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Synergistic immunotherapy of glioblastoma by dual
targeting of IL-6 and CD40

Fan Yang 1,10, Zhengiang He1'9'10, Hao Duan1'9'10, Duo Zhang 1 Juehui Li", Huijuan Yang1, Jay F. Dorsey1,
Wei Zou', S. Ali Nabavizadeh?, Stephen J. Bagley3, Kalil Abdullah?, Steven Brem34, Lin Zhang 5 Xiaowei Xu®,
Katelyn T. Byrne3, Robert H. Vonderheide®’™, Yanqing Gong8™ & Yi Fan@® 1347

Immunologically-cold tumors including glioblastoma (GBM) are refractory to checkpoint
blockade therapy, largely due to extensive infiltration of immunosuppressive macrophages
(M¢s). Consistent with a pro-tumor role of IL-6 in alternative Mds polarization, we here
show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately
improves T-cell infiltration into GBM and enhances mouse survival; however, IL-6 inhibition
does not synergize PD-1 and CTLA-4 checkpoint blockade. Interestingly, anti-IL-6 therapy
reduces CD40 expression in GBM-associated Md¢s. We identify a Stat3/HIF-1a-mediated
axis, through which IL-6 executes an anti-tumor role to induce CD40 expression in Mas.
Combination of IL-6 inhibition with CD40 stimulation reverses M¢-mediated tumor immu-
nosuppression, sensitizes tumors to checkpoint blockade, and extends animal survival in two
syngeneic GBM models, particularly inducing complete regression of GL261 tumors after
checkpoint blockade. Thus, antibody cocktail-based immunotherapy that combines check-
point blockade with dual-targeting of IL.-6 and CD40 may offer exciting opportunities for
GBM and other solid tumors.
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ARTICLE

mmunotherapy holds great promise for cancer treatment.

However, current immunotherapy approaches against solid

tumors remain a significant challenge, in particular for
immunologically cold tumors, ie., those characterized with low
T-cell infiltrates, including glioblastoma (GBM)!-°. In these
tumors, the therapeutic difficulties and failures are largely due to
an immune-hostile, suppressive tumor microenvironment that
abrogates T-cell infiltration and activation. GBM, the grade IV
glioma, is the most common primary malignant brain tumor in
adults. GBM is among the most lethal of human malignancies,
with a median survival of around 14-16 months. GBM is highly
resistant to standard therapies, including surgical resection,
radiation, and chemotherapy’-8. Consistent with its immunolo-
gically cold nature resulted from an extraordinary immunosup-
pressive microenvironment, GBM is generally refractory to T-
cell-based immunotherapies including PD-1/PD-LI-targeting
checkpoint inhibition and adoptive cell transfer with chimeric
antigen receptor-modified T cells>?~11. Development of effective
strategies for reversal of tumor immune suppression is, therefore,
crucial for a successful immunotherapy against GBM.

Tumor-associated macrophages (M¢s) play a pivotal role in
tumor progression, cancer immunosuppression, and therapy
resistance!?~14. A prominent population of M¢s in the tumor
microenvironment executes tumor-promoting functions: secret-
ing growth factors and releasing immunosuppressive cytokines,
such as interleukin-10 (IL-10), transforming growth factor-f
(TGF-B), and arginase-1, at least partially via alternative M¢
polarization!>-18. Notably, M¢s are a major population of the
non-neoplastic cells in GBM, making up as much as half of the
cells in GBM tumors!'®20, suggesting tumor M¢s as a major
source for GBM immunosuppression. However, the precise
mechanisms controlling M¢s-mediated GBM immunosuppres-
sion remains largely unknown, and the better understanding of
these mechanisms will help identify key therapeutic targets to
activate anti-tumor immunity.

Our previous work shows that vascular niche-derived IL-6
induces alternative M¢ activation in GBM, suggesting IL-6 as a
therapeutic target for GBM immunotherapy?!. Here we report
that genetic ablation or pharmacological inhibition of IL-6
partially reverses M¢-mediated GBM immunosuppression but
does not sensitize GBM to anti-PD-1/CTLA-4 treatment. Based
on our transcriptome analysis that identifies an IL-6-inducible
mechanism for M¢ activation via Stat3/HIF-1a/CD40, we
develop a dual-targeting anti-IL-6 and pro-CD40 strategy,
which may offer exciting opportunities for activating M¢
immunity and improving T-cell-based immunotherapy in solid
tumors.

Results

IL-6 is critical for tumor immunosuppression in GBM. We
investigated the role of IL-6 for tumor immunosuppression in
GBM, initially using a genetic approach (Fig. 1a). Considering
tumor-associated endothelial cells (ECs) as a major source for IL-
6 expression in GBM?!, we utilized a tamoxifen-inducible, EC-
specific gene-knockout system to precisely regulate IL-6 expres-
sion in the tumor microenvironment. GBM was induced in Ntv-g;
Inkda-Arf~'—;Pten;1SL-Luc donor mice by RCAS (replication-
competent avian sarcoma-leukosis virus long terminal repeat with
splice acceptor)-mediated gene transfer, followed by orthotopic
implantation of tumor cells into Cdh5-CreERT%1I6tV/l mice, in
which IL-6 expression is controlled by EC-specific promoter
Cdh5. Mass cytometry (cytometry by time of flight, CyTOF)
analysis of tumor-derived single-cell suspension showed that
genetic ablation of IL-6 increased the population of cytotoxic
CD8* T cells in GBM (Fig. 1b, c). Moreover, similar increasing

trends were observed in CD3T and CD41 T cells as well,
whereas the population of natural killer (NK) cells remained
unchanged. Notably, IL-6 knockout reduced the populations of
total myeloid cells and M¢s, suggesting that the increased T-cell
recruitment or activation may be due to reduced infiltration of
immunosuppressive M¢s into the tumors. Consistent with
these findings, flow cytometry analysis of tumor-derived cells
showed that IL-6 knockout enhanced infiltration of CD3%
T cells into the tumors (Fig. 1d) with an increased portion of
CD8T T cells in CD457CD3* T cells (Fig. le and Supple-
mentary Fig. 1), associated with reduced CD45TCD11b*
myeloid cells and CD45tCD11b*F4/80" Md¢s (Fig. 1f).
Tumor-associated Ms secrete a plethora of anti-inflammatory,
immunosuppressive cytokines, such as IL-10 and TGF-p, which
inhibit T-cell infiltration into and activation in the tumors. Our
enzyme-linked immunosorbent assay (ELISA) analysis revealed
that IL-6 ablation substantially reduced IL-10 and TGF-f
expression in GBM tumors but not in normal brains (Fig. 1g,
h). These findings collectively suggest a critical role IL-6 plays
in GBM immunosuppression, supportive of our previous work
showing that IL-6 knockout in ECs inhibits GBM growth and
improves survival in tumor-bearing mice?!. Furthermore, these
results implicate that IL-6 blockade may represent a strategy to
activate T-cell-based anti-tumor immunity.

