.6)) described above is open source and freely available for download (see “Code
Availability” statement).

Point spread function. We calculated an empirical, depth-dependent PSF to
account for blurring in the final image due to both scattering of emitted fluores-
cence photons in cortical gray matter, and optical distortions caused by out-of-
plane signal. Our method for calculating the PSF consisted of two steps: first, we
used a Monte Carlo (MC) simulation-based approach to model the scattering and
absorption of photons emitted from a point source within the tissue volume,
varying the depth of the source in 50 micron increments; second, we used ray
transfer matrix analysis to trace the trajectories of these photons through a tandem-
lens optical system onto a sensor at the image plane.

MC simulations were carried out using a proprietary library built on an open-
source framework for physical rendering using backward MC ray tracing, the
Physically-based Rendering Toolkit (PBRT)”!. We extended the PBRT framework
to simulate photon interactions with highly turbid media using forward MC
simulations based on an algorithm proposed by Abdellah et al.”2. This software is
freely available at: https://github.com/BlueBrain/pbrt-v2 (see “Code Availability”
statement). To determine the PSF, we moved an isotropically radiating point
source of 108 photons throughout a semi-infinite (lateral extent) volume of tissue,
beginning at the bottom of the microcircuit in increasing increments of 50 pum,
allowing each photon to scatter until it either was absorbed or exited the cortical
surface. Coefficients of reduced scattering and absorption at ~665 nm were taken to
be 4mm~! and 0.4 mm™1, respectively, interpolated from optical measurements
made in rat gray matter for wavelengths of light spanning 450 to 700 nm73. We
chose the wavelength to correspond to peak emissions in the RH-1691/1692 family
of blue voltage-sensitive dyes®!416:34, Refraction at the tissue-air interface was
calculated using the vector formulation of Snell’s law. Using ray transfer matrix
analysis, photons emanating from the tissue surface were propagated through an
optical system modeled after a tandem-lens epifluorescence macroscope setup first
proposed by Ratzlaff and Grinvald’4, and subsequently used in several VSDI
studies!416:19. The system consists of two compound lenses (modeled using the
thin lens approximation) set to infinite focus and placed face-to-face’4. Optical
parameters (focal length, f-number, and working distance) were taken from
Petersen et al.”, resulting in a focal plane ~300 pm below the pia. The point source
produced a sunburst image pattern on the detector array for each depth, to which a
two-dimensional Gaussian surface was fit using a nonlinear optimizer (Python).
From these surfaces, we extracted the average spatial standard deviation, and fit the
resulting array of values to a decaying exponential function to determine a depth-
dependent PSF for the entire tissue-lens system. The standard deviations extracted
from our PSF were used to calculate spatial kernel widths for convolution of the
data with a Gaussian filter (see Eq. (2.3)).
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Two-point discrimination. We simulated multiple trials of a localized, point-like
stimulus in the NMC (a single AP in five adjacent TC VPM projection fibers), for
increasing distances from the geometrical center of the circuit, repeated fives times
at intervals of 50 ms. Stimuli were delivered to locations at —50, —25, —12.5, 0,
12.5, 25, and 50 um along a line bisecting the surface of the NMC. Repeated trials
(n = 25) were simulated for each stimulus location.

Spike train-based classification. We carried out a receiver operating
characteristic (ROC) analysis to quantify the ability of the spike trains of individual
neurons to discriminate stimulus locations. The performance of each neuron was
compared to all others within a subpopulation defined by morphology type. Our
classification procedure considered whether spike count in the 250 ms post-
stimulus window crossed a threshold that was selected to optimize classification
performance of the highest performing neuron in each subpopulation considered.
We formed all 50 choose 2 combinations (paired data, n = 25 trials per condition)
of spike train data for each neuron and evaluated whether the post-stimulus spike
count was above or below the empirical threshold for that subpopulation. Since
each of the 50 choose 2 pairings comprised either two trials from different stimulus
locations, or two from the same location, threshold-based classification
corresponded to either a true positive, or false positive result, respectively. Thus, we
were able to assign to each neuron a true positive (TPR) and false positive (FPR)
classification rate. Finally, integrating the resulting ROC curves yielded AUROC
scores for each neuron.

