
ARTICLE

Time trajectories in the transcriptomic response to
exercise - a meta-analysis
David Amar 1,4, Malene E. Lindholm 1,4, Jessica Norrbom2, Matthew T. Wheeler 1, Manuel A. Rivas 3 &

Euan A. Ashley 1✉

Exercise training prevents multiple diseases, yet the molecular mechanisms that drive

exercise adaptation are incompletely understood. To address this, we create a computational

framework comprising data from skeletal muscle or blood from 43 studies, including 739

individuals before and after exercise or training. Using linear mixed effects meta-regression,

we detect specific time patterns and regulatory modulators of the exercise response. Acute

and long-term responses are transcriptionally distinct and we identify SMAD3 as a central

regulator of the exercise response. Exercise induces a more pronounced inflammatory

response in skeletal muscle of older individuals and our models reveal multiple sex-

associated responses. We validate seven of our top genes in a separate human cohort. In this

work, we provide a powerful resource (www.extrameta.org) that expands the transcriptional

landscape of exercise adaptation by extending previously known responses and their reg-

ulatory networks, and identifying novel modality-, time-, age-, and sex-associated changes.
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Performing regular exercise is one of the most important
actions by which individuals of all ages can improve their
health. It prevents multi-system chronic diseases, reduces

anxiety, improves cognitive function, and overall quality of life1,2.
Recent studies applying mendelian randomization have also
established the causal benefit of exercise in the prevention of
depression3, bipolar disorder4 and breast and colorectal cancer5,
while no effect was observed for Parkinson’s disease6 or
schizophrenia4. Both acute effects and long-term adaptation have
been studied in response to endurance (repeated contractions of
low force) and resistance (fewer contractions of greater force)
exercise in humans, where skeletal muscle and blood are the most
accessible and well-studied tissues. Exercise-induced adaptation
occurs in working skeletal muscles, however, multiple myokines
are released from skeletal muscle into blood, with the potential to
affect all organs7. Resistance training specifically leads to skeletal
muscle hypertrophy, while endurance training leads to increased
capillary density, ATP-producing capacity and improves cardi-
orespiratory fitness8. Both exercise modalities improve insulin
sensitivity9, decrease blood pressure10, and improve the blood
lipid profile by increasing high-density lipoprotein cholesterol
and reducing low-density lipoprotein and triglyceride levels11–13.
Several key transcriptional pathways in skeletal muscle are also
common between the two exercise modalities14.

The global transcriptional response to both acute exercise and
long-term training, measured using microarrays or RNA-
sequencing, has been investigated in healthy humans by sampling
human blood15–19 and skeletal muscle20–25. These studies iden-
tified multiple differentially expressed genes. However, current
studies of the molecular response to exercise are limited in size
due to the complexity of conducting controlled interventions in
healthy individuals that include invasive biological sampling,
something that the NIH common fund initiative the Molecular
Transducers of Physical Activity is aiming to address26. Conse-
quently, available datasets differ substantially in the clinical
attributes of their subject sets, including: sex, age, training mod-
ality, and sampled post-exercise time points.

Meta-analysis is a standard tool for systematic quantitative
analysis of previous research studies. It can generate precise
estimates of effect sizes and is often more powerful than any
individual study contributing to the pooled analysis27. Moreover,
the examination of variability or heterogeneity in study results is
also critical, especially when apparently conflicting results appear.
Meta-analysis can be based on simple weighted averaging using
random-effects (RE) models, or, in more complex cases, be based
on meta-regression of effect sizes vs. covariates, which are typi-
cally assumed to be effect moderators. Meta-analysis (and meta-
regression) has been traditionally used in medicine and epide-
miology, but it has been gaining popularity in large-scale geno-
mics studies28,29. Recently, Pillon et al.30 presented a random-
effects meta-analysis of exercise gene expression studies from
skeletal muscle. The analysis was split based on the training
modality and type (e.g., acute endurance exercise studies were
analyzed separately from other studies), and thousands of genes
were identified to have differential expression, with NR4A3
(nuclear receptor subfamily 4 group A member 3) as the top
candidate gene. However, the analysis accounted for only a single
moderator, and the dependence of the effects on additional
moderators was not analyzed systematically. Thus, the dynamic
response of genes over time was not inspected in a systematic way
for all genes.

In this work, we gathered and annotated publicly available
transcriptome datasets from both endurance and resistance
exercise interventions in humans, covering 1724 samples from
human blood or skeletal muscle from 739 subjects in total. We
address the statistical issues discussed above by (1) fitting a model

for each gene while accounting for the explained variability by
moderators including: sex, age, training type, and time post
exercise, (2) applying a set of filters on the results to promote
replicability, as suggested in ref. 28, and (3) integrating the meta-
analysis results with various biological networks using systems
biology methods. Our results expand the current understanding
of the transcriptional landscape of exercise adaptation by
extending previously known expression responses and their reg-
ulatory networks, and identifying modality-, time-, age-, and sex-
associated changes. We identify SMAD3 (SMAD family member
3) as a central regulator of the acute exercise response, observe a
more pronounced inflammatory response to training in older
individuals and find multiple sex-associated differentially regu-
lated genes, where MTMR3 (myotubularin related protein 3) has
not been associated with exercise before.

Results
Data collection. We collected and annotated data from 43 human
exercise training studies, including 1724 samples from human
blood or skeletal muscle from 739 subjects in total (see Methods).
Figure 1 shows an overview of the study. Dataset records from the
Gene Expression Omnibus (GEO), manuscripts, Supplementary
Information, and personal communication with authors were
used to extract sample-level or study-level information including
sex, age, tissue, training modality, additional treatments, and time
points. Transcriptome data from these samples were used for the
meta-analysis. After imputing missing sex information in
116 subjects using the expression of the Y-chromosome genes
(internal validation was at 0.99 receiver operating characteristic
(ROC), see Methods), 310 of the 739 subjects were female, 409
were males, 18 had no sex information, and two subjects had
discordant sex predictions. Each dataset was partitioned into
homogeneous cohorts that had a similar training regime, see
Supplementary Data 1 for details. This resulted in 59 cohorts, 13
for blood and 46 for skeletal muscle. For each gene and post-
exercise time point, we computed the effect size of differential
expression compared to the pre-exercise sample in each study. In
addition, for each cohort we kept the following four moderators
(covariates): average age, proportion of males, time points, and
training modality. Additional potential effect moderators
including (but not limited to) height, weight, body mass index
(BMI), training status, baseline heart rate, maximal oxygen
uptake (VO2max), and exact location of muscle biopsy were all
examined but were excluded because of low coverage. For
example, only 188 samples (out of 1724) had weight information.
Nevertheless, we provide these variables in our curated dataset
(see Supplementary Data 2–3).