IL-6 neutralization improves animal survival but does not
sensitizes GBM to immune checkpoint blockade. GBM is
insensitive to immune checkpoint blockade due to low T-cell
infiltrates in the tumors, which remains a significant challenge in
the clinic*. Considering the negative role of IL-6 for T-cell infil-
tration and activation in the tumors, we next tested the ther-
apeutic potential of a IL-6-neutralizing antibody, particularly in
combination with immune checkpoint inhibitors (ICls, anti-PD-1
plus anti-CTLA-4 antibodies) in the genetic mouse GBM model
(Fig. 2a). Survival analysis showed that anti-IL-6 treatment
moderately but significantly (P <0.05) improved the survival by
over 30% (48 days, comparable to 22 days of median survival in
control mice, Fig. 2b). Moreover, anti-IL-6 treatment inhibited
tumor growth (Fig. 2¢). In accordance with our results by genetic
IL-6 ablation (Fig. 1), flow cytometry analysis showed that IL-6
neutralization enhanced infiltration of CD45+CD3% T cells into
the tumors (Fig. 2d) and reduced recruitment of CD45tCD11b+
myeloid cells and CD45TCD11b*F4/80" M¢s (Fig. 2e and
Supplementary Fig. 2), but did not affect the populations of
CD457CD11b+Ly6GHighLy6CInt  neutrophils and ~CD45™
CD11b~CD3~NK1.17 NK cells (Supplementary Fig. 2). How-
ever, IL-6 neutralization moderately enhanced the ratios of CD8+
T cells in tumor-associated CD45+CD3" T cells (Fig. 2f), but did
not activate these T cells, as indicated by no increases detected in
Ki67T, IFN-y*, or CD69" activating T cells in CD45TCD3%
T cells (Fig. 2g). In contrast, treatment with ICIs alone did not
significantly prolong animal survival (Fig. 2b) or inhibit tumor
growth (Fig. 2c), consistent with similar results observed in
human clinical studies?>23, ICI monotherapy did not stimulate
CD3™ infiltration (Fig. 2d) or suppress the population of myeloid
cells in the tumors (Fig. 2e); it did not enhance the radio of
CD81/CD3™ T cells or affect Ki67, interferon-y (IFN-y), and
CD69 expression in CD3 T cells (Fig. 2f, g), suggesting that ICIs
fail to induce activation of T cells in GBM. Notably, combination
therapy with ICIs and anti-IL-6 antibody did not synergistically
extended survival or reduced tumor growth, compared with
single agent treatment (Fig. 2b, c). In accordance with these
findings, combination therapy failed to synergistically promote
cell infiltration or activation in tumor-associated T cells
(Fig. 2d-g). Taken together, our data show that IL-6

2 | (2021)12:3424 | https://doi.org/10.1038/s41467-021-23832-3 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23832-3

ARTICLE

a

b

Control I Ungated
] [ CD3* T cells: 356
— [ CD4* T cells: 183
. Il CD8* T cells: 266
Retrovirus Tumor o~ +)-
h ] [ NK cells (NK1.1+): 46
(RCAS-Pdgib;RCAS-Cre)  SP1°I% A m Neutroph(ils (Gr1")i9h): 428
qnhottcgpuc ﬁ (2 [ B cells (B220*): 19
fnjection ﬁqrthotqpic n [ Dentritic cells (CD11c*): 2,673
injection ] - = Myeloids (CD11bhigh): 5 547
[ M¢s (F4/80*CD11b*): 5,670
FTTT T T T T T T ml MDSCs (CD11b*Gr1+): 745
Ntv-a;inkda-Arf*; tSNE1 Total = 50,000 cells
Pten": L SL-Luc mice Cdh5-CrefR™2]16"" mice
l 4 weeks Control: -tamoxifen IL-6-AEC [ Ungated
IL-6-AEC: +tamoxifen ] = CD3* T cells: 468
@ - [ CD4* T cells: 227
- l 2 weeks N [ CD8* T cells: 489
N [ NK cells (NK1.1%): 33
@‘ Z [ Neutrophils (Gr1high): 307
- 2 [ B cells (B220*): 118
rumor exicise & N [ Dentritic cells (CD11c*): 1,372
gy analy N - [ Myeloids (CD11bhigh): 4,261
T Més (F4/80*CD11b*): 3,221
Il MDSCs (CD11b*Gr1*): 530
tSNE1 Total = 50,000 cells
c ® Control IL-6-AEC
CD3*T CD4*T CD8*T NKcells Neutrophils B cells DCs Myeloids Mos MDSCs
1.2 1.5 1.5 0.8 1.8 0.8 9 181e0 157 6
@ - {1 18
2 1e * 1@
O 0.8 1.0 1.0 1.24 6 124 104
© s -
o 0417 . 0.4- @ - 3
‘5 0.4+ 054 ¢ 0.54 0.6 T 4l 31 6 54
) H
0- 0- 0- 0- 0- 0- 0- 0- 0- 0-
P=00827 P=0.1886 P=00233 P=06851 P=01005 P=02222 P=0.8694 P=0.0043 P=0.0051 P=0.5380
€ o control IL-6-AEC
@ Control CD3*CD4* cD3*CD8*
Isotype IgG Control IL-6-AEC T cells T cells
107] ] ] w 8 210~ 2 30
c 0.2% % —_ [$) o [&]
S ] ] oL | Y ode o]
2 =8 a Q 204, &
Z S A T O ®) e |®
o : 035 4- o 555 s &
8 o o £%5 S S 10
To} 4 J
-10% <t O\O O O ]
T T T T T T [aRed “6 ua
-10° 0 10° 104 10° -10° 0 10° 104 10° -10° 0 10° 104 10° (&) - -
CD45-DAPI 0- x 0- ® 0-
P=0.0442 P=0.9704 P=0.0340
f @ Control IL-6-AEC h
CD45*CD11b*  CD11b*F4/80* o e Ik AC @’
Myeloids M¢s —~1007 = 300 T e 2
2} £ » = =
5 ° Q o L
o S 80 2 801 5 S
@ 204° + a = 2 200
© 2 g o 601 & g ™
(&) _ -~ e © R ©
© [a) > 401 g g’ &>
B 104 O 40 £ 2 = 100 =
5 “E’ e 201 ' & o a
o 4 -1 1
s @) = 4l o ]
—
1 o] _
0 3 0 Nt(’)rn_wal GBM Nt?rn_wal GBM
P=0.0333 ° P=0.0194 rain rain

neutralization enhances T-cell infiltration into GBM tumors and
improves animal survival; however, it does not sensitize tumor to
immune checkpoint blockade, likely due to insufficient reversal of
immune suppression and limited T-cell infiltration/activation in