Time-resolved pixel-based classification. For each combination of two stimuli,
for each VSDI pixel, and for each timestep, we used a Wilcoxon rank-sum test to
compute the p-value of the null hypothesis that the data (pooled over n = 25 trials
for each location, respectively) associated with the two stimulus positions came
from the same distribution. We defined the “discrimination power” of a given pixel
for a particular stimulus pairing as the negative common logarithm of the p-value
of the null hypothesis stated above.

Temporally integrated pixel-based classification. Similar to our study of spike
train-based stimulus classification, we used an ROC analysis to quantify the
classification performance of the time series data (considered as a whole) of
individual VSDI pixels. To this end, we used a Wilcoxon rank-sum test for each
pair of stimulus locations to compute the p-value of the null hypothesis that the
time series data associated with each location came from the same distribution.
Stimulus locations were considered distinct if the p-value produced by comparing
the two pools of VSD fluorescence data for any given combination of trials was
above a predetermined significance threshold. For the ROC curve, we observed
how varying the significance threshold altered the proportion of total true positive
rejections of the null hypothesis. As in the spike train-based classification, we
formed all 50 choose 2 combinations of time series pixel data, and calculated a TPR
and FPR for each significance threshold to produce a ROC curve. Integrating this
curve generated an AUROC score for each pixel and location pairing.

Spatially and temporally integrated classification. To assess the classification
accuracy of VSDI movies considered as a whole, we pooled the data for all n =25
trials of a given stimulus location and formed an aggregate dataset of 50 trials for
each possible combination of stimulus locations (7 choose 2). We flattened each
time series of VSDI images into a one-dimensional vector and stacked the results
into a single 2nx TI* matrix:

0.0.0 Tl .0 000 Tl
Pu=00"""Pn=00" "-Prn=240 """ Pn=240
X (3.1)
0,0,0 TL . : 00,0 Tl
Pr=0,1 " Pnz0,1° - Pr=24,1 " Pr=24s1 )

where n is the number of trials per condition, T is the number of post-stimulus
time steps, and [ is the side length of the optical sensor. Each of the n = 50 rows was
assigned a label corresponding to the location of the stimulus:

(3.2)

We used an open-source of implementation the XGBoost algorithm for Python
(available at: https://pypi.org/project/xgboost/) to train a binary classifier on the
data X and y described above. Train and test sets were randomly partitioned using
an 80-20 split (fivefold cross-validation), and accuracy was computed as the
fraction of correct predictions:

1n=1

accuracy = - 3. 1(3; = y,)

n i=0

(33)

Post-processing and analysis. All code for analysis was written in the Python
programming language.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The models and circuit data used for this study are freely available for download at:
https://bbp.epfl.ch/nmc-portal/downloads. The raw, post-processed data required for
reproduction of all manuscript figures (main and supplementary) are freely available for
download at: https://doi.org/10.5281/zenodo.4733519. All figure data (main and
supplementary) are freely available in tabular format at: https://doi.org/10.5281/
zenodo.4733519. The raw, pre-processed data, i.e., raw compartment voltages and VSDI
volumetric datasets, are available upon request. Source data are provided with this paper.

Code availability

EMSim, a software package for the efficient calculation of data volumes (see Eq. (2.1))
resulting from electromagnetic field-dependent biophysical signals is freely available at:
https://doi.org/10.5281/zenodo.4725578%7. All code pertaining to the in silico VSDI
pipeline (see Egs. (2.2) through (2.6)) is open source and available at: https://doi.org/
10.5281/zenodo.472554870.0ur extension of the Physically-based Rendering Toolkit
(PBRT)”! for computing Monte Carlo simulations of photon interactions in highly turbid
media is freely available at: https://github.com/BlueBrain/pbrt-v2. All analysis code (i.e.,
code used to generate figures from VSD imaging datasets, together with the datasets
themselves) is freely available for download at: https://doi.org/10.5281/
zenodo.473351976.
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