Meta-analysis discovers multiple pathways. We partitioned the
analysis by tissue (blood or muscle) and intervention (acute
exercise bout vs. long-term training). For each type we ran a
simple random-effects (RE) meta-analysis using all summary
statistics, but with adjustment for study-level random effects. We
then ranked all genes by their inferred fold-change, and ran gene
set enrichment analysis (GSEA) for pathway enrichment31. This
analysis resulted in multiple enriched pathways in each of
our four analyses. Figure 2a shows the four-way Venn diagram
of the pathway sets discovered in the analyses at 10%
Benjamini–Yekutieli false-discovery rate (FDR) correction32. The
two pathways that appear as significant in all four analyses are
related to respiratory electron transport. Supplementary Fig. 1
presents the top three up- and three downregulated pathways in
each analysis, see Supplementary Data 4 for all significant GSEA
results. These results illustrate how the meta-analysis can detect
relevant pathways in each analysis, but some pathways appear
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with reversed direction of effect, which is expected when
important covariates are ignored33. For example, mitochondrial
translation has a negative normalized enrichment score (NES) in
the acute muscle meta-analysis (NES −2.17). When examining
the top ranked gene in this pathway, MRPL34 (mitochondrial
ribosomal protein L34), we observe that in most cohorts it is not
differentially expressed, and it is downregulated only in time
points >20 h (Fig. 2b).

The MRPL34 example illustrates a case with high heterogeneity
of the effect sizes (I2= 65%). When such heterogeneity is high
and the number of studies is moderate or low (as in our case),
statistical analyses may be unreliable, resulting in potential
inflation of false positives. Indeed, we observe that thousands of
genes in each analysis have excess heterogeneity (I2 > 70%), see
Supplementary Fig. 2a. Moreover, we observe an inflation of low
p-values of the meta-analysis models, see Supplementary Fig. 2b.
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Fig. 1 Study overview. We started with a search in the Gene Expression Omnibus. Manual examination of the studies and a set of filters resulted in
43 studies that had whole-genome expression profiles from blood and muscle. The data covered 59 exercise cohorts that were partitioned into four types
of meta-analysis (i.e., by tissue and exercise modality). Seven-hundred and thirty-nine subjects were included in total, where some are represented in
several cohorts, for example when sampling was made in association to both acute exercise and long-term training.
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Fold change: 
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Fig. 2 Random-effects meta-analysis results. a Venn diagram of the significant GSEA pathway sets discovered with 10% Benjamini–Yekutieli FDR
correction. The two common pathways are listed on the left. Pink—acute muscle changes, purple—long-term muscle changes, turquoise—long-term blood
changes, green—acute blood changes. b Forest plot of the effect sizes of MRPL34 in acute muscle cohorts illustrates the importance of adding time as a
moderator. Rows represent the 95% confidence interval of a fold-change of a cohort in a given time point. Thus, in each interval the center represents the
fold-change estimate and the error bars are proportional to the fold-change standard error. Downregulation is observed only in time points >20 h. Cohort:
the ID given to the cohort in this study (see Supplementary Data 1 for details), N: sample size, Type: exercise type, RE: resistance exercise, EE: endurance
exercise, Age: mean age in cohort, %M: percent of males in cohort, Time: the time window in hours. Note that a cohort can have multiple rows with the
same time window and different fold-changes (e.g., if a study measured both 2 h and 4 h then both time points will be assigned 2–5 h). Source data are
provided as a Source Data file.
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As observed in previous studies, such results may lead to low
replicability even of the top ranked meta-analysis genes28,34. To
summarize this section, we observe that a standard naive meta-
analysis results in many detected pathways, but inference at the
single gene level may result in high error rate, which is in line
with previous observations in other domains.

Model selection for single gene analysis. The clinical hetero-
geneity (e.g., variation in age, sex distribution, baseline fitness and
type of exercise intervention) in our dataset stems from covering
different populations, and unbalanced sampling of the mod-
erators. For example, the acute studies tended to cover different
post-exercise time points, see Supplementary Data 1. When
examining the associations between the potential moderators
across the muscle cohorts, we observed generally mild associa-
tions (e.g., median R2 < 12%, insignificant p-values), with the
exception of a marked bias of long-term muscle studies towards
young males, see Supplementary Fig 3.

To mitigate the issues discussed above we developed a pipeline
that fits a model for each gene (see Methods). Briefly, we
considered all combinations of the represented moderators, each
producing a different meta-regression model. The naive model
without any moderators from the previous section is denoted as
the base model. Model selection was performed using the Akaike
information criterion with correction for small sample sizes
(AICc)35,36. However, to focus on robust genes, we applied an
additional series of conservative filters, including both a non-
negligible fold-change (>0.1), and a high significance of the top
model (p < 1 × 10−4, corresponds to FDR < 0.1 over all tests).
Moreover, a model was considered a significant improvement
over the base model only if the AICc improvement was >5.
Otherwise, we took the base model, but only if the inferred
heterogeneity was reasonably low (I2 < 50%).

We detected differential genes in each of the four analyses:
acute exercise, muscle: 537 genes; long-term training, muscle: 441
genes; acute exercise, blood: 37 genes; and long-term training,
blood: 48 genes. The low number of genes from the blood
analyses is due to several factors: (1) lower number of cohorts, (2)
limited statistical power (e.g., only 8650 genes had at least two p-
values < 0.05 in the acute datasets as compared to 13,016 in
muscle), and (3) lower effect sizes (e.g., only 470 genes had fold-
change >0.1 in the acute,blood base models).

We further clustered each gene set into co-expressed gene
groups (see Methods). Supplementary Data 5–9 provide the
statistics of the selected genes, and Supplementary Data 10–11
provide their Gene Ontology (GO) and pathway enrichment
results (at 10% FDR adjustment). Note that as the blood datasets
were limited in their numbers and coverage, we did not include
moderators (i.e., genes were selected using the base models only).

To illustrate the output of the algorithm, consider the response
of PPARGC1A (PPARG coactivator 1 alpha or PGC-1ɑ) in
skeletal muscle after acute exercise. This gene is an exercise-
mediated regulator of muscle adaptation with a well-documented
transcriptomic response37. In our analysis, PPARGC1A passed all
statistical tests above and its top model included time as a
moderator. Its forest plot (Fig. 3a) shows a consistent upregula-
tion at the intermediate (2–5 h) time point following exercise,
with a mild downregulation at later time points (>20 h). As
another example, consider COL4A1 (collagen type IV alpha 1
chain), a type IV collagen gene, which showed a consistent
induction with long-term training across studies (Fig. 3b).

In muscle, most detected genes had one or more moderators in
their selected model, see Supplementary Fig. 4 for co-occurrence
of covariates in the selected models. Note that as we tested for
both linear and quadratic trends over time, these patterns were

selected together in many cases. An example is shown in
Supplementary Fig. 4c, where linear or quadratic patterns alone
cannot fully capture the time-associated pattern in which the gene
is upregulated at the 0–1 h window but has no differential
expression in the next time windows.

To further corroborate our approach, we performed a meta-
analysis of the untrained cohorts, which were ignored in the main
analysis above. We compared the inferred effect sizes of our
selected genes in the exercise cohorts with the untrained cohorts,
see Fig. 3c, showing that the effects were exercise-specific.

The acute response in blood was mainly associated with
immune regulation. Figure 3d shows the heatmap of the
upregulated acute blood genes, where the top enrichment was
neutrophil degranulation. In response to long-term training in
blood, downregulated genes were enriched for glyceropho-
spholipid biosynthesis, and upregulated genes enriched for
peptide chain elongation (Supplementary Data 10–11).