the tumor microenvironment.
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IL-6 induces M¢-mediated immunosuppression but stimulates
CD40 expression. To explore the mechanisms by which IL-6
regulates M¢-mediated immunosuppression, we investigated
gene expression alternations at a transcriptome level in mouse

bone marrow (BM)-derived M¢s treated with IL-6. IL-4 was used
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Fig. 1 Genetic ablation of IL-6 reverses GBM immunosuppression. GBM was induced by RCAS-mediated genetic engineering in Ntv-a;Ink4a-Arf~/—;Ptenfl/fl;
LSL-Luc donor mice, followed by orthotopic tumor implantation into Cdh5-CreERT2:116//fl recipient mice that were pretreated with (IL-6-AEC) or without
(Control) tamoxifen. Two weeks after tumor implantation, tumors were excised. a Schematic approach. b, ¢ Tumor-derived single-cell suspensions were
analyzed by CyTOF. b Representative CyTOF sorting. € Quantitative results (mean £ SEM, n = 4 mice). Statistical analysis by two-tailed Student's t-test.
d-f Tumor-derived single-cell suspensions were analyzed by flow cytometry. d Analysis for CD3* T cells. Left, representative cell sortings. Right, quantified
results (n =6 mice, mean = SEM). Statistical analysis by two-tailed Student's t-test. e, f Analysis for @ CD4+/CD8% T cells or f myeloid cells (n =6 mice,
mean + SEM). Statistical analysis by two-tailed Student's t-test. g, h Tissue lysates from normal brains and tumors were subjected to ELISA analysis for g IL-
10 and h TGF-f expression (mean + SEM, n = 4 mice for IL-6-AEC GBM group and n = 3 mice for other groups). Statistical analysis by two-way ANOVA with

Sidak's test. Source data are provided as a Source data file.

as a control, which has a well-established role for inducing
alternative M2 polarization and M¢ immunosuppression. Prin-
cipal components analysis manifested a different shift toward
differentiation or a lineage change induced by IL-4 or IL-6
(Fig. 3a). Moreover, IL-4- and IL-6-treated M¢s exhibited distinct
expression profiles, compared with control untreated M¢s, as
shown by volcano and heatmap plot analyses (Fig. 3b, c). Of note,
specific analysis of immune-suppressive cytokines showed that
IL-6 predominantly induced IL-10, TGF-B2, and arginase-1/2
expressions, whereas IL-4 robustly increased arginase-1 expres-
sion but did not enhance IL-10 expression (Fig. 3d). IL-6-induced
IL-10 expression was verified by flow cytometry (Fig. 3e). Inter-
estingly, IL-4 and IL-6 induced expression of M2 M¢-associated
markers in a distinct manner: IL-4 seemed to selectively and
markedly induce CD206 (Mrcl) expression, whereas IL-6 more
broadly stimulated the expression of multiple markers including
CD206, CD86, Toll-like receptor 2 (TIr2), coagulation factor XIII
(F13al), and serpin family b2 (Serpinb2) (Fig. 3d). Flow cyto-
metry analysis validated that both IL-4 and IL-6 enhanced CD206
expression in M¢s (Fig. 3f). These findings collectively suggest
positive roles for IL-4 and IL-6 in the induction of M¢ M2
polarization and immunosuppression, and implicate a distinct
mechanism favoring M¢s towards immunosuppressive pheno-
types by IL-6.

Multiple mechanisms mediate M¢ activation and their co-
stimulation of T cells to promote anti-tumor immunity, mainly
through tumor necrosis factor (TNF) superfamilies of receptors
(Tnfrsfla/b) and CD40?42. In contrast to our findings showing
that IL-6 induces M¢ M2 polarization and immunosuppression,
our RNA sequencing (RNA-seq) data unexpectedly revealed that
IL-6 stimulated expression of CD40 but not TNF-R1a/p (Fig. 3g).
Moreover, IL-6, but not IL-4, consistently induced CD40
expression at both mRNA and protein levels (Fig. 3g, h). In
accordance with these findings observed in BM-derived M¢s,
flow cytometry analysis showed that IL-6 substantially stimulated
CD40 expression in tumor-derived M¢s (Supplementary Fig. 3).
These findings implicate a dual role of IL-6 in pro- and anti-
tumor immunity, mediated through the expression of immuno-
suppressive cytokines and Md-activating signal CD40, respec-
tively. Furthermore, flow cytometry analysis of tumor-derived
single cells showed that genetic IL-6 ablation abrogated CD40
expression in tumor Mds, as indicated by a decrease in CD40+F4/
80T cell population but not in CD40~F4/807" cell population
(Fig. 3i), suggesting that IL-6 is critical for positively controlling
M¢ expression of CD40 in the GBM microenvironment.
Similarly, substantially reduced M¢ expression of CD40 was
observed in the tumors treated with ant-IL-6 antibody and ICIs
(Fig. 3j), providing a potential mechanism for lack of therapeutic
efficiency in this group, which is likely due to insufficient M¢
activation resulted from downregulated CD40 expression.

IL-6 induces CD40 expression through Stat3 and HIF-la.
Considering that the mechanisms for IL-6-induced alternative

M¢ polarization have been well defined?!1:26:27, we focused our
study on the molecular mechanism by which IL-6 regulates CD40
expression. Computational bioinformatics analysis of top 20
upregulated transcription factors revealed that IL-6 exclusively
induced hypoxia-inducible factor (HIF)-1a, Ets2, NK-«xB2, Stat3,
and Bcl3 expression to a robust level (fragments per kilobase
million (FPKM)>1.0, by RNA-seq), compared to control
untreated and IL-4-treated mouse M¢s (Fig. 4a). We initially
focused our study on HIF-1a, NK-xB, and Stat3 that are known
to participate IL-6 signaling regulation?8-31. Small interfering
RNA (siRNA)-mediated knockdown of Stat3, but not of NK-kB2,
robustly abrogated IL-6-induced CD40 expression in human Mds
(Fig. 4b). Furthermore, chromatin immunoprecipitation (ChIP)
analysis showed that Stat2 interacts with CD40 promoter, parti-
cularly in the region from —821 to —577 downstream of tran-
scription start site (TSS), in an IL-6-inducible manner (Fig. 4c, d),
collectively suggesting that Stat3 is critical for IL-6-induced CD40
transcription.

Considering that HIF-1a, a master regulator of cell responses
to hypoxia, was identified at the top of the IL-6-inducible
transcriptional factors (Fig. 4a), we investigated the role of HIF-
la in IL-6-induced CD40 expression under hypoxia. Our data
showed that HIF-1a binds to CD40 promoter in the region from
—402 to —161 downstream of TSS under hypoxia, and IL-6
robustly enhanced this binding (Fig. 4c, e). Furthermore,
immunoblot analysis indicated that hypoxia stimulates IL-6-
induced CD40 expression (Fig. 4f). siRNA-mediated HIF-1la
knockdown abolished the IL-6-induced CD40 expression (Fig. 4f,
g). Together, our data reveal that IL-6 induces CD40 expression
through Stat3 and HIF-1a.