Temporal patterns imply information propagation across gene
networks. We identified 159 genes in the acute muscle meta-
analysis with only time as the selected moderator. Our clustering
analysis partitioned this set into four groups based on their time
courses, see Fig. 4a (see Methods for details about the clustering
algorithm). Each cluster corresponds to a different time trajectory
and a different functional annotation. A large connected com-
ponent with representation from all clusters appears when
overlaying the genes on known pathway or protein–protein
interactions (PPI), see Fig. 4b. The main hub of the network is
SMAD3, which is an early-mid upregulated gene. It is an intra-
cellular effector of TGF-β, involved in regulating the balance
between protein synthesis and degradation. SMAD3 is more
active in obese individuals38, whereas lacking SMAD3 protects
mice against diet-induced obesity and insulin resistance39.
SMAD3 is required for the atrophic effect of myostatin40, and has
shown a greater induction in response to resistance training in
females compared to males41. Having SMAD3 as the main hub
together with other early upregulated genes as first and second
degree neighbors, suggests that their subnetwork responds first
and its effect is then propagated downstream, providing novel
information about the early transducers of the transcriptomic
response to exercise.

An early induced exercise response gene was HES1 (Hes family
BHLH transcription factor 1), a basic helix-loop-helix repressor.
It is a Notch target gene involved in skeletal muscle
differentiation42, but its regulatory role in exercise remains to
be elucidated. Another hub was SH3KBP1 (SH3 domain-
containing kinase binding protein 1), which was identified in
the late downregulated cluster. Our analysis also identified many
known exercise-responsive genes, including PGC-1ɑ, a central
regulator of mitochondrial biogenesis that is well-studied in
relation to exercise adaptation37,43. Genes related to angiogenesis
were also induced early, for example PDGFB (platelet-derived
growth factor B) and VEGFA (vascular endothelial growth factor
A) that belong to the same protein family. SPP1 (secreted
phosphoprotein 1) is an example of a gene that increased in the
late time window (>20 h post exercise) (Fig. 4a, b). Its expression
is stimulated by PGC-1ɑ, and its protein is subsequently secreted
to activate macrophages and induce angiogenesis44. Genes related
to fatty-acid metabolism were downregulated during the later
time points following acute exercise (Fig. 4a, late down cluster).
Examples of genes with this expression pattern are MLYCD
(malonyl-CoA decarboxylase), which produces Acetyl-CoA from
Malonyl-CoA and thus stimulates fatty-acid oxidation; and
CPT1B (carnitine palmitoyltransferase 1B), which is a mitochon-
drial membrane transporter of fatty acids.
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We used the dynamic regulatory events miner (DREM)45 to
integrate the time courses with known transcription factor-target
networks and sequence information. DREM produces a model
that links temporal responses to putative regulators. In our data,
DREM predicted four transcription factors to be important
upstream transcriptional regulators during the early 0–1 h time
window (Fig. 4c), where the top two were BHLHE40 (basic helix-
loop-helix family member E40) and HDAC2 (histone deacetylase
2). BHLHE40 is induced by hypoxia and directly binds to PGC-
1ɑ to repress its transactivation activity, likely to reduce hypoxia-
induced reactive oxygen species damage. The repression of PGC-
1ɑ by BHLHE40 has been shown to be alleviated by an increase in
PPARGC1A expression itself in vitro, and by running exercise in

mice46. Moreover, there is evidence that BHLHE40 is itself
induced by a bout of exercise in human skeletal muscle47.
HDAC2 is a class I histone deacetylase whose role in exercise is
largely unknown. Interestingly, lower HDAC2 has been suggested
to cause skeletal muscle weakness in patients with chronic
obstructive pulmonary disease48. The two other identified factors
were NR3C2 (nuclear receptor subfamily 3 group C member 2)
and RDBP (or negative elongation factor E encoded by the
NELFE gene), which have not been previously associated with
regulation of the exercise response.

Replication of acute exercise-regulated genes. We used a sepa-
rate human acute exercise cohort to validate the main genes with

COL4A1 (muscle, long-term)PPARGC1A (muscle, acute)a

c

b

Fold change

Fold change: Fold change:

d Acute, blood,  Neutrophil degranula�on (p=0.008)

t-score
-4     0     4

Valida�on in untrained

Fig. 3 Properties of the meta-analysis results. a Forest plot of the effect sizes of PPARGC1A in acute muscle cohorts. Upregulation appears primarily in the
2–5 h time window and is consistent for both endurance and resistance training. b Forest plot of the effect sizes of COL4A1 in the long-term muscle cohorts.
Upregulation appears consistently across the cohorts. a–b Rows represent the 95% confidence interval of a fold-change of a cohort in a given time point.
Thus, in each interval the center represents the fold-change estimate and the error bars are proportional to the fold-change standard error. Cohort: the ID
given to the cohort in this study (see Supplementary Data 1 for details), N: sample size, Type: exercise type, RE: resistance exercise, EE: endurance exercise,
Age: mean age in cohort, %M: percent of males in cohort, Time: the time window in hours. Note that a cohort can have multiple rows with the same time
window and different fold-changes (e.g., if a study measured both 2 h and 4 h then both time points will be assigned 2–5 h). c The differential expression
effects of our selected genes is unique to exercise. Colors represent the different meta-analysis types in the study. For each meta-analysis the effect sizes
of our selected genes are presented, once for the exercise cohorts and once for the untrained cohorts. All paired two-sided Wilcoxon rank sum tests were
significant at p < 1 × 10−07 (acute exercise, muscle: 537 genes, p= 1.5 × 10−88; long-term training, muscle: 441 genes, 3.1 × 10−68; acute exercise, blood: 37
genes, p= 6.2 × 10−08). Each boxplot shows the median, and first and third quartiles. The whiskers extend from the hinge to the largest and lowest values,
but no further than 1.5 *(the inter-quantile range). d Heatmap of the upregulated genes selected in the acute blood meta-analysis. Columns represent
cohorts, with sampling time point post exercise listed for each, and rows are genes. Boxed cells indicate missing values for that particular gene and cohort.
All acute blood studies measured the response to endurance exercise in up to 3 h after the bout ended. Source data are provided as a Source Data file.
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quantitative real-time PCR (qRT-PCR) (Fig. 4d). Sixteen subjects,
8 males and 8 females, performed 1 h of endurance exercise at
70% of their peak VO2. Skeletal muscle biopsies were obtained
before, and at 2 h and 6 h after exercise. SMAD3 and NR4A1 were
validated as part of the central acute cluster network, and in
accordance with the meta-analysis findings, both were sig-
nificantly upregulated at the 2 h time point following exercise.
HES1 and ID1 (inhibitor of DNA binding 1) were induced in the
early 0–1 h window in the meta-analysis, which was not covered
in the validation cohort. However, both genes showed significant
positive quadratic, and negative linear trends in the meta-analysis.
Supplementary Fig. 5 illustrates how these genes are mostly
downregulated in the 2–5 h window. Our validation showed a
significant downregulation at both 2 h and 6 h after exercise,
which is in agreement with the meta-analysis. SCN2B (sodium
voltage-gated channel beta subunit 2) was upregulated, although
not part of the main network, and SLC25A25 (solute carrier

family 25 member 25) was differentially regulated in response to
both acute exercise and long-term training. Both showed sig-
nificant upregulation in the early time windows. While upregu-
lated in both tested time points, the change of SCN2B was not
significant in the validation cohort (p= 0.09), while SLC25A25
significantly increased at the 2 h time point, and significantly
decreased at 6 h, in concordance with the >20 h time window for
the meta-analysis.