IL-6 neutralization and CD40 stimulation sensitizes GBM to
immune checkpoint blockade. Given a dual role of IL-6 in
immunosuppressive  cytokine-mediated pro-tumor effects
immunity and CD40-mediated anti-tumor immunity (Fig. 3), we
next sought to test experimental therapy that combines CD40
agonist to maximize tumor immunity in anti-IL-6 treatment.
GBM was genetically induced in wild-type (WT) mice, followed
by treatment with IL-6-neutralizing antibody, CD40 agonist
antibody, and ICJ, alone or combined (Fig. 5a). Our data showed
that CD40 stimulation alone did not affect tumor growth
(Fig. 5b) or animal survival (Fig. 5¢). In a parallel study, com-
bination therapy with a CD40 agonist plus checkpoint inhibitors
also did not extend animal survival (Supplementary Fig. 4).
However, dual therapy that combines IL-6 neutralization and
CD40 stimulation markedly sensitized GBM to ICI treatment, as
triple treatment (CD40 antibody, IL-6 antibody, and ICIs) sub-
stantially delayed tumor growth (Fig. 5b) and enhanced mouse
survival with an almost doubled median survival (37 days),
compared with 21 days in control IgG-treated mice (Fig. 5c¢).
These results suggest dual-targeting IL-6 and CD40 as an effi-
cient strategy for overcoming GBM resistance to ICI treatment.
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In addition, we tested therapeutic efficacy of the dual-
targeting treatment in an independent GL261 mouse GBM
model (Fig. 5d). Similar to the findings observed in the
genetically induced GBM model, pro-CD40 and anti-IL-6
monotherapy showed limited and moderate therapeutic effects

Ki67+*CD3* cells  IFN-y*CD3* cells CD69*CD3* cells

on tumor growth and animal survival, respectively (Fig. 5e, f).
Consistent with previously published data3?, GL261 tumors
partially responded to ICI treatment. Notably, combination of
ICIs with the dual-targeting IL-6 and CD40 resulted in
complete therapeutic responses, as indicated by all treated
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Fig. 2 IL-6 neutralization enhances T-cell infiltration into GBM tumors and improves animal survival but does not sensitize tumor to immune
checkpoint blockade. GBM was induced in WT B6 mice, followed by injection with control IgG, anti-IL-6 antibody (Ab), immune checkpoint inhibitors
(ICls), or ICls plus anti-IL-6 Ab. a Schematic approach. b, ¢ Survival and tumor growth analyses (n = 8-12 mice, specific n numbers are shown in the figure).
b Mouse survival was monitored for 60 days and subjected to two-sided log-rank Mantel-Cox analysis. MS, median survival. ¢ Tumor volume was
analyzed by bioluminescence imaging during days 13-23 (mean + SEM). Statistical analysis by two-way ANOVA with Dunnett's test. d-g Tumors were
excised 2 days after treatment. Tumor-derived single-cell suspensions were stained with antibodies against CD45, d CD3, e CD11b, f CD4, CD8, CD3, and
g Ki67, IFN-y, and CD69, followed by flow cytometry analyses. d Analysis for CD3% T cells. Left, representative cell sortings. Right, quantified results (n=6
mice, mean + SEM). Statistical analysis by one-way ANOVA with Fisher's LSD test. e-g Quantified results for immune cells (n =6 mice, mean = SEM).
Statistical analysis by one-way ANOVA with Fisher's LSD test. Source data are provided as a Source data file.

animal survived at the end time point without detectable
tumors (Fig. 5e, f).

IL-6 neutralization and CD40 stimulation plus immune
checkpoint blockade synergistically reduces Md¢-mediated
immune suppression and enhances T-cell infiltration and
activation in GBM. We next investigated the effects of the
combination therapy on tumor immunity 2 days after treatment
in the genetically engineered GBM model (Fig. 6a). Our data
indicated that the triple treatment almost completely blocked
tumor growth during the therapy window and, to a lesser extent,
combination  therapy with IL-6 neutralization and
CD40 stimulation markedly reduced tumor growth (Fig. 6b).
Flow cytometry analysis of tumor-derived single-cell suspen-
sions showed that all treated groups, compared with control
IgG-treated group, exhibited reversed immunosuppressive
activity of tumor-associated M¢s, evidenced by the reduced
populations of IL10%F4/80T cells by up to 70% (Fig. 6c).
However, only triple treatment induced a significant (P < 0.01),
robust sevenfold increase in the infiltrates of cytotoxic CD45%
CD8T T cells (Fig. 6d), which likely induced the therapeutic
benefits including delayed tumor growth and extended animal
survival (Fig. 5b, c). Furthermore, triple treatment enhanced
activities of these infiltrated T cells, as indicated by the increases
in CD457CD81Ki67" and CD45TCD8TIFN-y* cell popula-
tions that express proliferative marker Ki67 and cytotoxic
cytokine IFN-y (Fig. 6e, f). In addition, all treatments, except for
CD40 stimulation treatment alone, reduced the expression of
immunosuppressive cytokines including IL-10 and TGF-B, in
the tumor tissues, compared with control treatment with IgG
(Fig. 6g, h), verifying the reversal of M¢-mediated immune
suppression in GBM.

In a parallel study with the GL261 GBM model (Supplemen-
tary Fig. 6a), triple treatment similarly decreased the populations
of IL-107F4/80" M¢s (Supplementary Fig. 6b), enhanced the
infiltration of CD45+CD871 T cells into the tumors (Supplemen-
tary Fig. 6¢), and increased the populations of CD45+CD8+IFN-
yT active T cells (Supplementary Fig. 6d). Taken together, our
data suggests that combination therapy with dual-targeting IL-6
and CD40 with checkpoint blockade robustly reverses M-
mediated immune suppression, leading to T-cell infiltration and
activation in GBM.

High IL-6 expression and low CD40 expression correlate with
poor survival in human patients with GBM. We finally analyzed
The Cancer Genome Atlas (TCGA) data sets to investigate the
role of IL-6 and CD40 in human patients with GBM or glioma. In
accordance with our results showing (1) IL-6 stimulated CD40
expression in M¢s in vitro (Fig. 3g, h) and (2) IL-6 knockout or
inhibition reduced CD40 expression in tumor-associated M¢s in
mice (Fig. 3i, j), linear regression analysis of gene expression in
TCGA data revealed that IL-6 expression correlated with CD40
expression in patients with both GBM and glioma (Fig. 7a).