Training induces extracellular matrix genes in skeletal muscle.
We identified ten downregulated and 104 upregulated genes in
the skeletal muscle, long-term training meta-analysis (Fig. 5 and
Supplementary Data 8). Myostatin (MSTN), which is well-
characterized as a negative regulator of skeletal muscle hyper-
trophy, was one of the downregulated genes. The upregulated
genes were enriched for extracellular matrix (ECM) reorganiza-
tion and laminin interactions, a central training adaptation

Fig. 4 Differential expression patterns in skeletal muscle after acute exercise. a Genes associated with time were partitioned into four groups based on
their trajectories. The title of each subplot shows significantly enriched Gene Ontology terms or pathways. b The main GeneMANIA connected component
of the genes in a when overlaid on known protein–protein or pathway networks. c Dynamic regulatory events miner (DREM) analysis results of the genes in
A predict several transcription factors to be involved in the observed responses. d Validation of gene expression changes following acute endurance
exercise in a separate human cohort (n= 16). SMAD3, NR4A1, HES1 and ID1 from the acute network and SCN2B and SLC25A25 from the endurance and
time-specific genes. Expression levels are calculated relative to the average of two housekeeping genes (GAPDH and RPS18). # denotes an overall
significant treatment effect between time points (p < 0.05). *(p < 0.05) and **(p < 0.005) denote significant expression difference compared to before
exercise (pre) after correction for multiple comparisons. Values are presented as mean±standard error of the mean. Source data are provided as a Source
Data file.
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mechanism23,49. A representative reactome network is shown in
Fig. 5b. Several collagen genes important for ECM, including
COL4A1, COL4A2 (collagen type IV alpha 2 chain), COL1A1
(collagen type I alpha 1 chain) and COL5A2 (collagen type V
alpha 2 chain) were highly induced. COL4A1, for example,
represents one of the major components of the basement mem-
brane surrounding skeletal muscle fibers50. A cell surface receptor
for collagens and laminins, ITGA1 (integrin subunit alpha 1), was
identified as one of the central regulatory hubs. Another central
regulator was KDR (kinase insert domain receptor or VEGF
receptor 2) indicating the key role of angiogenesis for training
adaptation in skeletal muscle.

Although repeated bouts of acute exercise over a longer period
of time evidently lead to adaptation, the gene-level transcriptional
overlap between acute and long-term exercise responses was low
(Supplementary Fig. 6), which is similar to previous observations
for resistance exercise and training14. Only 13 genes were
differentially expressed in response to both acute exercise and
long-term training in skeletal muscle, including the mitochon-
drial carrier SLC25A25, the potassium channel KCNC4 (potas-
sium voltage-gated channel subfamily C member 4) and the
malonyl-CoA decarboxylase MYLCD.

More pronounced inflammatory response to exercise with age.
The sample size, and heterogeneity of the cohorts regarding sex
and age allowed us to interrogate potential moderator-specific
transcriptional alterations in response to acute exercise and long-
term training in the skeletal muscle cohorts.

Differential expression of 76 genes was significantly associated
with age in the acute exercise response (Supplementary Data 6).
Figure 5a shows the genes associated with age and time post
exercise, where notably the nuclear receptors NR4A2 (nuclear
receptor subfamily 4 group A member 2) and NR4A3 are
represented. NR4A3 was recently highlighted to be oppositely
regulated in exercise and inactivity, and silencing of NR4A3
decreased oxygen consumption in skeletal muscle cells in vitro30.
In response to long-term training, 73 genes were significantly
associated with age. Particularly, for time and age, we found that
older individuals showed greater induction of interferon-induced

inflammatory genes, including HLA-DRA (major histocompat-
ibility complex, class II, DR Alpha), HLA-F (major histocompat-
ibility complex, class I, F), CD44 (CD44 molecule), IFI44
(interferon-induced protein 44) and IFI44L (interferon-induced
protein 44 like) (Fig. 5b).

We identified 247 genes with sex-associated regulation in the
long-term muscle meta-analysis (Fig. 6c). Their top functional
ontology was chromatin organization (Supplementary Data 11)
and many histone modifying genes were among the most
differentially regulated with exercise and age. Other examples
include the hypoxia-responsive transcription factor HIF1A
(hypoxia inducible factor 1 alpha), and histone deacetylase 3
(HDAC3), which are important transcriptional regulators in
skeletal muscle51,52. MTMR3, a lipid phosphatase that decreased
more in male- vs. female-predominant cohorts, has to our
knowledge not been previously associated with exercise. Although
the decrease in MTMR3 was small, it was consistent, which made
us select this gene for validation, while observing that the meta-
analysis result is in response to training and the validation cohort
is in response to acute exercise. No significant interaction was
observed in the validation cohort (Fig. 6d), emphasizing the need
for the additional power provided by the meta-analysis to
discover more subtle gene expression changes. The meta-analysis
results can be easily queried through the online resource
ExTraMeta for Exercise Transcriptome Meta-analysis at www.
extrameta.org.

Discussion
We took a meta-analysis approach to study the transcriptional
landscape of acute and long-term exercise adaptation in human
skeletal muscle and blood (ExTraMeta). Integration with inter-
action and regulation networks provided key insights into the
molecular map of exercise responses. Gene Set Enrichment
Analysis using the fold-changes inferred from a naive meta-
analysis identified multiple relevant pathways with a marked
overlap between the different analyses. Improving the inference at
the gene level was done by fitting a model for each gene,
accounting for potential moderators such as time, sex, training
modality, and age. However, the gene-level overlap between the
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response to acute and chronic exercise was low, indicating that
more data are required to further delineate the interactions by
which the acute response transduces signals that translate into
long-term effects.

For the muscular response to an acute exercise bout, we
identified co-expressed gene clusters that provide insights into the
differential temporal response patterns. The network analyses
suggest information propagation through the underlying gene
networks, with SMAD3 as the main hub and a modality-
independent central regulator. Integrating the time trajectories
with known gene regulation networks (using DREM), predicted
upstream regulators of the temporal response. The clustered gene
sets were significantly enriched with pathways related to struc-
tural changes, angiogenesis, immune regulation and energy
metabolism.

For long-term interventions in muscle, the response was
dominated by structural changes and metabolic pathways. Our
holistic approach identified a comprehensive response

interactome, but also highlighted that current curated pathways
cover less than half of the identified genes, illustrating the existing
knowledge gap and providing novel candidates for future
research. Delving into moderator-associated responses, we iden-
tified sex- and age-associated differential expression, where long-
term training induced a more prominent inflammatory response
in older individuals. It is not clear how a greater inflammatory
response at the transcriptional level affects the adaptation in older
individuals, as inflammation is an essential part of exercise
adaptation, and may also affect the degree of training-induced
muscle damage.