Consistent with the pro-inflammatory role of IL-6 in GBM, CD40
expression also correlated with expression of pro-inflammatory
cytokines including TNF-a, IL-l1a, and IL-1B (Supplementary
Fig. 7a). In contrast, expression of IL-4, another important
cytokine that regulates M¢ and T-cell functions similar to IL-6,
did not correlate with CD40 expression in patients with GBM or
all grades of glioma (Fig. 7b). Furthermore, clinical overall sur-
vival data suggested that high IL-6 expression was associated with
poor survival in patients with GBM (Fig. 7c and Supplementary
Fig. 7b), whereas CD40 expression was not a prognostic factor in
survival rates of GBM patients (Fig. 7c and Supplementary
Fig. 7b). Interestingly, those GBM patients with higher IL-6
expression and lower CD40 expression exhibited worst overall
survival (Fig. 7d and Supplementary Fig. 7b). These clinical data
together support our experimental results showing that IL-6
controls CD40 expression in GBM-associated M¢s, and that IL-6
and CD40 critically regulates tumor immunity and determine
pathological outcomes.

In sum, our work uncovers a complex role for IL-6 in
regulation of tumor immunity (Fig. 7e): IL-6 induces alternative
M¢ polarization and anti-inflammatory immune suppression,
whereas it stimulates pro-inflammatory CD40 expression via
Stat3/HIF-1a in GBM. As such, anti-IL-6 monotherapy fails to
induce a robust anti-tumor activity and to overcome GBM
resistance to checkpoint blockade, likely due to reduced co-
stimulatory CD40 signal and insufficient T-cell infiltration and
activation. Based on these results, we develop dual-targeting anti-
IL-6 and pro-CD40 strategy to activate tumor immunity,
sensitizing tumor to T-cell-based immunotherapies including
checkpoint blockade.

Discussion

Activation of tumor-associated T cells by immune checkpoint
blockade has been one of the most successful immunotherapy
approaches for various solid tumors3334; however, checkpoint
inhibitors have been largely ineffective in treating immunolo-
gically cold tumors including GBM*3>. As such, the PD-1
inhibitor nivolumab and CTLA-4 inhibitor ipilimumab have
shown little or no overall survival benefits in recent GBM
clinical trials, mainly due to the lack or paucity of T-cell infil-
trates in the immunosuppressive microenvironment?223, Here
we develop a dual-targeting anti-IL-6 and pro-CD40 strategy to
reverse M¢-mediated tumor immunosuppression and to over-
come primary tumor resistance to immune checkpoint block-
ade in GBM.

Tumor-associated M¢s, accounting for more than half of the
immune cell population in GBM, induce a wide variety of
immunosuppressive functions203637. Growing evidence suggests
that tumor Mds are an attractive target in GBM immunotherapy,
in particular for improving checkpoint blockade treatment38-43,
IL-6, albeit initially recognized as a pro-inflammatory
cytokine?844, has recently been shown to stimulate alternative
M¢ activation, a well-known process associated with anti-
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inflammatory immunosuppressive functions, in diabetic and
obesity conditions?®27. Consistent with previous work showing
that tumor stroma secretes IL-6 to inhibit anti-tumor
immunity®>, our recent study revealed that tumor vascular
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study demonstrates that IL-6 blockade partially reverses tumor
immunosuppression and stimulates T-cell infiltration into GBM
tumors. Importantly, our work by unbiased transcriptome
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Fig. 3 IL-6 induces M¢p-mediated immunosuppression but stimulates CD40 expression. a-e Bone marrow (BM)-derived M¢s were isolated from mice
and treated with 50 ng/ml IL-4 and IL-6 for 2 days, followed by RNA-seq analysis (n =3 mice). Genes were mapped and subjected to a principal
component and b volcano plot analyses. ¢ Heatmap of secretome genes. d Expression of immunosuppressive cytokines (top) and M2 Mg activation-
associated genes. Left, heatmap. Right, means of fold expression of control. e, f BM-derived mouse Mds were treated with IL-4 and IL-6 for 2 days, and
analyzed by flow cytometry. e IL-10 expression. Left, representative sortings. Right, quantitative results (n =3 mice, mean + SEM). Statistical analysis by
one-way ANOVA with Dunnett's test. f CD206 expression (n =3 mice, mean £ SEM). Statistical analysis by one-way ANOVA with Dunnett’s test.

g Expression of M¢ activation-associated receptor genes. Left, heatmap. Right, quantitative results (n =3 mice, mean + SEM). Statistical analysis by two-
way ANOVA with Dunnett’s test. h BM-derived mouse Mds were treated with IL-4 and IL-6, and analyzed by flow cytometry. Left, representative sortings.
Right, quantitative results (n = 3 mice, mean £ SEM). Statistical analysis by one-way ANOVA with Dunnett’s test. i GBM was induced in control WT or IL-
6-AEC mice. Two weeks after tumor implantation, tumor-derived single-cell suspensions were analyzed by flow cytometry (mean £ SEM, n =3 mice for
control group and n = 4 mice for IL-6-AEC group). Statistical analysis by two-tailed Student's t-test. j GBM was induced in mice. Two days after treatment
with IL-6 Ab and ICls or with control Ab, tumors were analyzed by flow cytometry (n =5 mice, mean £ SEM). Statistical analysis by two-tailed Student's t-

test. Source data are provided as a Source data file.

analysis validates that IL-6 drives alternative M¢ activation and
expression of immunosuppressive IL-10, mediated through a
genetic reprogramming process that is distinct from the
mechanism induced by IL-4, a well-known inducer of alternative
M¢ activation!746. Furthermore, recent work shows that IL-6
contributes to systemic dysfunction of dendritic cells in pan-
creatic cancer, suggesting additional benefits of anti-IL-6
therapy%’. However, our work shows that anti-IL-6 therapy
alone has only modest efficacy and does not synergize with
checkpoint inhibitors, suggesting that anti-IL-6 monotherapy
may not fully reverse M¢-mediated immunosuppression to acti-
vate anti-tumor immunity. Similarly, a recent study shows that
anti-IL-6 therapy induces a similar therapeutic benefit but the
anti-tumor activity is additive with PD-1 inhibition, due to a
checkpoint inhibition-sensitive murine GBM model used in the
study32. In fact, anti-IL-6 monotherapy in clinics does not exert
robust therapeutic benefits in multiple types of cancers*$->0, Our
further work identifies a role of CD40 for tumor resistance to
anti-IL-6 and checkpoint blockade treatments.