Our meta-analysis substantially expands the catalog of sex-
associated exercise responses, and offers multiple candidates for
further research. We identified 247 genes that were associated
with long-term training response and sex. They were functionally
associated with histone modifications, which has been shown to
be a key transcriptional regulation mechanism in response to
endurance training in human skeletal muscle53. A summary of

Fig. 6 Covariate-specific transcriptional changes in response to exercise and training in human skeletal muscle. a Heatmap of the 14 genes that were
differentially regulated based on time and age after acute exercise. b Heatmap of the 11 genes that were differentially regulated based on time and age after
long-term training. c Heatmap of the 247 genes that were associated with sex distribution within a cohort in response to long-term training. Each cell is the
average t-statistic of a gene across a set of studies. d Skeletal muscle expression of MTMR3 in males (n= 8) and females (n= 8) before and 6 h after an
acute endurance exercise bout, analyzed with qRT-PCR in a separate validation cohort. Expression levels are calculated relative to the average of two
housekeeping genes (GAPDH and RPS18). Data is presented as mean±standard error of the mean. Source data are provided as a Source Data file.
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selected skeletal muscle results is shown in Fig. 7. It is important
to note that a limitation to these analyses was the inability to
moderate for the physiological response in each individual, which
is known to be heterogeneous54.

In blood, the results were not as coherent as in skeletal muscle.
We observed the following limitations of these data: (1) we were
unable to perform a moderator-specific analysis due to lack of
coverage of moderators, (2) less genes were included into the gene
model selection process (e.g., only 8650 genes were considered in
the acute response, see Methods for details), and (3) the fold-
changes tended to be lower. Nevertheless, the base models iden-
tified 37 differential genes in the acute analysis, and 48 genes in
the long-term analysis. These patterns were mainly enriched for
immune responses, which is expected during recovery. However,
the limited sample size and the inability to test for moderator
effects due to low coverage (e.g., we could not find any public
transcriptome datasets for acute resistance interventions) high-
light where future research efforts are needed.

Recently, Pillon et al.30 took a meta-analysis approach to
analyze exercise and inactivity gene expression studies from
skeletal muscle, and thousands of genes were identified to have
differential expression. However, this study is limited in both
power and false-positive control. First, the analysis accounted for
only a single moderator and the dynamic response over time was
not analyzed in a systematic way for all genes. Second, splitting
the data likely resulted in loss of power for genes that respond to
both resistance and endurance training. Finally, and most
importantly, the analysis was based on a naive meta-analysis and
selection of genes based on their p-values alone, and the effect
heterogeneities were not inspected. When the number of studies
is moderate or small (e.g., 15 or less, as in the exercise case) then
p-values are often biased downwards55,56. This was also observed
previously in the gene expression case, where selecting genes
based on the p-value of the meta-analysis resulted in thousands of
genes and in poor replicability even after false-discovery rate
adjustment28. Meta-analysis methods have some additional lim-
itations that should be considered, especially when studies are
highly heterogeneous. First, random-effects meta-analysis does
not directly explain variability. Second, meta-regression is often
exploratory in nature and heavily relies on the included mod-
erators. In our case we could not analyze potential moderators,
including height, weight, BMI, training status, baseline VO2max,

and baseline heart rate because the vast majority of the samples
did not have these data available. Third, when the number of
studies is moderate or small, small studies may be assigned too
much weight55,56. Finally, meta-analysis can suffer from low
power when the heterogeneity is high or when studies are sam-
pled in an unbalanced way across their moderators57,58.

We mitigated these issues by introducing a model selection
pipeline that fits the moderator set for each gene to better explain
the variability in the data. Moreover, we do not rely on p-values
alone to select genes: we require that their models have both a
high AICc difference and a high effect size (fold-change). As most
moderator pairs are not correlated (Supplementary Fig. 3), we
expect that the model selection process correctly detected the
relevant moderators in most cases. While some specific models
may not be accurate, our gene selection process was developed to
highlight genes that are expected to manifest greater replicability.
This is corroborated by the high concordance between the meta-
analysis findings and the results from the validation cohort.

Understanding exercise response mechanisms holds immense
potential for human health and medicine. Our analysis reveals
differential expression trajectories in skeletal muscle together with
their associated subnetworks and regulation events, and identifies
sex- and age-associated transcriptional regulation. These results
deepen our understanding of the transcriptional responses to
exercise and provide a powerful, free, and easily accessible public
resource (www.extrameta.org) for future research efforts in
exercise physiology and medicine.

Methods
Data collection. We inspected and annotated publicly available human exercise
omics data available in the Gene Expression Omnibus59 (GEO, search date 2/22/
2019). The datasets were annotated by looking at their metadata taken from GEO
or Recount60, by extracting additional information from the publications
(including supplementary data), and (whenever required) by personal commu-
nication with the authors. Only transcriptomics data had a reasonable number of
studies to allow a meta-analysis of differential abundance. For these meta-analyses,
we collected human blood and skeletal muscle gene expression datasets that had
pre- and post-exercise samples for most of their subjects. Non-transcriptomics
data, adipose tissue datasets, and datasets without multiple time points per subject
were excluded from the analysis, even though some are available in the database
(Supplementary Data 1). Each dataset was partitioned into cohorts based on tissue,
study arm, and training modality. This was performed separately for acute bout
datasets and long-term datasets (some studies had both). However, note that
datasets GSE59088, GSE28998, GSE28392, and GSE106865 had both acute and

Fig. 7 Overview of selected gene expression changes. Summary of changes associated with key known adaptation mechanisms in skeletal muscle. Arrows
indicate direction of change based on the base model from the meta-analysis. Source data are provided as a Source Data file.
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long-term cohorts. The included long-term studies ranged from six weeks to nine
months of training.

To address missing sex information, we took a machine learning approach for
imputation. We trained a linear support vector machine (SVM) classifier for sex
using the expression levels from 469 Y chromosome genes that were covered by
most of the platforms in our data. Studies from platforms GPL571, GPL17586, and
GPL16686 were excluded due to low overlap with the other platforms. This affected
a single cohort that was included in the meta-analysis: long-term cohort 34, see
Supplementary Data 1. The training set contained 1382 samples with known sex
information (851 males). Internal leave-study-out cross validation had very high
performance with 0.99 area under the ROC curve and 0.96 area under the
precision-recall curve. The predictions of final model (trained using all labeled
data) were used for the meta-analysis.

Preprocessing and moderators. For each gene in each cohort we computed the
mean and standard deviation of the log fold-change between the post-exercise time
points and the baseline, illustrated in Fig. 1. We also kept the p-value of the
pairwise test for each time point (i.e., vs. the pre-exercise samples). The result is a
matrix of genes over the summary statistics (y—the mean log2 fold-change, v—the
log2 fold-change variance, p—the paired t-test p-value). We excluded genes that
had a missing value in 25% or more. This left >18,000 genes in each dataset (acute
muscle—18,374, acute blood—18,621, long-term muscle—18,685, long-term blood
—19,683).

For each cohort the following moderators (covariates) were collected:
experiment type (long-term training program vs. single acute bout), tissue (blood
vs. muscle), training modality (endurance, untrained, or resistance), sex measured
as the proportion of males in the cohort, average age, and time (measured in hours
for acute bouts and days for long-term training). The cohorts did not cover all
combinations of the moderators. Moreover, the low-sample sizes, limited number
of cohorts, and the observed heterogeneity, all posed challenges that may create
inflation in false positives. Below we explain the different steps we took to select
cohorts and moderators for the analysis where the goal was to both select relatively
homogeneous cohorts and allow exploration of some moderators that were
reasonably covered.

Exercise vs. untrained cohorts: we first observed that most exercise studies did
not monitor the gene expression change in untrained controls. We kept these
cohorts separately (3 for acute, muscle; 2 for acute, blood, and 2 for long-term,
muscle, <30 subjects in each case) and used them to validate the selected genes
from the meta-analyses (Fig. 3c).

Next, for the exercise cohorts we examined the moderators in each case. The
number of blood cohorts and their coverage was poor: acute blood data had seven
cohorts and they were all from endurance training experiments, whereas long-term
blood had three cohorts only. For the muscle data we decided to include the
following moderators in each analysis:

1. Acute, muscle (15 cohorts): time, training, and age. Time was partitioned
into windows as in the acute blood analysis above. Sex was excluded as only
four cohorts had females.

2. Long-term, muscle (26 cohorts): all moderators. Time was binned into
<150 days, and >150 days.

Random-effects meta-analysis. We used the R metafor package to perform meta-
analysis and meta-regression for each gene61. In both cases, we model the fold-
change of a gene. Assume we are given yi, i ∈ 1,..., k estimated effects of a gene,
where i denotes a specific post-exercise time point in a cohort (nested within
studies). Let yi be the log fold-change with variance vi. For the standard random-
effects model we assume that yi= μ+ ui+ ϵi, where yi, is the observed effect, ui is
the true (unknown) effect ui ~N(0,τ2), and ϵi is the sampling error term, ϵi ~N(0,
vi), which are assumed to be independent. In this analysis we were interested in
both the fold-change of the gene across all cohorts and time points (μ), and the
total amount of true heterogeneity among the true effects (τ2). For an interpretable
statistic of consistency we used I2: the ratio of true heterogeneity to total observed
variation62.

For random effects we also tested a nested model structure, denoted as cohort |
study (i.e., inner | outer). Thus, here the random effects have a block-wise structure:
observations from different studies will be independent, but observations from
cohorts from the same studies will be dependent.

Random-effects meta-analysis was used both as a base model to evaluate the
effect and heterogeneity in the exercise meta-analyses (1–4 above), and to evaluate
the fold-change of a gene in the untrained controls. The goal of analyzing the
untrained controls was to evaluate genes that are differential but not because of the
exercise (e.g., due to the process of taking a muscle biopsy).

Meta-regression. We used mixed-effects meta-regression to extend the analysis to
include a set of effect moderators (i.e., covariates). In this case, assuming that there
is a large unexplained heterogeneity among the true effects, we model the fold-

change of a gene using:

yi ¼ β0 þ ∑
p

j¼1
βjxi;j þ ui þ ϵi ð1Þ

where xi,j denotes the value of the j-th moderator variable for the i-th effect, ui
represents a random effect, whose variance represents the residual heterogeneity
among the true effects. In other words, it is the variability among the true effects
not captured by the moderators in the model. The different tested distribution
structure of ui are the same as in the meta-analysis above.

Model selection. Whenever meta-regression was considered, we tested all possible
combinations of a subset of the moderators (including no moderators and all
moderators as options). This was combined with testing two different random-
effects structures as discussed above. For each model we computed the AICc score,
which is more suitable for our case with a limited number of studies as compared
to other alternatives35,36. We then ranked all models by their AICc and excluded
models that were not among the top two or were not base models (i.e., models
without moderators).

Gene selection process. To reduce the number of model selection analyses and
focus on genes that are likely to be replicable, we first excluded genes that had no or
only a single p-value < 0.05 across all cohorts. For the remaining genes (acute,
muscle: 13,016; long-term,muscle: 14,309; acute,blood: 8650; long-term,blood: 508)
we computed the base models and performed the model selection analysis. A
model was considered a significant improvement over a base model (and thus
selected) only if ΔAICc > 5, p < 0.001, ∃βj; |βj| > μ0, where p is the p-value of the
model (including all moderators), and μ0 is a threshold for absolute effect size. We
used μ0= 0.1. In case that no improvement over the base model was identified, the
base model was selected only if it had I2 < 50%, p < 0.001, |μ| > μ0, where p is the p-
value of the estimated effect and μ0 is defined as above. Note that using both
thresholds for the model significance and the effect size is recommended as it tends
to reduce false positives and highlight reproducible results28.

Gene clustering. In each of the four analyses (e.g., acute muscle) we took all
models that had the same covariates and clustered their t-statistic matrices using k-
means63. In each such analysis we determined the number of clusters using the
elbow method: we plot the within-cluster sum of squares as a function of the
number of clusters (testing 1–15) taking the last point that had at least 60%
improvement from the previous one as the number of clusters.

For the time course model detected in acute muscle we also used DREM for
clustering and network inference for transcription factors (TFs)45. We used the
mean log fold-change per gene in each time point as input. The analysis was
performed on the acute muscle time-associated genes. We used DREM with the
ENCODE TF-target network64 and a low penalty for adding nodes. We lowered the
default of 40 until the detected cluster trajectories fitted our k-means clustering
results (with 12 as the selected value).

Functional analysis and network visualization. GO enrichment analysis was
performed using topGO65. Reactome enrichment analysis was performed using
ReactomePA66. Network analysis for selected gene sets was completed using
GeneMANIA67 in Cytoscape68,69. Visualization of Reactome networks in Cytos-
cape was done using Reaction FI70. GSEA was run using the fGSEA71 R package
using Reactome pathways with at least 20 genes and up to 200 genes. We set the
number of GSEA permutations to 50,000.

Validation cohort and qRT-PCR. A separate acute endurance exercise cohort of 16
individuals, 8 males and 8 females, was included to validate some of the meta-
analysis findings. The study was approved by the Regional Ethical Review Board in
Stockholm, Sweden, and was conducted in accordance with the Declaration of
Helsinki. All individuals provided written informed consent. The detailed study
design has been described elsewhere72. In brief, the subjects performed 60 min of
endurance exercise on a cycle ergometer at a workload corresponding to 70% of
their peak VO2. Skeletal muscle biopsies from vastus lateralis were obtained before
exercise, and at 2 h and 6 h after the exercise bout. Skeletal muscle samples were
homogenized using a bead homogenizer and total RNA was extracted by the
Trizol® method (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s
specifications. One ug RNA was reverse transcribed using Superscript reverse
transcriptase (Life Technologies) and random hexamer primers (Roche Diag-
nostics). Quantitative real-time PCR was performed with primers for SMAD3,
NR4A1, SCN2B, HES1, ID1, SLC25A25, MTMR3 and normalized to the average of
two housekeeping genes that were stable across the intervention: glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and ribosomal protein S18 (RPS18) (Sigma-
Aldrich, all primer sequences are listed in Supplementary Table 1). Expression level
was calculated using the ΔCT method and statistical analysis performed using a
mixed-effects model followed by Dunnett’s multiple comparisons test.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The curated database (ExTraMeta) generated in this study is available at www.extrameta.
org. Data supporting the findings of this study are available within the article and
its supplementary information files. Source data for the meta-analysis are provided with
this paper. All computed summary statistics are available here: https://github.com/
AshleyLab/motrpac_public_data_analysis Source data are provided with this paper.