CD40, a member of the TNF receptor family, is a co-
stimulatory protein that plays a crucial role in pro-inflammatory
immune activation of antigen-presenting cells such as dendritic
cells and M¢s in cancer?»>1-33, Previous studies show that
CD40 stimulation activates tumor-associated M¢s or T cells and
inhibits tumor progression in melanoma, lymphoma, and pan-
creatic carcinoma®#-3¢. Likewise, CD40 agonist therapy repro-
grams the tumor microenvironment and sensitizes the tumor to
checkpoint blockade treatment in breast and pancreatic cancers,
and osteosarcoma®’~>°. However, consistent with recent reports
showing that antibody-based CD40 activation monotherapy only
slightly affects animal survival in syngeneic mouse GBM models,
particularly in GL261 models®?1, our study indicates that CD40
antibody treatment alone has no therapeutic efficacy and also fails
to sensitize checkpoint blockade therapy in our genetically engi-
neered GBM model, implicating that multiple mechanisms for
M¢ activation exist in GBM. Notably, our RNA-seq data identi-
fied a complex role of IL-6 in regulating M¢ activity, including
both pro-inflammatory (stimulation of CD40 expression) and
anti-inflammatory (induction of alternative M¢ activation and
immunosuppression) functions, which led us to explore dual-
targeting anti-IL-6 and pro-CD40 therapy to maximally activate
M¢-mediated anti-tumor immunity. Our data show that this
dual-targeting strategy substantially reverses M¢-mediated tumor
immunosuppression and induces infiltration of CD8" T cells into
the tumors. Consistent with these findings, a recent study shows
that blockade of IL-6 receptor and activation of CD40 by
adenovirus-based gene therapy markedly prolongs animal

survival and inhibits the expression of immunosuppressive
cytokine TGF-B in pancreatic cancer®?. Strikingly, our work
further shows that this dual-targeting anti-IL-6 and pro-CD40
strategy overcomes GBM resistance to checkpoint blockade
therapy, likely due to a shift of tumor immune status from
immunologically cold to hot. We expect that optimization of the
dose and timing of this dual-targeting therapy will further
enhance therapeutic efficacy in GBM.

IL-6 is a pleiotropic cytokine that regulates immune and
inflammatory responses mainly through inducing activation of
Jak/STAT-3 and Ras/Erk/C/EBP pathways in immune cells?%2°.
Our work uncovers that IL-6 induces CD40 expression via Stat3
in M¢s. Previous work shows that engagement of CD40 induces
Jak/Stat3 phosphorylation and activation®3, implicating an IL-6-
inducible positive feedback loop that activates Stat3/
CD40 signals in M¢s. Furthermore, we also identify that HIF-1a,
a master regulator of hypoxia-induced cell responses, is critical
for IL-6-induced CD40 expression in M¢s under hypoxia, as
both Stat3 and HIF-1a bind to CD40 promoter upon IL-6 sti-
mulation. Interestingly, it is well known that hypoxia induces
Stat3 activation, and that Stat3 stabilizes HIF-la via
protein—protein interaction®-%, suggesting that IL-6 activates
Stat3 to activate HIF-1a and further enhance CD40 expression in
M¢s under hypoxia. These results illustrate a hypoxia-inducible
mechanism by which IL-6 induces pro-inflammatory CD40
expression through Stat3 and HIF-1a, in addition to the role for
IL-6 in anti-inflammatory alternative M¢ activation and tumor
immunosuppression. Our work shows that hypoxia enhances IL-
6-mediated CD40 expression in tumor M¢s, implicating that
cancer therapy by modulation of tumor metabolism or normal-
ization of blood vessels to relieve tumor hypoxia may need
additional CD40 agonist treatment to stimulate anti-tumor
immunity.

In summary, our work unravels an IL-6-regulated cellular
mechanism that controls Md¢-mediated tumor immunity
through IL-10 and Stat3/HIF-1a/CD40 expression. Our findings
suggest that dual-targeting IL-6 and CD40 may offer exciting
opportunities for reversing M¢-mediated tumor immunosup-
pression and improving T-cell-based immunotherapy against
GBM. This dual-targeting treatment may serve as an adjuvant
therapy after standard of care, including surgery and radio-
chemotherapy, which reduce tumor burden and induce immu-
nogenic cell death in GBM. Of note, our work shows that dual-
targeting IL-6 and CD40 plus ICIs completely eradicate GL261
tumors in all treated mice, suggesting that cocktail immu-
notherapy combining ICIs with neutralizing antibodies against
IL-6 or IL-6 receptor, such as tocilizumab or sarilumab, and anti-
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Fig. 4 IL-6 induces CD40 expression through Stat3 and HIF-1a. a BM-derived M¢s were isolated from mice and treated with 50 ng/ml IL-4 and IL-6
for 2 days, followed by RNA-seq analysis (n = 3 mice). Shown are top upregulated transcriptional factors induced by IL-6. Left, heatmap. Right, means
of fold expression of control. b Human monocytes were transfected with siRNA targeting NF-kB2, Stat3, or control sequence and treated with IL-6 or
control medium. Cell lysates were immunoblotted. This experiment was repeated independently twice with similar results. c-e Human monocytes
were treated with IL-6 or control medium under d normoxia or e hypoxia. Nuclei protein was immunoprecipitated with d anti-Stat3 or e anti-HIF-1a
antibody, or 1gG, and subjected to ChIP analysis with different primers. € Results shown are from quantitative real-time polymerase chain reaction (RT-
PCR) analysis (n = 3 human samples, means + SEM). Statistical analysis by two-way ANOVA with Tukey's test. f Human monocytes were treated with
IL-6 or control medium under normoxia or hypoxia, followed by immunoblot analysis. This experiment was repeated independently twice with similar
results. g Human monocytes were pretreated with siRNA targeting HIF-Ta or control sequence, and treated with IL-6 or control medium under hypoxia.
Cell lysates were immunoblotted. This experiment was repeated independently twice with similar results. Source data are provided as a Source
data file.

CD40 agonist antibodies, such as APX005M, may act as an Methods
effective therapeutic approach for GBM, and possibly for other Hum‘an monocyte isolation and treatment. Prin}ary human monocytes were
immunologi cally cold tumors, such as pancreatic, ovarian, an d Prowded by Human Immunology Core at the University of Pennsylvania. Per-
hich h ized b . infil ipheral blood mononuclear cells were collected from healthy human volunteer
pro§tate C?ncer s, which ar e' characterized by a prominent infil-  go46r5 and monocytes were isolated following leukapheresis by negative
tration of immunosuppressive M¢s. selection. All specimens were collected under a University of Pennsylvania
Institutional Review Board-approved protocol and written informed consent
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Fig. 5 IL-6 neutralization and CD40 stimulation sensitizes GBM to immune checkpoint blockade treatment. GBM was induced in mice by
transplantation with a-c¢, tumor cells derived from RCAS-genetically engineered model (n = 6-7 mice, specific n numbers are shown in the figure) or
d-f GL261 tumor cells (n = 8-9 mice, specific n numbers are shown in the figure), followed by different treatment and survival analyses. a, d Experimental
procedure. b, @ Tumor volume was analyzed by bioluminescence imaging. ¢, f Mouse survival was monitored and analyzed by two-sided Log-rank
Mantel-Cox analysis. MS, median survival. Source data are provided as a Source data file.
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was obtained from each donor. We have complied with all relevant ethical reg-
ulations for work with human participants. Cells were incubated in RPMI-1640
medium supplemented with 5% fetal bovine serum (FBS) and treated with

10 ng/ml human CSF-1 (BioLegend, 574806) and 100 ng/ml human IL-6
(BioLegend, 570808).

Mice. WT mice on the C57BL/6] background were obtained from Jackson Lab.
Cdh5-CreERT2 161 mice were generated by crossing TI6%/fl mice with Cdh5-
CreERT2 miceS7, Mice (2 weeks old) were intraperitoneally injected with 0.1 ml of
5 mg/ml tamoxifen daily for consecutive 5 days. All animals were housed at room
temperature with a 12 h-light/12 h-dark cycle in the Association for the Assessment

Pre

Post
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Fig. 6 IL-6 neutralization and CD40 stimulation plus immune checkpoint blockade synergistically reverses M¢p-mediated immune suppression and
activates GBM-associated T cells. GBM was induced in mice, followed by different treatment and endpoint analyses. a Experimental procedure. b Tumor volume
was analyzed pre- and post treatment by bioluminescence imaging. Left, representative images. Right, quantified results (n =6 mice, mean + SEM). Statistical
analysis by two-way ANOVA with Dunnett's test. ¢-f Tumor-derived single-cell suspensions were analyzed by flow cytometry. ¢, d Cells were probed with ¢, anti-
F4/80 and anti-IL-10, or d anti-CD45 and anti-CD8 antibodies. Left, representative sortings. Right, quantified results (n =5 mice, mean + SEM). Statistical analysis
by one-way ANOVA with Dunnett's test. e, f Cells were probed with e anti-CD8 and anti-Ki67, or f anti-CD8 and anti-IFN-y antibodies. Quantified results are
shown (n =5 mice, mean + SEM). Statistical analysis by one-way ANOVA with Dunnett's test. g, h Tumor lysates were subjected to g IL-10 and h TGF-$ ELISA
analysis (mean £ SEM, n =4 mice for ICl plus IL-6 Ab treatment group, n =6 mice for ICls, CD40 Ab, plus IL-6 Ab treatment group, and n=5 mice for other
groups). Statistical analysis by one-way ANOVA with Dunnett's test. Source data are provided as a Source data file.

and Accreditation of Laboratory Animal Care-accredited animal facility of the
University of Pennsylvania. All animal studies were reviewed and approved by the
Institutional Animal Care and Use Committees at the University of Pennsylvania.
We have complied with all relevant ethical regulations for animal testing and
research.

Mouse BMDM isolation and treatment. Mouse BM-derived macrophages
(BMDMs) were isolated?!. Freshly isolated femur and tibia from WT C57BL/6
mice were flushed with RPMI-1640 medium (Life Technologies). Cells were col-
lected and passed through a 40 pum strainer. Red cells were depleted with ACK lysis
buffer (Thermo Fisher). BM cells were cultured in RPMI-1640 medium supple-
mented with 5% FBS (Life Technologies). Cells were incubated with 10 ng/ml
mouse CSF-1 (Biolegend, 576404) for 3 days, to induce macrophage
differentiation, followed by treatment with 10 ng/ml mouse CSE-1 in the presence
or absence of 100 ng/ml mouse IL-4 (Biolegend, 574306) or IL-6 (Biolegend,
575708) for 4 days.

RNA-seq analysis. Treated BMDM were lysed in TRIzol (Thermo Fisher) and
RNA was extracted according to the manufacturer’s instructions, followed by RNA
purification using an RNeasy Plus Mini Kit (Qiagen). DNA library was constructed
with a TruSeq mRNA Stranded Kit (Illumina). The RNA from each step and
library DNA quality were analyzed with RNA Nano assay chips, RNA Pico assay
chips, and DNA Nano assay chips using a 2100 bioanalyzer (Agilent). Library was
subjected to next-generation sequencing analysis in a high-throughput sequencing
center with a HiSeq2500 at the Children’s Hospital of Philadelphia/Beijing
Genomics Institute core facility. The sequences were aligned to the GRCm38
reference genome using RNA-Star (v2.4.2a; https://github.com/alexdobin/STAR).
The gene expression was normalized and calculated as FPKM values by
Cufflinks (v2.2.1) (http://cole-trapnell-lab.github.io/cufflinks/releases/v2.2.1/) with
Gencode M5 gene annotations (https://www.gencodegenes.org/mouse/release_M5.
html).

GBM tumor induction and treatment. A genetically engineered mouse GBM
model was induced®. Briefly, chicken DF-1 fibroblasts (American Type Culture
Collection) were transfected with RCAS-PDGF-B and RCAS-Cre plasmids, fol-
lowed by orthotopically injecting into Ntv-a;Inkda-Arf~'—;PtenV/I,LSL-Luc mice.
Tumors were freshly isolated and subjected to mechanical dissociation with a
gentleMACS Dissociator (Miltenyi). Enzymatic digestion with collagenase II and
dispase II were performed to obtain single-cell suspensions, followed by culture in
mouse stem cell medium (Stemcell Technologies) for collecting tumor spheres.
Eight-week old Cdh5-CreFRT%1I61/fl or WT C67BL/6 mice (half male and half
female) were stereotactically injected with 3 x 10> GBM tumor cells. For the syn-
geneic GBM model, 2 x 10° GL261 glioma cells were orthotopically injected into 8-
week-old WT C57/B6 mice (half male and half female). Tumor-bearing mice were
intraperitoneally treated with anti-PD-1 (200 pg/mouse, BioXcell, BE0146), anti-
CTLA-4 (200 ug/mouse, BioXcell, BE0131), CD40 (100 pg/mouse, BioXcell,
BE0016-2), or anti-IL-6 (200 pg/mouse, BioXcell, BE0046) antibody or control rat
IgG (BioXcell, BE0090), respectively. Tumor volume was monitored by whole-body
bioluminescence using an IVIS 200 Spectrum Imaging System after retro-orbital
injection of luciferin (150 mg/kg, GoldBio). Post-injection survival was monitored
for 50 days. Mice were killed when exhibiting severe GBM symptoms including
domehead, hemiparesis, or >20% of body weight loss.

Mass cytometer (CyTOF). Single-cell suspensions derived from freshly isolated
tumors were prepared by mechanical dissociation with a gentleMACS Dissociator
(Miltenyi Biotech) and enzymatic digestion with collagenase II and dispase II. Cells
were incubated with 25 pM cisplatin, followed by staining at room temperature for
30 min with heavy metal-conjugated antibodies provided by CyTOF core at the
Penn Institute for Immunology. Cells were fixed with 1.6% paraformaldehyde and
stained with Cell-ID Intercalator-Ir (Fluidigm) and analyzed using a CyTOF mass
cytometer (Fluidigm), followed by analysis with Cytobank software (7.3.0).