Code availability
The code for all analyses presented in this paper is available here: https://github.com/
AshleyLab/motrpac_public_data_analysis

Received: 2 April 2020; Accepted: 28 April 2021;

References
1. Neufer, P. D. et al. Understanding the cellular and molecular mechanisms of

physical activity-induced health benefits. Cell Metab. 22, 4–11 (2015).
2. Piercy, K. L. et al. The physical activity guidelines for Americans. JAMA 320,

2020–2028 (2018).
3. Choi, K. W. et al. Assessment of bidirectional relationships between physical

activity and depression among adults: a 2-sample Mendelian randomization
study. JAMA Psychiatry 76, 399–408 (2019).

4. Sun, H. et al. The causal relationships of device-measured physical activity
with bipolar disorder and schizophrenia in adults: a 2-Sample mendelian
randomization study. J. Affect. Disord. 263, 598–604 (2020).

5. Papadimitriou, N. et al. Physical activity and risks of breast and
colorectal cancer: a Mendelian randomisation analysis. Nat. Commun. 11, 597
(2020).

6. Baumeister, S. et al. Physical activity and Parkinson’s disease: a two-sample
Mendelian randomisation study. J. Neurol. Neurosurg. Psychiatry https://doi.
org/10.1136/jnnp-2020-324515 (2020).

7. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal
muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

8. DeFina, L. F. et al. Physical activity versus cardiorespiratory fitness: two
(partly) distinct components of cardiovascular health? Prog. Cardiovasc. Dis.
57, 324–329 (2015).

9. Di Meo, S., Iossa, S. & Venditti, P. Improvement of obesity-linked skeletal
muscle insulin resistance by strength and endurance training. J. Endocrinol.
234, R159–R181 (2017).

10. Cornelissen, V. A. & Smart, N. A. Exercise training for blood pressure: a
systematic review and meta-analysis. J. Am. Heart Assoc. 2, e004473 (2013).

11. Seals, D. R., Hagberg, J. M., Hurley, B. F., Ehsani, A. A. & Holloszy, J. O.
Effects of endurance training on glucose tolerance and plasma lipid levels in
older men and women. JAMA 252, 645–649 (1984).

12. Cornelissen, V. A., Fagard, R. H., Coeckelberghs, E. & Vanhees, L. Impact of
resistance training on blood pressure and other cardiovascular risk factors: a
meta-analysis of randomized, controlled trials. Hypertension 58, 950–958
(2011).

13. Mann, S., Beedie, C. & Jimenez, A. Differential effects of aerobic exercise,
resistance training and combined exercise modalities on cholesterol and the
lipid profile: review, synthesis and recommendations. Sports Med. 44, 211–221
(2014).

14. Phillips, B. E. et al. Molecular networks of human muscle adaptation to
exercise and age. PLoS Genet. 9, e1003389 (2013).

15. Radom-Aizik, S., Zaldivar, F. Jr, Leu, S.-Y., Galassetti, P. & Cooper, D. M.
Effects of 30 min of aerobic exercise on gene expression in human neutrophils.
J. Appl. Physiol. 104, 236–243 (2008).

16. Nakamura, S. et al. Effect of exercise on gene expression profile in
unfractionated peripheral blood leukocytes. Biochem. Biophys. Res. Commun.
391, 846–851 (2010).

17. Neubauer, O. et al. Transcriptome analysis of neutrophils after endurance
exercise reveals novel signaling mechanisms in the immune response to
physiological stress. J. Appl. Physiol. 114, 1677–1688 (2013).

18. Rampersaud, E. et al. Genomic signatures of a global fitness index in a multi-
ethnic cohort of women. Ann. Hum. Genet. 77, 147–157 (2013).

19. Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181,
1112–1130.e16 (2020).

20. Vissing, K. & Schjerling, P. Simplified data access on human skeletal
muscle transcriptome responses to differentiated exercise. Sci. Data 1, 140041
(2014).

21. Raue, U. et al. Transcriptome signature of resistance exercise adaptations:
mixed muscle and fiber type specific profiles in young and old adults. J. Appl.
Physiol. 112, 1625–1636 (2012).

22. Lindholm, M. E. et al. An integrative analysis reveals coordinated
reprogramming of the epigenome and the transcriptome in human skeletal
muscle after training. Epigenetics 9, 1557–1569 (2014).

23. Keller, P. et al. A transcriptional map of the impact of endurance exercise
training on skeletal muscle phenotype. J. Appl. Physiol. 110, 46–59 (2011).

24. Huffman, K. M. et al. Metabolite signatures of exercise training in human
skeletal muscle relate to mitochondrial remodelling and cardiometabolic
fitness. Diabetologia 57, 2282–2295 (2014).

25. Robinson, M. M. et al. Enhanced protein translation underlies improved
metabolic and physical adaptations to different exercise training modes in
young and old humans. Cell Metab. 25, 581–592 (2017).

26. Sanford, J. A. et al. Molecular transducers of physical activity consortium
(MoTrPAC): mapping the dynamic responses to exercise. Cell 181, 1464–1474
(2020).

27. Haidich, A. B. Meta-analysis in medical research. Hippokratia 14, 29–37
(2010).

28. Sweeney, T. E., Haynes, W. A., Vallania, F., Ioannidis, J. P. & Khatri, P.
Methods to increase reproducibility in differential gene expression via meta-
analysis. Nucleic Acids Res. 45, e1 (2017).

29. Ramasamy, A., Mondry, A., Holmes, C. C. & Altman, D. G. Key issues in
conducting a meta-analysis of gene expression microarray datasets. PLoS Med.
5, e184 (2008).

30. Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to
exercise and inactivity. Nat. Commun. 11, 470 (2020).

31. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA 102, 15545–15550 (2005).

32. Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in
multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).

33. Pearl, J. Causality: Models, Reasoning and Inference. (Cambridge University
Press, 2009).

34. Amar, D., Shamir, R. & Yekutieli, D. Extracting replicable associations across
multiple studies: empirical Bayes algorithms for controlling the false discovery
rate. PLoS Comput. Biol. 13, e1005700 (2017).

35. Cavanaugh, J. E. Unifying the derivations for the Akaike and corrected Akaike
information criteria. Stat. Probab. Lett. 33, 201–208 (1997).

36. Burnham, K. P. & Anderson, D. R. in Model Selection and Multimodel
Inference, 2nd edn. (Springer, 2002).

37. Lira, V. A., Benton, C. R., Yan, Z. & Bonen, A. PGC-1alpha regulation by
exercise training and its influences on muscle function and insulin sensitivity.
Am. J. Physiol. Endocrinol. Metab. 299, E145–E161 (2010).

38. Watts, R., McAinch, A. J., Dixon, J. B., O’Brien, P. E. & Cameron-Smith, D.
Increased Smad signaling and reduced MRF expression in skeletal muscle
from obese subjects. Obesity 21, 525–528 (2013).

39. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/
Smad3 signaling. Cell Metab. 14, 67–79 (2011).

40. Sartori, R. et al. Smad2 and 3 transcription factors control muscle mass in
adulthood. Am. J. Physiol. Cell Physiol. 296, C1248–C1257 (2009).