Flow cytometry. Single-cell suspensions derived from tumors were stained with
fluorescence dye-conjugated antibodies against CD3 (1: 100, BioLegend, 100233),
CD11b (1:200, BioLegend, 101228), CD11b (1 :200, eBioscience, 69-0112-80),
CD11c (1:200, eBioscience, 17-0114-81), MHCII (1 : 100, eBioscience, 47-5321-
80), CD45 (1:200, eBioscience, 48-0451-82), B220 (1: 100, eBioscience, 47-0452-
80), Grl (1:200, BioLegend, 108415), CD8a (1:100, BioLegend, 100706), IFN-g
(1:100, BioLegend, 505808), Ki67 (1 :100, BioLegend, 652405), IL-10 (1: 100,
BioLegend, 505009), CD40 (1 :100, BioLegend, 124621), NK1.1 (1: 100, BioLe-
gend, 108707), CD4 (1 : 100, BioLegend, 100540), Ly6G (1 : 200, BioLegend,
127615), Ly6C (1 : 200, BioLegend, 128005), CD69 (1 : 200, BioLegend, 104511),
F4/80 (1: 200, BioLegend, 123107), CD206 (1 : 100, BioLegend, 141710), CD40
(1:100, BioLegend, 124611), or control IgG. Cells were analyzed using Accuri C6
(BD Biosciences) and FACSCanto II flow cytometers (BD Biosciences) and FlowJo
software (V9).

Enzyme-linked immunosorbent assay. Mouse tumor tissues were homogenized
with extraction buffer. The supernatant was analyzed using mouse IL-10 (Biole-
gend, 431417) or TGF-B ELISA kits (Biolegend, 433007) according to the manu-
facturer’s instructions.

Isolation of tumor-associated myeloid cells. Single-cell suspensions derived
from tumors were incubated with anti-CD11b antibody- conjugated microbeads
(1:100, Miltenyi Biotech, 130-049-601) for 15 min at 4 °C and separated by
magnetic-activated cell sorting (MS) column with a separator. The eluted cells were
cultured in RPMI-1640 medium with 10% FBS.

siRNA treatment. Human monocytes were transfected with siRNAs targeting
HIF-1a (Thermo Fisher, 42840), Stat3 (Life Technologies, 4390824), nuclear factor-
kB (NF-kB) (Thermo Fisher, 106835), or control siRNA (Qiagen, 1027280) using
Amaxa 4D-Nucleofector (Lonza) with program EA-100.

Chromatin immunoprecipitation. ChIP assays were performed using a Magna
ChIP kit (Millipore, MAGNA0001)%%70, In brief, treated human monocytes/mac-
rophages (107 cells cultured in 15 cm dishes) were crosslinked with 1% for-
maldehyde for 10 min at room temperature, followed by glycine incubation for 5
min. Nucleic lysis were sonicated for four cycles (each for 8 x 2's, interval 45 s)
using a W-385 sonicator (Heat Systems Ultrasonics). Immunoprecipitation was
conducted using 20 pg anti-Stat3 (Cell Signaling, 12640) or anti-HIF-1a (Cell
Signaling, 14179) antibody, or 20 pg anti-rabbit IgG (Santa Cruz, sc-2027) with
protein A-conjugated beads. Inputs, acquired from 1% sheared DNA, and
immunoprecipitants were reverse-crosslinked and purified. The primers pairs for
CD40 promoter used in ChIP-quantitative reverse-transcriptase PCR are listed as
follows: Primer #1: forward primer (FP), 5'-agtcttgctctgecttcgag-3/, reverse primer
(RP), 5'-cgcctgtaatccageacttt-3'; Primer #2: FP, 5'-aacgccactacatccggtta-3/, RP, 5'-
cgtctcaacttcccatecat-3'; Primer #3: FP, 5/-ggccccactcttaataaatge-3/, RP, 5'-acaccac-
cacgcagaaaac-3'; Primer #4: FP, 5'-atggatgggaagttgagacg-3’, RP, 5'-aggagc-
tagectgcttectg-3/; Primer #5: FP, 5'-cggttctgccaggataccta-3/, RP,
5'-taattcccccgggagtttag-3’; and Primer #6: FP, 5/-gtcgcaggaagcaggcta-3/, RP,

5'- cgaggectetgetgactce-3'.

Immunoblotting. Cells were lysed with an NP-40 buffer containing protease
inhibitor cocktail (Roche, 11697498001). Protein (20 ug) was resolved by 4-15%
SDS-polyacrylamide gel electrophoresis (Bio-Rad). After transfer, polyvinylidene
difluoride membranes were blotted with anti-HIF-1a (1:1000, Cell Signaling,
14179), anti-Stat3 (1:1000, Cell Signaling, 12640), anti-NF-«B (1: 1000, Cell Sig-
naling, 4882), anti-CD40 (1:1000, Cell Signaling, 86165), or anti-GAPDH
(1:3000, Cell Signaling, 5174) antibody overnight at 4 °C. Proteins were detected
with goat anti-rabbit or anti-mouse IgG-HRP conjugate (1 :5000, Bio-Rad,
1706515 or 1706516), followed by ECL development (GE Healthcare, RPN2232).
Full scan images of blots are available as a Source data file.
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Fig. 7 High IL-6 expression and low CD40 expression correlate with poor survival in human GBM patients. a, b Correlation of CD40 expression with a IL-
6 and b IL-4 expression was subjected to linear regression analyses using GlioVis/TCGA GBM-RNA-seq (n =160 patients) and low-grade glioma (n =513
patients) data sets. Statistical analysis by linear regression analysis. ¢, d Correlation of IL-6 and CD40 expression (high/low cutoff of 40%) with overall survival
was analyzed using TCGA-Firehose data set. Statistical analysis by two-sided log-rank test. @ A schematic model. IL-6 induces anti-inflammatory and pro-
inflammatory functions in M¢s, through IL-10 and CD40 expression, respectively. Combination therapy by anti-IL-6 neutralization and CD40 activation reverses
Md-mediated tumor immunosuppression and promotes T-cell infiltration and activation, sensitizing tumor to checkpoint inhibition treatment.

Statistical analysis. All grouped data were presented as box plot in figures. Sta-
tistical analysis was performed using Student’s ¢-test or analysis of variance for
experiments with two groups or more than two groups, respectively. Kaplan-Meier
survival curves were generated using Prism software and log-rank test was per-
formed to assess statistical significance between groups in mouse experiments. The
survival analysis of TCGA (Glioblastoma, Firehose Legacy) and GlioVis data sets
was conducted using R software (Version 3.6.3). A two-sided P-value < 0.05 was
considered significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

RNA-seq data have been deposited in NCBI's Gene Expression Omnibus (GSE151213).
Gene expression and survival data of glioma patients were obtained from TCGA (https://
portal.gdc.cancer.gov) and GlioVis (http://gliovis.bioinfo.cnio.es/). The remaining data

NATURE COMMUNICATIONS | (2021)12:3424 | https://doi.org/10.1038/s41467-021-23832-3 | www.nature.com/naturecommunications 13


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151213
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://gliovis.bioinfo.cnio.es/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

are available within the Article, Supplementary Information, or available from the
authors upon request. Source data are provided with this paper.
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