41. Liu, D. et al. Skeletal muscle gene expression in response to resistance exercise:
sex specific regulation. BMC Genomics 11, 659 (2010).

42. Noguchi, Y.-T. et al. Cell-autonomous and redundant roles of Hey1 and HeyL
in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites.
Development 146, dev163618. (2019).

43. Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of
skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

44. Rowe, G. C. et al. PGC-1α induces SPP1 to activate macrophages and
orchestrate functional angiogenesis in skeletal muscle. Circ. Res. 115, 504–517
(2014).

45. Schulz, M. H. et al. DREM 2.0: Improved reconstruction of dynamic
regulatory networks from time-series expression data. BMC Syst. Biol. 6, 104
(2012).

46. Chung, S. Y. et al. Bhlhe40 represses PGC-1α activity on metabolic gene
promoters in myogenic cells. Mol. Cell. Biol. 35, 2518–2529 (2015).

47. Lundberg, T. R., Fernandez-Gonzalo, R., Tesch, P. A., Rullman, E. &
Gustafsson, T. Aerobic exercise augments muscle transcriptome profile of
resistance exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310,
R1279–R1287 (2016).

48. To, M. et al. Reduced HDAC2 in skeletal muscle of COPD patients. Respir.
Res. 18, 99 (2017).

49. Martinez-Huenchullan, S., McLennan, S. V., Verhoeven, A., Twigg, S. M. &
Tam, C. S. The emerging role of skeletal muscle extracellular matrix
remodelling in obesity and exercise: Muscle extracellular matrix during
obesity. Obes. Rev. 18, 776–790 (2017).

50. Gillies, A. R. & Lieber, R. L. Structure and function of the skeletal muscle
extracellular matrix. Muscle Nerve 44, 318–331 (2011).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23579-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3471 | https://doi.org/10.1038/s41467-021-23579-x | www.nature.com/naturecommunications 11

http://www.extrameta.org
http://www.extrameta.org
https://github.com/AshleyLab/motrpac_public_data_analysis
https://github.com/AshleyLab/motrpac_public_data_analysis
https://github.com/AshleyLab/motrpac_public_data_analysis
https://github.com/AshleyLab/motrpac_public_data_analysis
https://doi.org/10.1136/jnnp-2020-324515
https://doi.org/10.1136/jnnp-2020-324515
www.nature.com/naturecommunications
www.nature.com/naturecommunications


51. Song, S. et al. The HDAC3 enzymatic activity regulates skeletal muscle fuel
metabolism. J. Mol. Cell Biol. 11, 133–143 (2019).

52. Lindholm, M. E. & Rundqvist, H. Skeletal muscle hypoxia-inducible factor-1
and exercise. Exp. Physiol. 101, 28–32 (2016).

53. McGee, S. L., Fairlie, E., Garnham, A. P. & Hargreaves, M. Exercise-induced
histone modifications in human skeletal muscle. J. Physiol. 587, 5951–5958
(2009).

54. Bouchard, C. & Rankinen, T. Individual differences in response to regular
physical activity. Med. Sci. Sports Exerc. 33, S446–S451 (2001).

55. Serghiou, S. & Goodman, S. N. Random-effects meta-analysis: summarizing
evidence with caveats. JAMA 321, 301–302 (2019).

56. von Hippel, P. T. The heterogeneity statistic I(2) can be biased in small meta-
analyses. BMC Med. Res. Methodol. 15, 35 (2015).

57. Hempel, S. et al. Risk of bias: a simulation study of power to detect study-level
moderator effects in meta-analysis. Syst. Rev. 2, 107 (2013).

58. Rubio-Aparicio, M., Sánchez-Meca, J., López-López, J. A., Botella, J. & Marín-
Martínez, F. Analysis of categorical moderators in mixed-effects meta-analysis:
consequences of using pooled versus separate estimates of the residual
between-studies variances. Br. J. Math. Stat. Psychol. 70, 439–456 (2017).

59. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI
gene expression and hybridization array data repository. Nucleic Acids Res. 30,
207–210 (2002).

60. Frazee, A. C., Langmead, B. & Leek, J. T. ReCount: a multi-experiment resource of
analysis-ready RNA-seq gene count datasets. BMC Bioinforma. 12, 449 (2011).

61. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J.
Stat. Softw. 36, 1–48 (2010).

62. Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring
inconsistency in meta-analyses. BMJ 327, 557–560 (2003).

63. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: a k-means clustering
algorithm. J. R. Stat. Soc. Ser. C. Appl. Stat. 28, 100–108 (1979).

64. Harrow, J. et al. GENCODE: the reference human genome annotation for The
ENCODE Project. Genome Res. 22, 1760–1774 (2012).

65. Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology (R
package version, 2010).

66. Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome
pathway analysis and visualization. Mol. Biosyst. 12, 477–479 (2016).

67. Warde-Farley, D. et al. The GeneMANIA prediction server: biological
network integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38, W214–W220 (2010).

68. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L. & Ideker, T. Cytoscape 2.8:
new features for data integration and network visualization. Bioinformatics 27,
431–432 (2011).

69. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

70. Wu, G. & Haw, R. Functional interaction network construction and analysis
for disease discovery. Methods Mol. Biol. 1558, 235–253 (2017).

71. Sergushichev, A. A. An algorithm for fast preranked gene set enrichment
analysis using cumulative statistic calculation. Preprint at bioRxiv https://doi.
org/10.1101/060012 (2016).

72. Gidlund, E.-K. et al. Rapidly elevated levels of PGC-1α-b protein in human
skeletal muscle after exercise: exploring regulatory factors in a randomized
controlled trial. J. Appl. Physiol. 119, 374–384 (2015).

Acknowledgements
This research was supported by the NIH Common Fund (award number U24OD026629)
and the Knut and Alice Wallenberg Foundation (M.E.L).

Author contributions
Conception and design: D.A., M.E.L., M.T.W., M.R., E.A.A. Analysis and interpretation:
D.A., M.E.L., M.T.W., E.A.A. Validation experiments: J.N. Manuscript draft: D.A., M.E.L.
All authors contributed to the research of the published work, and have read and
approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23579-x.

Correspondence and requests for materials should be addressed to E.A.A.

Peer review information Nature Communications thanks Marcus Dörr and Zhaohui Qin
for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23579-x

12 NATURE COMMUNICATIONS |         (2021) 12:3471 | https://doi.org/10.1038/s41467-021-23579-x | www.nature.com/naturecommunications

https://doi.org/10.1101/060012
https://doi.org/10.1101/060012
https://doi.org/10.1038/s41467-021-23579-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Time trajectories in the transcriptomic response to exercise - a meta-analysis
	Results
	Data collection
	Meta-analysis discovers multiple pathways
	Model selection for single gene analysis
	Temporal patterns imply information propagation across gene networks
	Replication of acute exercise-regulated genes
	Training induces extracellular matrix genes in skeletal muscle
	More pronounced inflammatory response to exercise with age

	Discussion
	Methods
	Data collection
	Preprocessing and moderators
	Random-effects meta-analysis
	Meta-regression
	Model selection
	Gene selection process
	Gene clustering
	Functional analysis and network visualization
	Validation cohort and qRT-PCR

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




